中考专题之四边形中的辅助线

合集下载

中考数学 考点系统复习 第五章 四边形 方法技巧突破(五) 四边形中常见辅助线的作法

中考数学 考点系统复习 第五章 四边形 方法技巧突破(五) 四边形中常见辅助线的作法

证明:(1)∵四边形 ABCD 为菱形, ∴AB=CD,且∠BAE=∠DCF, 又∵AE=CF,∴△ABE≌△CDF(SAS).
(2)连接 BD 交 AC 于点 O,如解图. ∵四边形 ABCD 为菱形, ∴AC⊥BD,且 O 为 AC,BD 中点, 又∵ AE=CF,∴EO=FO, ∴BD 与 EF 互相垂直且平分, 故四边形 BEDF 是菱形.
在 Rt△BCE 中,由勾股定理可得 BC=8,
由矩形性质易知 OB=OD,∴OF 为△BCD 的中位线,∴OF=12BC=4.
1
1
∴△ODE 的面积为2DE·OF=2××4=24.
4.如图,在梯形 ABCD 中,AD∥BC,若 E 为 AB 的中点,若梯形 ABCD 的 面积为 34 个平方单位,则△ECD(阴影部分)的面积为 1 177 个平方单位.
5.如图,矩形 ABCD 的对角线 AC,BD 相交于点 O,过 点 B 作 AC 的平行线交 DC 的延长线于点 E. (1)求证:BD=BE; (2)若 BE=10,CE=6,连接 OE,求△ODE 的面积.
2.(2021 春·靖江期末)如图,在▱ABCD 中,BE 垂直平分 CD 于点 E,∠
BAD=45°,AD=6,则▱ABCD 的对角线 AC 的长为
( A)
A.6 5 B.4 5 C.10 3 D.10 2
3.(2021·随州)如图,在菱形 ABCD 中,E,F 是对角线 AC 上的两点,且 AE=CF. (1)求证:△ABE≌△CDF; (2)证明四边形 BEDF 是菱形.
方法技巧突破(五) 四边形中常见 辅助线的作法
1.(2021 春·铜官区期末)如图,在△ABC 中,∠C=90°,AC=8,BC=
6,点 P 为斜边 AB 上一动点,过点 P 作 PE⊥AC 于点 E,PF⊥BC 于点 F,

相似四边形中几种常见的辅助线作法(有辅助线)

相似四边形中几种常见的辅助线作法(有辅助线)

相似四边形中几种常见的辅助线作法(有
辅助线)
相似四边形中常见的辅助线作法(有辅助线)
相似四边形是指具有相同比例关系的四边形。

在研究相似四边形时,可以利用一些常见的辅助线作法来简化问题的分析和解决。

以下是几种常见的辅助线作法:
1. 完全相似定理:如果两个四边形的所有对应角相等,并且对应边的比例相等,那么这两个四边形是相似的。

根据这个定理,我们可以直接判断两个四边形是否相似,而无需计算其边长和角度。

2. 高度定理:相似的五边形(包括四边形)中,对应的高度之比等于对应边的比例。

通过测量两个四边形的高度,我们可以推导出它们的边长比例。

3. 中线定理:相似的五边形(包括四边形)中,对应的中线之比等于对应边的比例。

通过测量两个四边形的中线,我们可以推导出它们的边长比例。

4. 角平分线定理:相似的五边形(包括四边形)中,对应的角平分线之比等于对应边的比例。

通过测量两个四边形的角平分线,我们可以推导出它们的边长比例。

这些辅助线作法可以帮助我们在研究相似四边形时更加简化问题,减少计算量,并且提供了直接判断相似性的方法。

在实际应用中,可以根据具体问题的需求选择合适的辅助线作法。

希望以上内容对您有帮助!如有其他问题,请随时提问。

专题4——四边形中常见的辅助线的作法

专题4——四边形中常见的辅助线的作法

A FED CBEDCBA F D CBA 专题四:四边形中常见的辅助线的作法-------------有关梯形问题解决梯形问题经常要根据条件添加辅助线,把梯形问题转化为较简单的三角形或平行四边形问题解决,使一些分散的条件适当集中,再进行解答.常用辅助线又如下几种:一、如图,从同一底的两端作另一底的垂线,把梯形分成一个矩形和两个直角三角形(如果是等腰梯形,所得的两个直角三角形是全等的,BE+FC=B C -AD.)例1:如图,等腰梯形ABCD 中,AD ∥BC ,AD =4cm ,BC =10cm ,∠B =45°.利用图中的提示求出梯形ABCD 的面积.例2:如图1,在梯形 中, 。

求证: 。

例3 :如图,梯形中,, 、 为对角线,求证:二、 如图,平移一腰,即从梯形的一个顶点作一腰的平行线,把梯形分成一个平行四边形和一个三角形(如果是等腰梯形,平移一腰,把梯形分成一个平行四边形和一个等腰三角形。

图1中:BE=BC -AD.图2中:DF=BC -AD )图1 图2F E D C B AF EDCBA例1:已知:如图2,在梯形ABCD 中,。

求证:例2:已知,如图,梯形ABCD 中,AD//BC ,AB=DC=12cm ,EF 是中位线,EF 与BD 交于G ,EG=4cm,GF=10cm 。

求梯形各角度数。

例3: 如图,梯形中,,为腰的中点,求证:。

分析: 与梯形ABCD 的面积关系不明显,如果利用梯形助三、 如图,延长的两腰交于一点E ,得到两个三角形。

(如果是等腰梯形,则得到两个分别以梯形两底为底的等腰三角形)。

例1:已知:如图8,在梯形中,、N 分别是、AB 的中点。

求证:。

A BCD EGFE DCB A例2:如图,在梯形 中, , ,梯形 的面积与梯形的面积相等.求证:.四、如图,移动一条对角线,即过底的一端作对角线的平行线, 可以借助所得的平行四边形和三角形来研究。

BF=BC+AD.例1:已知:等腰梯形ABCD 中,AD//BC ,AC ⊥BD ,AD+BC=10,DE ⊥BC 于点E ,求DE 的长。

中考数学10大类辅助线

中考数学10大类辅助线

中考数学10大类辅助线
中考数学中,常见的辅助线有以下10大类:
1.垂直辅助线:通过一个点和另一直线的垂直线,常用于求两条
直线的垂直关系、求直角三角形等问题。

2.平行辅助线:通过一点和一条直线,与已知的另一直线平行,
常用于求两条直线的平行关系、求平行四边形等问题。

3.中垂线:将一个线段的中点与另一点相连的线段,用于求线段
的中点、判断三角形的等腰性质等问题。

4.角平分线:将一个角分成两个相等的角的线段,通常用于求角
的平分线、求角的刻度等问题。

5.对称辅助线:通过一个点,找到与已知点关于某一直线对称的点,用于求对称点的位置、对称图形等问题。

6.高线:将一个顶点到对立边的垂线段,常用于求三角形的高度、找到垂心等问题。

7.过定点画圆:通过一个已知点和一个已知的半径,画出以该点为圆心的圆,常用于求圆的位置关系、圆与线的交点等问题。

8.过三点画圆:通过给定的三个点,画出以这三点为圆上三个点的圆,用于求圆与三角形的关系等问题。

9.共轭辅助线:通过两个点,在给定条件下找到与已知直线共轭的直线,常用于求一对共轭角、共轭点等问题。

10.谁是谁的辅助线:在解题过程中,发现和已知量之间存在特定的几何关系时,可以将某个量作为另一个量的辅助线,通过推导或等式的变形求解。

以上是中考数学中常用的10大类辅助线。

通过合理地运用这些辅助线,可以帮助我们更好地解决各种几何问题,提高解题的效率和准确性。

数学初三平行四边形中常做的辅助线

数学初三平行四边形中常做的辅助线

数学初三平行四边形中常做的辅助线一、平行四边形的对角线平行四边形有两条对角线,我们可以通过引入对角线来研究平行四边形的性质。

首先,我们可以证明平行四边形的对角线互相平分。

具体证明如下:设平行四边形ABCD的对角线AC和BD相交于点O,连接OA、OB、OC 和OD。

由于平行四边形的两对边分别平行且相等,所以可以得到AO=CO,BO=DO。

又由于AO=CO,BO=DO,所以AOBO和CODA都是菱形。

因为菱形的对角线互相平分,所以AC和BD互相平分。

利用对角线平分的性质,我们可以得到平行四边形中很多有用的结论。

例如,当平行四边形的两对角线相等时,它是一个矩形;当平行四边形的两对角线垂直且相等时,它是一个正方形。

二、平行四边形的中位线平行四边形的中位线是连接相邻两边中点的线段。

通过引入中位线,我们可以研究平行四边形的对应边的关系。

具体来说,我们可以得到以下结论:1. 平行四边形的中位线互相平行且相等;2. 平行四边形的中位线平分平行四边形的面积;3. 平行四边形的中位线长度等于对应边长度的平均值。

