线代总结

合集下载

线代公式总结

线代公式总结

线代公式总结
线性代数中有很多重要的公式,以下是其中一些主要的公式:
1. 逆矩阵公式:对于一个矩阵A,如果存在一个矩阵B,使得AB=BA=I (单位矩阵),那么矩阵B称为矩阵A的逆矩阵,记作A^(-1)。

2. 行列式公式:对于一个n阶方阵A,其行列式记作det(A),定义为所有
取自不同行不同列的元素的乘积的代数和,即det(A)=a11a22...ann。

3. 特征值公式:对于一个n阶方阵A,如果存在一个数λ和一个非零向量x,使得Ax=λx成立,那么λ称为矩阵A的特征值,x称为矩阵A的对应于特
征值λ的特征向量。

4. 转置矩阵公式:对于一个矩阵A,其转置矩阵记作A^T,定义为将矩阵
A的行列互换得到的矩阵。

5. 行列式性质公式:对于一个n阶方阵A,有det(A^T)=det(A),
det(kA)=k^ndet(A),det(AB)=det(A)det(B)。

6. 向量点乘公式:对于两个向量a和b,其点乘记作a·b,定义为
a1b1+a2b2+...+anbn。

7. 向量叉乘公式:对于两个向量a和b,其叉乘记作a×b,定义为一个新
的向量c,其中c的每个分量c_i是a和b各个分量乘积的和,即
c=(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)。

这些公式是线性代数中最重要的部分,可以帮助我们解决很多问题。

线代知识点总结口诀

线代知识点总结口诀

线代知识点总结口诀一、向量空间的定义和性质1. 定义:集合V中元素R^n或函数的封闭满足加法、数乘皆保持线性组合2. 性质:零向量唯一对任意向量封闭数乘常数满足结合律交换律二、基和维数的概念1. 基的定义:线性无关组成生成空间并且极小维数即基的元素个数空间维数无疑问2. 维数公式:维数加和定理V=W⊕U成立时维数和为分量秩不成立时加成理三、线性映射的定义和性质1. 定义:映射满足加法和数乘的保持性即为线性变换零空间和像空间2. 性质:核与像的维数加和为V的维数核是线性无关部分像是基的映射组四、矩阵与线性映射的关系1. 定义:矩阵是映射的表示基向量对应列向量映射作用为乘法基变换及相似2. 性质:矩阵与像的关系矩阵秩等于像空间零空间即核空间映射的表示很关键五、特征值和特征向量1. 定义:A的倍数即λv满足Av=λv特征多项式及根特征向量线性独2. 性质:特征向量线性无关半单特征值个数对角化矩阵不经特征值有关关键六、对称矩阵的对角化1. 定义:A的转置与原矩阵相等即为对称矩阵实对称矩阵相关定正定矩阵特征正2. 性质:对称矩阵对角化特征值为实数特征向量正交关系正定矩阵重要性七、正交和正交补空间1. 定义:内积为零即正交正交补空间的性质维数和维数加和维数和维度乘积2. 性质:正交补空间维数正交补空间的基正交补空间关键正交变换的重要八、二次型和正定矩阵1. 定义:二次型对称矩阵正定二次型性质标准型及规范型正定矩阵判定法2. 性质:正定矩阵的特征值二次型的规范型正定矩阵的判定法特征分解及应用以上就是线性代数知识点总结口诀,希望对你有帮助。

