三角函数表,手工输入正规版
sin tan cos三角函数表高中
sin tan cos三角函数表高中
下面列出了高中数学中常用的sin、cos和tan三角函数表格,方便同学们快速查阅。
角度(度)角度(弧
度)
正弦
(sin)
余弦
(cos)
正切
(tan)
00010
30π/61/2√3/2√3/3
45π/4√2/2√2/21
60π/3√3/21/2√3
90π/210无穷大
利用这个三角函数表格,我们可以获得不同角度下的正弦、余弦和正切值,进而解决各种三角函数相关的问题。
在求解三角函数问题时,可以利用这个表格帮助我们快速定位角度与对应函数值,提高解题效率。
除了以上列出的几个常用角度外,我们还可以通过特殊角
的关系,根据基本角(0°、30°、45°、60°、90°)的正弦、余弦和正切值,推导出其他角度的三角函数值。
通过不断练习和熟练掌握三角函数的数值,可以为高中数学学习打下坚实的基础。
希望这份三角函数表格能够帮助同学们更好地理解和运用
三角函数知识,解决数学学习中遇到的问题。
愿大家在数学学习的道路上取得更多的成就!。
三角函数公式总表(完美版)
三角函数公式总表一、角的概念的拓展1.与α终边相同的角的集合:{}|2,k k Z ββαπ=+∈ 二、弧度制1.长度等于半径长的弧所对的圆心角叫做1弧度的角,在弧度制下,1弧度记作1rad (rad 可以省略). 弧度制下的弧长公式:l rα=,即l r α=.扇形面积公式: 222111.||22222l S r r r lr r απααππ====≤. ㈠将角度化为弧度:3602rad π=;180rad π=;11rad 0.01745rad 180π=≈㈡将弧度化为角度:2rad 360π=;rad 180π=;1801rad 57.3π=≈三、三角函数的定义1.sin cos tan cot sec csc y x y x r r r r x y x yαααααα======、、、、、 2.三角函数线:角α与单位圆的交点P (x ,y )过P 点向x 轴引垂线,垂足叫M ,过A 点向x 轴 引垂线,交角的终边或反向延长线与点T ,则sin 1y yy MP r α====,cos 1x x x OM r α====,tan y MP ATAT x OM OAα====.有向线段MP ,OM ,AT 分别称为正弦线,余弦线,正切线.3. 三角函数符号:一正二正弦,三切四余弦. 四、同角三角函数基本关系式六边形记忆法图形结构“上弦中切下割左正右余中间1”xy oMTPA(1)oxy MTPA(2) xyoMTPA(3) oxyM TP A(4)1.记忆方法“对角线上两个函数的积为12.阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方3.任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积 四、诱导公式公式组一 (k Z ∈):sin(2)sin ,cos(2)cos ;tan(2)tan k x x k x x k x x πππ+=+=+=公式组二:sin()sin tan()tan ,cos()cos x xx x x x -=--=--=公式组三:sin()sin ,cos()cos ,tan()tan x x x x x x πππ+=-+=-+= 公式组四:sin()sin ,tan()tan ,cos()cos x x x x x x πππ-=-=--=-公式组五:sin(2)sin ,cos(2)cos ,tan(2)tan x x x x x x πππ-=--=-=-公式组六:sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫-=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭公式组七:sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫+=+=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭公式组八:333sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫-=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 公式组九:333sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫+=-+=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭四、两角和与差公式 βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -= 常用数据: 30456090、、、的三角函数值6sin15cos 754-==,42615cos 75sin +==3275cot 15tan -== ,3215cot 75tan +==注: ⑴以上公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+221cos 1cos cos ,sin 2222αααα+-==等. 从而可做到:正用、逆用、变形用自如使用各公式.⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。
三角函数表
三角函数表你没有看错,这是一个关于紧固件的企业网站,却在讲述三角函数这风牛马不相及的故事.因为......三角函数表用于计算角度和边长的关系,在产品零件的绘图和设计中经常用到,所以我们整理了下表。
此表不仅可供我们机械工人参考,也可供其他工人或学生参考。