三、平行四边形的高线平行四边形的高线是从一个顶点到与对立边垂直相交的线段。

通过引入高线,我们可以研究平行四边形的高度和底边的关系。

具体来说,我们可以得到以下结论:1. 平行四边形的高线互相平行;2. 平行四边形的高线长度相等;3. 平行四边形的高线长度等于底边长度乘以对应高度的比值。

四、平行四边形的角平分线平行四边形的角平分线是从一个内角的顶点到对立边上的一点并且与对立边相交的线段。

通过引入角平分线,我们可以研究平行四边形的内角之间的关系。

具体来说,我们可以得到以下结论:1. 平行四边形的角平分线互相平行;2. 平行四边形的角平分线平分对立角,即对立内角的两个角平分线相交于对立边上的一点。

五、平行四边形的中心连线平行四边形的中心连线是连接两对对边中点的线段。

通过引入中心连线,我们可以研究平行四边形的对角线之间的关系。

2020年上海中考数学几何辅助线大全(很详细版本57页)

2020年上海中考数学几何辅助线大全(很详细版本57页)

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

平行四边形几何辅助线专题详解

平行四边形几何辅助线专题详解

平行四边形几何辅助线专题详解1 平行四边形知识框架{分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4个点的坐标平行四边形的面积{利用面积解决问题方程思想构造中位线{连接法{连接两中点知一中点,取另一中点知两中点,构双中位线倍长法{倍长垂直于角平分线的线段倍长线段 方法1 分类讨论思想分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4点坐标一、动态讨论解题技巧:点在线段的不同位置,也会造成不同的结果 (1)1个点的移动如下图,1个点C 在直线AB 上移动,会出现3种情况:①在线段AB 左侧;②在线段AB 当中;③在线段AB 右侧,具体见例1.(2)2个点的移动如下图,2个点C、D在线段AB上移动(C、D两点在AB中),会出现2种情况:①点C在点D的左侧;②点C在点D的右侧,具体见例2.例1.▱ABCD的内角∠BCD的平分线CE交射线DA于点E,若AE=3,DE=4,求▱ABCD的周长。