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

知识点总结线代

知识点总结线代

知识点总结线代1. 向量和向量空间向量是一个有大小和方向的量,它可以表示空间中的一个点或者物体的位移。

向量空间是由一组向量构成的集合,它满足一些特定的性质,比如对任意的向量加法和数乘运算封闭。

2. 矩阵和矩阵运算矩阵是一个长方形的数组,它由行和列组成。

在线性代数中,矩阵表示了线性映射的具体表达形式,可以用来描述向量之间的线性关系。

矩阵的加法、数乘、乘法等运算是线性代数中重要的概念。

3. 行列式和特征值行列式是矩阵的一个重要性质,在计算矩阵的逆、求解线性方程组等问题时起着重要的作用。

特征值是一个矩阵的固有性质,它表示了矩阵在某个方向上的伸缩比例。

4. 线性方程组和矩阵的逆线性方程组是线性代数中的一个重要问题,它的解决可以用来描述物理系统的平衡状态、工程问题的最优解等。

矩阵的逆是一个矩阵的重要性质,它可以用来求解线性方程组和描述线性映射的反演关系。

5. 线性变换和正交变换线性变换是线性代数中的一个重要概念,它描述了向量空间中的一个映射,满足加法和数乘的线性关系。

正交变换是一种特殊的线性变换,在物理学和工程中有着广泛的应用。

6. 对称矩阵和正定矩阵对称矩阵是一个重要的矩阵类别,在物理学、工程学等领域有着广泛的应用。

正定矩阵是一个特殊的对称矩阵,它的特征值都是正数,具有很好的性质和应用价值。

7. 线性代数在计算机科学中的应用线性代数在计算机科学中有着广泛的应用,比如在图形学、机器学习、计算机图像处理等领域都离不开线性代数的支持。

矩阵的运算、线性变换等概念在计算机科学中有着重要的应用价值。

总之,线性代数是数学中的一个重要分支,它研究的是向量空间、线性映射和矩阵等概念,具有很强的理论性和应用性。

通过学习线性代数,我们可以了解向量空间的性质、矩阵的运算规律以及线性方程组的求解方法,从而在物理、工程、计算机科学等领域有着广泛的应用和实际价值。

希望通过本文的总结,读者能够对线性代数有一个更深入的理解,从而在学习和应用过程中更加得心应手。

线代知识点总结 (个人整理,非官方)-精选.

线代知识点总结 (个人整理,非官方)-精选.

行列式1、逆序数(向前取大法)2、行列式展开(去年高数求几何向量的时候用过的那玩意儿)3、行列式的性质行列式与其转置行列式相等交换行列式的任意两行,行列式改变符号行列式的某行的所有元素乘以k,等于用k 乘以该行列式行列式中有两行的所有对应元素成比例,则该行列式为0如果行列式的某行的各元素是两数之和,则该行列式等于两个行列式的和把行列式的任一行的所有元素乘以k,加到另一行,该行列式不变4、克莱姆法则如果线性方程组的系数行列式不等于零,即线性方程组有解,并且解是唯一的如果线性方程组无解或有两个不同的解,则它的系数行列式必为零如果齐次线性方程组的系数行列式D非0则齐次线性方程组只有零解如果齐次线性方程组有非零解,则它的系数行列式必为零.5.行列式的计算特殊形式的行列式(对角线行列式,三角形行列式) 或低阶的行列式用定义。

将行列式化为三角形行列式。

用性质将行列式化简,再按一行(或一列)展开。

矩阵1.方阵的行列式2.逆矩阵的运算规律原矩阵右增加单位阵,再将原矩阵化为单位阵,此时右边的即为所求逆矩阵3.一些等价命题(1)A 可逆(2)A 是非异阵(3)A 可经过若干次初等变换化为E(4)A为满秩矩阵(5)非齐次线性方程组Ax=b有唯一解(6)齐次线性方程组Ax=0只有零解4.初等阵与初等变换矩阵->行阶梯型->行最简型5.矩阵的秩行阶梯型矩阵中的非零行行数即为矩阵的秩●向量组的线性相关性则称向量组A是线性相关的,否则称它线性无关.含有零向量的向量组一定线性相关。

向量空间●线性方程组线性方程组基础解系的求法非齐次线性方程的通解PS.最新文件仅供参考已改成word文本。

方便更改。

线性代数总结

线性代数总结

线性代数总结 行列式:定理一:一个排列中的任意两个元素对换,排列改变奇偶性。

推论:奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数。

定理二:n 阶行列式也可以定义为(), (12)121n p p p tn a a aD ∑-=其中t 为行标排列n p p p ...21的逆序数行列式性质:性质1:行列式与它的转置行列式相等 行列式的行与列具有同等重要的性质。