先来个定义正弦函数 sin(A)=a/h余弦函数 cos(A)=b/h正切函数 tan(A)=a/b余切函数 cot(A)=b/a正割函数 sec (A) =h/b余割函数 csc (A) =h/a注:a—所研究角的对边b—所研究的邻边h—所研究角的斜边以下是具体的对应参数表:1,正弦函数表 sinsin1=0. sin2=0. sin3=0.sin4=0. sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0. sin12=0. sin13=0. sin14=0. sin15=0. sin16=0. sin17=0. sin18=0. sin19=0. sin20=0. sin21=0. sin22=0. sin23=0. sin24=0. sin25=0. sin26=0. sin27=0. sin28=0. sin29=0. sin30=0. sin31=0. sin32=0. sin33=0. sin34=0. sin35=0. sin36=0. sin37=0. sin38=0. sin39=0. sin40=0. sin41=0. sin42=0. sin43=0. sin44=0. sin45=0. sin46=0. sin47=0. sin48=0. sin49=0. sin50=0. sin51=0. sin52=0. sin53=0. sin54=0. sin55=0. sin56=0. sin57=0. sin58=0. sin59=0. sin60=0. sin61=0. sin62=0. sin63=0. sin64=0. sin65=0. sin66=0. sin67=0. sin68=0. sin69=0. sin70=0. sin71=0. sin72=0. sin73=0. sin74=0. sin75=0. sin76=0. sin77=0. sin78=0. sin79=0. sin80=0. sin81=0. sin82=0. sin83=0. sin84=0. sin85=0. sin86=0. sin87=0. sin88=0. sin89=0.sin90=12,余弦函数表 coscos1=0. cos2=0. cos3=0.cos4=0. cos5=0. cos6=0.cos7=0. cos8=0. cos9=0.cos10=0. cos11=0. cos12=0. cos13=0. cos14=0. cos15=0. cos16=0. cos17=0. cos18=0. cos19=0. cos20=0. cos21=0. cos22=0. cos23=0. cos24=0. cos25=0. cos26=0. cos27=0. cos28=0. cos29=0. cos30=0. cos31=0. cos32=0. cos33=0. cos34=0. cos35=0. cos36=0. cos37=0. cos38=0. cos39=0. cos40=0. cos41=0. cos42=0. cos43=0. cos44=0. cos45=0. cos46=0. cos47=0. cos48=0. cos49=0. cos50=0. cos51=0. cos52=0. cos53=0. cos54=0. cos55=0.2 cos56=0. cos57=0.2 cos58=0. cos59=0. cos60=0. cos61=0. cos62=0.6 cos63=0. cos64=0.6 cos65=0. cos66=0. cos67=0. cos68=0.2 cos69=0. cos70=0. cos71=0.5 cos72=0.5cos73=0.7 cos74=0. cos75=0. cos76=0. cos77=0. cos78=0. cos79=0. cos80=0. cos81=0. cos82=0. cos83=0. cos84=0. cos85=0. cos86=0. cos87=0. cos88=0. cos89=0.cos90=03,正切函数表 tantan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0. tan8=0. tan9=0.tan10=0. tan11=0. tan12=0. tan13=0. tan14=0. tan15=0. tan16=0. tan17=0. tan18=0. tan19=0. tan20=0. tan21=0. tan22=0. tan23=0. tan24=0. tan25=0. tan26=0. tan27=0. tan28=0. tan29=0. tan30=0. tan31=0. tan32=0. tan33=0. tan34=0. tan35=0. tan36=0. tan37=0. tan38=0. tan39=0. tan40=0. tan41=0. tan42=0. tan43=0. tan44=0. tan45=0. tan46=1. tan47=1. tan48=1. tan49=1. tan50=1. tan51=1. tan52=1. tan53=1. tan54=1.tan58=1. tan59=1. tan60=1. tan61=1. tan62=1. tan63=1. tan64=2. tan65=2. tan66=2. tan67=2. tan68=2. tan69=2. tan70=2. tan71=2. tan72=3. tan73=3. tan74=3. tan75=3. tan76=4. tan77=4. tan78=4. tan79=5. tan80=5. tan81=6. tan82=7. tan83=8. tan84=9. tan85=11. tan86=14. tan87=19. tan88=28. tan89=57.tan90=(无限)4,余切函数 