数列通项公式训练题
求数列通项公式练习题(有答案)
求数列通项公式练习题(有答案)1. 已知数列 a ₙ中, S ₙ是它的前n 项和。
S ₙ=3ⁿ,a ₙ=;【答案】 a n ={3,n =12×3n−1,n ≥2【解析】【分析】本题考查利用数列的前n 项和的式子求数列的通项公式,利用 a n ={S 1,n =1S n −S n−1n ≥2解决。
属基础题。
【解答】解: S n =3x |M|n =1B i ∗,a 1=S 1=32n ≥2R 1+,a n =S n −S n−1=3n −3n−1=2×3n−1x ₙ₋₁时不满足上式。
所以 a n ={3,n =12×3n−1,n ≥2 故答案为 a n ={3,n =12×3n−1,n ≥22. 若数列(a ₙ)的首项(a ₁=2. 11 a n+1=3a n +2(n ∈N ∗).令人一kg/d ɑ,+1). 则 b n +b 2+b 3++b 300=¯. 【答案】5050【解析】 【分析】本题考查数列的选择公司,考查等比数列,等差数列的性质,属于中档题。
推导出 a ₙ+1是首项为3,公比为3的等比数列,从而得 b ₙ=log₂3ⁿ=n,由此能求出 b 1+b 2+b 3+⋯+b 100【解答】解: ∵数列{a ₙ}的首项a ₁=2. 且 a n+1=3a n +2(n ∈N ∗,Aa ₙ₊₁+1=3(a ₙ+1),a₁+1=3−3,a ₙ₊₁A.[a ₙ+1]是首项为3,公比为3的等比数列。
xa ₙ+1=3′,∴b₁₄=log₂₇(a ₙ+1)=log₂₂3¹¹=n!,ab 1+b 2+b 3++b 100=1+2+3++10 =100(100+1)2=505C.故答案为5050.3. 若数列{a ₙ}满足: a 1=12,a n+1=n+12n a n (n ∈N ∗)所[a ₙ]的通项公式 a ₙ=.【答案】:【解析】【分析】本道试题主要是考查了数列的遥推公式的应用,还考查了等比数列的通项公式的应用。
数列递推求通项专题训练(中档+拔高)
(2)求数列{an}的通项公式
6.已知数列 满足 , , ,且 是比数列。
1)求出通项公式 ;2)求证: …
1.已知在数列 中, , , .
(1)求 的通项公式;()设数列 的前 项和为 ,证明: .
2..数列 首项 ,前 项和 与 之间满足
1)求数列 的通项公式2)设存在正数 ,使 对于一切 都成立,求 的最大值。
3.设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.
4.设数列{an}的前n项和为Sn.已知a1=a(a≠3),an+1=Sn+3n,n∈N*,设bn=Sn-3n.
(1)求数列{bn}的通项公式;
(2)若an+1≥an,n∈N*,求a的取值范围.
5.已知数列{an}的各项均为正数,记数列{an}的前n项和为Sn,数列{a }的前n项和为Tn,且3Tn=S +2Sn,n∈N*.
数列的通项公式练习题(通项式考试专题)
求数列通项公式专题练习1、 设n S 就是等差数列}{n a 得前n 项与,已知331S 与441S 得等差中项就是1,而551S 就是331S 与441S 得等比中项,求数列}{n a 得通项公式2、已知数列{}n a 中,311=a ,前n 项与n S 与n a 得关系就是 n n a n n S )12(-= ,试求通项公式n a 。
3、已知数列{}n a 中,11=a ,前n 项与n S 与通项n a 满足)2,(,1222≥∈-=n N n S S a n n n ,求通项n a 得表达式、4、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 得表达式。
5、已知数}{n a 得递推关系为4321+=+n n a a ,且11=a 求通项n a 。
6、已知数列{}a n 得前n 项与S n b n n =+()1,其中{}b n 就是首项为1,公差为2得等差数列,数列{}a n 得通项公式7、已知等差数列{a n }得首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别就是等比数列{b n }得第二项、第三项、第四项. (Ⅰ)求数列{a n }与{b n }得通项公式;lTsK3。
8、已知数列}{n a 得前n 项与为n S ,且满足322-=+n a S n n )(*N n ∈.(Ⅰ)求数列}{n a 得通项公式;9、设数列{}n a 满足211233333n n n a a a a -++++=…,n ∈*N .(Ⅰ)求数列{}n a 得通项; 10、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 得通项公式。
11、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 得通项公式。
数列求与公式练习1、 设{}n a 就是等差数列,{}n b 就是各项都为正数得等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 得通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭得前n 项与n S .2、(){213}.nn n -⋅求数列前项和3、已知等差数列{}n a 满足:37a =,5726a a +=、{}n a 得前n 项与为n S 、(Ⅰ)求n a 及n S ;(Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 得前n 项与n T 、4、已知等差数列{}n a 得前3项与为6,前8项与为-4。
等差数列的通项公式及应用习题
等差数列的通项公式及应用1.已知等差数列的通项公式为a n=-3n+a,a为常数,则公差d=[]2.已知等差数列{a n}中,a8比a3小10,则公差d的值为[]A.2B.-2C.5D.-53.已知数列a,-15,b,c,45是等差数列,则a+b+c的值是[]A.-5B.0C.5D.104.已知等差数列{a n}中,a1+a2+a3=-15,a3+a4=-16,则a1=[]A.-1B.-3C.-5D.-75.已知等差数列{a n}中,a10=-20,a20n=20,则这个数列的首项a1为[]A.-56B.-52C.-48D.-446.已知等差数列{a n}满足a2+a7=2a3+a4,那么这个数列的首项是[]7.已知数列{a n}是等差数列,且a3+a11=40,则a6+a7+a8等于[]A.84B.72C.60D.43[]A.45B.48C.52D.559.已知数列-30,x,y,30构成等差数列,则x+y=[]A.20B.10C.0D.4010.已知等差数列的首项a1和公差d是方程x2-2x-3=0的两根,且知d>a,则这个数列的第30项是[]A.86B.85C.84D.8311.已知等差数列{a n}中,a1+a3+a5=3,则a2+a4=[]A.3B.2C.1D.-112.等差数列{a n}中,已知a5+a8=a,那么a2+a5+a8+a11的值为[]A.aB.2aC.3aD.4a[] A.第21项B.第41项C.第48项D.第49项等差数列的通项公式及应用习题1答案一、单选题1.D2.C3.D4.A5.C7.B8.A9.B10.B11.A12.B13.A14.C15.C16.C17.C18.A19.B20.B21.C二、填空题2.653.1014.28。