性质2:互换行列式的两行(列),行列式变号推论:如果行列式有两行(列)完全相同,则此行列式等于零性质3:行列式的某一行(列)中所有的元素乘以同一数k ,等于用数k 乘此行列式 推论:行列式中某一行(列)所有元素的公因子可以提到行列式记号的外面 性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零性质5:若行列式的某一列(行)的元素都是两数之和,例如第i 列的元素都是两数之和:nnnini n n ni i n i i a b a a a a b a a a a b a a a D ..............................2122222211111211+++=则D 等于下列两个行列式之和:nnni n n ni n i nn ni n n n i n i a b a a a b a a a b a a a a a a a a a a a a a a D ................................................ (21222221)11121121222221111211+= 性质6:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变若n 阶行列式每个元素都表示成两个数之和,则它可分解成n2个行列式。

注意j i r r +与i j r r +的区别 余子式:在n 阶行列式中,把()j i ,元ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做()j i ,元ij a 的余子式,记为ij M ;记()ij ji ij M A +-=1叫作()j i ,元ij a 的代数余子式引理:一个n 阶行列式,如果其中第i 行所有元素除()j i ,元ij a 外都为零,那么这行列式等于ij a 与它的代数余子式的乘积,即ij ij A a D =定理三:行列式等于它的任一行的各元素与其对应的代数余子式乘积之和,即),...,2,1(...2211n i A a A a A a D in in i i i i =+++=或),...,2,1(...2211n j A a A a A a D nj nj j j j j =+++=推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。

线代知识总结

线代知识总结

线性代数知识点总结目录第一章行列式 (2)第一节:二阶与三阶行列式 (2)第二节:全排列及其逆序数 (2)第三节:n阶行列式的定义 (3)第四节:对换 (4)第五节:行列式的性质 (5)第六节行列式按行(列)展开 (6)第七节克拉默法则 (7)第二章矩阵 (8)第一节:矩阵 (8)第二节:矩阵的运算 (8)第三节:逆矩阵 (11)第四节:矩阵分块法 (13)第三章矩阵的初等变换与线性方程组 (15)第一节:矩阵的初等变换 (15)第二节:矩阵的秩 (16)第三节:线性方程组的解 (18)第四章向量组的线性相关性 (19)第一节:向量组及其线性组合 (19)第二节:向量组的线性相关性 (21)第一章行列式第一节:二阶与三阶行列式1、把表达式a 11a 22-a 12a 21称为a 11a 12a21a22所确定的二阶行列式,并记作a 11a 12a21a12,即D =a 11a 12a21a22=a 11a 22-a 12a 21.结果为一个数。

同理,把表达式a 11a 22a 33+a 12a 23a 31+a 13a 21a 32-a 11a 23a 32-a 12a 21a 33-a 13a 22a31,称为a11由数表a21a12a 22a32a13a31a 11a12a 23所确定的三阶行列式,记作a 21a 22a 31a 32a33a13a 23。

a33a 11a 12即a 21a 22a 31a32a13a 23=a 11a 22a 33+a 12a 23a 31+a 13a 21a 32-a 11a 23a 32-a 12a 21a 33-a 13a 22a 31,a33注意:对角线法则只适用于二阶及三阶行列式的计算。

2、利用行列式计算二元方程组和三元方程组:对二元方程组⎨⎧a 11x 1+a 12x 2=b1⎩a 21x 1+a 22x 2=b 2≠0a12,设D =a 11a 12b1a21a22D 1=b 1b2a 12a22D 2=a11a 11b1b 1a21b2.则x 1=b a 22D1=2D a11a 12a 21a22x 2=a b D2=212.a 11a 12Da 21a22注意:以上规律还能推广到n 元线性方程组的求解上。

