100道离散数学填空题分解

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

《离散数学》复习题及答案

《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PQ→⌝(2)QP⌝→(3)QP⌝↔(4)QP→⌝8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学试题带答案(三)

离散数学试题带答案(三)

离散数学试题带答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)} , R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。

(完整版)离散数学试题及答案,推荐文档

(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.

《离散数学》题库及答案

《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。

答:某,y,某,z5、判断下列语句是不是命题。

若是,给出命题的真值。

((1)北京是中华人民共和国的首都。

(2)陕西师大是一座工厂。

),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。

(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。

(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。

(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

《离散数学》试题含答案

《离散数学》试题含答案

《离散数学》试题含答案⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全⼆叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1?R2 =________________________,R2?R1 =____________________________, R12=________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B =__________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学试题带答案(三)

离散数学试题带答案(三)

离散数学试题带答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)} , R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。

离散数学填空题及答案解析

离散数学填空题及答案解析

10 公式P R S R P ⌝∨∧∨∧)()(的主合取范式为( ) 。

答:)()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 填空题2 2.3 411 设A={1,2,3,4},A 上关系为 {<1,2>,<2,1>,<2,3>,<3,4>}则 R 2 = ( )。

答:{<1,1>, <1,3>, <2,2>, <2,4> }填空题 2 4.1;4.2312 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= ( )。

答:{<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A填空题2 4.4 413 树是不包含树是不包含( )的( )图的。

答:环;无向填空题2 8.1 314 设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ( )。

答:R={<1,2>,<1,3>,<2,1>} 填空2 4.3 324 有向图中从v 1到v 2长度为2的通路有( ) 条。

答:2 填空题2 6.3 325 设],,[⊕⊗L 是代数系统,则],,[⊕⊗L 满足幂等律,即对L a ∈∀有( ) 。

答:a a a a a a =⊕=⊗且填空题2 8.2 426 任何(n,m) 图G = (V,E) , 边与顶点数的关系是( )。

答:∑∈=Vv m v d 2)(填空题2 6.4 327 当n 为( ) 时,非平凡无向完全图K n 是欧拉图。

答:奇数 填空题2 6.2 328 已知一棵无向树T 有三个3顶点,一个2度顶点,其余的都是1度顶点,则T 中答:5 填 2 7.1 367 若{1,2,3,4}上的二元关系R={<1,1>,<1,2>,<2,4>},则R 的自反闭包r(R )=( )。

离散数学习题与参考答案

离散数学习题与参考答案

习题六格与布尔代数
一、填空题
1、设是偏序集,如果_________, 则称<A, ≤>是(偏序)格.
2、设〈B,∧,∨,′,0,1〉是布尔代数,对任意的a∈B,有a∨a′=____,a∧a′=______.
3、一个格称为布尔代数,如果它是______格和______格.
4、设<>是有界格,a,b L,若a b=0,则a=b=_____;若a b=1,则a=b=____.
二、证明题
1、设<L, ≤>是格,a,b,c,d∈L。

试证:若a≤b且c≤d,则
a∧c≤b∧d
2、证明:在有补分配格中,每个元素的补元一定唯一。

3、设<S,⊕,⊙,′,0,1>是一布尔代数,则
R={<a,b> | a⊕b=b}是S上的偏序关系
4、若<A,≤>是一个格,则对任意a、b 、c∈A,有若a≤c且b≤c,则a∨b ≤c。

5、若<A,≤>是一个格,则对于任意a,b∈A,证明以下两个公式等价;(1)a≤b
(2)a∨b =b
6、证明:如果格中交对并是分配的,那么并对交也是分配的,反之亦然。

7、如果<A,≤>是有界格,全上界和全下界分别是1和0,则对任意元素a∈A,证明:
a∨1=1∨a=1 ,a∨0=0∨a=a。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档

则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设 G、H 是一阶逻辑公式,P 是一个谓词,G=xP(x), H=xP(x),则一阶逻辑公式
(A)下界 (B)上界 (C)最小上界
(D)以上答案都不对
6
4 下列语句中,( )是命题。
5
(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗?
3
4
2
5 设 I 是如下一个解释:D={a,b}, P(a, a) P(a, b) P(b, a) P(b, b)
1
1010
AB=_________________________;A-B= _____________________ . 7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________. 8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
(1)
1
4
2
3
1 0 0 0
(2)
MR
1 1
1 1
0 1
0 0
1 1 1 1
3. (1)•=((x))=(x)+3=2x+3=2x+3.

