机械原理研究教学 多杆机构
机械原理课程设计说明书--平面六杆机构
机械原理课程设计说明书设计题目:平面六杆机构学院:机械工程学院姓名:林立班级:机英101同组人员:刘建业张浩指导老师:王淑芬题目三:平面六杆机构.一. 机构简介1.此平面六杆机构主要由一个四杆机构,和一个曲柄滑块机构构成,其中四杆机构是由1杆,2杆,3杆和机架构成的曲柄摇杆机构,1杆为主动件,转速为90rpm ,匀速转动。
其中滑块机构由3杆,4杆,滑块5和机架构成,以四杆机构的摇杆为主动件2.设计要求:各项原始数据如图所示,要求对机构的指定位置进行运动分析和动态静力分析,计算出从动件的位移,速度(角速度),加速度(角加速度)和主动件的平衡力偶M ,进行机构运动分析,建立数学模型。
之后进行动态静力分析,建立数学模型,必须注意,工作行程和返回行程阻力的大小,方向,主动件处于何位置时有力突变,需要计算两次。
二. 机构运动分析:1.首先分析1杆,2杆,3杆和机架组成的四杆机构,可列复数矢量方程 (1-1) 应用欧拉公式 将实部和虚部分 离得332211cos cos cos θθθl b l l +=+ 332211sin sin sin θθθl a l l +=+把以上两式消元整理得0cos sin 33=++CB A θθ36213621θθθθi i i i l e l l l e e e +=+θθθsin cos i i +=e其中)sin cos (22cos 22sin 21112223212231313131θθθθa b l b a l l l C bl l l B al l l A ++----=-=-=解之可得)/(])([)2/tan(2/12223C B C B A A --+±=θ (1)速度分析将式(1-1)对时间t 求导,可得333222111cos cos cos θθθw l w l w l =+ 333222111sin sin sin θθθw l w l w l =+联解以上两式可求得两个未知角速度,3杆和2杆的角速 度3w 和2w)]-sin()/[l -sin(l )]sin(/[)sin(3223111223321113θθθθθθθθw w l l w w -=--=(2)加速度分析将式(1-1)对时间t 两次求导。
机械原理四连杆机构
l l l l 2l1l 4 cos cosBCD 2l 2 l3
2 2 2 3 2 1 2 4
当=0和180时,cos=+1和-1, BCD分别最小和最大(见图4-4)。 当BCD为锐角时,传动角=BCD, 是传动角的最小值,也即BCD(min) ;
令摇杆自C1D摆至C2D为工作行 程,这时铰链C的平均速度是 v1=C1C2/t1;摆杆自C2D摆回至C1D为 空回行程,这时C点的平均速度是 v2=C1C2/t2,v1<v2,表明摇杆具有急回 运动的特性。牛头刨床、往复式运输 机等机械就利用这种急回特性来缩短 非生产时间,提高生产率。
急回特性可用行程速比系数K表示,即
由上述分析可知:
最短杆和最长杆长度之和小于或等于其 余两杆长度之和是铰链四杆机构存在曲 柄的必要条件。
满足这个条件的机构究竟有一个曲柄、 两个曲柄或没有曲柄,还需根据取何杆 为机架来判断。
二、铰链四杆机构的演化
1.曲柄滑块机构
如图4-15a所示 的曲柄摇杆机构中, 摇杆3上C点的轨迹是以D为圆心,杆3的 长度L3为半径的圆弧mm。如将转动副D 扩大,使其半径等于L3,并在机架上按C 点的近似轨迹mm作成一弧形槽,摇杆3 作成与弧形槽相配的弧形块,如图4-14b 所示。
l 1+ l 4≤l2+ l3 (4-6)
将以上三式两两相加可得:
l 1≤l 2 l 1≤l 3 l 1≤ l 4
上述关系说明:曲柄存在的必要条件: (1) 在曲柄摇杆机构中,曲柄是最短杆; (2) 最短杆与最长杆长度之和小于或等 于其余两杆长度之和。
如何得到不同类型的铰链四杆机构?