例2.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,求AB的长。

二、高的位置的讨论解题技巧:在平行四边形中作高,会出现2种情况:①在图形内;②在图形外。

(1)过点作下(上)侧边的高如下图,过点A作▱ABCD下侧的边CD上的高AE。

因▱ABCD倾斜方向的变化,高会存在两种情况,具体见例1(2)过点右(左)侧边的高如下图,过点B作▱ABCD的右侧边AD上的高AE。

因▱ABCD倾斜大小的变化,高会存在两种情况,具体见例2上述两种情况实质是同一种情况经过翻折后得到的,为同一种情况。

例1.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,若AB=5,BC=6,求CE的值。

例2.在▱ABCD中,AD=BD=4,BE是AD边上的高,∠EBD=30°,求△ABD的面积。

专题25 四边形中作辅助线造全等-中考数学二轮难点突破+几何证明问题

专题25 四边形中作辅助线造全等-中考数学二轮难点突破+几何证明问题

专题25 四边形中作辅助线造全等1、已知:矩形ABCD中,点E、F为对角线AC上两点,AF=CE.(1)如图1,求证:BE∥DF;(2)如图2,当AB=BE=AD时,连接DE、BF,在不添加任何辅助线的情况下,请直接写出四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.(1)证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠DAF=∠BCE,在△AFD和△CEB中,,∴△AFD≌△CEB(SAS),∴∠AFD=∠CEB,∴BE∥DF;(2)解:△ABF,△CDE,△ADF,△BCE;理由如下:由(1)得:△AFD≌△CEB,同理:△ABF≌△CDE(SAS),∴△AFD的面积=△CEB的面积,△ABF的面积=△CDE的面积,作BG⊥AC于G,如图2所示:∵四边形ABCD是矩形,∴∠ABC=90°,BC=AD,∵AB=BE=AD,∴AB=BE=BC,∴BC=2AB,AC==AB,AG=EG,∵△ABC的面积=AC×BG=AB×BC,∴BG===AB,∴AG===AB,∴AE=2AG=AB,∵AF=CE,∴△ABF的面积=△BCE的面积,CF=AE=AB,∴AF=AC﹣CF=AB﹣AB=AB,∴△ABF的面积=AF×BG=×AB×AB=AB2,∵矩形ABCD的面积=AB×BC=AB×2AB=2AB2,∴△ABF的面积=矩形ABCD面积的,∴△ABF的面积=△CDE的面积=△ADF的面积=△BCE的面积=矩形ABCD面积的.2、如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD 于点N.(1)求证:BP=CQ;(2)若BP=PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.解:(1)证明:∵∠ABC=90°∴∠BAP+∠APB=90°∵BQ⊥AP∴∠APB+∠QBC=90°,∴∠QBC=∠BAP,在△ABP于△BCQ中,,∴△ABP≌△BCQ(ASA),∴BP=CQ,(2)由翻折可知,AB=BC',连接BN,在Rt△ABN和Rt△C'BN中,AB=BC',BN=BN,∴Rt△ABN≌△Rt△C'BN(HL),∴AN=NC',∵BP=PC,AB=8,∴BP=2=CQ,CP=DQ=6,设AN=NC'=a,则DN=8﹣a,∴在Rt△NDQ中,(8﹣a)2+62=(a+2)2解得:a=4.8,即AN=4.8.(3)解:过Q点作QG⊥BM于G,由(1)知BP=CQ=BG=x,BM=MQ.设MQ=BM=y,则MG=y﹣x,∴在Rt△MQG中,y2=82+(y﹣x)2,∴.∴S△BMC′=S△BMQ﹣S△BC'Q==,=.3、如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证DG=BE;(2)连接FC,求tan∠FCN的值;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=3,BC=8,E是线段BC上一动点(不含端点B,C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.当点E由B向C运动时,判断tan∠FCN的值是否为定值?若是,求出该定值;若不是,请说明理由.解:(1)如图1,∵正方形ABCD和正方形AEFG中,∴∠BAD=∠EAG=90°,AB=AD,AE=AG,∴∠BAE=∠GAD,∴△BAE≌△GAD(SAS),∴DG=BE;(2)如图2,过点F作FM⊥BN于M,则∠B=∠AEF=∠FME=90°,∴∠BAE+∠AEB=∠FEM+∠AEB=90°,即∠BAE=∠FEM,又AE=EF,∴△BAE≌△MEF(ASA),∴FM=BE,EM=AB,又BE+EC=AB,EM=EC+CM,∴CM=FM,在Rt△FCM中,tan∠FCN==1;(3)如图2,过点F作FM⊥BN于M,则∠B=∠AEF=∠FME=90°,∴∠BAE+∠AEB=∠FEM+∠AEB=90°,即∠BAE=∠FEM,同理可证∠GAD=∠FEM,又AG=EF,∴△DAG≌△MEF,△BAE∽△MEF,∴EM=AD=BC=8,=,设BE=a,则EM=EC+CM=BC=BE+EC,∴CM=BE=a,∴=,∴FM=,∴tan∠FCN===,即tan∠FCN的值为定值.4、【操作发现】如图①,在正方形ABCD中,点N、M分别在边BC、CD上,连结AM、AN、MN.∠MAN=45°,将△AMD 绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而得DM+BN=MN.【实践探究】(1)在图①条件下,若CN=3,CM=4,则正方形ABCD的边长是.(2)如图②,点M、N分别在边CD、AB上,且BN=DM.点E、F分别在BM、DN上,∠EAF=45°,连接EF,猜想三条线段EF、BE、DF之间满足的数量关系,并说明理由.【拓展】(3)如图③,在矩形ABCD中,AB=3,AD=4,点M、N分别在边DC、BC上,连结AM,AN,已知∠MAN=45°,BN=1,求DM的长.【实践探究】(1)解:∵四边形ABCD是正方形,∴AB=CD=AD,∠BAD=∠C=∠D=90°,由旋转得:△ABE≌△ADM,∴BE=DM,∠ABE=∠D=90°,AE=AM,∠BAE=∠DAM,∴∠BAE+∠BAM=∠DAM+∠BAM=∠BAD=90°,即∠EAM=90°,∵∠MAN=45°,∴∠EAN=90°﹣45°=45°,∴∠MAN=∠EAN,在△AMN和△EAN中,,∴△AMN≌△EAN(SAS),∴MN=EN.∵EN=BE+BN=DM+BN,∴MN=BN+DM.在Rt△CMN中,MN===5,则BN+DM=5,设正方形ABCD的边长为x,则BN=BC﹣CN=x﹣3,DM=CD﹣CM=x﹣4,∴x﹣3+x﹣4=5,解得:x=6,即正方形ABCD的边长是6;故答案为:6;(2)EF2=BE2+DF2,理由如下:如图②,将△AFD绕点A顺时针旋转90°,点D与点B重合,得到△ABH,连结EH,∴∠ADF=∠ABH,DF=BH,∠DAF=∠BAH,AH=AF,∵∠EAF=45°,∴∠DAF+∠BAE=45°=∠BAH+∠BAE,∴∠HAE=45°=∠EAF,又∵AH=AF,AE=AE,∴△EAH≌△EAF(SAS),∴HE=EF,∵BN=DM,BN∥DM,∴四边形BMDN是平行四边形,∴DN∥BM,∴∠AND=∠ABM,∵∠ADN+∠AND=90°,∴∠ABH+∠ABM=90°=∠HBM,∴BE2+BH2=HE2,∴EF2=BE2+DF2;(3)如图③,延长AB至P,使BP=BN=1,过P作BC的平行线交DC的延长线于Q,延长AN交PQ 于E,连接EM,则四边形APQD是正方形,∴PQ=DQ=AP=AB+BP=4,设DM=x,则MQ=4﹣x,∵PQ∥BC,∴△ABN∽△APE,∴,∴PE=BN=,∴EQ=PQ﹣PE=4﹣=,由(1)得:EM=PE+DM=+x,在Rt△QEM中,由勾股定理得:()2+(4﹣x)2=(+x)2,解得:x=2,即DM的长是2.5、已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②若正方形ABCD的边长是,请求出△BCG的面积.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°.∴∠BCD+∠DCG=∠GCE+∠DCG,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS).∴BG=DE;(2)解:①连接BE,如图2所示:由(1)可知:BG=DE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°,∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE,在△BCG和△BCE中,,∴△BCG≌△BCE(SAS),∴BG=BE,∵BG=BD=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°;②延长EC交BD于点H,过点G作GN⊥BC于N,如图3所示:在△BCE和△DCE中,,∴△BCE≌△BCG(SSS),∴∠BEC=∠DEC,∴EH⊥BD,BH=BD,∵BC=CD=,∴BD=BC=2,∴BE=2,BH=1,∴CH=1,在Rt△BHE中,由勾股定理得:EH===,∴CE=﹣1,∵∠BCG=135°,∴∠GCN=45°,∴△GCN是等腰直角三角形,∴GN=CG=(﹣1),∴S△BCG=BC•GN=××(﹣1)=.6、利用“同角的余角相等”可以帮助我们得到相等的角,这个规律在全等三角形的判定中有着广泛的运用.(1)如图①,B,C,D三点共线,AB⊥BD于点B,DE⊥BD于点D,AC⊥CE,且AC=CE.若AB+DE=6,求BD的长.(2)如图②,在平面直角坐标系中,△ABC为等腰直角三角形,直角顶点C的坐标为(1,0),点A 的坐标为(﹣2,1).求直线AB与y轴的交点坐标.(3)如图③,∠ACB=90°,OC平分∠AOB,若点B坐标为(b,0),点A坐标为(0,a).则S四边形AOBC=.(只需写出结果,用含a,b的式子表示)解:(1)∵AB⊥BD,DE⊥BD,AC⊥CE,∴∠ABC=∠CDE=∠ACE=90°,∴∠A+∠ACB=90°,∠ECD+∠ACB=180°﹣∠ACE=90°,∴∠A=∠ECD,在△ABC和△CDE中,,∴△ABC≌△CDE(AAS),∴AB=CD,BC=DE,∴BD=CD+BC=AB+DE=6;(2)过点A作AD⊥x轴于D,过点B作BE⊥x轴于E,如图②所示:∵△ABC为等腰直角三角形∴∠ADC=∠CEB=∠ACB=90°,AC=CB,∴∠DAC+∠ACD=90°,∠ECB+∠ACD=180°﹣∠ACB=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∵点C的坐标为(1,0),点A的坐标为(﹣2,1),∴CO=1,AD=1,DO=2,∴OE=OC+CE=OC+AD=2,BE=CD=CO+DO=3,∴点B的坐标为(2,3),设直线AB的解析式为y=kx+b,将A、B两点的坐标代入,得,解得:,∴直线AB的解析式为:y=x+2,当x=0时,解得y=2,∴直线AB与y轴的交点坐标为(0,2);(3)过点C作CD⊥y轴于D,CE⊥x轴于E,如图③所示:∵OC平分∠AOB,∴CD=CE∴四边形OECD是正方形∴∠DCE=90°,OD=OE,∵∠ACB=90°,∴∠DCA+∠ACE=∠ECB+∠ACE=90°,∴∠DCA=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(ASA),∴DA=EB,S△DCA=S△ECB,∵点B坐标为(b,0),点A坐标为(0,a),∴OB=b,OA=a,∵OD=OE,∴OA+DA=OB﹣BE,即a+DA=b﹣DA,∴DA=,∴OD=OA+DA=a+=,∴S=S四边形AOEC+S△ECB=S四边形AOEC+S△DCA=S正方形DOEC=OD2=()2=,四边形AOBC故答案为:.7.如图所示,四边形ABCD为平行四边形,AD=13,AB=25,∠DAB=α,且cosα=,点E为直线CD 上一动点,将线段EA绕点E逆时针旋转α得到线段EF,连接CF.(1)求平行四边形ABCD的面积;(2)当点C、B、F三点共线时,设EF与AB相交于点G,求线段BG的长;(3)求线段CF的长度的最小值.解(1)如图1,作DK⊥AB于点K,∵将线段EA绕点E逆时针旋转α得到线段EF,∴∠AEF=α,AE=EF,在Rt△DAK中,∵cos∠DAK=cosα=,且AD=13,∴AK=5,∴DK===12,∴S=AB×DK=25×12=300;平行四边形ABCD(2)如图2,延长CD至H,作∠AHD=α,∵∠AHD=∠ADH=α,∴AH=AD=13,过点A作AM⊥DH于点M,由(1)知AM=12,∴DM==5,∴DH=10,∵∠FEH=∠DEA+∠α=∠F+α,∴∠DEA=∠F,在△AEH和△EFC中,,∴△AEH≌△EFC(AAS),∴EH=CF,CE=AH=13,∴DE=CD﹣CE=12,BF=CF﹣BC=22﹣13=9,∵BG∥CE,∴△FBG∽△FCE,∴,即,∴BG=;(3)如图3,延长CD至P,使∠P=∠ADP=α,过点F作FM∥BC,交CD于点M,过点FN⊥CD,交CD于点N,由(2)可知∠AEP=∠EFM,在△EAP和△FEM中.,∴△EAP≌△FEM(AAS),∴EM=AP=13,FM=EP,设DE=x,则FM=EP=10+x,CM=25﹣(13+x)=12﹣x,∴FN=FM•sinα=(10+x),MN=FM•cosα=(10+x),∴CN=CM+MN=12﹣x+(10+x)=,在Rt△CFN中,CF2=CN2+NF2=(208x2﹣416x+56836),对称轴x=﹣=1,∴当x=1时,CF的值最小,CF的最小值为.8、如图,在正方形ABCD中,点E是边BC上任意一点(点E不与点B、C重合),连结DE,点C关于DE的对称点为C1,连结AC1并延长交DE的延长线于点M,F是AC1的中点,连结DF.【猜想】如图①,∠FDM的大小为度.【探究】如图②,过点A作AM1∥DF交MD的延长线于点M1,连结BM.求证:△ABM≌△ADM1.【拓展】如图③,连结AC,若正方形ABCD的边长为2,则△ACC1面积的最大值为.解:(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDM=∠FDC'+∠EDC'=∠ADC=45°;故答案为:45;(2)∵DF⊥AC1,∴∠DFM=90°,∵AM1∥DF∴∠MAM'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAM1=∠BAM,由(1)可知:∠FDM=45°∵∠DFM=90°∴∠AMD=45°,∴∠M1=45°,∴AM=AM1,在:△ABM和△ADM1中,∵,∴△ABM≌△ADM1(SAS);(3)如图,过C1作C1G⊥AC于G,则=AC•C1G,在Rt△ABC中,AB=BC=2,∴AC==2,即AC为定值,当C1G最大值,△AC1C的面积最大,连接BD交AC于O,当C1在BD上时,C1G最大,此时G与O重合,∵CD=C1D=2,OD=AC=,∴C'G=C1D﹣OD=2﹣,∴=AC•C1G=×2(2﹣)=2﹣,故答案为:2﹣.9、如图,已知▱ABCD,E是CA延长线上一点,且∠EAB=90°,AB=AE,点F是BC下方一点,且FE=FD,∠EFD=90°,(1)求证:∠FEA=∠FDC;(2)若AF=3,求AC的长.(1)证明:设AC与DF交于点O,如图1所示:∵∠EAB=90°,∴∠BAC=90°,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ACD=∠BAC=90°,∴∠FDC+∠COD=90°,∵∠EFD=90°,∴∠FEA+∠FOE=90°,又∵∠FOE=∠COD,∴∠FEA=∠FDC;(2)解:连接CF,如图2所示:∵AB=AE,AB=CD,∴AE=CD,在△AEF和△CDF中,,∴△AEF≌△CDF(SAS),∴AF=CF,∠AFE=∠CFD,∴∠AFC=∠EFD=90°,∴△ACF是等腰直角三角形,∴AC=AF=3.10、在平面直角坐标系中,点O为坐标原点,点A(5,0)在x轴的正半轴上,四边形OABC为平行四边形,对角线OB=OA,BC交y轴于点D,且S▱OABC=20.(1)如图①,求点B的坐标:(2)如图②,点P在线段OD上,设点P的纵坐标为t,△PAB的面积为S,请用含t的式子表示S;(3)在(2)的条件下,如图③,点Q在x轴上,点R为坐标平面内一点,若∠OCB﹣∠CBP=45°,且四边形PQBR为菱形,求t的值并直接写出点Q的坐标.解:(1)∵点A(5,0),OB=OA,∴OA=OB=5,∵S▱OABC=OA×OD=5OD=20,∴OD=4,∵四边形OABC为平行四边形,∴BC∥AO,BC=AO=5,∴∠BDO=90°,∴DB===3,∴点B(3,4);(2)∵点P的纵坐标为t,∴OP=t,∴DP=4﹣t,∴S=×(3+5)×4﹣×3×(4﹣t)﹣×5×t=﹣t+10;(3)如图,由(1)知,B(3,4),OA=5,BC∥OA,∴C(﹣2,4),∴CD=2取OD的中点E,则DE=OD=2,∴DE=CD,∴∠DCE=45°,∴∠OCB﹣∠OCE=45°,∵∠OCB﹣∠CBP=45°,∴∠OCE=∠CBP,过点E作EF⊥OC于F,∴∠CFE=90°=∠BDP,∴△CFE∽△BDP,∴,在Rt△CDE中,CD=DE=2,∴CE=2,在Rt△ODC中,CD=2,OD=4,∴OC=2,∵CE是△OCD的中线,∴S△OCE=S△CDO=××2×4=2∵S△OCE=OC•EF=×EF=2,∴EF=,在Rt△CFE中,根据勾股定理得,CF=,∴,∴DP=1,∴OP=OD﹣DP=3,∴t=3,∴P(0,3),设Q(m,0),∵B(3,4),∴PQ2=m2+9,BQ2=(m﹣3)2+16,∵四边形PQBR为菱形,∴PQ=BQ,∴m2+9=(m﹣3)2+16,∴m=,即Q(,0).11、知在四边形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=4,BC=6.(1)如图1,P为AB边上一点,以PD,PC为边作平行四边形PCQD,过点Q作QH⊥BC,交BC的延长线于H.求证:△ADP≌△HCQ;(2)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE.请问对角线PQ的长是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.(3)如图2,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE,PB为边作平行四边形PBQE.请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.解:(1)∵AD∥BC,∴∠ADC=∠DCH,∴∠ADP+∠PDC=∠DCQ+∠QCH,∵四边形PCQD是平行四边形,∴PD∥CQ,PD=CQ,∴∠PDC=∠DCQ,∴∠ADP=∠QCH,在△ADP和△HCQ中,,∴△ADP≌△HCQ(AAS);(2)存在最小值,最小值为10,如图1,作QH⊥BC,交BC的延长线于H,设PQ与DC相交于点G,∵PE∥CQ,∴△DPG∽△CQG,∴==,由(1)可知,∠ADP=∠QCH,∴Rt△ADP∽Rt△QCH,∴==,∴CH=2AD=4,∴BH=BC+CH=6+4=10,∴当PQ⊥AB时,PQ的长最小,即为10;(3)存在最小值,最小值为(n+4),如图2,作QH∥DC,交CB的延长线于H,作CK⊥CD,交QH的延长线于K,∵PE∥BQ,AE=nPA,∴==,∵AD∥BC,∴∠ADP+∠DCH=90°,∵CD∥QK,∴∠QHC+∠DCH=180°,∴∠QHC=∠ADQ,∵∠PAD+∠PAG=∠QBH+∠QBG=90°,∠PAG=∠QBG,∴∠PAD=∠QBH,∴△ADP∽△BHQ,∴==,∴BH=2n+2,∴CH=BC+BH=6+2n+2=2n+8,过点D作DM⊥BC于M,又∠DAB=∠ABM=90°,∴四边形ABMD是矩形,∴BM=AD=2,DM=AB=4,∴MC=BC﹣BM=6﹣2=4=DM,∴∠DCM=45°,∴∠HCK=45°,∴CK=CH•cos45°=(2n+8)=(n+4),∴当PQ⊥CD时,PQ的长最小,最小值为(n+4).。