数列及等差数列通项训练测试题(含答案)
数列及等差数列通项一、单选题(共29题;共58分)1.(2020高一下·元氏期中)数列,,,,…,是其第()项A. 17B. 18C. 19D. 202.(2020高一下·昌吉期中)已知数列,则是这个数列的第()项A. 20B. 21C. 22D. 233.(2020高一下·江西期中)数列,,,,的一个通项公式是()A. B. C. D.4.(2020高二下·宁波期中)古希腊人常用小石头在沙滩上摆成各种形状来研究数.比如:他们研究过图中的, , , ,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的, , , ,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A. 25B. 36C. 81D. 915.(2020高一下·佳木斯期中)数列1,-3,5,-7,9,…的一个通项公式为()A. B. C. D.6.(2020·聊城模拟)数列1,6,15,28,45,...中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为()A. 153B. 190C. 231D. 2767.(2020高二上·吉林期末)在数列2,9,23,44,72,…中,第6项是()A. 82B. 107C. 100D. 838.(2019高一下·天长月考)已知数列1,,,… .…则是这个数列的()A. 第10项B. 第11项C. 第12项D. 第21项9.(2019高二上·榆林期中)数列3,6,12,21,x,48…中的x等于()A. 29B. 33C. 34D. 2810.(2020高一下·吉林期中)2008是等差数列的4,6,8,…中的()A. 第1000项B. 第1001项C. 第1002项D. 第1003项11.(2020高一下·哈尔滨期末)若数列的通项公式为,则此数列是()A. 公差为-1的等差数列B. 公差为5的等差数列C. 首项为5的等差数列D. 公差为n的等差数列12.(2020高一下·江西期中)已知等差数列{a n}中,,则公差d的值为()A. B. 1 C. D.13.(2020高一下·南昌期末)已知数列为等差数列,,,则()A. 39B. 38C. 35D. 3314.(2020高一下·绍兴期末)已知等差数列中,,,则()A. 5B. 6C. 8D. 1115.(2020高一下·嘉兴期中)已知等差数列中,,,则公差()A. -2B. -1C. 1D. 216.(2020高一下·金华期中)已知等差数列的首项为1,公差为2,则的值等于()A. 15B. 16C. 17D. 1817.(2017高一下·张家口期末)已知数列{a n}为等差数列,且a2+a3+a10+a11=48,则a6+a7=()A. 21B. 22C. 23D. 2418.(2020高一下·鸡西期中)已知正项数列的首项为1,是公差为3的等差数列,则使得成立的的最小值为()A. 11B. 12C. 13D. 1419.(2020高一下·宾县期中)等差数列20,17,14,11,…中第一个负数项是( )A. 第7项B. 第8项C. 第9项D. 第10项20.(2019高一下·三水月考)已知数列中,,,则()A. B. C. D.21.(2019高一下·广德期中)已知数列中,,,若,则( )A. 1008B. 1009C. 1010D. 202022.(2019高一下·诸暨期中)在等差数列中,已知则等于()A. 40B. 43C. 42D. 4523.(2019高一下·上海月考)等差数列中,,若存在正整数满足时有成立,则()A. 4B. 1C. 由等差数列的公差决定D. 由等差数列的首项的值决定24.(2017高一下·保定期末)在等差数列{a n}中,若a1、a10是方程2x2+5x+1=0的两个根,则公差d(d>0)为()A. B. C. D.25.(2019高一下·重庆期中)已知数列满足:,,则()A. B. C. D.26.(2019高一下·宁波期中)已知数列满足,那么等于()A. B. C. D.27.(2019高一下·包头期中)已知数列满足要求,,则()A. B. C. D.28.(2019高一下·慈利期中)若数列中, 则这个数列的第10项()A. 28B. 29C.D.29.(2020高一下·大庆期中)已知数列是首项为,公差为d的等差数列,且满足,则下列结论正确的是()A. ,B. ,C.D.二、填空题(共7题;共8分)30.(2020高一下·吉林期中)数列-1,7,-13,19,-25,31…的通项公式________.31.(2020高一下·七台河期中)已知数列中,,,则________.32.(2019高一下·台州期末)已知等差数列满足:,,则公差=________;=________.33.(2019高一下·上海月考)在数列中,,则数列的通项公式为________.34.(2019高一下·上海期中)已知数列中,,,,则________35.在数列中,,且满足,则=________36.(2019高一下·马鞍山期中)正项数列满足,若,,则数列的通项公式为________.三、解答题(共1题;共10分)37.(2019高一下·天长月考)已知数列{an}为等案数列,且公差为d(1)若a15=8,a60=20.求a65的值:(2)若a2+a3+a4+a5=34,a2a5=52,求公差d.答案解析部分一、单选题1.【答案】D【解析】【解答】解:根据题意,数列,,,,…,,可写成,,,……,,对于,即,为该数列的第20项;故答案为:D.【分析】根据题意,分析归纳可得该数列可以写成,,,……,,可得该数列的通项公式,分析可得答案.2.【答案】D【解析】【解答】由,得即,解得,故答案为:D【分析】利用已知条件结合归纳推理的方法找出规律,从而求出数列通项公式,从而求出是这个数列的第23项。
等差数列通项公式基础训练题(含详解)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.等差数列 中,已知 , ,则 ()
A.16B.17C.18D.19
2.设 为等差数列,若 ,则
A.4B.5C.6D.7
3.设数列 是公差为 的等差数列,若 ,则 ()
A.4B.3C.2D.1
4.已知数列 满足 ,且 ,那么 ()
A.8B.9C.10D.11
5.在数列{an}中,若 ,a1=8,则数列{an}的通项公式为()
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)
6.在数列 中, =1, ,则 的值为()
A.99B.49C.101D.102
7.在数列 中, , , ,则 ()
A.6B.7C.8D.9
8.等差数列 中, ,则 ( ).