四杆机构案例在机械原理教学中的应用
四杆机构案例在机械原理教学中的应用
四杆机构是机械结构学和机械原理教学中经常使用的机构,它能够实现典型运动,如直线运动、回转运动和摆动运动,广泛应用于仿真机器人、机器工具等机械设备的研发、设计和生产工艺方面。
本文将详细介绍四杆机构适用于机械原理教学的应用。
四杆机构在机械原理教学中最大的优势在于有效性和准确性。
由于四杆机构拥有可调节的杆长,能够很好地模拟任意原理中的运动轨迹,为讨论和分析各种机械原理提供了一个物理环境。
这种机构的结构又简单又有效,只需要考虑其运行的基本运动轨迹,不会受到其他影响,如有关重力等因素,可使教学中多种运动轨迹的分析更加系统和准确。
此外,四杆机构的广泛研究也为机械原理教学提供了一种新的思路和技术手段。
大量的参数优化设计技术和理论研究,可大大提高机构的效率和可靠性。
相关技术和理论可以广泛应用于机械原理教学中,教师可以利用这些技术和理论,使学生更好地理解基本的机械原理和机械结构的运动特性。
此外,四杆机构有利于实现高精度的运动控制,可以精确模拟多种曲线和几何形状,可以分析各种力学现象,这种机构还可以实现无力运动控制,利用可编程控制单元输出传动系统,以实现更加丰富、更加复杂的动力机构、机器人和其他运动设备的动力控制。
因此,四杆机构在机械原理教学中可以有效地模拟机械结构的运动特性,教师可以利用其准确的运动模拟和参数优化设计技术,帮助学生更准确地理解机械原理及其应用。
同时,四杆机构也可以作为其他动力机构、机器人和其他运动控制系统的媒介,用于机械原理教学的运动控制和分析。
机械原理课程设计六杆机构运动与动力分析
机械原理课程设计六杆机构运动与动⼒分析⽬录第⼀部分:六杆机构运动与动⼒分析⼀.机构分析分析类题⽬ 3 1分析题⽬ 32.分析内容 3 ⼆.分析过程 4 1机构的结构分析 42.平⾯连杆机构运动分析和动态静⼒分析 53机构的运动分析8 4机构的动态静⼒分析18 三.参考⽂献21第⼆部分:齿轮传动设计⼀、设计题⽬22⼆、全部原始数据22三、设计⽅法及原理221传动的类型及选择22 2变位因数的选择22四、设计及计算过程241.选取两轮齿数242传动⽐要求24 3变位因数选择244.计算⼏何尺⼨25 五.齿轮参数列表26 六.计算结果分析说明28 七.参考⽂献28第三部分:体会⼼得29⼀.机构分析类题⽬3(⽅案三)1.分析题⽬对如图1所⽰六杆机构进⾏运动与动⼒分析。
各构件长度、构件3、4绕质⼼的转动惯量如表1所⽰,构件1的转动惯量忽略不计。
构件1、3、4、5的质量G1、G3、G4、G5,作⽤在构件5上的阻⼒P⼯作、P空程,不均匀系数δ的已知数值如表2所⽰。
构件3、4的质⼼位置在杆长中点处。
2.分析内容(1)对机构进⾏结构分析;(2)绘制滑块F的运动线图(即位移、速度和加速度线图);(3)绘制构件3⾓速度和⾓加速度线图(即⾓位移、⾓速度和⾓加速度线图);(4)各运动副中的反⼒;(5)加在原动件1上的平衡⼒矩;(6)确定安装在轴A上的飞轮转动惯量。
图1 六杆机构⼆.分析过程:通过CAD制图软件制作的六杆机构运动简图:图2 六杆机构CAD所做的图是严格按照题所给数据进⾏绘制的。
并机构运动简图中活动构件的序号从1开始标注,机架的构件序号为0。
每个运动副处标注⼀个字母,该字母既表⽰运动副,也表⽰运动副所在位置的点,在同⼀点处有多个运动副,如复合铰链处或某点处既有转动副⼜有移动副时,仍只⽤⼀个字母标注。
见附图2所⽰。
1.机构的结构分析如附图1所⽰,建⽴直⾓坐标系。
机构中活动构件为1、2、3、4、5,即活动构件数n=5。
机械原理教学机构的结构分析
农业机械的结构通常包括动力系统、 传动系统、控制系统和执行系统等, 这些系统协同工作,实现农业生产的 自动化和高效化。
轻工机械
轻工机械是用于轻工业生产的机械设备。
轻工机械的结构通常包括动力系统、传 轻工机械的应用范围广泛,包括印刷机
动系统、控制系统和执行系统等,这些 械、包装机械、塑料机械、皮革机械等,
数学建模
通过建立数学模型,对机械原理教学机构进行定量分析和优化, 提高设计的精度和可靠性。
有限元分析
利用有限元分析方法,对机构的结构进行离散化处理,通过计算和 分析,找出结构的薄弱环节,优化结构设计。
拓扑优化
通过拓扑优化方法,对机构的结构进行优化设计,使其在满足性能 要求的前提下,重量最轻、结构最紧凑。
通过机构运动学可以分析机构 的运动特性,如机构的自由度、 机构的运动方程等。
机构运动学是机构设计和分析 的基础,对于理解机构的工作 原理和控制机构的运动具有重 要意义。
机构动力学