2020春浙教版八年级数学下册课件:四边形中常用辅助线专题训练(共43张PPT)

2020春浙教版八年级数学下册课件:四边形中常用辅助线专题训练(共43张PPT)

(2)作 AH⊥BD 于点 H,由题意知∠AGB=60°,
∠ABG=45°,∴△ABH 为等腰直角三角形,
△AGH 为含 30°角的直角三角形,∵AB=1,
∴AH=BH=
2 2
,HG=
6 6
,∴BG=
2 2

6 6
.
14.在正方形ABCD中,对角线BD所在的直线 上有两点E,F满足BE=DF,连接AE,AF, CE,CF,如图所示. (1)求证:△ABE≌△ADF; (2)试判断四边形AECF的形状, 并说明理由.
8.如图,点E,F,G,H分别在矩形ABCD的 边AB,BC,CD,DA(不包括端点)上运动,且 满足AE=CG,AH=CF. (1)求证:△AEH≌△CGF; (2)试判断四边形EFGH的形状,并说明理由.
(3)请探究四边形EFGH的周长一半与矩形 ABCD一条对角线长的大小关系,并说明理由 .
14.证明:(1)∵正方形ABCD,∴AB=AD, ∴∠ABD=∠ADB,∴∠ABE=∠ADF,可证 △ABE≌△ADF(SAS);
(2)连接AC,四边形AECF是菱形. 理由:∵正方形ABCD,∴OA=OC, OB=OD,AC⊥EF,∴OB+BE=OD+DF, 即OE=OF,∵OA=OC,OE=OF, ∴四边形AECF是平行四边形,∵AC⊥EF, ∴四边形AECF是菱形.
八年级数学(下)——测试卷(二十四)
四边形中常用辅助线专题训练
一、平行四边形有关的辅助线作法 1.如图,已知点O是平行四边形ABCD的对角 线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分.
1.证明:连结AE、OD, 因为四边形OCDE是平行四边形, 所以OC∥DE,OC=DE,因为O是AC的中点 ,所以AO∥ED,AO=ED,所以四边形 AODE是平行四边形,所以AD与OE互相平分 .

