浙江省2018届中考数学:第32讲《简单事件的概率及其应用》名师讲练

合集下载

浙江省中考数学复习第一部分考点研究第八单元统计与概率第32课时数据的分析与应用试题(2021年整理)

浙江省中考数学复习第一部分考点研究第八单元统计与概率第32课时数据的分析与应用试题(2021年整理)

浙江省2018年中考数学复习第一部分考点研究第八单元统计与概率第32课时数据的分析与应用试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学复习第一部分考点研究第八单元统计与概率第32课时数据的分析与应用试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学复习第一部分考点研究第八单元统计与概率第32课时数据的分析与应用试题的全部内容。

第八单元统计与概率(建议答题时间:40分钟)1。

(2017宿迁)一组数据:5,4,6,5,6,6,3。

这组数据的众数是()A。

6 B。

5 C. 4 D. 32。

(2017苏州)有一组数据:2,5,5,6,7,这组数据的平均数为()A。

3 B. 4 C。

5 D. 63。

校园文化艺术节期间,有19位同学参加了校十佳歌手比赛,所得的分数互不相同,取前10位同学获得十佳歌手称号,某同学知道自己的分数后,要判断自己是否获得十佳歌手称号,他只需知道这19位同学的()A。

平均数 B. 中位数C. 众数D. 方差4. (2017黄冈)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为( )A。

12 B。

13 C。

13.5 D. 145。

(2017聊城)为了满足顾客的需求,某商场将5 kg奶糖,3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A。

25元 B. 28.5元 C。

29元 D. 34。

5元6. (2017温州模拟)甲、乙两名运动员在10次的百米跑练习中,平均成绩分别为10。

九年级数学简单事件的概率浙江版知识精讲

九年级数学简单事件的概率浙江版知识精讲

九年级数学简单事件的概率某某版【本讲教育信息】一. 教学内容:简单事件的概率二. 知识回顾1. 如果事件发生的各种结果的可能性相同,设结果的总数为n ,其中事件A 发生的可能结果的总数为m (n m ≤),则事件A 发生的概率为n m ,记作n m )A (p =。

注:运用nm )A (p =求简单事件的概率时,关键是求事件发生所有的结果总数n 以及其中事件A 发生的可能的结果总数m 。

2. 可以通过大量的重复实验,用一个事件发生的频率来估计这一事件发生的概率,事实上,当实验次数足够多时,事件发生的频率就稳定在相应的概率附近。

3. 分析本课内容中事件的概率时,我们常常运用画树状图、列表格等列举法来统计、计算实验获得的数据,从而来估计简单事件发生的概率。

【典型例题】例1. 某地的体育彩票管理中心发行了五种类型的体育彩票,其中最受欢迎的是“6+1数字型彩票”和“29选7”的乐透型彩票。

请问:你认为其中哪一种彩票的中奖机会会更大一些?解析:“6+1型”彩票中特等奖需要猜中6个基本数字和一个特别,即7个需全中,这样,选中每个数字的可能性均为101,则中奖的机会为7101⎪⎭⎫ ⎝⎛. 但“29选7型”中特等奖需29个号中的7个开奖号全中,这样,先从29个中选7个里的一个,机会为297,再从剩余的28个号中选中剩下的6个正确中的一个,为286,以此类推,则中特等奖的机会为7101156078011242728291234567⎪⎭⎫ ⎝⎛>=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ ,选“29选7型”的彩票中特等奖的机会更多。