机构动力学是研究机构力与运动 之间关系的科学,主要研究机构 在力作用下的运动规律和动态特
性。
机构动力学可以分析机构的受力 情况、机构的动态响应以及机构
移动凸轮是指凸轮在垂直于其轴线的方向上移动,可以实现各种复杂的运动轨迹,广泛应 用于自动化生产线和机器人技术中。
04 机械原理教学机构的应用
农业机械
农业机械是用于农业生产、农产品加 工和农业运输的机械设备。
农业机械的应用范围广泛,包括拖拉 机、收割机、灌溉设备、植保机械等, 这些设备在农业生产中发挥着重要的 作用。
计算机辅助设计
CAD软件应用
01
利用CAD软件进行机械原理教学机构的三维建模、装配、干涉
检查和运动仿真等操作,提高设计效率。
机械原理四连杆机构
利用错列机构克服平行四边形 机构不确定性状态
利用辅助曲柄消除平行四边形机构 的不确定状态
三、双摇杆机构
两连架杆均为摇杆的铰链四杆机构 称为双摇杆机构。 图4-11所示为起重机机构,当摇杆 CD摇动时,连杆BC上悬挂重物的M点 作近似的水平直线移动,从而避免了重 物平移时因不必要的升降而发生的事故 和能量的损耗。
图4-6 利用死点夹紧工件的夹具
二、双曲柄机构
两连架杆均为曲柄的铰链四杆机构称 为双曲柄机构。
图4-7 插床双曲柄机构
双曲柄机构中,用得最多的是平行 双曲柄机构,或称平行四边形机构,它 的连杆与机架的长度相等,且两曲柄的 转向相同、长度也相等。由于这种机构 两曲柄的角速度始终保持相等。且连杆 始终作平动,故应用较广。 当四个铰链中心处于同一直线如图 4-9a)所示时,将出现运动不确定状态, 例如在图4-9b)中,当曲柄1由AB2转到 AB3时,从动曲柄3可能转到DC3’,也可 能转到DC3’’。
图4-4 曲柄摇杆机构的急回特性
当曲柄由AB1顺时针转到AB2时, 曲柄转角1=180+,这时摇杆由C1D摆 到C2D,摆角为;而当曲柄顺时针再转 过角度2=180-时,摇杆由C2D摆回C1D, 其摆角仍然是 。虽然摇杆来回摆动的 摆角相同,但对应的曲柄转角不等 (12);当曲柄匀速转动时,对应的时间 也不等(t1>t2),从而反映了摇杆往复摆 动的快慢不同。
( 1 )取最短杆相邻的构件(杆 2 或杆 4 ) 为机架时:
最短杆1为曲柄,而另一连架杆3为摇杆
故图4-14a)所示的两个机构均为曲柄摇 杆机构。
(2)取最短杆为机架
其连架杆2和4均为曲柄 故图4-14b)所示为双曲柄机构。
(3)取最短杆的对边(杆3)为机架
机械原理四连杆机构(借鉴材料)
能实现预期的运动规律,而且希望运转轻
便、效率高。图4-5所示的曲柄摇杆机构,
如不计各杆质量和运动副中的摩擦,则连
杆BC为二力杆,它作用于从动摇杆3上的
力P是沿BC方向的。作用在从动件上的驱
动力P 与该力作用点绝对速度vc之间所夹
的锐角称为压力角。由图可见,力P在vc 方向的有效分力为Pt=Pcos,
柄。仅能在某一角度摆动的连架杆,称 为摇杆。
教学教资
5
对于铰链四杆机构来说,机架和连杆 总是存在的,因此可按照连架杆是曲柄还 是摇杆,将铰链四杆机构分为三种基本型 式:
曲柄摇杆机构
双曲柄机构
双摇杆机构
教学教资
6
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆,
一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
教学教资
34
图4-11 起重机起重机构
教学教资
35
两摇杆长度相等的双摇杆机构,称 为等腰梯形机构。
图4-12所示,轮式车辆的前轮转向 机构就是等腰梯形机构的应用实例。
教学教资
36
图4-12 汽车前轮转向机构
教学教资
37
当车转弯时,与前轮轴固联的两个
摇杆的摆角和不等。如果在任意位置
都能使两前轮轴线的交点P落在后轮轴 线的延长线上,则当整个车身绕P点转 动时,四个车轮都能在地面上纯滚动, 避免轮胎因滑动而损伤。等腰梯形机构 就能近似地满足这一要求。
BCD分别最小和最大(见图4-4)。
当BCD为锐角时,传动角=BCD, 是传动角的最小值,也即BCD(min) ;
当BCD为钝角时,传动角=180-
BCD ,BCD(max)对应传动角的另一 极小值。
机械原理四连杆机构全解
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天效的回转力矩, 显然Pt越大越好。而P在垂直于vc方向的 分力Pn=Psin则为无效分力,它不仅无 助于从动件的转动,反而增加了从动件 转动时的摩擦阻力矩。因此,希望Pn越 小越好。由此可知,压力角越小,机 构的传力性能越好,理想情况是=0, 所以压力角是反映机构传力效果好坏的 一个重要参数。一般设计机构时都必须 注意控制最大压力角不超过许用值。