《离散数学》试题及答案

《离散数学》试题及答案

一、填空题1设集合A,B,其中A={1,2,3},B= {1,2}, 则A — B={3} ;ρ(A)—ρ(B)={3},{1,3},{2,3},{1,2,3}} 。

2. 设有限集合A, |A| = n, 则|ρ(A×A)|= .3.设集合A = {a,b}, B = {1,2},则从A到B的所有映射是α1= {(a,1),(b,1)},α2= {(a,2),(b,2)},α3= {(a,1),(b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3,α4 。

4。

已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5。

设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合,A= {1,2,4},B = {3,4}, 则从A⋂B={4} ;A⋃B={1,2,3,4};A-B={1,2}.7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性。

8。

设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1,0, 0), (1,0, 1),(1,1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)},R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)}, R2•R1 = {(2,4),(3,3),(4,2)}_R12 ={(2,2),(3,3)。

10. 设有限集A,B,|A| = m,|B| = n, 则| |ρ(A⨯B)| = 。

11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1,x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = —1<=x〈0 , B—A = {x | 1 < x < 2,x∈R} ,A∩B ={x |0≤x≤1, x∈R}, .13.设集合A={2,3,4, 5,6},R是A上的整除关系,则R以集合形式(列举法)记为{(2,2),(2, 4),(2,6),(3,3),(3, 6),(4,4),(5,5),(6, 6)}。

离散数学题库及答案

离散数学题库及答案

《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式x((A(x)B(y,x))z C(y,z))D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式x A和x A中,称x为指导变元,A为量词的辖域。

在x A和x A的辖域中,x的所有出现都称为约束出现,即称x 为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x 为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。

)6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

离散数学题库及答案

离散数学题库及答案

《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式(A)(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式x((A(x)B(y,x)) z C(y,z))D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式x A和x A中,称x为指导变元,A为量词的辖域。

在x A和x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗(4) 若7+8>18,则三角形有4条边。

(5) 前进!(6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。

)6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

离散数学题库及答案

离散数学题库及答案

《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( A )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式∀x A和∃x A中,称x为指导变元,A为量词的辖域。

在∀x A和∃x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和∃z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1) 是,T (2) 是,F (3) 不是 (4) 是,T (5) 不是 (6) 不是 (命题必须满足是陈述句,不能是疑问句或者祈使句。