例2. 袋中有1个红球,2个白球和3个黄球,球的质量与大小、外表均相同,搅匀后从中摸出一个球,则:①任意从袋中摸得一个球,恰好是红球的概率。

②任意从袋中摸得一个球,恰好是白球的概率。

③任意从袋中摸两个球,恰好是红球和黄球的概率。

解析:由于6个球的外质均相同,所以任意摸出一球时,被摸出的球的概率为61,而红球只有一个,白球是2个,黄球是3个。

浙江省中考数学 考点达标训练31 简单事件的概率及其应

浙江省中考数学 考点达标训练31 简单事件的概率及其应

考点达标训练31 简单事件的概率及其应用训练一 简单事件的概率确定事件和随机事件1. (2015·江苏徐州)一只不透明的袋子中装有4个黑球,2个白球,每个球除颜色外都相同,从中任意摸出3个球,则下列事件中,为必然事件的是( )A. 至少有1个球是黑球B. 至少有1个球是白球C. 至少有2个球是黑球D. 至少有2个球是白球 2. (2014·山东聊城)下列说法中,不正确...的是( ) A. 抛掷一枚硬币,硬币落地时正面朝上是随机事件B. 把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C. 任意打开七年级下册数学教科书,正好是97页是确定事件D. 一个盒子中有白球m 个,红球6个,黑球n 个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是6计算简单事件的概率3. (2015·浙江绍兴)在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( )A. 13B. 25C. 12D. 354. (2015·浙江湖州)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A. 49B. 13C. 16D. 195. (2015·山东淄博)某超市为了吸引顾客,设计了一个促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于...30元的概率( )A. 13B. 12C. 23D. 346. (2015·浙江舟山)把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是________.(第7题)7. (2015·福建龙岩)小明去公园玩投掷飞镖的游戏,投中图中阴影部分有奖品(飞镖盘被平均分成8份),小明能获得奖品的概率是________.8. (2015·湖南益阳)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为________.9. (2015·安徽)A,B,C三人玩篮球传球游戏,游戏规则是第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.求:(1)两次传球后,球恰在B手中的概率.(2)三次传球后,球恰在A手中的概率.10. 在一副扑克牌中,拿出红桃2,红桃3,红桃4,红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表或画树状图的方法表示出(x,y)所有可能出现的结果.(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.用频率估计概率11. (2014·山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法中,正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越来越接近概率12. (2015·山东泰州)事件A发生的概率为120,大量重复做这种试验,事件A平均每100次发生的次数是________.13. (2015·广东广州)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率.(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率.(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?14. (2015·甘肃甘南)在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )A. 13B. 23C. 16D. 34(第15题)15. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为 2.若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 外的圆面上的概率是( )A. 2πB. π2C. 12πD. π-2π16. (2015·江西)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下面的表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于45,则m 的值为__________.17. (2015·江苏连云港)九年级(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会.抽奖方案如下:将一副扑克牌中点数为“2”“3”“3”“5”“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖.记每次抽出两张牌点数之差为x,按下表要求确定奖项.(1)用列表或画树状图的方法求甲同学获一等奖的概率.(2)是否每次抽奖都会获奖?为什么?训练二概率的应用考点精讲本P102概率决策游戏规则1. (2015·陕西)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷色子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的色子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次色子,请解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.2. 四张质地相同的卡片如图所示,将卡片洗匀后,背面朝上放置在桌面上.,(第2题))(1)求随机抽取一张卡片,恰好得到数字2的概率.(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图,你认为这个游戏公平吗?请用列表或画树状图的方法说明理由,若认为不公平,请你修改规则,使游戏变得公平.概率与统计的综合应用3. (2015· 山东东营)某市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划.某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图所示).,(第3题))(1)将统计图补充完整.(2)求该班学生人数.(3)若该校共有学生3500名,请估计有多少人选修足球.(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.4. (2015· 湖北随州)为推进“传统文化进校园”活动,某校准备成立“经典诵读”“传统礼仪”“民族乐器”和“地方戏曲”四个课外活动小组.学生报名情况如图所示(每人只能选择一个小组):(第4题)(1)报名参加课外活动小组的学生共有________人,将条形统计图补充完整.(2)扇形图中,m=________,n=________.(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.5. 一个密码箱的密码,每个数位上的数都是0~9的自然数.若要使不知道密码的人一次就拨对密码的概率小于12016,则密码的位数至少需要( )A. 3位B. 4位C. 5位D. 2015位(第6题)6. (2015·内蒙古呼和浩特)如图,四边形ABCD是菱形,E,F,G,H分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是________.7. 如图所示为一电路AB,闭合a,b,c,d,e五个开关中的任意两个开关,能使电路形成通路的概率是________.,(第7题))8. (2015·湖北黄石)父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅、一个水果馅、两个花生馅,四个汤圆除内部馅料不同外,其他一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率.(2)若再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.参考答案训练一简单事件的概率1.A 2.C 3.B 4.D 5.C 6.14 7.38 8.239.(1)画树状图如解图①.(第9题解①)∵共有4种等可能的结果,两次传球后,球恰在B 手中的只有1种情况,∴两次传球后,球恰在B 手中的概率为14. (2)画树状图如解图②.(第9题解②)∵共有8种等可能的结果,三次传球后,球恰在A 手中的有2种情况,∴三次传球后,球恰在A 手中的概率为28=14.10.(1)列表如下:,(3,2),∴P (这对数是方程x +y =5的解)=216=18. 11.D 12.5 13.(1)14. (2)12. (3)16. 14.B[分母含有字母的式子是分式,整式a +1,a +2,2中,抽到a +1,a +2做分母时组成的都是分式.∵共有3×2=6种情况,其中a +1,a +2为分母的情况有4种,∴能组成分式的概率=46=23.] 15.D[P =π⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫ 222π⎝ ⎛⎭⎪⎫222=π-2π.]16.(1)4 2,3 (2)2[易得6+m 10=45,∴m =2.] 17.(1)画树状图如解图.(第17题解)可以看出一共有20种等可能的结果,其中获一等奖的结果有2种,∴P (甲获一等奖)=220=110. (2)不一定.当两张牌都取到3时,|x |=0,不会获奖.训练二 概率的应用1.(1)12. (2)该游戏公平,理由略. 2.(1)12. (2)游戏不公平,理由提示:可以列表或画树状图得到P (两位数不超过32)=58≠12.调整规则不唯一,如:将游戏规则中的32换成26~31(包括26和31)之间的任何一个数. 3.(1)补全统计图略(扇形统计图中A 组为40%,D 组为12%;频数直方图中A ,C ,E 组的人数分别为20,12,4). (2)50人. (3)1400人. (4)310.4.(1)100 补全条形统计图略(“民族乐器”组的人数为30). (2)25 108 (3)16,列表或画树状图略. 5.B[∵每一位拨正确的概率为110,⎝ ⎛⎭⎪⎫1103=11000,⎝ ⎛⎭⎪⎫1104=110000,∴至少需4位密码.]6.12[连结HF .易证AH 与BF 平行且相等,∴四边形AHFB 是平行四边形,∴S △HEF =12S □AHFB .同理,S △HGF=12S □HDCF ,∴阴影部分的面积占整个菱形面积的一半.] 7.35[开关闭合的可能结果有ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10种,其中ac ,ad ,ae ,bc ,bd ,be 这6种能使电路形成通路,∴P (通路)=610=35.] 8.(1)分别用A ,B ,C 表示芝麻馅、水果馅、花生馅的大汤圆,画树状图如解图①.(第8题解①)∵共有12种等可能的结果,爸爸吃前两个汤圆刚好都是花生馅的有2种情况,∴爸爸吃前两个汤圆刚好都是花生馅的概率为212=16. (2)会增大.理由:分别用A ,B ,C 表示芝麻馅、水果馅、花生馅的大汤圆,画树状图如解图②.(第8题解②)∵共有20种等可能的结果,爸爸吃前两个汤圆都是花生馅的有6种情况,∴爸爸吃前两个汤圆都是花生馅的概率为620=310>16.∴再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性会增大.。