死点会使机构的从动件出现卡死或 运动不确定的现象。可以利用回转机构 的惯性或添加辅助机构来克服。如家用 缝纫机中的脚踏机构,图4-3a。 有时死点来实现工作,如图4-6所示 工件夹紧装置,就是利用连杆BC与摇杆 CD形成的死点,这时工件经杆1、杆2传 给杆3的力,通过杆3的传动中心D。此力 不能驱使杆3转动。故当撤去主动外力F 后,工件依然被可靠地夹紧。
图4-3a所示为缝纫机的踏板机构, 图b为其机构运动简图。摇杆3(原动 件)往复摆动,通过连杆2驱动曲柄1 (从动件)做整周转动,再经过带传 动使机头主轴转动。
图4-3 缝纫机的踏板机构
曲柄摇杆机构的主要特性有。
急回 压力与传动角 死点
1.急回运动
如图4-4所示为一曲柄摇杆机构, 其曲柄AB在转动一周的过程中,有两 次与连杆BC共线。在这两个位置,铰 链中心A与C之间的距离AC1和AC2分别 为最短和最长,因而摇杆CD的位置C1D 和C2D分别为其两个极限位置。摇杆在 两极限位置间的夹角称为摇杆的摆角。
机械原理四杆机构
机械原理四杆机构机械四杆机构是指由四个杆件和若干个铰链构成的机械结构,它是一种常用的机械传动装置,广泛应用于机械工程和机械设计中。
机械四杆机构具有简单、稳定、高效等优点,被广泛应用于各类机械设备和机构。
机械四杆机构常见的几种类型有平行四杆机构、双曲线四杆机构、转动四杆链接机构等。
下面将对这几种机构进行详细介绍。
首先,平行四杆机构是指杆件四边互相平行的一种机构。
它由两对相互平行的杆件和若干个铰链连接而成。
平行四杆机构能够实现直线运动和转动运动的互换,因此广泛应用于工程中的传动元件和机械装置。
它的工作原理是通过改变杆件上的角度,使得杆件能够实现特定的运动方式。
平行四杆机构的结构简单,传动效率高,但可调节部分较少,对工作精度要求较高。
其次,双曲线四杆机构是指杆件四边不相平行的一种机构。
它通常由两对相互垂直的杆件和若干个铰链连接而成。
双曲线四杆机构具有较高的工作机能,能够实现平行直线运动和旋转运动的互换,同时还能够实现任意角度的旋转运动。
因此,双曲线四杆机构广泛应用于各类工程中的传动机构和机械装置。
它的工作原理是通过改变杆件上的角度,使得杆件能够实现特定的运动方式。
双曲线四杆机构的结构复杂,传动效率较低,但可调节部分较多,对工作精度要求较低。
最后,转动四杆链接机构是指由四个杆件和若干个铰链连接成的一种机构。
它的特点是通过改变杆件上的角度,实现旋转运动。
转动四杆链接机构广泛应用于各类机械设备和机构中,如工程机械和汽车等。
它的工作原理是通过改变杆件的角度和位置,使得杆件能够实现特定的运动方式。
转动四杆链接机构的结构简单,传动效率较高,但可调节部分较少,对工作精度要求较高。
综上所述,机械四杆机构是一种常用的机械传动装置,常见的几种类型有平行四杆机构、双曲线四杆机构和转动四杆链接机构。
它们分别具有不同的结构特点和工作原理,被广泛应用于各类机械设备和机构中。
机械四杆机构具有简单、稳定、高效等优点,对于机械工程和机械设计具有重要的意义。
机械原理课程设计 六杆机构分析完整版
机械原理课程设计说明书设计题目:六杆机构运动分析学院:工程机械学院专业:机械设计制造及其自动化班级:25041004设计者:25041004指导老师:张老师日期:2013年01月07日目录1.课程设计题目以及要求————————————————————32.运用辅助软件对结构进行结构分析———————————————43.数据收集以及作图———————————————————————114.总结————————————————————————————17六杆机构运动分析1、分析题目对如图5所示的六杆机构进行运动与动力分析,各构件长度、滑块5的质量G 、构件1转速n1、不均匀系数δ的已知数据如表5所示。
2、分析内容(1)对机构进行结构分析:(2)绘制滑块D 的运动线图(即位移、速度和加速度线图):(3)绘制构件3和4的运动线图(即角位移、角速度和角加速度线图): (4)绘制S4点的运动轨迹。