线代题型知识点总结

线代题型知识点总结

线代题型知识点总结在线性代数的学习中,有一些重要的知识点需要掌握,包括向量空间、线性变换、矩阵、行列式、特征值和特征向量等。

下面我们来对这些知识点进行总结。

1. 向量空间向量空间是线性代数的基本概念,它是集合中的元素按照一定的规则进行线性组合形成的空间。

向量空间必须满足一些基本的性质,包括封闭性、结合律、交换律、单位元和逆元等。

在向量空间中,我们可以定义加法和数乘运算,并且这两种运算满足线性性质。

向量空间的一些重要的性质包括线性相关和线性无关、基和维数、子空间等。

线性相关是指向量之间存在一定的线性关系,而线性无关则表示向量之间不存在线性关系。

基是指向量空间中的一组线性无关的向量,并且这组向量可以生成整个向量空间。

向量空间的维数是指生成向量空间的最小的基的大小。

2. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且满足一定的线性性质。

线性变换可以使用矩阵来表示,并且线性变换具有一些重要的性质,包括线性性、保持加法和数乘运算、保持零向量等。

线性变换的一些重要的性质包括核和像、秩和零化度等。

核是指线性变换的零空间,它包括所有被映射到零向量的向量,而像是指线性变换映射到的向量空间。

线性变换的秩是指像的维数,而零化度是指核的维数。

3. 矩阵矩阵是线性代数中的一个重要工具,它可以用来表示线性变换、解线性方程组等。

矩阵的一些重要的性质包括行空间和列空间、转置矩阵、逆矩阵等。

行空间是指矩阵的所有行张成的空间,而列空间是指矩阵的所有列张成的空间。

转置矩阵是将矩阵的行和列进行交换得到的矩阵,而逆矩阵是指矩阵的乘法逆元。

4. 行列式行列式是矩阵的一个重要的性质,它可以用来求解线性方程组的解、判断矩阵的逆是否存在等。

行列式的计算包括按照对角线元素进行乘积减去反对角线元素进行乘积,并且可以使用化简和展开等方法来计算。

行列式的一些重要的性质包括行列式的性质和余子式和代数余子式的关系等。

线代知识点总结全部

线代知识点总结全部

线代知识点总结全部一、向量和矩阵1. 向量的定义向量是指具有大小和方向的几何体,通常用箭头表示。

在数学中,向量通常用有序数对或有序数组表示。

例如,在二维空间中,一个向量可以表示为(a, b),表示向量在x轴上的分量为a,在y轴上的分量为b。

2. 向量的线性运算向量的线性运算包括向量的加法和数量乘法。

向量的加法就是将两个向量相加,得到一个新的向量。

数量乘法是将一个实数与一个向量相乘,得到一个新的向量。

3. 矩阵的定义矩阵是一个由数排成的矩形阵列,它是线性代数中的一个重要概念。

矩阵中的数称为元素,矩阵的行数和列数分别称为矩阵的阶数。

例如,一个m×n的矩阵有m行n列。

4. 矩阵的基本运算矩阵的基本运算包括矩阵的加法、数量乘法和矩阵的乘法。

矩阵的加法是将两个相同阶数的矩阵相加得到一个新的矩阵,矩阵的数量乘法是将一个实数与一个矩阵相乘得到一个新的矩阵。

矩阵的乘法是将一个m*n的矩阵与一个n*p的矩阵相乘得到一个m*p的矩阵。

5. 矩阵的转置矩阵的转置是将矩阵的行向量转换为列向量,列向量转换为行向量。

矩阵的转置操作可以用来表示矩阵的对称性和几何意义,也有利于简化矩阵的计算。

二、向量空间和子空间1. 向量空间的定义向量空间是指具有加法和数量乘法两种运算的集合,并且满足一定的性质。

向量空间可以是有限维的,也可以是无限维的。

例如,n维实数向量空间可以表示为R^n,它包含所有n维的实数向量。

2. 子空间的定义子空间是指在一个向量空间V中的一个非空集合W,并且满足在W中任意两个向量的线性组合仍然在W中。

子空间的一个重要性质是它也是一个向量空间,可以继承向量空间的性质。

3. 线性相关和线性无关一组向量中的向量如果存在线性组合能够得到零向量,则称这组向量线性相关;如果不存在这样的线性组合,则称这组向量线性无关。

4. 基和维数在一个向量空间中,如果存在一组线性无关的向量可以组成整个空间中的任意向量,则称这组向量是一组基。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)—行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则★ 8对角线的元素为a ,其余元素为b 的行列式的值:(三)按行(列)展开 9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等 于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素 的代数余子式乘积之和等于 0 (四)行列式公式 10、行列式七大公式: (1) |kA|=kn|A|1 1…ik £…益■y (v)」IT=n厲-号)klXn7、n 阶(n 》2)范德蒙德行列式数学归纳法证明(2) |AB|=|A| • |B|(3) |AT|=|A|(4) |A-1|=|A|-1(5) |A*|=|A|n-1(6) 若A的特征值入1、入2、……入n,贝y P(7) 若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1 )非齐次线性方程组的系数行列式不为0,那么方程为唯解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3 )若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0b2矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O2、转置的性质( 5 条)( 1)( A+B) T=AT+BT( 2)( kA) T=kAT( 3)( AB) T=BTAT( 4) |A|T=|A|( 5)( AT) T=A(二)矩阵的逆3、逆的定义:B=A-1 AB=E或 BA=E成立,称A可逆,B是A的逆矩阵,记为注:A可逆的充要条件是|A|工04、逆的性质:( 5 条)(1)( kA) - 1=1/k ・A-1 (k 工0)(2)(AB)-仁B- 1 ・A-1(3)|A-1|=|A|-1( 4)( AT) -1= ( A-1 ) T( 5)( A-1 ) -1=A5、逆的求法:( 1 ) A 为抽象矩阵:由定义或性质求解(2) A为数字矩阵:(A|E初等行变换E|A-1 )(三)矩阵的初等变换6、初等行(列)变换定义:(1)两行(列)互换;(2)一行(列)乘非零常数c(3)一行(列)乘k 加到另一行(列)7、初等矩阵:单位矩阵E 经过一次初等变换得到的矩阵。