2018年秋九年级数学上册 第2章 简单事件的概率 2.2 简单事件的概率(1)练习 (新版)浙教版

2018年秋九年级数学上册 第2章 简单事件的概率 2.2 简单事件的概率(1)练习 (新版)浙教版

2.2简单事件的概率(1)(见B本13页)A 练就好基础基础达标1.2017·湖州中考一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( C)A.12B.15C.310D.710第2题图2.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E,F分别是矩形ABCD 的两边AD,BC上的点,EF∥AB,点M,N是EF上任意两点,则投中一次,飞镖落在阴影部分的概率是( C)A.13B.23C.12D.343.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只咸水粽、5只咸肉粽,粽子除内部馅料不同外其他均相同.小颖任意吃一个,吃到红豆粽的概率是( B)A.110B.15C.13D.124.泸州中考在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只.将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,取出黑球的概率是( C)A.12B.14C.13D.165.齐齐哈尔中考有下列算式:①9=±3;②⎝ ⎛⎭⎪⎫-13-2=9;③26÷23=4;④(-2016)2=2016;⑤a+a =a 2. 运算结果正确的概率是( B ) A.15B.25C.35D.456.邵阳中考某同学遇到一道不会做的选择题,四个选项中有且只有一个是正确的,则他选对的概率是__14__.7.枣庄中考在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个球是黄球的概率是13,则黄球的个数为__6__.8.武汉中考一个质地均匀的小立方体,6个面分别标有数字1,1,2,4,5,5.若随机投掷一次小立方体,朝上一面的数字是5的概率为__13__.9.一个不透明的袋中装有5个黄球、13个黑球和22个红球,这些球除颜色外其他都相同.(1)求从袋中摸出一个球是黄球的概率.(2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于13,问:至少取出多少个黑球?解:(1)∵5+13+22=40(个),∴从袋中摸出一个球是黄球的概率为540=18.(2)设取出x 个黑球,则x +540≥13,解得x≥253.∵x 为整数,∴x 至少为9.故至少取出9个黑球.10.天门中考某校男子足球队队员的年龄分布条形图如图所示.第10题图(1)求这些队员的平均年龄;(2)下周的一场校际足球友谊赛中,该校男子足球队将会有11名队员作为首发队员出场,不考虑其他因素,请你求出其中某位队员首发出场的概率.解:(1)该校男子足球队队员的平均年龄是:(13×2+14×6+15×8+16×3+17×2+18×1)÷22=330÷22=15(岁). 故这些队员的平均年龄是15岁.(2)∵该校男子足球队一共有22名队员,将会有11名队员作为首发队员出场, ∴不考虑其他因素,其中某位队员首发出场的概率为1122=12.B 更上一层楼 能力提升11.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率( B ) A .大于12B .等于12C .小于12D .不能确定【解析】 ∵硬币有正面朝上和朝下两种情况,并且是等可能的,∴第3次正面朝上的概率是12.故选B 项.12.海南中考三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( A )A.13B.23C.16D.19第13题图13.营口中考如图所示,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的.假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为__13__.14.菏泽中考锐锐参加某市电视台组织的智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用一次“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是__14__;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是__16__;(3)如果锐锐每道题各用一次“求助”,请用画树状图或者列表法来分析他顺序通关的概率.解:(1)第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;故答案为14.(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;故答案为16.(3)锐锐每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示:第14题答图共有6种等可能的结果,锐锐顺利通关的只有1种情况, ∴锐锐顺利通关的概率为16.C 开拓新思路 拓展创新15.内江中考任取不等式组⎩⎪⎨⎪⎧k -3≤0,2k +5>0的一个整数解,能使关于x 的方程2x +k =-1的解为非负数的概率为__13__.16.在复习“反比例函数”一课时,同桌小明和小芳对一个问题的观点不一致,小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m ,n)的横坐标,第二个数作为点P(m ,n)的纵坐标,则点P(m ,n)在反比例函数y =12x 的图象上的概率一定大于在反比例函数y =6x的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点P(m ,n)的情形;(2)分别求出点P(m ,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.第16题答图(2)一共有36种可能的结果,且每种结果出现的可能性相同, 点(3,4),(4,3),(2,6),(6,2)在反比例函数y =12x 的图象上,点(2,3),(3,2),(1,6),(6,1)在反比例函数y =6x的图象上.∴点P(m,n)在两个反比例函数的图象上的概率都为436=19,∴小芳的观点正确.。