2023年中考数学冲刺复习知识点:辅助线添加法

2023年中考数学冲刺复习知识点:辅助线添加法

2023年中考数学冲刺复习知识点:辅助线添加法 一、三角形中常见辅助线的添加 1.与角平分线有关的 (1)可向两边作垂线. (2)可作平行线,构造等腰三角形. (3)在角的两边截取相等的线段,构造全等三角形. 2.与线段长度相关的 (1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可. (2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可. (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形. (4)遇到中点,考虑中位线或等腰等边中的三线合一. 3.与等腰等边三角形相关的 (1)考虑三线合一.(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60°.二、四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法. 1.和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形. (1)利用一组对边平行且相等构造平行四边形. (2)利用两组对边平行构造平行四边形. (3)利用对角线互相平分构造平行四边形. 2.与矩形有辅助线作法 (1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题. (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 3.和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定理解决问题. (1)作菱形的高. (2)连结菱形的对角线. 4.与正方形有关辅助线的作法 正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线. 5.与梯形有关的辅助线的作法 和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型: (1)作一腰的平行线构造平行四边形和特殊三角形. (2)作梯形的高,构造矩形和直角三角形. (3)作一对角线的平行线,构造直角三角形和平行四边形. (4)延长两腰构成三角形. (5)作两腰的平行线等.三、圆中常见辅助线的添加 1.遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径. 作用: ①利用垂径定理. ②利用圆心角及其所对的弧、弦和弦心距之间的关系 ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量 2.遇到有直径时 常常添加(画)直径所对的圆周角 作用:利用圆周角的性质得到直角或直角三角形 常常连结两条弦没有公共点的另一端点 作用:利用圆周角的性质,可得到直径 4.遇到弦时 常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点 作用: ①可得等腰三角形 ②据圆周角的性质可得相等的圆周角 5.遇到有切线时 常常添加过切点的半径(连结圆心和切点) 作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形 常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理. 6.遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段. 作用:若OA=r,则l为切线 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径) 作用:只需证OA⊥l,则l为切线 (3)有遇到圆上或圆外一点作圆的切线7.遇到两相交切线时(切线长) 常常连结切点和圆心、连结圆心和圆外的一点、连结两切点 作用:据切线长及其它性质,可得到 ①角、线段的等量关系 ②垂直关系 ③全等、相似三角形 8.遇到三角形的内切圆时 连结内心到各三角形顶点,或过内心作三角形各边的垂线段 作用:利用内心的性质,可得 ①内心到三角形三个顶点的连线是三角形的角平分线 ②内心到三角形三条边的距离相等 连结外心和各顶点 作用:外心到三角形各顶点的距离相等 10.遇到两圆外离时 (解决有关两圆的外、内公切线的问题)常常作出过切点的半径、连心线、平移公切线,或平移连心线 作用: ①利用切线的性质; ②利用解直角三角形的有关知识 11.遇到两圆相交时 常常作公共弦、两圆连心线、连结交点和圆心等 作用: ①利用连心线的性质、解直角三角形有关知识 ②利用圆内接四边形的性质 ③利用两圆公共的圆周的性质 ④垂径定理 12.遇到两圆相切时 常常作连心线、公切线 作用: ①利用连心线性质 ②切线性质等 13.遇到三个圆两两外切时 常常作每两个圆的连心线 作用:可利用连心线性质 14.遇到四边形对角互补或两个三角形同底并在底的同向且有相等“顶角”时 常常添加辅助圆.。

四边形辅助线的经典例题

四边形辅助线的经典例题

四边形辅助线的经典例题1.问题描述在几何学中,我们通常使用辅助线来帮助解决问题,特别是在研究四边形时。

本文将介绍一些经典的四边形辅助线例题,并提供解答和解题思路。

2.题目一题目描述如图所示,在四边形A BC D中,连结A C和B D的交点为P。

证明:四边形AB CD是平行四边形的充分必要条件是A P=CP。

A_______B||||D__|_______|__C解答和解题思路解答设四边形AB CD为平行四边形,即AB∥CD,AD∥B C。

通过观察可以发现,△A PC与△CP D相似(共边、共角、共角),因此我们有:A P/P C=AC/C D=AB/BC同理,△AP B与△B CP相似,可得:A P/P B=AB/B C=AC/CD由上述两个等式可知:A P/P C=AP/P B即A P=CP,得证。

解题思路在证明这个结论时,我们需要利用平行四边形的性质和相似三角形的性质。

通过观察和推理,我们可以发现△A P C与△C PD相似,△A PB与△B CP相似。

利用相似三角形的性质,我们可以得出A P=CP的结论。

3.题目二题目描述如图所示,在四边形A BC D中,连结A C和B D的交点为P。

证明:当且仅当四边形AB CD的对角线互相平分时,四边形AB CD为矩形。

A_______B||||D__|_______|__C解答和解题思路解答设四边形AB CD的对角线AC和B D相交于P点。

先证明四边形A BC D 是矩形的充分条件是A P=CP且B P=DP。

由题意可知,四边形A BC D是矩形,则A B∥C D且AD∥B C。

根据平行线性质,我们可以得到以下结论:A D/D C=AP/P C(1)A B/B C=BP/P D(2)由(1)式得到A P/PC=A D/DC,即AP/P C=A D/B D,再结合(2)式得到:A P/P C=AD/B D=AB/BD=AB/B C即A P/PC=A B/BC,从而得到AP=C P。

初中数学】几何题,辅助线的添加方法和典型例题

初中数学】几何题,辅助线的添加方法和典型例题

初中数学】几何题,辅助线的添加方法和典型例题初中数学:几何题型,辅助线的画法和典型例题1.倍长中线法已知在△ABC中,D是BC中点,DE⊥DF,需要判断BE+CF与EF的大小关系,并证明结论。

思路点拨:利用倍长中线法,倍长过中点的线段DF使DG=DF,再证明△XXX≌△EDF,△FDC≌△GDB,将BE、CF与EF线段转化到△BEG中,利用两边之和大于第三边证明。