图5表5方案号L CDmmL ECmmymm L AB mm L CS4 mm n 1r/mi n1 975 360 50 250 400 23.52 975 325 50 225 350 33.53 9003005020030035(一)对机构进行结构分析选取方案三方案号L CDmm L ECmmymmL ABmmL CS4mmn 1r/mi n3 900 300 50 200 300 35对六杆机构进行运动分析:(1)原始数据的输入:(2)基本单元的选取及分析:(3)各点运动参数:(4)长度变化参数(5)各构件角运动参数:(二)滑块D的运动线图(位移-速度-加速度线图):(三)构件3的运动线图(角位移-角速度-角加速度线图):(四)构件4的运动线图(角位移-角速度-角加速度线图):(五)S4点的运动轨迹:(六)数据收集以及作图(1)滑块D 点x 、y 方向的运动参数如表6.1所示表6..1由上表可以得到D 点运动线图如图6.1所示图6.1位置 0123456789101112位 移X 1188.097 1187.376 1058.394 848.5281 680.2758 607.9142 606.0113 651.5314 734.6896 848.5281 980.0058 1105.089 1188.097 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 速 度X 332.4289 -434.0533 7293.698 -1466.08 -831.5157 -222.7902 169.5616 457.6898 699.4701 879.648 933.0263 776.3062 332.4289 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 加 速度X -4255.382 -6281.231 -4679198 2533.081 4920.073 3387.318 2265.425 1834.254 1530.378 911.9092 -264.7796 -2020.469 -4255.382 y 0(2)构件3的运动参数如表6.2所示表6.2位置0 1 2 3 4 5 6 7 8 9 10 11 12角位移φ14.03624 -16.10211 -50.93532 -90 230.9353 196.1021 165.9638 139.1066 114.1333 90 65.86674 40.89339 14.03624角速度ω-3.4496 -3.947138 -4.561904 -4.886933 -4.561904 -3.947138 -3.4496 -3.1416 -2.981412 -2.93216 -2.981412 -3.1416 -3.4496角加速度ɛ-2.789002 -4.130385 -3.972855 -6.092957 3.972855 4.130385 2.789002 1.582846 0.7038764 2.368942 -0.703876 -1.582846 -2.789002由上表得构件3的运动线图如图6.2所示图6.2(3)构件4的运动参数如表6.3所示表6.3位置0 1 2 3 4 5 6 7 8 9 10 11 12 φ-4.63715 5.304571 14.99956 19.471122 14.99956 5.304571 -4.63715 -12.60438 -17.70998 -19.47122 -17.70998 -12.60438 -4.63715 角位移ω 1.119198 1.269533 0.992103 1.253846 -0.9921031 -1.269533 -1.119198 -0.8111576 -0.4265414 -1.775216 0.4265414 0.1811158 1.119198 角速度ɛ 1.768468 0.031558 -4.448388 -8.443604 -4.448388 0.031558 1.768468 2.468482 2.88811092 3.039697 2.881092 2.468482 1.768468 角加速度由表6.3参数可得构件4的运动线图如图6.3所示图6.3(4)S4点x、y方向的运动参数如表6.4所示表6.4位置0 1 2 3 4 5 6 7 8 9 10 11 12位移X 590.0608 586.9459 478.8375 282.8427 100.7192 10.48452 7.975251 65.99134 163.1245 282.8427 408.4406 519.5487 590.0608 Y 48.50713 -55.47002 755.287 -200 -155.287 -55.47002 48.50713 130.9307 182.5194 200 182.5194 130.9307 48.50713速度X 278.1398 -363.6323 -1139.637 -1466.08 -985.5764 -293.2113 223.8507 563.8953 777.3222 879.648 855.1742 670.1007 278.1398 Y -669.3207 -758.4576 -574.98 -8.42273 574.98 758.4576 669.3207 474.9653 243.7962 7.905602 -243.7962 -474.9653 -669.3207加速度X -3592.063 -5316.593 -4799.736 844.3604 4920.073 4351.956 2928.744 1896.326 1108.512 303.9697 -686.6455 -1958.397 -3592.063 y -1118.368 70.54837 2730.937 4776.623 2730.937 70.54837 -1118.368 -1531.544 -1679.939 -1719.512 -1679.939 -1531.544 -1118.368(七)总结:六杆机构的运动分析相比课本上的平面四杆机构来说难度大些,而且是用辅助软件进行运动分析,这看起来似乎难度更大。
机械原理四连杆机构分析
图4-6 利用死点夹紧工件的夹具
二、双曲柄机构
两连架杆均为曲柄的铰链四杆机构称 为双曲柄机构。
图4-7 插床双曲柄机构
BD2=l22+l32-2l2l3cosBCD 由此可得
l l l l 2l1l 4 cos cosBCD 2l 2 l3
2 2 2 3 2 1 2 4
当=0和180时,cos=+1和-1, BCD分别最小和最大(见图4-4)。 当BCD为锐角时,传动角=BCD, 是传动角的最小值,也即BCD(min) ;
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天线俯仰角调整机构
第四章 连杆机构
平面连杆机构是将各构件用转动 副或移动副联接而成的平面机构。
最简单的平面连杆机构是由四个 构件组成的,简称平面四杆机构。它 的应用非常广泛,而且是组成多杆机 构的基础。
§4-1 铰链四杆机构的基本形式 和特性
全部用回转副组成的平面四杆机构 称为铰链四杆机构,如图4-1所示。
连杆
机架
连 架 杆
图4-1 铰链四杆机构
图中,机构的固定件4称为机架;与 机架用回转副相联接的杆1和杆3称为连 架杆;不与机架直接联接的杆2称为连杆。 另外,能做整周转动的连架杆,称为曲 柄。仅能在某一角度摆动的连架杆,称 为摇杆。
Байду номын сангаас
对于铰链四杆机构来说,机架和连杆 总是存在的,因此可按照连架杆是曲柄还 是摇杆,将铰链四杆机构分为三种基本型 式:
机械原理6杆机构设计实例
机械原理6杆机构设计实例机械原理中的六杆机构是一种基本的机械结构,由六个连杆组成,可以实现特定的运动和转换功能。
本文将为您提供一个六杆机构的设计实例,以便更好地理解其工作原理和应用。
1. 设计目标:我们的设计目标是创建一个六杆机构,可以将旋转运动转换为直线运动。
该机构将用于驱动一个线性推进器,以实现物体在直线轴上的移动。
2. 机构设计:为了实现我们的设计目标,我们选择了一种常见的六杆机构类型,即双曲线传动机构。
该机构由两个相交的双曲线连杆和四个普通连杆组成。
其中两个普通连杆连接驱动轴和双曲线连杆,另外两个普通连杆连接双曲线连杆和线性推进器。
3. 工作原理:当驱动轴旋转时,通过连杆的连接,双曲线连杆也开始旋转。
由于双曲线曲面的特性,使得连接在其上的普通连杆产生复杂的运动轨迹。
这种运动轨迹可以被利用,使得线性推进器在直线轴上产生直线运动。
4. 应用:这种六杆机构设计可以广泛应用于需要将旋转运动转换为直线运动的场景中。
例如,在自动化生产线中,可以使用该机构实现工件的装配和定位。
另外,在机床中,该机构也可以用于驱动刀具进行直线切削操作。
5. 设计考虑:在进行六杆机构设计时,需要考虑以下几个因素:- 机构尺寸:根据特定应用的需求,确定机构的尺寸和比例。
- 运动平稳性:为了确保机构运动平稳,需要进行合理的连杆长度和角度的选择。
- 载荷承受能力:根据应用场景中的负载要求,设计机构以承受相应的载荷。
- 动力传递效率:通过减少摩擦和能量损失来提高机构的动力传递效率。
6. 结论:通过设计一个六杆机构,我们成功地实现了将旋转运动转换为直线运动的目标。
该机构可以在自动化生产线和机床等领域中发挥重要作用。
在设计过程中,我们需要考虑机构尺寸、运动平稳性、载荷承受能力和动力传递效率等因素。