cotcot89=0. cot88=0. cot87=0. cot86=0. cot85=0. cot84=0. cot83=0. cot83=0. cot81=0. cot80=0. cot79=0. cot78=0. cot77=0. cot76=0. cot75=0. cot74=0. cot73=0. cot72=0. cot71=0. cot70=0. cot69=0. cot68=0. cot67=0. cot66=0. cot65=0. cot64=0. cot63=0. cot62=0. cot61=0. cot60=0. cot59=0. cot58=0. cot57=0. cot56=0. cot55=0. cot54=0.cot50=0. cot49=0. cot48=0. cot47=0. cot46=0. cot45=0. cot44=1. cot43=1. cot42=1. cot41=1. cot40=1. cot39=1. cot38=1. cot37=1. cot36=1. cot35=1. cot34=1. cot33=1. cot32=1. cot31=1. cot30=1. cot29=1. cot28=1. cot27=1. cot26=2. cot25=2. cot24=2. cot23=2. cot22=2. cot21=2. cot20=2. cot19=2. cot18=3. cot17=3. cot16=3. cot15=3. cot14=4. cot13=4. cot12=4. cot11=5. cot10=5. cot9=6. cot8=7. cot7=8. cot6=9. cot5=11. cot4=14. cot3=19. cot228. cot1=57.cot0=(无限)咨询与留言。
(完整word版)三角函数三角函数公式表
常见三角函数在平面直角坐标系x O y中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)。
在这个直角三角形中,y是θ的对边,x是θ的邻边,r是斜边,则可定义以下六种运算方法:基本函数英文表达式语言描述正弦函数Sine sin θ=y/r角α的对边比斜边余弦函数Cosine cos θ=x/r角α的邻边比斜边正切函数Tangent tan θ=y/x角α的对边比邻边余切函数Cotangentcot θ=x/y角α的邻边比对边正割函数Secant sec θ=r/x角α的斜边比邻边余割函数Cosecant csc θ=r/y角α的斜边比对边注:tan、cot曾被写作tg、ctg,现已不用这种写法。
非常见三角函数除了上述六个常见的函数,还有一些不常见的三角函数,这些运算已趋于淘汰:函数名与常见函数转化关系正矢函数versin θ=1—cos θ余矢函数covers θ=1-sin θ半正矢函数havers θ=(1-cos θ)/2半余矢函数hacovers θ=(1-sin θ)/2外正割函数exsec θ=sec θ—1外余割函数excsc θ=csc θ-1单位圆定义六个三角函数也可以依据半径为1中心为原点的单位圆来定义。
单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形.但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和π/2 弧度之间的角。
它也提供了一个图像,把所有重要的三角函数都包含了。
根据勾股定理,三角函数单位圆的方程是:x^2+y^2=1图像中给出了用弧度度量的一些常见的角。
逆时针方向的度量是正角,而顺时针的度量是负角。
设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。
这个交点的x和y坐标分别等于 cos θ和 sin θ.图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1.单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。
三角函数公式表
三⾓函数公式表三⾓函数公式表同⾓三⾓函数的基本关系式倒数关系: 商的关系:平⽅关系:tanα 2cotα=1sinα 2cscα=1cosα 2secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆⽅法“对⾓线上两个函数的积为1;阴影三⾓形上两顶点的三⾓函数值的平⽅和等于下顶点的三⾓函数值的平⽅;任意⼀顶点的三⾓函数值等于相邻两个顶点的三⾓函数值的乘积。
”)诱导公式(⼝诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两⾓和与差的三⾓函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα 2tanβtanα-tanβtan(α-β)=——————1+tanα 2tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半⾓的正弦、余弦和正切公式三⾓函数的降幂公式⼆倍⾓的正弦、余弦和正切公式三倍⾓的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三⾓函数的和差化积公式三⾓函数的积化和差公式α+βα-βsinα+sinβ=2sin———2cos———2 2α+βα-βsinα-sinβ=2cos———2sin———2 2α+βα-βcosα+cosβ=2cos———2cos———2 2α+βα-βcosα-cosβ=-2sin———2sin———2 2 1sinα 2cosβ=-[sin(α+β)+sin(α-β)]21cosα 2sinβ=-[sin(α+β)-sin(α-β)]21cosα 2cosβ=-[cos(α+β)+cos(α-β)]21sinα 2sinβ=— -[cos(α+β)-cos(α-β)]2化asinα±bcosα为⼀个⾓的⼀个三⾓函数的形式(辅助⾓的三⾓函数的公式集合、函数集合简单逻辑任⼀x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若 p则 q逆否命题若 q,则 p(2)四种命题的关系(3)A B,A是B成⽴的充分条件B A,A是B成⽴的必要条件A B,A是B成⽴的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任⼀x,若f(-x)=f(x),称f(x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任⼀x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a> 1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R 图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数⽅程和对数⽅程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差 2A=a+bm+n=k+l am+an=ak+al等⽐数列常⽤求和公式an=a1qn_1a,G,b成等⽐ G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本⽅法⽐较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的⽅法。