线代概念知识点总结

线代概念知识点总结

线代概念知识点总结1. 向量空间向量空间是线性代数中最基本的概念之一。

它是一个集合,其中的元素称为向量,满足一定的运算规则和数学性质。

具体来说,一个向量空间需要满足以下条件:•对于任意两个向量u和v,它们的和u+v也在向量空间中。

•对于任意一个向量u和任意一个标量k,它们的数乘ku也在向量空间中。

•向量空间中存在一个零向量。

向量空间的例子包括实数集合R^n、复数集合C^n、函数空间、多项式空间等。

向量空间的维数是指最小生成向量空间的向量个数,它反映了向量空间的维度。

2. 线性映射线性映射是向量空间之间的一种特殊的映射关系。

它满足以下条件:•对于任意两个向量u和v以及标量k,有f(u+v)=f(u)+f(v)和f(ku)=kf(u)。

线性映射在线性代数中有重要应用,它可以用来描述向量空间之间的映射关系,例如线性变换、投影变换等。

线性映射的核与像是线性代数中的重要概念,它们分别表示线性映射的零空间和值域空间。

3. 矩阵矩阵是线性代数中的另一个重要概念,它是一个按照长方形排列的数的集合,通常用大写字母表示。

矩阵可以用来表示某一线性变换所对应的变换矩阵,从而简化线性变换的计算。

矩阵的加法和数乘运算定义为两个相同维度矩阵的对应元素之和,以及矩阵中的每个元素乘以一个标量。

矩阵的乘法是线性代数中的一个重要操作,也是应用最为广泛的代数运算之一。

两个矩阵A和B的乘积C的定义是C=AB,其中C中的元素c(i,j)等于矩阵A的第i行与矩阵B的第j列的内积。

4. 线性方程组线性代数中研究线性方程组的性质和解的存在唯一性等问题。

线性方程组是指形如a1x1+a2x2+…+anxn=b的方程组,其中a1、a2、…、an为系数,x1、x2、…、xn为未知数,b为常数。

线性方程组的解通常是指求得一组满足方程组所有方程同时成立的未知数值。

线性方程组的解可以分为唯一解、无解和有无穷多解三种情况。

线性代数的基本理论可以用来讨论线性方程组解的存在唯一性的条件,例如矩阵的秩、行列式的值等。

线代知识点总结归纳

线代知识点总结归纳

线代知识点总结归纳1. 基本概念线性代数的基本概念包括向量、矩阵、线性方程组、行列式等。

向量是线性代数中的基本概念,它是一个有向量在空间中的表示。

通常用n维实数或复数坐标表示一个n维向量,例如,一个三维向量可以表示为(x,y,z)。

矩阵是由若干个数排成若干行和若干列组成的数表,通常用大写字母表示,例如,矩阵A。

线性方程组是由一组线性方程组成的方程组,通常用矩阵形式表示,例如,Ax=b。

行列式是一个数学概念,用来判断矩阵是否可逆,是一个非零数值。

2. 矩阵运算矩阵运算包括矩阵加法、矩阵数量乘法、矩阵乘法等。

矩阵加法是将两个相同维度的矩阵进行对应元素的相加,例如,矩阵A和矩阵B相加得到矩阵C。

矩阵数量乘法是将一个数与一个矩阵的每一个元素相乘,例如,数k与矩阵A相乘。

矩阵乘法是将一个m×n的矩阵与一个n×p的矩阵相乘得到一个m×p的矩阵,例如,矩阵A与矩阵B相乘得到矩阵C。