解析:连接BG、EG,因为D是BC中点,所以BD=CD。

又因为DE⊥DF,在△XXX和△EDF中,ED=ED,∠XXX∠EDF,DG=DF,因此△XXX≌△EDF(SAS),所以EG=EF。

在△XXX与△GDB中,CD=BD,∠1=∠2,DF=DG,因此△FDC≌△GDB(SAS),所以CF=BG。

因为BG+BE>EG,所以BE+CF>EF。

结论得证。

总结升华:有中点的时候作辅助线可以考虑倍长中线法(或倍长过中点的线段)。

变式:已知CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC,需要证明CD=2CE。

解析:连接BF,延长CE至F使EF=CE。

因为EC为中线,所以AE=BE。

在△AEC与△BEF中,AE=BE,∠AEC =∠BEF,CE=EF,因此△AEC≌△BEF(SAS)。

所以AC =BF,∠A=∠FBE。

又因为∠ACB=∠ABC,∠XXX∠ACB+∠A,∠XXX∠ABC+∠A,所以AC=AB,∠XXX∠XXX。

因此AB=BF,BC为△ADC的中线,所以AB=BD,即BF=BD。

在△FCB与△DCB中,∠XXX∠DBC,BC=BC,因此△FCB≌△DCB(SAS),所以CF=CD。

结论得证。

2.以角平分线为对称轴的翻折变换构造全等三角形已知在△ABC中,∠C=2∠B,∠1=∠2,需要证明XXX。

解析:在AB上截取AE=AC,连接CE,作角ACE的平分线交AB于D,连接CD。

因为∠C=2∠B,所以∠ACE=∠XXX∠B,∠XXX∠A=∠1=∠2,所以△AED≌△ACD (SAS),因此ED=CD。

专题二:平行四边形常用辅助线地作法

专题二:平行四边形常用辅助线地作法

专题讲义平行四边形+几何辅助线的作法、知识点1 •四边形的内角和与外角和定理:(1) 四边形的内角和等于360°; (2) 四边形的外角和等于360° .2. 多边形的内角和与外角和定理:(1) n 边形的内角和等于(n-2)180 ° ;(2) 任意多边形的外角和等于 360° .3. 平行四边形的性质:4、平行四边形判定方法的选择已知条件选择的判定方法 边一组对边相等 方法⑵,方法⑶ 一组对边平行 定义(方法D.方法⑶角经对角相等对角线方法⑷5、和平行四边形有关的辅助线作法(1)利用一组对边平行且相等构造平行四边形例1、如图,已知点O 是平行四边形ABCD 勺对角线AC 的中点,四边形OCD 是平行四边形•E求证:OE 与AD 互相平分./ 飞说明:当已知条件中涉及到平行,且要求BC性质四边形ABCD 是平行四边形判定(1) 两组对边分别平行;(2) 两组对边分别相等; (3)两组对角分别相等;(4) 对角线互相平分; (5) 邻角互补.证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形—:(2)利用两组对边平行构造平行四边形例2、如图,在△ ABC中,E、F为AB上两点, AE=BF ED//AC,FG//AC交BC分别为D, G.求证:ED+FG=AC.说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问(3)利用对角线互相平分构造平行四边形例3、如图,已知ADS^ ABC的中线,BE交AC于E,交AD于F,且AE=EF求证BF=AC.说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法•(4)连结对角线,把平行四边形转化成两个全等三角形。

例4、如图,在平行四边形ABCD中,点E,F在对角线AC上,且AE二CF ,请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可)(5)平移对角线,把平行四边形转化为梯形。

第13讲四边形中常见辅助线

第13讲四边形中常见辅助线

第十三讲 四边形中常见辅助线学习目标1.掌握四边形中常见辅助线的作法,并能灵活应用。

2、结合题目,通过作辅助线把复杂的问题简单化。

一、知识回顾 1、平行四边形四边形ABCD 是平行四边形 ⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;( 2、平行四边形判定方法的选择二、 例题辨析平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.第一类:连结对角线,把平行四边形转化成两个全等三角形。

ABDOC性质判定例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可)⑴连结BF ⑵DE BF = ⑶证明:连结DF DB ,,设AC DB ,交于点O∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF =图2图1OOECCABDABDEF第二类:平移对角线,把平行四边形转化为梯形。

例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC ,10=BD ,m AB =,那么m 的取值范围是( )A 111<<mB 222<<mC 1210<<mD 65<<m解:将线段DB 沿DC 方向平移,使得CE DB =,BE DC =,则有四边形CDBE 为平行四边形,∵在ACE ∆中, 12=AC ,10==BD CE ,m AB AE 22==∴101221012+<<-m ,即2222<<m 解得111<<m 故选A第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。

初中数学中考复习几何辅助线规律总结(共102条)

初中数学中考复习几何辅助线规律总结(共102条)

初中数学几何辅助线规律线、角、相交线、平行线【规律】1如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。

【规律】2平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分。

【规律】3如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。

【规律】4线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。

【规律】5有公共端点的n条射线所构成的交点的个数一共有n(n-1)个。

【规律】6如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个。

【规律】7如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。

【规律】8平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。

【规律】9互为邻补角的两个角平分线所成的角的度数为90°。

【规律】10平面上有n条直线相交,最多交点的个数为n(n-1)个。

【规律】11互为补角中较小角的余角等于这两个互为补角的角的差的一半。

【规律】12当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。

【规律】13已知AB∥DE,如图⑴~⑹,规律如下:【规律】14成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。

三角形部分【规律】15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。

注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。

【规律】16三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半。

【规律】17三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半。

第4章 平行四边形-中位线常见的辅助线 浙教版数学八年级下册课件

第4章 平行四边形-中位线常见的辅助线 浙教版数学八年级下册课件
例2:四边形ABCD中,点E、F、G、H分别是BC、AD、BD、AC的中
点,求证:EF和GH互相平分
连结EG,GF,FH,EH
∵E,G分别为AD,BD的中点




∵F,H分别为BC,AC的中点





∴四边形EGFH是平行四边形
∴EF和GH互相平分
例题演练 掌握新知
练习1:已知:四边形ABCD中,AB=CD,M、N、E、F分
3、三角形中两边中点-------中位线定理
4、一般三角形中点-------倍长中线法
只有一边中点,取另一边中点构造中位线
例题演练 掌握新知
例3:如图,△ABC中,AD是BC边上的中线,F是AD的中
点,BF的延长线交AC于点E
1
求证:AE AC
3
取BE中点M,连结DM
∵D,M分别为BC,BE的中点
中位线常见的辅助线
例题演练 掌握新知
出现两边中点,添加第三边构造三角
形使其成为中位线
例1:任意四边形ABCD,四边中点E、F、G、H
组成的四边形是不是平行四边形?
顺次连接任意四边形各边中点的线段组成一个平行四边形
例题演练 掌握新知
练习1:如图,已知△ABC是锐角三角形,分别以AB,AC
为边向外侧作两个等边△ABM和△CAN.D,E,F分别是MB,
CD的中点,EF交AC于M,交BD于N,
求证:OM=ON。
取BC中点G,连接EG、FG
∵E,G分别为AB,BC的中点


∴ ∥ , =

同理可得 ∥ , =

∴ =FG
∵AB=CD
∴∠GEF=∠GFE

2023年九年级数学中考压轴复习专题几何综合——添加辅助线

2023年九年级数学中考压轴复习专题几何综合——添加辅助线

1
(2)若弦MN垂直于AB,垂足为G, = ,MN= 3,求⊙O的半径;

4
(3)在(2)的条件下,当∠BAC=36°时,求线段CE的长
【详解】
(3) 作∠ABC的平分线BF交AC于F,连接AD
∵∠BNC=36°,AB=AC
∴∠ABC=∠ACB=72°
∵BF平分∠ABC
∴∠ABF=∠CBP=36°
∴∠BFC=72°即∠BAF=∠ABF、
∠BFC=∠ACB
∴BC=BF=AF
∵∠CBF=∠BAC,∠C=∠C
∴△CBF∽△CAB
∴BC²=CF·AC
设BC=x则AF=x
∴CF=2-x
∴x²=2(2-x)解得:x=± 5 − 1
∴BC= 5 − 1
∴AB是⊙O的直径
∴∠ADB=90°
∵AB=AC
1
∴CD=BD= BC
【分析】①由旋转性质证明△ABD∽△ACE即可判断;
②由①的结论可得,∠ABD=∠ACE,进而得到∠BOC=∠CAB=45°,即可判断∠COD;
③证明△ABD为等腰三角形即可判断;
④由题意直线BD、CE相交于点O,当AD⊥AC时,△AOC的面积最大,通过勾股定理计
算求出最大值,进而进行判断
试炼场:
从而得出∠ODE=90°,即可得证DE是CO的切线;
3
1
(2)连接OM,先求出MG= ,得出OG= OM,最后用勾股定理求解,即可得
2
2
出结论;
(3)作∠ABC的平分线交AC于F,判断出△BCF∽△ACB,得出比例式求成
BC= 5 − 1,连接AD,再求出CD=
例式求解,即可得出结论
5−1
,再判断出△DEC∽△ADC,得出比