常见三角函数值表
常见三角函数值表
三角函数是数学中的重要概念,在几何学、物理学、工程学等领域都有广泛应用。
常见的三角函数有正弦、余弦和正切函数,它们的数值在特定角度下是固定的。
下面是常见角度对应的三角函数值表,希望能帮助大家更好地理解和应用三角函数。
正弦函数值表
角度(度)0 30 45 60 90 120 135 150 180
正弦值0 0.5 √2/2√3/2 1 √3/2√2/20.5 0
余弦函数值表
角度(度)0 30 45 60 90 120 135 150 180
余弦值 1 √3/2√2/20.5 0 -0.5 -√2/2-√3/2-1
正切函数值表
角度(度)0 30 45 60 90 120 135 150 180
正切值0 √3/3 1 √3不存在-√3-1 -√3/30
通过这些数值表格,我们可以看到不同角度下三角函数的数值变化规律。
在实
际应用中,我们常常需要根据具体情况来计算三角函数的值,这些数值表格可以为我们提供一个参考,帮助我们更快地得到结果。
希望大家可以通过学习三角函数值表,更深入地理解三角函数的性质和应用,
为自己的学习和工作增添一份帮助。
三角函数公式总表(完美版)
三角函数公式总表一、角的概念的拓展1.与α终边相同的角的集合:{}|2,k k Z ββαπ=+∈ 二、弧度制1.长度等于半径长的弧所对的圆心角叫做1弧度的角,在弧度制下,1弧度记作1rad (rad 可以省略). 弧度制下的弧长公式:l rα=,即l r α=.扇形面积公式: 222111.||22222l S r r r lr r απααππ====≤. ㈠将角度化为弧度:3602rad π=;180rad π=;11rad 0.01745rad 180π=≈㈡将弧度化为角度:2rad 360π=;rad 180π=;1801rad 57.3π=≈三、三角函数的定义1.sin cos tan cot sec csc y x y x r r r r x y x yαααααα======、、、、、 2.三角函数线:角α与单位圆的交点P (x ,y )过P 点向x 轴引垂线,垂足叫M ,过A 点向x 轴 引垂线,交角的终边或反向延长线与点T ,则sin 1y yy MP r α====,cos 1x x x OM r α====,tan y MP ATAT x OM OAα====.有向线段MP ,OM ,AT 分别称为正弦线,余弦线,正切线.3. 三角函数符号:一正二正弦,三切四余弦. 四、同角三角函数基本关系式六边形记忆法图形结构“上弦中切下割左正右余中间1”xy oMTPA(1)oxy MTPA(2) xyoMTPA(3) oxyM TP A(4)1.记忆方法“对角线上两个函数的积为12.阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方3.任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积 四、诱导公式公式组一 (k Z ∈):sin(2)sin ,cos(2)cos ;tan(2)tan k x x k x x k x x πππ+=+=+=公式组二:sin()sin tan()tan ,cos()cos x xx x x x -=--=--=公式组三:sin()sin ,cos()cos ,tan()tan x x x x x x πππ+=-+=-+= 公式组四:sin()sin ,tan()tan ,cos()cos x x x x x x πππ-=-=--=-公式组五:sin(2)sin ,cos(2)cos ,tan(2)tan x x x x x x πππ-=--=-=-公式组六:sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫-=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭公式组七:sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫+=+=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭公式组八:333sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫-=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 公式组九:333sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫+=-+=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭四、两角和与差公式 βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -= 常用数据: 30456090、、、的三角函数值6sin15cos 754-==,42615cos 75sin +==3275cot 15tan -== ,3215cot 75tan +==注: ⑴以上公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+221cos 1cos cos ,sin 2222αααα+-==等. 从而可做到:正用、逆用、变形用自如使用各公式.⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。
三角函数公式表(免费)
鄙视下载资料还要财富值的!