离散数学填空题

离散数学填空题

离散数学填空题填空题填空(这个大问题有5个小问题,每个小问题2分,总共10分)第一章命题逻辑1、设p:天上下钉子;q:我去b城。

命题“除非天上下钉子,否则我去b城”符号化为____________________p?Q2.设p:我们勤奋,q:我们好学,r:我们取得好成绩。

命题“只要勤奋好学,我们就能取“好成绩”的符号是________________。

(p∧q) ??R3.设p:天下雨,q:天刮风,r:我去书店,则命题“如果天不下雨并且不刮风,我就去书店”符号的形式是。

(p∧q) ??R4.命题公式(p?r)∧(┐s∨q)在赋值0101下的真值为____________________。

真(注意字母(顺序)5.已知命题公式g=?p?q,则g的主析取范式是__________________.m1∨m2∨m36.命题公式A中有n个不同的命题变量。

如果A是一个永恒的假形式,则A的主合取范式包含一个最大项的个数为_______________。

n第二章谓词逻辑(一阶逻辑)7.设置f(x):x为整数,g(x):x是自然数,则命题“并不是每一个整数都是自然数”符号改成__________________。

?x(f(x)∧g(x))8.设f(x):x是人,h(x,y):x与y一样高,在一阶逻辑中,命题“人都不一样高”的符号化表格是。

?十、y(f(x)∧f(y)?H(x,y))(实际上,这里的默认值是x不同于y)9。

假设f(x):x是一个人,G(x):x用右手写字,命题“有些人不用右手写字”是一阶逻辑中的一个符号号化的形式为_____________________。

?x(f(x)∧g(x))10.表情?十、YP(x,y)中谓词的单个字段是{a,B,C}。

去掉量词,写出等价的词的命题公为:________。

(p(a,a)∨p(a,b)∨p(a,c))∧(p(b,a)∨p(b,b)∨p(b,c))∧(p(c,a)∨p(c,b)∨p(c,c))11.让谓词的单个字段为{a,B,C},然后设置表达式?xr(x)??XS(x)中的量词被删除,并作为等价词书写命题公式是____________。

离散数学试题及解答

离散数学试题及解答

离散数学2^m*n一、选择题(2*10)1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。

(A)P→⌝Q (B)P∨⌝Q(C)P∧Q (D)P∧⌝Q2.下列命题公式为永真蕴含式的是()。

(A)Q→(P∧Q)(B)P→(P∧Q)(C)(P∧Q)→P (D)(P∨Q)→Q3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定是()。

(A)所有人都不是大学生,有些人不会死(B)所有人不都是大学生,所有人都不会死(C)存在一些人不是大学生,有些人不会死(D)所有人都不是大学生,所有人都不会死4、永真式的否定是()。

(A)永真式(B)永假式(C)可满足式(D)以上均有可能5、以下选项中正确的是()。

(A)0= Ø(B)0 ⊆Ø(C)0∈Ø(D)0∉Ø6、以下哪个不是集合A上的等价关系的性质?()(A)自反性(B)有限性(C)对称性(D)传递性7、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y∈A},则R的性质为()。

(A)自反的(B)对称的(C)传递的,对称的(D)传递的8.设D=<V, E>为有向图,V={a, b, c, d, e, f}, E={<a, b>, <b, c>, <a, d>, <d, e>, <f, e>}是()。

(A)强连通图(B)单向连通图(C)弱连通图(D)不连通图9、具有6个顶点,12条边的连通简单平面图中,每个面都是由()条边围成?(A)2(B)4 (C)3(D)5 10.连通图G是一棵树,当且仅当G中()。

(A)有些边不是割边(B)每条边都是割边(C)无割边集(D)每条边都不是割边二、填空题(2*10)1、命题“2是偶数或-3是负数”的否定是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学试题库——填空题(每空2分)1 命题: ∅ ⊆ {{a }} ⊆ {{a },3,4,1} 的真值 = __ __ . 2. 设A= {a,b}, B = {x | x 2-(a+b) x+ab = 0}, 则两个集合的关系为: __ __. 3. 设集合A ={a ,b ,c },B ={a ,b }, 那么 P(B )-P(A )=__ __ .4. 无孤立点的有限有向图有欧拉路的充分必要条件为:5.公式))(),(()),()((x S z y R z y x Q x P x →∃∨→∀的自由变元是 , 约束变元是 .6.)))()()(()),()(()((x R z Q z y x P y x →∃→∃⌝∃的前束范式是 .7.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