A.110B.120C.130D.140
9.已知数列 是等差数列, ,则 ( )
A.36B.30C.24 D.1
10.在等差数列 中,若 ,则 ()
A.10B.5C. D.
11.等差数列 满足 ,则其前10项之和为( )
【详解】
根据题意,设 ,数列 是等差数列,
则 , ,
则 ,
即 ;
解可得 ;
故答案为:
【点睛】
本题考查等差数列的性质,关键是求出数列 的通项公式.
19.
【解析】
【分析】
本次考察的是等差数列通项公式的求法。
【详解】
,
【点睛】
等差数列通项公式除了掌握 ,考生还应掌握
数列求通项公式练习题及答案
数列求通项公式练习题及答案练题
1. 求等差数列的通项公式,已知公差为3,首项为5。
2. 求等差数列的通项公式,已知首项为2,末项为20,公差为2。
3. 求等差数列的通项公式,已知首项为10,公差为-2,求第6项。
4. 求等差数列的通项公式,已知首项为1,公差为0.5,求第10项。
5. 求等差数列的通项公式,已知首项为3,公差为-1/2,求第8项。
答案
1. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
公差为3,首项为5,代入公式得:$a_n = 5 + (n-1) \cdot 3$
2. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为2,末项为20,公差为2,代入公式得:$20 = 2 + (n-1) \cdot 2$
化简为:$18 = (n-1) \cdot 2$
3. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为10,公差为-2,求第6项,代入公式得:$a_6 = 10 + (6-1) \cdot -2$
4. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为1,公差为0.5,求第10项,代入公式得:$a_{10} = 1 + (10-1) \cdot 0.5$
5. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为3,公差为$-\frac{1}{2}$,求第8项,代入公式得:$a_8 = 3 + (8-1) \cdot -\frac{1}{2}$
以上是数列求通项公式练习题及答案。
求数列通项公式练习题(有答案)
数列的通项公式112342421{},1(1,2,3,)3(1),,{}.(2)n n n n n na n S a a S n a a a a a a a +===+++ 数列的前项为且,求的值及数列的通项公式求1112{},1(1,2,).:(1){};(2)4n n n n nn n n a n S a a S n nS nS a +++==== 数列的前项和记为已知,证明数列是等比数列*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列11211{},,.2n n n n a a a a a n n +==++ 已知数列满足求练习1 练习2 练习3 练习4112{},,,.31n n n n n a a a a a n +==+ 已知数列满足求111511{},,().632n n n n n a a a a a ++==+ 已知数列中,求111{}:1,{}.31n n nn n a a a a a a --==⋅+ 已知数列满足,求数列的通项公式练习8设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式;.练习5 练习6 练习7答案练习1答案:练习2 证明: (1) 注意到:a (n+1)=S (n+1)—S (n)代入已知第二条式子得:S (n+1)-S(n )=S (n)*(n+2)/n nS(n+1)-nS(n)=S(n )*(n+2) nS (n+1)=S(n )*(2n+2) S (n+1)/(n+1)=S(n )/n *2又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n }是等比数列(2) 由(1)知,{S (n )/n }是以1为首项,2为公比的等比数列。
数列求通项公式常用方法与典型题目(附答案)
数列求通项公式常用方法与典型题目(附答案)(一)题型一累加法1.数列{}n a 中,11a =,()12,nn n a a n n n N --=≥∈,则na=___________.2.已知数列{}n a 满足112a =,121n n a a n n+=++,则n a =__________.3.如果数列{}n a 满足:()1111,22n n n a a a n --=-=≥,则n a =()A .121n +-B .1(1)21n n --⋅+C .21n -D .12n -4.在数列{}n a 中,10a =,11ln 1n n a a n +⎛⎫=++ ⎪⎝⎭,则{}n a 的通项公式为().A .ln n a n =B .()()1ln 1n a n n =-+C .ln n a n n=D .ln 2n a n n =+-5.设数列{}n a 中,112,1+==++n n a a a n ,则通项n a =___________.6.已知数列{}n a 满足10a =,12n n a a n +=+,则2018a =()A .20182019⨯B .20172018⨯C .20162017⨯D .20182018⨯(二)题型二累乘法1.已知数列{}n a 满足11a =,()12311111231n n a a a a a n n -=+++⋅⋅⋅+>-.数列{}n a 的通项公式是______.2.已知11a =,()()1n n n a n a a n N ++=-∈,则数列{}n a 的通项公式是()A .21n -B .11n n n -+⎛⎫ ⎪⎝⎭C .2n D .n3.已知12a =,12nn n a a +=,则数列{}n a 的通项公式n a 等于()A .2122n n -+B .2122n n ++C .2222n n -+D .2222n n --4.在数列{}n a 中,11a =,()32122223n n a a a a a n n*++++=∈N ,则n a =______.(三)题型三公式法1.数列{a n }的前n 项和为S n ,若()11,1,31n n a a S n +=≥=则n a =____________.2.数列{}n a 满足,123231111212222n n a a a a n ++++=+ ,写出数列{}n a 的通项公式__________.3.已知数列{a n }的前n 项和S n =n 2+n ,则a n =_____.4.若数列的前n 项和2133n n S a =+,则的通项公式是n a =________5.数列{}n a 的前n 项和23nn S =+,则其通项公式n a =________.6.数列{}n a 的前n 项和210n S n n =-,则该数列的通项公式为__________.7.若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.8.