一:指数函数
二:对数函数
三:指数函数与对数函数有什么关系?(关于y=x 对称)
x
y 2=x
y 3=x
y ⎪⎭
⎫ ⎝⎛=21x
y ⎪⎭
⎫ ⎝⎛=31x
y 2log =x
y 2
1log =x
y 3log =x
y 3
1log =x
y 2=x
y =x
y 2log =
二、基本初等函数及其图像
1
2
3
,奇函数
无界,周期为余割函数
,偶函数无界,周期为正割函数,奇函数无界,周期为余切函数,奇函数无界,周期为正切函数,偶函数有界,周期为余弦函数,奇函数有界,周期为正弦函数性质
表达式名称ππππππ2csc 2sec cot tan 2cos 2sin x
y x y x y x y x y x y ======)
R (sin ∈=x x y 的图象)
R (cos ∈=x x y 的图象tan (π0.5π)
y x x k =≠+的图像
4
cot (π)
y x x k =≠的图像)
0()
(cot arc 22)(arctan ]0[]11[arccos 22]11[arcsin ππππππ,,反余切函数
,,反正切函数,,反余弦函数,,反正弦函数值域定义域表达式名称∞+-∞=⎪⎭⎫ ⎝⎛-∞+-∞=-=⎥⎦⎤
⎢⎣⎡--=x
y x y x y x y。
初中数学常用三角函数公式表
平方关系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
两角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
chusancom隶属于吉林省春雨秋风科技有限公司其它同名网站均为侵权或假冒
初中数学常用三角函数公式表
三角函数公式表整理
sin是对边比斜边,cos是邻边比斜边,tan是对边比邻边cot邻边比对边。
sin30是二分之一,sin45是二分之根二,sin60是二分之根三。
cos30是二分之根三,cos45是二分之根二,cos60是二分之一。
tan30是三分之根三,tan45是一,tan60是根三。
cot30是根三,cot45是一,cot60是三分之根三。
三角函数常用公式集锦
积的关系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
三角函数常用公式表格
三角函数常用公式表格三角函数是数学中一个重要的分支,在几何、物理、工程等领域都有广泛的应用。
为了更好地理解和运用三角函数,我们需要熟悉一些常用的公式。
下面为大家整理了一份三角函数常用公式表格。
|公式名称|公式表达式|说明||||||基本关系|$\sin^2\alpha +\cos^2\alpha = 1$ |这是三角函数中最基本的关系式之一,表示正弦的平方与余弦的平方之和为1。
|||$\tan\alpha =\frac{\sin\alpha}{\cos\alpha}$|正切等于正弦除以余弦。
|||$\cot\alpha =\frac{\cos\alpha}{\sin\alpha}$|余切等于余弦除以正弦。
||诱导公式|$\sin(\pi +\alpha) =\sin\alpha$ |对于角度加上π的情况,正弦值变为其相反数。
|||$\sin(\pi \alpha) =\sin\alpha$ |角度减去π,正弦值不变。
|||$\cos(\pi +\alpha) =\cos\alpha$ |角度加上π,余弦值变为其相反数。
|||$\cos(\pi \alpha) =\cos\alpha$ |角度减去π,余弦值变为其相反数。
|||$\sin(\alpha) =\sin\alpha$ |负角度的正弦值为其相反数。
|||$\cos(\alpha) =\cos\alpha$ |负角度的余弦值不变。
||和差公式|$\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta$ |用于计算两个角之和的正弦值。
|||$\sin(\alpha \beta) =\sin\alpha\cos\beta \cos\alpha\sin\beta$ |计算两个角之差的正弦值。
|||$\cos(\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta$ |两个角之和的余弦值。
数学三角函数公式表
数学三角函数公式表三角函数公式是数学中常用的公式之一,它们描述了三角函数之间的关系和性质。
在数学领域,三角函数是一个重要的研究对象,广泛应用于几何、物理、工程以及其他领域的计算中。
下面将给出一些常见的三角函数公式表。
一、正弦函数(Sine Function):1.正弦函数的定义域是实数集,其值域是[-1,1]之间的实数。
2.基本关系:- sin(a + b) = sin a * cos b + cos a * sin b- sin(a - b) = sin a * cos b - cos a * sin b- sin(2a) = 2 * sin a * cos a- sin(a) = 2 * sin(a/2) * cos(a/2)二、余弦函数(Cosine Function):1.余弦函数的定义域是实数集,其值域是[-1,1]之间的实数。