8.A ,B ,C。

9.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

10.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。

11.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。

12.设A={1,2,3,4},A 上关系图为则 R 2 = 。

13.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

14.图的补图为。

15.设A={a,b,c,d} ,A上二元运算如下:那么代数系统<A,*>的,元的元素为,它们的逆元分别为。

16. P:你努力,Q:你失败。

“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为。

17. 论域D={1,2},指定谓词P则公式),(x y yP x ∃∀真值为 。

18.设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。

19.设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R=(列举法)。

R 的关系矩阵M R = 。

20. 设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ;A 上既是对称的又是反对称的关系R= 。

21.设代数系统<A ,*>,运算表如右图。

其中A={a ,b ,c},则幺元是 ;是否有幂等性 ;是否有对称性 。

22. 4阶群必是 群或 群。

23. n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。

24.公式RQ P Q P P ⌝∧∨⌝∧∧⌝∨)(())((的根树表示为 。

25. 设 f ,g 是自然数集N 上的函数x x g x x f N x 2)(,1)(,=+=∈∀,则=)(x g f 。

26.设A={a ,b ,c},A 上二元关系R={< a, a > , < a, b >,< a, c >, < c, c>} ,则s (R )= 。

27.A={1,2,3,4,5,6},A 上二元关系}|,{是素数y x y x T ÷><=,则用列举法T= ; T 的关系图为; T 具有 性质。

28.集合}}2{},2,{{Φ=A 的幂集A 2= 。

29.P ,Q 真值为0 ;R ,S 真值为1。

则))()(())((S R Q P S R P wff ∧∧∨→∨∧的真值为 。

30.RR Q P wff →∨∧⌝))((的主合取范式为 。

31.P (x ):x 是素数, E(x):x 是偶数,O(x):x 是奇数 N (x,y):x 可以整数y 。

则谓词))),()(()((x y N y O y x P x wff∧∃→∀的自然语言是 。

32.谓词)),,()),(),(((u y x uQ z y P z x P z y x wff ∃→∧∃∀∀的前束范式为33. 若P ,Q ,为二命题,Q P →真值为0 当且仅当 。