3. 向量空间向量空间是一个由向量构成的集合,并且满足一定的线性运算和封闭性质。

向量空间包括零向量、线性组合、线性相关与线性无关等概念。

零向量是所有元素都为零的向量,通常用0表示。

线性组合是将向量乘以一个标量再相加得到一个新的向量,例如,向量u和向量v的线性组合是ku+lv。

线性相关是指向量集合中存在非零标量使得它们的线性组合为零向量,线性无关是指向量集合中不存在非零标量使得它们的线性组合为零向量。

4. 特征值与特征向量矩阵的特征值和特征向量是线性代数中的重要概念。

特征值是一个数,特征向量是一个非零向量,使得矩阵与特征向量的乘积等于特征值与特征向量的乘积,即Ax=λx。

通过求解矩阵的特征值和特征向量,可以得到矩阵的对角化与相似对角化等结果,进而解决一些重要的问题,例如,求解线性方程组、奇异值分解等。

综上所述,线性代数是数学中的一个重要分支,它研究向量空间、矩阵、线性变换等代数结构,并且在科学与工程领域广泛应用。

大学线性代数知识点总结

大学线性代数知识点总结

大学线性代数知识点总结1. 向量与空间- 向量的定义与表示- 向量的加法与数乘- 向量的内积与外积- 向量的模、方向与单位向量- 向量空间的定义与性质- 基、维数与坐标表示- 子空间及其性质- 线性相关与线性无关的概念2. 矩阵- 矩阵的定义与表示- 矩阵的加法、数乘与转置- 矩阵的乘法规则- 矩阵的逆- 行列式的概念与性质- 行列式的计算方法- 秩的概念与求解- 矩阵的分块3. 线性方程组- 线性方程组的表示- 高斯消元法- 行列式法- 逆矩阵解法- 克拉默法则- 线性方程组的解的结构- 齐次与非齐次线性方程组 - 线性方程组的解空间4. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化- 矩阵的Jordan标准形- 特征值与特征向量的应用5. 内积空间- 内积空间的定义- 正交与正交性- 正交基与正交矩阵- 格拉姆-施密特正交化过程 - 最小二乘法- 正交投影与正交补6. 线性变换- 线性变换的定义与性质- 线性变换的矩阵表示- 线性变换的核与像- 线性变换的不变子空间- 线性变换的复合与逆变换 - 线性变换的分类7. 广义逆矩阵- 广义逆矩阵的概念- 广义逆矩阵的计算方法- 广义逆矩阵的性质与应用8. 谱理论- 谱定理- 谱半径与谱半径估计- 谱聚类9. 线性代数在其他领域的应用- 计算机图形学- 数据分析与机器学习- 量子力学- 结构工程- 电路分析结语线性代数是数学的一个重要分支,它在科学、工程、经济等多个领域都有着广泛的应用。

掌握线性代数的基本概念、理论和方法是解决实际问题的关键。

本文总结了线性代数的核心知识点,旨在为学习和应用线性代数提供参考和指导。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结「篇一」第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幕知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化。