初中几何辅助线——四边形辅助线大全

初中几何辅助线——四边形辅助线大全

初中几何辅助线——四边形辅助线大全题型1.平行四边形的两邻边之和等于平行四边形周长的一半.例1已知,□ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长多8cm,求这个四边形各边长.解:∵四边形ABCD为平行四边形∴AB = CD,AD = CB,AO = CO∵AB+CD+DA+CB = 60AO+AB+OB-(OB+BC+OC) = 8∴AB+BC = 30,AB-BC =8∴AB = CD = 19,BC = AD = 11答:这个四边形各边长分别为19cm、11cm、19cm、11cm.题型 2.平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.(例题如上)题型3.有平行线时常作平行线构造平行四边形.例2已知,如图,Rt△ABC,∠ACB = 90o,CD⊥AB于D,AE平分∠CAB交CD于F,过F 作FH∥AB交BC于H求证:CE = BH证明:过F作FP∥BC交AB于P,则四边形FPBH 为平行四边形∴∠B =∠FP A,BH = FP∵∠ACB = 90o,CD⊥AB∴∠5+∠CAB = 45o,∠B+∠CAB = 90o∴∠5 =∠B∴∠5 =∠FP A又∵∠1 =∠2,AF = AF∴△CAF≌△P AF∴CF = FP∵∠4 =∠1+∠5,∠3 =∠2+∠B∴∠3 =∠4∴CF = CE∴CE = BH练习:已知,如图,AB∥EF∥GH,BE = GC求证:AB = EF+GH54321PHFEDCB AGHFEB AC题型4.有以平行四边形一边中点为端点的线段时常延长此线段.例3已知,如图,在□ABCD中,AB = 2BC,M为AB中点求证:CM⊥DM证明:延长DM、CB交于N∵四边形ABCD为平行四边形∴AD = BC,AD∥BC∴∠A = ∠NBA∠ADN=∠N又∵AM = BM∴△AMD≌△BMN∴AD = BN∴BN = BC∵AB = 2BC,AM = BM∴BM = BC = BN∴∠1 =∠2,∠3 =∠N∵∠1+∠2+∠3+∠N = 180o,∴∠1+∠3 = 90o∴CM⊥DM题型5.平行四边形对角线的交点到一组对边距离相等.例4如图:OE=OF题型 6.平行四边形一边(或这边所在的直线)上的任意一点与对边的两个端点的连线所构成的三角形的面积等于平行四边形面积的一半.例5如图:S△BEC= 12S□ABCD题型7.平行四边形内任意一点与四个顶点的连线所构成的四个三角形中,不相邻的两个三角形的面积之和等于平行四边形面积的一半.例6如图:S△AOB+S△DOC= S△BOC+S△AOD = 12S□ABCDEDCBAODCBA321NM BAD CFEODCBA题型8.任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方和相等. 例7如图:AO 2+OC 2 = BO 2 +DO 2题型9.平行四边形四个内角平分线所围成的四边形为矩形.例8如图:四边形GHMN 是矩形(题型5~题型9请自己证明)题型10.有垂直时可作垂线构造矩形或平行线.例9已知,如图,E 为矩形ABCD 的边AD 上一点,且BE = ED ,P 为对角线BD 上一点,PF ⊥BE 于F ,PG ⊥AD 于G 求证:PF +PG = AB证明:证法一:过P 作PH ⊥AB 于H ,则四边形AHPG 为矩形∴AH = GP PH ∥AD ∴∠ADB =∠HPB∵BE = DE ∴∠EBD = ∠ADB ∴∠HPB =∠EBD 又∵∠PFB =∠BHP = 90o∴△PFB ≌△BHP∴HB = FP∴AH +HB = PG +PF 即AB = PG +PF证法二:延长GP 交BC 于N ,则四边形ABNG 为矩形,(证明略)NP H G FE D C B AN M HG DCBAA DC B OO B CD A题型11.直角三角形常用辅助线方法⑴作斜边上的高例10已知,如图,若从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线交于点E 求证:AC = CE证明:过A作AF⊥BD,垂足为F,则AF∥EG∴∠F AE = ∠AEG∵四边形ABCD为矩形∴∠BAD = 90o OA = OD∴∠BDA =∠CAD∵AF⊥BD∴∠ABD+∠ADB= ∠ABD+∠BAF= 90o∴∠BAF =∠ADB =∠CAD∵AE为∠BAD的平分线∴∠BAE =∠DAE∴∠BAE-∠BAF =∠DAE-∠DAC即∠F AE =∠CAE∴∠CAE =∠AEG∴AC = EC⑵作斜边中线,当有下列情况时常作斜边中线①有斜边中点时例11已知,如图,AD、BE是△ABC的高,F是DE的中点,G是AB的中点求证:GF⊥DE证明:连结GE、GD∵AD、BE是△ABC的高,G是AB的中点∴GE = 12AB,GD =12AB∴GE = GD∵F是DE的中点∴GF⊥DE②有和斜边倍分关系的线段时例12已知,如图,在△ABC中,D是BC延长线上一点,且DA⊥BA于A,AC = 12 BD求证:∠ACB = 2∠B证明:取BD中点E,连结AE,则AE = BE = 12 BD∴∠1 =∠BGOFEDCBAFEDCBA∵AC =12BD ∴AC = AE∴∠ACB =∠2 ∵∠2 =∠1+∠B ∴∠2 = 2∠B ∴∠ACB = 2∠B题型12.正方形一条对角线上一点到另一条对角线上的两端距离相等.例13已知,如图,过正方形ABCD 对角线BD 上一点P ,作PE ⊥BC 于E ,作PF ⊥CD 于F 求证:AP = EF证明:连结AC 、PC∵四边形ABCD 为正方形∴BD 垂直平分AC ,∠BCD = 90o∴AP = CP∵PE ⊥BC ,PF ⊥CD ,∠BCD = 90o ∴四边形PECF 为矩形 ∴PC = EF ∴AP = EF 题型13.有正方形一边中点时常取另一边中点.例14已知,如图,正方形ABCD 中,M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN 于N求证:MD = MN证明:取AD 的中点P ,连结PM ,则DP = P A =12AD ∵四边形ABCD 为正方形 ∴AD = AB , ∠A =∠ABC = 90o∴∠1+∠AMD = 90o ,又DM ⊥MN ∴∠2+∠AMD = 90o ∴∠1 =∠2 ∵M 为AB 中点∴AM = MB = 12AB∴DP = MB AP = AM ∴∠APM =∠AMP = 45o ∴∠DPM =135o ∵BN 平分∠CBE ∴∠CBN = 45o∴∠MBN =∠MBC +∠CBN = 90o +45o = 135o 即∠DPM =∠MBN ∴△DPM ≌△MBN21EDCBAP F ED CB A21P NEDCA∴DM = MN注意:把M 改为AB 上任一点,其它条件不变,结论仍然成立。

初中三角形四边形常见辅助线做法

初中三角形四边形常见辅助线做法
(1)考虑三线合一 (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶 角的度数,等边旋转60 °
►三角形中常见辅助线的添加 3. 与等腰等边三角形相关的
(1)考虑三线合一
►三角形中常见辅助线的添加 3. 与等腰等边三角形相关的
(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °
3. 和菱形有关的辅助线的作法
(1)作菱形的高 (2)连结菱形的对角线
►四边形中常见辅助线的添加 3. 和菱形有关的辅助线的作法
(1)作菱形的高
►四边形中常见辅助线的添加 3. 和菱形有关的辅助线的作法
(2)连结菱形的对角线
►四边形中常见辅助线的添加
4. 与正方形有关辅助线的作法
正方形是一种完美的几何图形,它既是轴对称图形,又 是中心对称图形,有关正方形的试题较多.解决正 方形的问 题有时需要作辅助线,作正方形对角线是解决正方形问题的 常用辅助线
►三角形中常见辅助线的添加 2. 与线段长度相关的
(1) 截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一 段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可
►三角形中常见辅助线的添加
2. 与线段长度相关的
(2) 补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长 一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段 等于那一条长线段即可
初中 三角形四边形 辅助线典型用法
►三角形中常见辅助线的添加
1. 与角平分线有关的
(1)向两边作垂线 (2)作平行线,构造等腰三角形 (3)在角的两边截取相等的线段,构造全等三角形
►三角形中常见辅助线的添加
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节一般四边形常用的辅助线例1、已知:如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC。

求证:BC=DC。

例2、已知:如图,在四边形ABCD中,AB=3,BC=4,CD=13,AD=12,∠B=90°。

求四边形ABCD的面积。

例3、如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=()8A、4B、5C、32D、33例4、证明:在四边形ABCD中,∠A+∠B+∠C+∠D=360°。

3,BD=7。

例5、已知:如图,四边形ABCD中,∠BAD=120°,∠ABC=90°,AD=3,BC=3求:(1)CD的长(2)AB的长例6、如图,在四边形ABCD中,对角线AC=BD=3.6cm,E、F、G、H依次为各边中点,且EG=3cm。