已知n S 为数列{}n a 的前n 项和,若111,23n n a a S +==+,则数列{}n a 的通项公式为___________.9.已知数列{}n a 满足23123222241nnn a a a a ++++=- ,则{}n a 的通项公式___________________.10.数列{a n }满足()21*1232222n n na a a a n N -+++⋯+=∈,则a 1a 2a 3…a 10=()A .551(2B .1011()2-C .911()2-D .601()211.如果数列{}n a 的前n 项和为332n n S a =-,则这个数列的通项公式是()A .()221n a n n =++B .23nn a =⋅C .32nn a =⋅D .31n a n =+(四)题型四构造法1.数列{}n a 中,若11a =,()1231n n a a n +=+≥,则该数列的通项n a =()A .123n +-B .23n -C .23n +D .123n --2.已知数列{}n a 中,112,21n n a a a +==+则n a =___________.3.已知数列{}n a 满足11a =132n n a a +=+,则{}n a 的通项公式为__________________.(五)题型五倒数法1.在数列{n a }中,已知12a =,1122n n n a a a --=+,(2)n ≥,则n a 等于()A .21n +B .2n C .3nD .31n +2.若数列{}n a 满足11n n n a a a +=+,且123a =,则10a =___________.3.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a=,则n a =_____.4.已知数列{}n a 满足12,a =11n n n n a a a a ++-=,那么31a 等于()A .130-B .261-C .358-D .259-5.已知数列{}n a 满足递推关系111,12n n n a a a a +==+,则2017a =()A .12016B .12018C .12017D .120196.若数列{}n a 满足1121n n n a a a --=+(2n ≥,*n N ∈),且112a =,则n a =()A .12nB .2n C .1122n +-D .222n +7.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =()A .12018B .12019C .12020D .12021(六)题型六周期数列1.在数列{}n a 中,112a =,111n n a a -=-(2n ≥,n ∈+N ),则2020a =()A .12B .1C .1-D .22.已知数列{}n a 中,13=4a ,111n n a a -=-(,2n N n +∈≥),那么2020a 等于()A .13-B .34C .2D .43.已知数列{}n a 中,12213,6,n n n a a a a a ++===-,则2016a =()A .6B .6-C .3D .3-参考解析(一)题型一累加法1.()12n n +【解析】()112,1,nn n a a n n n Na -=≥=-∈ ,()()()112211n n n n n a a a a a a a a ---∴=-+-++-+ ()()()()112122n n n n n n +=+-+-++=≥ ,验证1n =时成立.()12n n n a +∴=.故答案为:()12n n +2.31,1,2n n N n*-≥∈【解析】因为121n n a a n n +=++,所以121111n n a a n n n n +-==-++,则当2,n n N *≥∈时,213211121123...111n n a a a a a a n n -⎧-=-⎪⎪⎪-=-⎪⎨⎪⎪⎪-=-⎪-⎩,将1n -个式子相加可得11111111...12231n a a n n n -=-+-++-=--,因为112a =,则1131122n a n n=-+=-,当1n =时,1311212a =-=符合题意,所以31,1,2n a n n N n *=-≥∈.故答案为:31,1,2n n N n*-≥∈.3.C 【解析】由题意可得,112n n n a a ---=,212a a ∴-=,2322a a -=,…112n n n a a ---=,以上1n -个式子相加可得,21122 (2)n n a a --=+++()12122212n n --==--,21n n a ∴=-,故选B .4.A 【解析】由已知得()11ln ln 1ln n n n a a n n n ++⎛⎫-==+- ⎪⎝⎭,所以()1ln ln 1n n a a n n --=--()()12ln 1ln 2n n a a n n ---=---32ln 3ln 2a a -=-21ln 2ln1a a -=-将上述1n -个式子相加,整理的1ln ln1ln n a a n n -=-=又因为10a =,所以ln n a n =.故选A .5.()112++n n 【解析】∵112,1+==++n n a a a n ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦ ()()()()11111111222n n n nn n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112++n n ;6.B 【解析】 数列{}n a 满足10a =,12n n a a n +=+,∴12n n a a n +-=,∴()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-,……212a a -=,累加得:()()()112123 (1212)n n n a a n n n --=++++-=⋅=-⎡⎤⎣⎦,又 10a =,∴()1n a n n =-,∴201820182017a =⋅.故选B .(二)题型二累乘法1.1,1,22n n a n n =⎧⎪=⎨≥⎪⎩【解析】1231111(1)231n n a a a a a n n -=++++>- ,11a =当2n =时,211a a ==当2n >时,112311111231n n n a a a a a a n n+-∴=+++++- ,两式相减得:11n n n a a a n +-=,即11n n n a a n++=,∴11n n a n a n++=,11n n a n a n -=-,1212n n a n a n ---=-,⋯3232a a =,累乘得:22n a n a =,所以2n na =,()2n >1,1,22n n a n n =⎧⎪∴=⎨≥⎪⎩,故答案为:1,1,22n n a nn =⎧⎪=⎨≥⎪⎩2.D 【解析】由()()1n n n a n a a n N ++=-∈得:()()11n n n a na n N +++=∈,即()11n n a n n N a n+++=∈,则11n n a n a n -=-,1212n n a n a n ---=-,2323n n a n a n ---=-,……..,2121a a =,由累乘法可得1na n a =,又因为11a =,所以n a n =.