线代知识点总结

线代知识点总结

线代知识点总结一、向量空间1.1 定义:向量空间是一个非空集合,其中定义了加法和数乘运算,并满足一定的公理。

1.2 基本性质:(1)零向量:存在一个元素0,使得对于任意向量v,有v+0=v。

(2)相反元素:对于任意向量v,存在相反元素-w,使得v+w=0。

(3)数乘结合律:对于任意标量a和向量v,有a(bv)=(ab)v。

(4)分配律:对于任意标量a和向量u、v,有a(u+v)=au+av。

1.3 子空间:如果一个非空集合H是一个向量空间,并且它的所有元素都属于另一个向量空间V,则称H为V的子空间。

子空间必须满足加法和数乘运算封闭性。

二、线性变换2.1 定义:线性变换是指将一个向量空间V中的每个元素映射到另一个向量空间W中的一个映射,满足一定的条件。

2.2 基本性质:(1)线性变换必须保持加法运算和数乘运算不变。

(2)线性变换必须将零向量映射成零向量。

(3)线性变换必须保持向量之间的线性关系不变。

2.3 线性变换的矩阵表示:对于一个线性变换T,可以用一个矩阵A来表示。

矩阵A的列向量是T对基向量的映射结果。

三、特征值和特征向量3.1 定义:对于一个n×n矩阵A,如果存在一个非零向量v和一个标量λ,使得Av=λv,则称λ为A的特征值,v称为A的特征向量。

3.2 计算方法:(1)求解方程组(A-λI)x=0,其中I为单位矩阵。

(2)求解行列式|A-λI|=0得到特征值λ。

(3)将每个特征值代入(A-λI)x=0中,求解出对应的特征向量。

四、正交性和正交基4.1 定义:对于两个非零向量u和v,在内积空间中,如果它们的内积等于0,则称u和v是正交的。

如果一个向量空间中存在一组基,使得这组基两两正交,则称这组基是正交基。

4.2 正交投影:将一个向量投影到另一个向量上,并且这两个向量是正交的,则称这个过程为正交投影。

在实际应用中,正交投影可以用于信号处理、图像处理等领域。

五、奇异值分解5.1 定义:对于一个m×n矩阵A,存在两个正交矩阵U和V,以及一个对角矩阵Σ,使得A=UΣV^T。

线代知识点总结

线代知识点总结

线代知识点总结一、线性代数概述1.1 什么是线性代数1.2 线性代数的应用领域1.3 线性代数的基本概念二、向量空间与线性方程组2.1 向量的基本运算1.向量的加法2.向量的数量乘法3.向量的内积 ### 2.2 向量空间4.向量空间的定义5.线性空间的基本性质 ### 2.3 线性方程组6.线性方程组的定义7.线性方程组的解集三、矩阵与矩阵运算3.1 矩阵的基本概念1.矩阵的定义2.矩阵的行列式3.方阵的特殊性质 ### 3.2 矩阵运算4.矩阵的加法5.矩阵的数量乘法6.矩阵的乘法 ### 3.3 矩阵的逆7.可逆矩阵的定义8.矩阵的逆的求解方法四、特征值与特征向量4.1 特征值与特征向量的定义4.2 特征值与特征向量的性质1.特征值与特征向量的存在性2.特征值与特征向量的基本运算规则3.特征值与特征向量的几何意义 ###4.3 特征值与特征向量的应用4.矩阵的对角化5.矩阵的相似性五、正交性与正交变换5.1 正交向量与正交集合1.正交向量的定义2.正交集合的定义 ### 5.2 正交矩阵与正交变换3.正交矩阵的定义4.正交变换的性质与应用六、最小二乘法与线性回归6.1 最小二乘法的原理6.2 最小二乘法的应用场景6.3 线性回归的基本概念6.4 利用最小二乘法进行线性回归的步骤七、特殊矩阵与矩阵分解7.1 雅可比矩阵和赫米特矩阵1.雅可比矩阵的定义与性质2.赫米特矩阵的定义与性质 ### 7.2 矩阵分解3.LU分解4.QR分解5.奇异值分解八、线性代数的计算工具8.1 MATLAB的线性代数工具1.矩阵基本运算2.线性方程组的求解3.特征值与特征向量的计算 ### 8.2 Python的线性代数库4.线性代数模块numpy.linalg的基本使用5.利用numpy.linalg进行线性回归分析九、线性代数的进一步学习资源9.1 经典线性代数教材推荐9.2 线性代数相关的在线课程9.3 线性代数的应用案例研究以上是对线性代数知识点的一个总结,包括线性代数的基本概念、矩阵与向量空间、特征值与特征向量、正交性与正交变换等内容。