这个设计实例展示了六杆机构在实际应用中的重要性和灵活性。
以上就是关于机械原理六杆机构设计的一个实例解释。
通过这个例子,我们可以更好地理解六杆机构的工作原理和应用,以及设计过程中需要考虑的因素。
机械原理四连杆机构
播种机排种器
四连杆机构用于播种机排种器,通过调节连杆长度和角 度,实现排种量的精确控制。
工业机械中的应用
数控机床
四连杆机构用于数控机床的进给系统,实现高精度、 高效率的加工。
工业机器人
四连杆机构用于工业机器人的关节部位,实现机器人 的灵活运动和精确控制。
航空航天中的应用
飞机起落架
四连杆机构用于飞机起落架的收放系统,通过调节连 杆长度和角度,实现起落架的快速、稳定收放。
实验方法与步骤
1
3. 设定输入杆的长度和角度,启动实验,观察输 出杆的运动情况,记录相关数据。
2
4. 重复实验,改变输入杆的长度和角度,获取多 组数据。
3
5. 对实验数据进行整理和分析,得出结论。
实验结果与分析
实验结果
通过实验获取了四连杆机构在不同输入条件 下的运动数据,包括角度和速度的变化规律 。
机械原理四连杆机构
汇报人: 2023-12-27
目录
• 四连杆机构的概述 • 四连杆机构的工作原理 • 四连杆机构的类型与特点 • 四连杆机构的优化设计 • 四连杆机构的实验研究 • 四连杆机构的应用实例
01
四连杆机构的概述
定义与特点
定义
四连杆机构是一种由四个杆件相互连接组成的平面连杆机构,通过不同杆件的 相对运动实现特定的运动轨迹。
四连杆机构模型、测角仪、测速仪、数据采 集系统等。
实验方法与步骤
• 实验方法:采用控制变量法,通过改变输入杆的 长度和角度,观察输出杆的运动规律,并记录相 关数据。
实验方Байду номын сангаас与步骤
实验步骤 1. 搭建四连杆机构模型,确保各杆件安装正确,无卡滞现象。
西工大机械原理研讨课-平面六杆机构
三、研讨总结
2.缺点:
(1)由于在六杆机构中,机构的运动要经过中间构件进行传递,因此传动路线较长, 在传递过程中会有很大的过程中能量的损失,易产生较大的误差累积,从而会使机械 效率降低; (2)在六杆机构运动中,连杆和滑块在运动中由于会产生的惯性力且难用一般平衡 的方法加以消除,所以连杆机构不适合用于高速运动; (3)对于六杆机构,由于尺寸参数较多,运动要求复杂,在电脑程序设计方面有很 大的困难,因而设计也较困难。具体设计方法可以参阅有关专著。
三、研讨总结
1.优点(除所有连杆机构都具备的优势外):
(1) 可以获得较小的运动所占空间,如汽车车库门启闭机构当采 用四杆机构时,库门运 动要占据较大的空间位置,且机构的传动性能不理想。若采用六杆机构,上述情况就会 获得很大改善; (2)可取得有利的传动角:当从动件的摆角过大,或者机构的外廓尺寸,或铰链布置的 位置遭受到限制时,若还采取用四杆机构往往不能获得有利的传动角。如窗户启闭机构, 若用曲柄滑块机构,虽能满足窗户启闭的其他要求,但在窗户全开位置,机构的传动角 为0度,窗户的启闭均不方便。若改用六杆机构,则问题可获得较好解决。
图 2-5 WⅡ6P5P4P 型六杆机构
一、基本概念及设计 (3) 含有三个移动副的六杆机构,其中一个为输出的移动副
对于 SⅢ运动链型式,3(4)、6 其中必须有一个构件作为原动件,假定构件 4 为原动件,6 为六杆机构输出滑块,那么 4132 可以组成偏置滑块机构型式,与之 相对应的机构运动简图 如图 2-6 中(a)、(b)所示。
图 2-14 SⅢ6P5P3(4)P 六杆机构
一、基本概念及设计 (3) 含有三个移动副的六杆机构,其中一个为输出的移动副
当构件 6 为原动件,3 为输出移动副滑块时与之相对应的机构简图如图 2-7 中(a)、(b)所示。
机械原理四连杆机构PPT教案
图4-2 雷达天线俯仰角调整机构
第7页/共87页
图4-3a所示为缝纫机的踏板机构 ,图b为其机构运动简图。摇杆3(原 动件)往复摆动,通过连杆2驱动曲 柄1(从动件)做整周转动,再经过 带传动使机头主轴转动。
第8页/共87页
图4-3 缝纫机的踏板机构
第9页/共87页
第10页/共87页
第53页/共87页
又如图4-18为牛头刨床回转导杆机 构,当BC杆绕B点作等速转动时,AD 杆绕A点作变速转动DE杆驱动刨刀作变 速往返运动。
第54页/共87页
图4-18回转导杆机构
第55页/共87页
3.摇块机构
构。
图4-16a)所示的为曲柄滑块机
若取杆2为固定件,即可得图 4-16c)所示的摆动滑块机构,或称摇 块机构。
满足这个条件的机构究竟有一个曲柄、两个曲柄或没有曲柄,还需根据取何杆为 机架来判断。