34.命题“对于任意给定的正实数,都存在比它大的实数”令F(x):x 为实数,yx y x L >:),(则命题的逻辑谓词公式为 。

35.谓词合式公式)()(x xQ x xP ∃→∀的前束范式为 。

36.将量词辖域中出现的 和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为换名规则。

37.设x 是谓词合式公式A 的一个客体变元,A 的论域为D ,A(x)关于y 是自由的,则被称为存在量词消去规则,记为ES 。

38. 设G 为9阶无向图,每个结点度数不是5就是6,则G 中至少有 个5度结点。

39. n 阶完全图,K n 的点数X (K n ) = 。

40. 有向图 中从v 1到v 2长度为2的通路有条。

41. 设[R ,+,·]是代数系统,如果①[R ,+]是交换群 ②[R ,·]是半群 ③ 则称[R ,+,·]为环。

42. 设],,[⊕⊗L 是代数系统,则],,[⊕⊗L 满足幂等律,即对L a ∈∀有 。

43.n 阶完全图结点v 的度数d(v) = 。

44.设n 阶图G 中有m 条边,每个结点的度数不是k 的是k+1,若G 中有N k 个k 度顶点,N k+1个k+1度顶点,则N k = 。

45.算式)*()*)*(((f e d c b a ÷+的二叉树表示为 。

46.如右图给出格L ,则e 的补元是 。

47.一组学生,用二二扳腕子比赛法来测定臂力的大小,则幺元是 。

48.任何(n,m) 图G = (V,E) , 边与顶点数的关系是 。

49.当n 为 时,非平凡无向完全图K n 是欧拉图。

50.已知一棵无向树T 有三个3顶点,一个2度顶点,其余的都是1度顶点,则T 中有 个1度顶点。

51.n 阶完全图K n 的点色数X(K N )= 。

52.一组学生,用两两扳腕子比赛来测定臂力大小,则幺元是 。

53.n 阶完全图K n 的边数为 。

54.右图 的邻接矩阵A= 。

55.图 的对偶图为 。

56.完全二叉树中,叶数为n t ,则边数m= 。

57.设< {a,b,c}, * >为代数系统,* 运算表如下:;零元为 ;58.a 、b 、c 的逆元分别为 。

59.选择合适的论域和谓词表达集合A=“直角坐标系中,单位元(不包括单位圆周)的点集”则A= 。

60.集合A={Φ,{Φ}}的幂集P(A)= 。

61.设A={1,2,3,4},A 上二元关系R={<1,2>,<2,1>,<2,3>,<3,4>}画出R的关系图 。

62.设A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},则B A ⋃= 。

BA =。

63. 设|A|=3,则A 上有 个二元关系。

64.A={1,2,3}上关系R= 时,R 既是对称的又是反对称的。

65.偏序集><≤R A ,的哈斯图为,则≤R =。

66. 设|X|=n ,|Y|=m 则(1)从X 到Y 有 个不同的函数。

(2) 当n , m 满足 时,存在双射有 个不同的双射。

67.2是有理数的真值为 。

68.Q :我将去上海,R :我有时间,公式)()(Q R R Q →∧→的自然语言为 。

69.公式)()(Q P P Q ∧⌝∧→的主合取范式是 。

70.若} ,, , {21m S S S S =是集合A的一个分划,则它应满足 。

71. 称为命题。

72.命题P→Q的真值为,当且仅当 。

73.一个命题含有4个原子命题,则对其所有可能赋值有 种。

74.所有小项的析取式为 。

75.令P (x ):x 是质数,E (x ):x 是偶数,Q (x ):x 是奇数,D (x ,y ):x 除尽y.则)))(),(()((y E y x D y x E x →∀→∀的汉语翻译为 。

76.设S={a,b,c}则S 6的集合表示为 。

77.P(P(Φ))= 。

78.BA ⊕=。

79.设R为集合A上的关系,则t (R )= 。

80.若R是集合A上的偏序关系,则R满足 。

81.设集合A={1,2,3,4,5,6,7,8,9,10},定义A 上的二元关系“≤”为x≤y=x|y,则y x ∨= 。

82.设},2|{N n x x A n∈==,定义A 上的二元运算为普通乘法、除法和加法,则代数系统<A,*>中运算*关于 运算具有封闭性。

83.设集合S={α,β,γ,δ,ζ},S 上的运算*定义为左逆元是 ,无左逆元的元素是 。

84. 在群坯、半群、独异点、群中 满足消去律。

85. 设<G,*>是由元素G a ∈生成的循环群,且|G|=n ,则G= 。

86.拉格朗日定理说明若<H , *>是群<G,*>的子群,则可建立G 中的等价关系R= 。

87.若|G|=n,|H|=m则m和n关系为 。

88.设f 是由群<G,☆>到群<G ',*>的同态映射,e '是G '中的幺元, 89.则f的同态核Ker(f )= 。

90.}0|{>∧∈=+x Z x x Z ,*表示求两数的最小公倍数的运算(Z 表示整数集合),对于*运算的幺元是 ,零元是 。

91.代数系统<A,*>中,|A|>1,如果θ和e 分别为<A,*>的幺元和零元,则θ和e 的关系为 。

92.设<G,*>是一个群,<G,*>是阿贝尔群的充要条件是 。

93.图的完全关联矩阵为 。

94.一个图是平面图的充要条件是 。

95.设I 是整数集合,Z 3是由模3的同余类组成的同余类集,在Z 3上定义+3如下:]3mod )[(][][3j i j i +=+,则+3的运算表为 ;<Z +,+3>是否构成群 。

96.设G 是n 阶完全图,则G 的边数m= 。

97.如果有一台计算机,它有一条加法指令,可计算四数的和。

现有28个数需要计算和,它至少要执行 次这个加法指令。

98.如果有限集合A 有n 个元素,则|2A |= 。

99.某集合有101个元素,则有 个子集的元素为奇数。

100.设S={a 1,a 2,…,a 8},B i 是S 的子集,由B 17表达的子集为 , 子集{a 2,a 6,a 7}规定为 。

相关文档
最新文档