线代期末公式总结

线代期末公式总结

线代期末公式总结1. 行列式的性质- 对换行,行列式变号。

- 相邻行(列)对换,行列式变号。

- 两行(列)对调相加,行列式不变。

- 两行(列)相等,行列式为0。

- 一行(列)的公因子可以提出来。

2. 行列式的计算方法- 二阶行列式:$D=\begin{vmatrix}a & b \\ c & d \end{vmatrix}=ad-bc$- 三阶行列式:$D=\begin{vmatrix}a & b & c \\d & e & f \\g & h & i\end{vmatrix}=aei+bfg+cdh-ceg-bdi-afh$- N阶行列式:利用行列式的性质转化为上三角矩阵或下三角矩阵,计算乘积。

3. 行列式的性质和迹定理- 基本性质:$|A^T|=|A|$- 交换性质:$|AB|=|A|\cdot|B|$- 分块性质:$A=\begin{pmatrix}A & B \\0 & C \end{pmatrix}$,则$|A|=|A|\cdot|C|$- 迹的定理:$tr(A+B)=tr(A)+tr(B), tr(kA)=k\cdot tr(A)$4. 向量的线性相关性和线性无关性- 一组向量$\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$线性相关的充要条件是存在不全为0的系数$k_1, k_2, \ldots, k_n$,使得$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\ldots+k_n\mathbf{v}_n=\mathbf{0}$- 一组向量$\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$线性无关的充要条件是从方程$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\ldots+k_n\mathbf{v}_n=\mathbf{0}$只能得到全为0的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R ⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n 的标准基,n 中的自然基,单位坐标向量; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr()=E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示. √ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A B B B B A A BB οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)11212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→ 初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T T T A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n a a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11121211n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 方阵的幂的性质:m n m n A A A += ()()m n mn A A =√ 设1110()m m m m f x a x a x a x a --=++++ ,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E--=++++ 为A 的一个多项式.√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,AB 的列向量为12,,,sr r r ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭ 则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,,B A B E X −−−−→ 初等行变换(当为一列时(I)的解法:构造()()即为克莱姆法则) T T T TA XB X X =(II)的解法:将等式两边转置化为,用(I)的方法求出,再转置得√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηη 是0Ax =的基础解系的条件: ① 12,,,s ηηη 线性无关; ② 12,,,s ηηη 是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示.⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一.⑪ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅A 经过有限次初等变换化为B . 记作:A B =⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价. 矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关. 向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦61212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒ 当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时 克莱姆法则 不可由线性表示无解线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k kk k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β= ,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β 和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)cc c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ= 222βηβ= 333βηβ= T AA E =.√ A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n 的一组标准正交基. √ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ= 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦、21122()n n A a b a b a b A =+++ ,从而A的特征值为:11122n n A a b a b a b λ==+++ tr , 230n λλλ==== . √ 若A 的全部特征值12,,,n λλλ ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλ ;② 当A 可逆时,1A -的全部特征值为12111,,,nλλλ , A *的全部特征值为12,,,n A A A.√ 1122,.m m Ak kA a b aA bEAA AA A λλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x A A A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. 1B P AP -= (P 为可逆阵) 记为:A B√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵)√ 相似矩阵的性质:① 11A B -- 若,A B 均可逆② T T A B③ k k A B (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:A Λ (称Λ是A√ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦. √ 若A B , C D ,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ . √ 若A B ,则()()f A f B ,()()f A f B =.12(,,,)T n f x x x X AX = A 为对称矩阵 12(,,,)T n X x x x =T B C AC =. 记作:A B (,,A B C 为对称阵为可逆阵)√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX = 经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x x x dy =∑ 标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵111100⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦合同. √ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ;④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑ ,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x 不全为零,12(,,,)0n f x x x > . 正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ; ② A 的特征值全大于0;③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ (i λ大于0). √ 成为正定矩阵的必要条件:0ii a > ; 0A >.。

相关文档
最新文档