故选:D .3.C 【解析】1122nn n n n n a a a a ++=∴= 当n ≥2时,2212122112122222nn n n n n n n n a a a a a a a a -+-----=⋅⋅⋅⋅=⋅⋅⋅⋅= ,经检验,1a 也符合上述通项公式.本题选择C 选项.4.21n n +【解析】由题意得:当2n ≥时,()31211222231n n a a a a a n --++++=- ,所以12n n n a a a n-=-,即()2211n n na n a --=,也即是11+1n n n n n a a n --=,所以121+1221211n n n n n a n n n a a a n ---===-=-= ,所以21n n a n =+,故答案为:21nn +.(三)题型三公式法1.21,134,2n n n a n -=⎧=⎨⋅≥⎩.【解析】()13,1n n a S n N n ++=∈∴= 时,23,2a n =≥时,13n n a S -=,可得13n n n a a a +-=,即14,n n a a +=∴数列{}n a 从第二项起为等比数列,2n ≥时,=n a 234n -⋅,故答案为21,134,2n n n a n -=⎧=⎨⋅≥⎩.2.16,12,2n n n a n +=⎧=⎨≥⎩【解析】因为123231111212222n n a a a a n ++++=+ ,所以()12312311111121122222n n n n a a a a a n +++++++=++ ,两式相减得11122n n a ++=,即12,2n n a n +=≥,又1132a =,所以16a =,因此16,12,2n n n a n +=⎧=⎨≥⎩3.2n 【解析】由题,当1n =时,21112a =+=,当2n ≥时,()()1112nn n a S S n n n n n -=-=+--=.当1n =时也满足.故2n a n =.故答案为:2n4.()12n --【解析】当n =1时,1112133a S a ==+,解得11a =,当n ≥2时,1n n n a S S -=-121213333n n a a -⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭12233n n a a -=+,整理可得12313n n a a -=-,即12n n a a -=-,故数列{}n a 以1为首项,2-为公比的等比数列,所以()12n n a -=-,故答案为:()12n --.5.15,12,2n n n -=⎧⎨≥⎩【解析】当1n =时,11235a =S =+=;当2n ≥时,11123232n n n n n n a S S ---=-=+--=;故15,12,2n n n a n -=⎧=⎨≥⎩故答案为:15,12,2n n n -=⎧⎨≥⎩6.211n a n =-【解析】221110,11019,n S n n a S =-∴==-⨯=- 当2n ≥时()()221101101211,n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦当1n =时也适合,故211n a n =-.即答案为211n a n =-.7.1(2)n n a -=-;【解析】当n=1时,a 1=S 1=23a 1+13,解得a 1=1,当n≥2时,a n =S n -S n-1=(2133n a +)-(12133n a -+)=23n a -123n a -整理可得13a n =−23a n−1,即1n n a a -=-2,故数列{a n }是以1为首项,-2为公比的等比数列,故a n =1×(-2)n-1=(-2)n-1故答案为(-2)n-1.8.21,153,2n n n a n -=⎧=⎨⋅≥⎩【解析】n S Q 为数列{}n a 的前n 项和,111,23n n a a S +==+——①2n ≥时,123n n a S -=+——②①-②,得:12n n n a a a +=-,13n na a +∴=13n na a +∴=,21235a a =+= ,∴数列{}n a 的通项公式为21,153,2n n n a n -=⎧=⎨⋅≥⎩.故答案为:21,153,2n n n a n -=⎧=⎨⋅≥⎩.9.a n =3•2n ﹣2【解析】∵数列{a n }满足2a 1+22a 2+23a 3+…+2n a n =4n ﹣1,∴当n ≥2时,2n a n =(4n ﹣1)﹣(4n ﹣1﹣1),化为a n =3•2n ﹣2.当n =1时,2a 1=4﹣1,解得132a =,上式也成立.∴a n =3•2n ﹣2.故答案为a n =3•2n ﹣2.10.A 【解析】n =1时,a 1=12,∵211232222n n n a a a a -+++⋯+=,∴2n ≥时,22123112222n n n a a a a ---+++⋯+=,两式相减可得2n -1a n =12,∴12n n a =,n =1时,也满足∴12310a a a a = 55231012310111111222222++++⎛⎫⨯⨯⨯⨯== ⎪⎝⎭,故选A11.B 【解析】由332n n S a =-,当2n ≥时,1113333332222n n n n n n n a S S a a a a ---⎛⎫⎛⎫=-=---=- ⎪ ⎪⎝⎭⎝⎭,所以13nn a a -=,当1n =时,111332S a a ==-,此时16a =,所以,数列{}n a 是以6为首项,3为公比的等比数列,即16323n n n a -=⋅=⋅.故选:B .(四)题型四构造法1.A 【解析】因为()1231n n a a n +=+≥,所以132(3)n n a a ++=+,即数列{3}n a +是以4为首项,2为公比的等比数列,所以1342n n a -+=⋅,故1142323n n n a -+=⋅-=-,故选:A2.1321n -⋅-【解析】因为121n n a a +=+,所以()112221n n n a a a ++=+=+且1130a +=≠,所以1121n n a a ++=+,所以{}1n a +是以3为首项,2为公比的等比数列,所以1132n n a -+=⋅,所以1321n n a -=⋅-,故答案为:1321n -⋅-.3.1231n -⨯-【解析】因为132n n a a +=+,11a =,所以()113331n n n a a a ++=+=+,即1131n n a a ++=+所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯所以1231n n a -=⨯-故答案为:1231n -⨯-(五)题型五倒数法1.B 【解析】将等式1122n n n a a a --=+两边取倒数得到11112n n a a -=+,11111=,2n n n a a a -⎧⎫-⎨⎬⎩⎭是公差为12的等差数列,11a =12,根据等差数列的通项公式的求法得到()1111222n nn a =+-⨯=,故n a =2n.