2.基本关系:- cos(a + b) = cos a * cos b - sin a * sin b- cos(a - b) = cos a * cos b + sin a * sin b- cos(2a) = cos^2 a - sin^2 a- cos^2 a + sin^2 a = 1三、正切函数(Tangent Function):1.正切函数的定义域是实数集,其值域是全体实数。
2.基本关系:- tan(a + b) = (tan a + tan b) / (1 - tan a * tan b)- tan(a - b) = (tan a - tan b) / (1 + tan a * tan b)- tan(2a) = 2 * tan a / (1 - tan^2 a)四、余切函数(Cotangent Function):1.余切函数的定义域是实数集,其值域是全体实数。
2.基本关系:- cot(a) = 1 / tan(a)五、正割函数(Secant Function):1.正割函数的定义域是实数集,其值域是(-∞,-1]∪[1,+∞)之间的实数。
常见三角函数表
常见三角函数表
在数学中,三角函数是研究角和三角形关系的函数。
常见
的三角函数包括正弦函数、余弦函数、正切函数等。
这些函数在数学、物理、工程等领域中都有广泛的应用。
下面是常见三角函数的表格:
正弦函数(Sine Function)
正弦函数通常用sin表示,定义域为实数集,值域为[-1, 1]。
其在圆上一条弧对应角的正弦值等于这个角的对边长与斜边长的比值。
具体如下:
角度(度)角度(弧度)正弦值
000
30π/61/2
45π/4√2/2
60π/3√3/2
90π/21
余弦函数(Cosine Function)
余弦函数通常用cos表示,定义域为实数集,值域为[-1, 1]。
其在圆上一条弧对应角的余弦值等于这个角的邻边长与斜边长的比值。
具体如下:
角度(度)角度(弧度)余弦值
001
30π/6√3/2
45π/4√2/2
60π/31/2
90π/20
正切函数(Tangent Function)
正切函数通常用tan表示,定义域为实数集,其在圆上一条弧对应角的正切值等于这个角的正弦值与余弦值的商。
具体如下:
角度(度)角度(弧度)正切值
000
30π/6√3/3
45π/41
60π/3√3
90π/2不存在
以上是常见三角函数表,这些函数在几何、三角、物理等领域中都有着重要的作用。
深入理解这些函数的性质和应用,对于提高数学水平和解决实际问题都有着重要的意义。
完整三角函数公式表
三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=c otαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————tan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=—-[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y =2 arc sin x = 2 arc cos x =2 arc tanx = cos (n arc cos x) =三角形中三角函数基本定理Tag:三角函数点击: 1522 【正弦定理】式中R为ABC的外接圆半径(图1.3).【余弦定理】【勾股定理】在直角三角形(C为直角)中,勾方加股方等于弦方(图1.4),即勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.【正切定理】或【半角与边长的关系公式】式中,r为ABC的内切圆半径,且式中S为ABC的面积.。
sin tan cos三角函数表
sin tan cos三角函数表三角函数是数学中的重要概念,它们在几何学、物理学、工程学等学科中发挥着重要的作用。
其中,sin、tan和cos是最常用的三角函数之一。
本文将给出它们的数值表格,方便读者查找和使用。
1. sin函数表角度(度)弧度值sin值00030π/60.545π/40.70760π/30.86690π/21180π0 2703π/2-1 3602π02. tan函数表角度(度)弧度值tan值00030π/60.577 45π/4160π/3 1.732 90π/2无穷大180π0 2703π/2无穷大3602π03. cos函数表角度(度)弧度值cos值00130π/60.866 45π/40.707 60π/30.590π/20180π-12703π/203602π1以上表格列出了常见角度下sin、tan和cos的值。
其中,“度”表示角度,可以理解为我们通常所用的角度单位;“弧度值”则是以弧度为单位表示的角度值;“sin值”、“tan值”和“cos 值”分别表示对应角度下的sin、tan和cos函数值。
需要注意的是,由于sin和cos函数的值在一个周期内是周期性的,所以在表格中我们仅列出了一个周期内的部分角度值。
读者可以根据需要进行推算,得到其他角度下的函数值。
另外,要特别注意角度为90度和270度时,tan函数的值为无穷大。
这是因为在这两个角度时,cos函数的值为0,而根据tan函数的定义,tan值等于sin值除以cos值,此时导致分母为0,从而导致tan值无穷大。
以上就是sin、tan和cos三角函数的数值表格,希望这个表格能够帮助到读者在数学计算和应用中使用三角函数。
在实际应用中,需要根据具体问题的需求使用适当的函数值,以达到相应的计算和分析效果。