求FH的长。

例7、如图,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均有一棵大核桃树,田村准备挖池塘建养鱼池,想使池塘面积扩大一倍,又想保留核桃树不动,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想,若能,请你设计并画出图形;若不能,请说明理由。

(保留画图痕迹,不写画法)综合演练:1、如图,四边形ABCD中,E、F、G、H是四边形各边的中点,求证:四边形EFGH是平行四边形。

2、某风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产形状如图所示的风筝,点E、F、G、H分别是四边形ABCD的中点,其阴影部分用的甲布料,其余部分用乙布料(裁剪两种布料时,均不计余料),若生产这批风筝需要甲布料30匹,那么需要乙布料多少匹?3、已知:如图,在山脚的C处测得山顶A的仰角是45°,沿着坡度为30°的斜坡前进400米到D处(即∠BCD=30°,CD=400米),测得A的仰角为60°,求山的高度AB。

4、提出问题:如图①所示,在四边形ABCD 中,P 是AD 边上任意一点,△PBC 与△ABC 和△DBC 的面积之间有什么关系?探究问题:为了解决这个问题,我们可以先从一些简单的,特殊的情形入手: (1)当AP=21AD 时(如图②):∵AP=21AD ,△ABP 和△ABD 的高相等,∴ABD ABP S S ∆∆=21。

∵PD=AD -AP=21AD ,△CDP 和△CDA 的高相等,∴CDA CDP S S ∆∆=21。

∴CDP ABP ABCDPBC S S S S ∆∆∆--=四边形=CDA ABD ABCDS S S ∆∆--2121四边形 =()()ABC ABCDDBCABCDABCDS SS SS ∆∆----四边形四边形四边形2121=ABC DBC S S ∆∆+2121(2)当AP=31AD 时,探求DBC ABC PBC S S S ∆∆∆与与之间的关系,写出求解过程;(3)当AP=61AD 时,DBC ABC PBC S S S ∆∆∆和与之间的关系式为______________________;(4)一般地,当AP=n1AD (n 表示正整数)时,探求DBC ABC PBC S S S ∆∆∆和与之间的关系,写出求解过程;问题解决:当AP=nm AD ⎪⎭⎫⎝⎛≤≤10n m时,DBC ABC PBC S S S ∆∆∆和与之间的关系为____________________。

① ②第二节 多边形中常用的辅助线 例1、已知:如图,求证:∠A +∠B +∠C +∠D +∠E +∠F =360°。

例2、如图,在五角星ABCDE 中,阴影部分的面积为1001.5,求ABCDES 五角星的值。

例3、已知:如图,六边形ABCDEF 中,∠A =∠B =∠C =∠D =∠E =∠F =120°。

求证:AB +BC =EF +ED 。

综合演练: 1、如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=130°,∠B=110°,那么∠BCD 的度数等于( ) A 、40° B 、50° C 、60° D 、70°2、一个零件的形状如图所示,按规定∠A 应等于90,∠B 、∠C 应分别为 21和32,检验工人量得∠BDC=148,就断定这个零件不合格,这是为什么呢?3、王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子,另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图①),王师傅想将这两块板子裁剪成两块全等的矩形板材,他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE 围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点。

(1)求BC 的长。

(2)利用图②求出矩形顶点B 所对的顶点到BC 边的距离x (cm )为多少时,矩形的面积y(2cm )最大?最大面积是多少?(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。

① ②第三节 平行四边形常用的辅助线 (矩形、菱形、正方形与其相同)例1、如图,正方形网格的每一个小正方形的边长都是1,试求434424221C E A C E A A E A ∠+∠+∠的度数。

例2、如图,过正方形ABCD 对角线BD 上一点P ,作PE ⊥BC 于E ,作PF ⊥CD 于F ,连结AP 、EF 。

(1)试说明AP=EF 的道理;(2)猜想AP 与EF 有怎样的位置关系,并说明理由。

例3、如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12,BD=10,AB=m ,那么m 的取值范围是( )A 、111<<mB 、222<<mC 、1210<<mD 、65<<m例4、如图,平行四边形的两邻边长分别为b a ,,两对角线的长分别为n m ,。

求证:)(22222b a n m +=+。

例5、已知:如图,正方形ABCD 中,E 、F 分别是CD 、DA 的中点,BE 与CF 交于P 点。

求证:AP=AB 。

例6、如图,在□ABCD 中,点E 为边CD 上任一点,请你在该图的基础上,适当添加辅助线填写两对相似三角形:△_________∽△________,△_________∽△________。

例7、已知:如图,□ABCD 中,AN=BN ,BE=31BC ,NE 交BD 于点F 。

求BF :BD 。

例8、如图,过矩形ABCD 对角线AC 的中点O 作EF ⊥AC 分别交AB 、DC 于E 、F ,点G 为AE 的中点,若∠AOG=30°,求证:OG=31DC 。

例9、如图,过正方形ABCD 的顶点B 作BE ∥AC ,且AE=AC ,又CF ∥AE 。

求证:∠BCF=21∠AEB 。

例10、如图,过□ABCD 的顶点A 作一条直线l ,且111,,BB CC DD 两两平行,分别交直线l 于111,,B C D 。

求证:111BB DD CC +=。

例11、如图,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样速度向B 、C 、D 、A 各点移动。

(1)试判断四边形PQEF 是正方形,并证明; (2)PE 是否总过某一定点,并说明理由;(3)四边形PQEF 的顶点位于何处时,其面积最小?最大?各是多少?综合演练:1、如图,已知△ABC 是等边三角形,D 、E 分别在BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF 。

(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明; (2)判断四边形ABDF 是怎样的四边形,并说明理由; (3)若AB=6,BD=2DC ,求四边形ABEF 的面积。

2、如图,在矩形ABCD 中,E 、F 分别是AD 、BC 的中点,点G 、H 在DC 边上,且GH=21DC 。

若AB=10,BC=12,则图中阴影部分的面积为____________。

3、如图,E 、F 分别是平行四边形ABCD 对角线BD 所在直线上两点,DE=BF ,请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等。

(只需研究一组线段相等即可)。

(1)连结_________;(2)猜想:_____________;(3)证明:(说明:写出证明过程的重要依据)。

4、如图,在□ABCD中,E、F分别为AB、CD的中点,连结DE、BF、BD。

(1)求证:△ADE≌△CBF。

(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论。

第四节有关梯形的辅助线例1、如图,梯形ABCD中,AD∥BC,AB=CD,BG⊥CD于G,P是BC上任意一点,作PE⊥AB,PF⊥CD。

求证:PE+PF=BG。

例2、如图,在梯形ABCD中,∥ADBC,AB=CD,E、F、G、H分别为AB、BC、CD、DA的中点,小王根据以上条件猜测出四边形EFGH是菱形,你同意他的观点吗?请回答,并说明理由。

例6、如图所示,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=8cm,BC=21cm,动点P从点A 开始沿AD边向点D以每秒1cm的速度移动,动点Q从点C开始沿CB边向B点以每秒2cm的速度移动,如果P、Q分别从A、C同时出发,设移动时间t秒,求t为何值时,梯形PQCD是等腰梯形。

例7、如图,已知'AA ∥'DD ,B 、C 分别是AD 的四等分点,','C B 分别是''D A 的四等分点,cm DD cm AA 36',28'==。

求'BB 和'CC 的长度。

例8、已知,如图,梯形ABCD ,M 为腰AD 的中点,MH ⊥BC 于H 。

求证:MH BC S ABCD ⋅=梯形。

例9、如图,梯形ABCD 中,AD ∥BC ,E 是CD 的中点,连结AE ,BE 。

求证:ABCD AEB S S 梯形21=∆。

例10、如图所示,在梯形ABCD 中,AB ∥CD ,AD=BC ,O 是对角线AC 、BD 的交点,∠AOB=60°,又E 、F 、G 分别是DO 、AO 、BC 的中点。

求证:△EFG 是等边三角形。

例11、已知如图,在直角梯形ABCD 中,AB ∥CD ,∠A =∠D=90°,BC =AB +CD ,P 为AD 的中点,求证:CP ⊥PB 。

例12、已知:如图,在梯形ABCD中,AD∥BC,AB=CD。

相关文档
最新文档