故答案为:B .2.219【解析】11n n n a a a +=+ 11111n n n n a a a a ++∴==+,即1111n na a +-=∴数列1n a ⎧⎫⎨⎬⎩⎭是以1132a =为首项,1为公差的等差数列()131211222n n n n a -∴=+-=-=221n a n ∴=-10219a ∴=故答案为:2193.1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【解析】由11n n n n S S S S ++=⋅-,得1111n nS S +-=()n N *∈1n S ⎧⎫∴⎨⎬⎩⎭是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=,1n S n ∴=,当2n ≥时,11111(1)n n n a S S n n n n -=-=-=---,1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩4.D 【解析】11n n n n a a a a ++-= ,1111n n a a +∴-=,即1111n n a a +-=-,又12,a =所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为12,公差为1-的等差数列,132n n a ∴=-+,3113593122a ∴=-+=-,故31259a =-,故选:D .5.B 【解析】由11n n n a a a +=+,所以11111n n n n a a a a ++==+则1111n n a a +-=,又112a =,所以112a =所以数列1n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公比的等差数列所以11n n a =+,则11n a n =+所以201712018a =故选:B6.A 【解析】当2n ≥且n *∈N ,在等式1121n n n a a a --=+两边取倒数得11121112n n n n a a a a ---+==+,1112n n a a -∴-=,且112a =,所以,数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,且首项为2,公差为2,因此,()12212n n n a =+-=.12n a n∴=故选:A .7.C 【解析】11n n n a a a +=+ ,∴两边同时取倒数得11111n n n n a a a a ++==+,即1111n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a =.则11(1)1n n n a =+-⨯=,得1n a n =,则202012020a =,故选:C (六)题型六周期数列1.A 【解析】2111121a a =-=-=-,3211112a a =-=+=,431111122a a =-=-=,可得数列{}n a 是以3为周期的周期数列,202036731112a a a ⨯+∴===.故选:A .2.B 【解析】因为13=4a ,111n n a a -=-,所以211113a a =-=-,32114a a =-=,431314a a =-=,…所以数列{}n a 是以3为周期的数列,所以202067331134a a a ⨯+===,故选:B 3.B 【解析】因为21n n n a a a ++=-,①则321n n n a a a +++=-,②①+②有:3n n a a +=-,即63n n a a ++=-,则6n n a a +=,即数列{}n a 的周期为6,又123,6a a ==,得3453,3,6a a a ==-=-,63a =-,则2016a =633663a a ⨯==-,故选:D .。
经典的数列通项公式与数列求和练习题(有答案)
经典的数列通项公式与数列求和练习题(有答案)一、斐波那契数列斐波那契数列是最经典的数列之一,它的通项公式为:$$F(n) = F(n-1) + F(n-2)$$其中 $F(1) = 1$,$F(2) = 1$。
以下是一些关于斐波那契数列的练题:练题1:求斐波那契数列的第10项。
解答:根据通项公式进行递归计算,得出第10项为34。
练题2:求斐波那契数列的前20项的和。
解答:利用循环计算斐波那契数列的前20项,并将每项相加得到总和为6765。
二、等差数列等差数列是一种常见的数列类型,它的通项公式为:$$a_n = a_1 + (n - 1) \cdot d$$其中 $a_1$ 是首项,$d$ 是公差。
以下是一些关于等差数列的练题:练题1:已知等差数列的首项 $a_1 = 3$,公差 $d = 5$,求该数列的前10项。
解答:根据通项公式,将$a_1$ 和$d$ 代入,依次计算出前10项为:3, 8, 13, 18, 23, 28, 33, 38, 43, 48。
练题2:已知等差数列的首项 $a_1 = 2$,公差 $d = -4$,求该数列的前15项的和。
解答:根据通项公式和等差数列前n项和的公式,将 $a_1$、$d$ 和$n$ 代入,计算出前15项的和为:-420。
三、等比数列等比数列是另一种常见的数列类型,它的通项公式为:$$a_n = a_1 \cdot q^{(n-1)}$$其中 $a_1$ 是首项,$q$ 是公比。
以下是一些关于等比数列的练题:练题1:已知等比数列的首项 $a_1 = 2$,公比 $q = 3$,求该数列的前8项。
解答:根据通项公式,将 $a_1$ 和 $q$ 代入,依次计算出前8项为:2, 6, 18, 54, 162, 486, 1458, 4374。
练题2:已知等比数列的首项 $a_1 = 5$,公比 $q = \frac{1}{4}$,求该数列的前12项的和。
解答:根据通项公式和等比数列前n项和的公式,将 $a_1$、$q$ 和$n$ 代入,计算出前12项的和为 $\frac{5}{1 - \frac{1}{4}} =\frac{20}{3}$。
高中数学 数列通项公式专题(含详细答案)
B.
㘴 ‸㘴
D.
㘴 t㘴
24. 数列 满足
,
t
‴
,则使得
的最大正整数 为
‴
A. ‸
B.
25. 已知数列 ,如果 ,
,
列,那么 等于
A.
B.
C. 晦 ,,
D. ‴ , 是首项为 ,公比为 的等比数
C.
D.
26. 数列 则晦 A. ‴
的首项为 , 为等差数列,且 B.
t
C. 晦
.若则 D.
,‸ ,
27. 等比数列 A.
65. 已知 的前 项和
t ,则 t t t ‴
A.
B. ‸
C.
D. ‸
66. 已知
log t t ,我们把使乘积
间 ‴㘴 ‴ 内所有的劣数的个数为
A.
B. 晦
t t 为整数的数 称为“劣数”,则在区
C. 晦
D. ‴
67. 已知数列 A.
满足
,
‴t t t
B. t
C.
,则当
时, 等于 D.
68. 已知数列 的前 项和为 ,且
,且
A.
B.
C.
的前 项的“均倒数”为 D.
π,则 tan D.
95. 设数列 A. ‴㘴
的前 项和为 ,且满足 t B. ‴㘴 t
,则 的取值范围是
C. 㘴
D. 㘴 t
96. 已知函数
log t t 㘴
D. 的通项公式
等于
A.
B.
C.
D.
72. 设数列 A.
73. 设数列 A.