第47页/共87页
二、铰链四杆机构的演化
1.曲柄滑块机构 如图4-15a所示 的曲柄摇杆机构中,摇杆3上C点的轨迹是以D为圆心,杆
3的长度L3为半径的圆弧mm。如将转动副D扩大,使其半径等于L3,并在机架上按 C点的近似轨迹mm作成一弧形槽,摇杆3作成与弧形槽相配的弧形块,如图4-14b 所示。
第18页/共87页
它可使从动件产生有效的回转力矩 ,显然Pt越大越好。而P在垂直于vc方向
的分力Pn=Psin则为无效分力,它不仅
无助于从动件的转动,反而增加了从动 件转动时的摩擦阻力矩。因此,希望Pn
越小越好。由此可知,压力角越小, 机构的传力性能越好,理想情况是=0
,所以压力角是反映机构传力效果好坏 的一个重要参数。一般设计机构时都必 须注意控制最大压力角不超过许用值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F是自由度,n为活动构件数
Pl是低副个数,Ph是高副个数
P’是虚约束个数,F’是局部自由度 自由度计算: n=5, Pl =7, Ph =0,P’=0,F’=0 F=3n-(2Pl +Ph –P’)-F’ =3x5-2x7=1
II级杆组
机构的位置分析
机构的速度分析
机构的加速度分析
该六杆机构具有双停歇特性,它是利用 一个具有两段近似圆弧的连杆曲线来实 现的。两段圆弧的圆心分别在F点的运 动轨迹的两端
KEYS: Workingmodel,Simulation,Mechanism motion analysis
Working model是丑界上最受欢迎的CAE工具,它是一种 概念性设计的工具,可让用户创建模拟机构取代模糊、费 时、不准确的机构计算。所采用的工作模型是由成千上万 的丏业工程师创建并分析真实的机械系统得到的。它的工 作模型包括自动碰撞检测和反应NURBS的几何形状。最新 版本还包括普遍脚本为Flexbeam、剪力和弯矩、和销钉摩 擦等。这些脚本都被定制以扩展用户工作模型的使用。它 是构建一个想象中产品的结构的最好仿真工具,能够测定 产品合理性,推荐产品的相关参数。
双停歇六杆机构的运 动学性能分析
北京交通大学1ຫໍສະໝຸດ 级 摘 要:本文主要研究的是通过利用运动仿真软件 Working model 迚行连杆机构运动仿真。先在 Working model 中画出的机构运动2D图,然后 对机构迚行仿真。并丐查看某些点的运动轨迹, 最后得出所研究的构件的位置,速度,加速度图 像。通过对这些机构迚行仿真,不仅学会使用分 析软件,而丐学会一些机械设计的方法。 关键字: Working model,仿真,机构运动 分析
Working model是一个非常简单有用的软件, 既可以迚行运动仿真,还可以迚行运动分析,非 常直观,特别是任意一点的轨迹都可以模拟,这 对学生的设计很适合,可以实时观察轨迹的变化, 直到选中预想的轨迹为止。另外,该软件的强大 的动画功能还能引起学生的兴趣。
自由度公式:
F=3n-(2Pl +Ph –P’)-F’
《机械原理 》 孙桓
Working model教程 《基于Mathematica和Workingmodel的 机构运动分析与设计》金文涛 基于workingmodel运动仿真的机构设计 【北京 石油化工学】
ABSTRACT: This paper mainly studies are by using motion simulation software Workingmodel for connecting rod mechanism’s simulation.First draw the mechanism motion in Workingmodel 2 d figure, then the simulation was carried out on the connecting rod mechanism. And analysis trajectory of some points . Finally, concluded the position, velocity, and acceleration curve of the frame member which we study.Through the simulated of these mechanism,I not only learn to use the design and software workingmodel, and learn some mechanical design method.