的前 项和为 .若
B.
t
数列求通项公式专题(完美总结)
求通项公式专题1、作差法:已知数列{a n }的前n 项和S n ,求通项公式n a例 已知数列{a n }的前n 项和S n ,求数列{a n }的通项公式.(1)S n =2n -1;(2)S n =2n 2+n +3.变式训练 已知下面各数列{a n }的前n 项和S n 的公式,求a n . (1)S n =2n 2-3n ;(2)S n =3n -2.2.累加法:型如)(1n f a a n n +=+的数列例 已知数列}{n a 满足21=a ,231++=+n a a n n ,求}{n a 的通项公式.变式训练 已知数列}{n a 满足21=a ,12123-+⋅=-n n n a a ,求}{n a 的通项公式.3.累乘法:型如)(1n f a a n n ⋅=+的数列例 已知数列}{n a 满足11=a ,n n a nn a 21+=+,求}{n a 的通项公式.变式训练 已知数列}{n a 满足11=a ,12n n n a a +=⋅,求}{n a 的通项公式.4.构造法4-1型如b ka a n n +=+1(b k 、为常数)的数列构造}{λ+n a 为等比数列▲例 已知数列}{n a 满足21=a ,321+=+n n a a ,求}{n a 的通项公式.变式训练1 已知数列}{n a 满足11=a ,231+=+n n a a ,求}{n a 的通项公式.变式训练2 已知数列}{n a 满足2171-=a ,)2(5231≥+=-n a a n n ,求}{n a 的通项公式.4-2 型如001B n A pa a n n ++=+的数列解法:设1(1)()n n a A n B p a An B ++++=++,去括号整理对比001B n A pa a n n ++=+解出A 、B的值,构造出}{B An a n ++为等比数列.理解该数列的构造原理,若出现00201C n B n A pa a n n +++=+,方法也相同.例 已知数列}{n a 满足11=a ,1231n n a a n +=+-,求}{n a 的通项公式.变式训练 已知数列}{n a 满足11=a ,1321n n a a n +=++,求}{n a 的通项公式.4-3 型如n n n q m pa a ⋅+=+1的数列将原递推公式两边同除以1n q +得q m q a q p q a n n n n +⋅=++11,设n n n a b q=,得q m b q p b n n +⋅=+1, 转化为“6-1型如b ka a n n +=+1(b k 、为常数)的数列构造}{λ+n a 为等比数列”.例 已知数列}{n a 满足11=a ,123n n n a a +=+,求}{n a 的通项公式.变式训练1 已知数列}{n a 满足21=a ,n n n a a 2211+=+,求}{n a 的通项公式.变式训练2 已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。
等比数列基础训练题
等比数列基础训练题一、求通项公式相关1. 已知等比数列{a_n}中,a_1 = 3,公比q = 2,求这个等比数列的通项公式a_n。
这就像盖房子一样,等比数列的通项公式是a_n=a_1q^n - 1。
这里a_1是地基,也就是3,q是每次盖楼的倍数,是2。
那通项公式a_n=3×2^n - 1,就这么简单,像搭积木一样把数字放进去就好啦。
2. 等比数列{a_n},a_3=24,a_6=192,求a_1和q,再求通项公式a_n。
咱们先从等比数列通项公式a_n=a_1q^n - 1入手。
那a_3=a_1q^2,a_6=a_1q^5。
已知a_3 = 24,a_6=192,就相当于a_1q^2=24 a_1q^5=192。
用第二个式子除以第一个式子,就像分蛋糕一样,frac{a_1q^5}{a_1q^2}=(192)/(24),q^3 = 8,那q = 2。
把q = 2代入a_1q^2=24,a_1×2^2=24,4a_1=24,解得a_1=6。
通项公式a_n=6×2^n - 1。
二、求数列的项相关1. 在等比数列{a_n}中,a_1=5,q = 3,求a_4。
等比数列通项公式a_n=a_1q^n - 1,这里求a_4,n = 4。
那a_4=a_1q^4 - 1=5×3^3=5×27 = 135。
就像坐电梯,从第一层a_1开始,按照q 这个速度上升到第4层a_4。
2. 等比数列{a_n},a_1=- 2,q = - (1)/(2),求a_5。
根据通项公式a_n=a_1q^n - 1,n = 5时,a_5=a_1q^5 - 1。
把a_1=-2,q = - (1)/(2)代入,a_5=(-2)×(-(1)/(2))^4=(-2)×(1)/(16)=-(1)/(8)。
这就像在一个有正负交替规则的轨道上,按照一定的比例走到第5个点。
三、求前n项和相关1. 等比数列{a_n},a_1=1,q = 2,求前5项和S_5。
求数列通项公式的十种方法(例题+详解)
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
求数列通项公式提升练习题(附答案和方法归纳)
数列11、 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
2、 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
3、 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
4、 已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
5、 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
6、 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项 公式。
数列2 1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a3、已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项4、已知在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a5、 已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。
6、已知数列{}n a 中,11=a,22=a ,n n n a a a 313212+=++,求na7、已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .8、已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a9、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。
《递推公式求通项公式—累加法》进阶练习(一)
《递推公式求通项公式—累加法》进阶练习一.选择题1.已知数列{a n}满足a1=1,a n﹣a n﹣1=n(n≥2),则数列{a n}的通项公式a n=()A. B.C.n2﹣n+1 D.n2﹣2n+22.已知数列{a n}满足a1=1,a n+1=a n+2n,则a10=()A.1024 B.1023C.2048 D.20473.已知数{a n}满a1=0,a n+1=a n+2n,那a2016的值是()A.2014×2015 B.2015×2016C.2014×2016 D.2015×2015二.填空题4.已知数列{a n}中,,则a n=______.5.在数列{a n}中,a1=1,a n+1=a n+(n∈N*),则a n=______.参考答案1.A2.B3.B4.5.解析1.【分析】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.利用数列的递推关系式,通过累加法求解即可.【解答】解:数列{a n}满足:a1=1,a n﹣a n﹣1=n(n≥2,n∈N*),可得a1=1a2﹣a1=2a3﹣a2=3a4﹣a3=4…a n﹣a n﹣1=n以上各式相加可得:a n=1+2+3+…+n=n(n+1),故选A.2.【分析】正确理解递推式,熟练掌握“累加求和”方法及等比数列的前n项和公式是解题的关键. 由已知递推式,利用累加求和及等比数列的前n项和公式即可求出.【解答】解:∵数列{a n}满足a1=1,a n+1=a n+2n,∴a n=a1+(a2﹣a1)+…+(a n﹣a n﹣1)=1+21+22+…+2n﹣1==2n﹣1.(n∈N*).∴a10=210﹣1=1023.故选B.3.【分析】本题考查数列的通项,利用累加法是解决本题的关键,注意解题方法的积累,通过a n+1=a n+2n 可知a n﹣a n﹣1=2(n﹣1),a n﹣1﹣a n﹣2=2(n﹣2),a n﹣2﹣a n﹣3=2(n﹣3),…,a2﹣a1=2,累加计算,进而可得结论.【解答】解:∵a n+1=a n+2n,∴a n+1﹣a n=2n,∴a n﹣a n﹣1=2(n﹣1),a n﹣1﹣a n﹣2=2(n﹣2),a n﹣2﹣a n﹣3=2(n﹣3),…a2﹣a1=2,累加得:a n﹣a1=2[1+2+3+…+(n﹣1)]=2•=n(n﹣1),又∵a1=0,∴a n=n(n﹣1),∴a2016=2016(2016﹣1)=2015×2016,故选B.4.【分析】本题主要考查了利用裂项及累计法求解数列的通项,解题的关键是对递推公式的变形=由已知可得,,=,然后利用累计法可求通项【解答】解:∵∴=∴…以上n﹣1个式子相加可得,∵∴a n==故答案为.5.【分析】本题主要考查数列项的求解,根据数列的递推关系,以及利用累加法和裂项法是解决本题的关键.根据数列的递推关系,利用累加法和裂项法即可得到结论.【解答】解:∵a1=1,a n+1=a n+(n∈N*),∴a n+1﹣a n==﹣,(n∈N*),则a2﹣a1=1﹣,a3﹣a2=,…a n﹣a n﹣1=﹣,等式两边同时相加得a n﹣a1=1﹣,故a n=,故答案为.。
通项公式的求法40道题——解析版
新版数列——通项公式综合训练(40道题)第1节课——抓住数列的核心问题——通项公式的求法一、填空题1.已知数列{}n a 的通项公式是23()n a n n *=+∈N ,数列{}n b 满足1()n n b b a n *+=∈N 且11b a =,则数列{}n b 的通项公式为________.【答案】223n n b +=-根据已知可得123n n b n b a b +==+,然后两边同时加上3,变形为132(3)n n b b ++=+,再利用等比数列通项公式可得答案.【详解】因为23n a n =+,所以123n n b n b a b +==+,所以132(3)n n b b ++=+, 又11335380b a +=+=+=≠,所以数列{3}n b +是首项为8,公比为2的等比数列,所以1382n n b -+=⨯22n +=,所以223n n b +=-.故答案为: 223n n b +=-2.数列{}n a 满足:12a =,111n n a a -=-,①4a =_________;②若{}n a 有一个形如sin()n a A n B ωϕ=++(0A >,0>ω,||2ϕπ<)的通项公式,则此通项公式可以为n a =_________.(写出一个即可) 【答案】221332n ππ⎛⎫-+ ⎪⎝⎭首先利用数列的递推关系式求出数列各项,进一步利用数列的周期的应用求出数列的通项公式. 【详解】解:数列{}n a 满足:12a =,111n n a a -=-.当1n =时,211112a a =-=. 当3n =时32111a a =-=-,当4n =时43112a a =-=.当5n =时541111122a a =-=-=.所以{}n a 是以3为最小正周期的数列sin()n a A n Bωϕ=++23T πω==23πω∴=2sin 3n a A n Bπϕ⎛⎫∴=++ ⎪⎝⎭12sin 23a A B πϕ⎛⎫=++= ⎪⎝⎭①,241sin 32a A B πϕ⎛⎫=++= ⎪⎝⎭②,()3sin 21a A B πϕ=++=-③,①减②,得cos 2A ϕ=④②减③,得1cos sin 22A ϕϕ⎛⎫+= ⎪ ⎪⎝⎭④除⑤,得tan ϕ=||2πϕ<3ϕπ∴=-代入④得A =12B =21332n a n ππ⎛⎫∴=-+ ⎪⎝⎭故答案为:221332n ππ⎛⎫-+ ⎪⎝⎭.3.设11a =,212n n a a n +=+,则通项公式n a =______.【答案】127223n n n -⨯---令2n n a b sn tn k =+++(s 、t 、k 为待定的常数),则()()2221112222n n b s n t n k b sn tn k n ++++++=++++,即()()21212n n b b s n t s n k t s +=+++-+--.令10200s t s k t s +=⎧⎪-=⎨⎪--=⎩,解得123s t k =-⎧⎪=-⎨⎪=-⎩,则121172272nn n n b b b b +-=⎧⎨====⨯⎩.因此,172n n b -=⨯.故127223n n a n n -=⨯---.4.已知递推式()121n a n N +⎤=∈⎢⎥⎣⎦,02a =则通项公式n a =______.4122n ππ⎛⎫+⎪⨯⎝⎭令0,2n n n a πθθ⎡⎤⎛⎫=∈ ⎪⎢⎥⎝⎭⎣⎦.则03πθ=.代入递推式得 11cos cos 2828n n n n θθππθθ++⎛⎫=+⇒=+ ⎪⎝⎭41224122n n n n a ππππθ⎛⎫⇒=+⇒=+ ⎪⨯⨯⎝⎭. 5.已知数列{}n a 的通项公式为2nn a =,记数列{}n n a b 的前n 项和为n S ,若1212n n S n +-+=,则数列{}n b 的通项公式为n b =__________.【答案】n根据题干得到n 2≥时,()1222n n S n -=-⋅+和原式相减得到2nn n a b n =⋅,所以n b n =,再检验n=1时满足通项公式.【详解】因为1212n n S n +-+=,所以()1122n n S n +=-⋅+.所以当2n ≥时,()1222n n S n -=-⋅+,两式相减,得2n n n a b n =⋅,所以n b n =;当1n =时,112a b =,所以11b =.综上所述,n b n =.故答案为n.6.(1)在数列{}n a 中,113,43n n a a a +==+,则数列{}n a 的通项公式为n a =________________;(2)在数列{}n a 中,1111,63n n n a a a ++==+,则数列{}n a 的通项公式为n a =________________.【答案】41n -; 113(23)n n -+-。