浙教版九年级上数学2.2简单事件的概率(2)同步导学练(含答案)

浙教版九年级上数学2.2简单事件的概率(2)同步导学练(含答案)

2.2 简单事件的概率(2)列举法求概率主要有两种方法:一是列表法,当事件发生涉及两个因素时,可以用表格不重不漏列出所有可能的结果;二是树状图,当事件发生涉及两个或两个以上因素时,可以用树状图直观地列出所有可能的结果.1.一个盒子内装有大小、形状相同的4个球,其中有1个红球、1个绿球、2个白球.小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(C ).A. 21B. 41C. 61D. 1212.如图所示为一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为(C ).(第2题)A. 81B. 61C. 41D. 213.一个箱子内装有3张分别标示4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出的第1张牌的号码为十位数字,第2张牌的号码为个位数字,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率是(A ).A. 61B. 41C. 31D. 214.学校团委在“五四”青年节举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动的概率是(A ).A. 32B. 65C. 61D. 215.从长度分别为3,4,5,6的四条线段中,任意取出三条围三角形,围成的三角形是直角三角形的概率是 41.6.有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其他都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为154.7.如图所示,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率是 107.(第7题)8.家在上海的小明一家将于5月1-2日进行自驾游,准备两天分别在不同的城市游玩,5月1日的备选地点为:A 南京、B 杭州、C 扬州,5月2日的备选地点为:D 嘉兴、E 苏州.(1)请用树状图或列表法分析并写出小明一家所有可能的游玩方式(用字母表示即可).(2)求小明一家恰好两天在同一省份游玩的概率.【答案】画树状图如下:∴小明一家所有可能选择游玩的方式有(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(2)小明一家恰好在同一省份游玩的可能有(A ,E ),(B ,D ),(C ,E )三种,∴小明一家恰好在同一省份游玩的概率为63=21.9.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.【答案】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为41.(2)画树状图如下:共有12种等可能的情况,其中恰好小红抽中“唐诗”且小明抽中“宋词”的有1种,∴恰好小红抽中“唐诗”且小明抽中“宋词”的概率为121.10.如图所示,一张圆桌旁有四个座位,A ,B ,C ,D 四人随机坐在四个座位上,那么A 与D 相邻的概率是(A ).A. 32B. 21C. 41D. 92(第10题) (第11题) (第13题)11.如图所示,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是(B ).A. 31B. 21C. 41D. 6112.一枚质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生的可能性最大的事件是(C ).A.点数都是偶数B.点数的和为奇数C.点数的和小于13D.点数的和小于213.如图所示,一只蚂蚁从点A 出发到点D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或向右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从点A 出发到达点E 处的概率是 21.14.某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A ,B ,C 三个队和县区学校的D ,E ,F ,G ,H 五个队.如果从A ,B ,D ,E 四个队与C ,F ,G ,H 四个队中各抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是 83.(第15题)15.如图所示,管中放置着三根同样的绳子AA 1,BB 1,CC 1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端A 1,B 1,C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.【答案】(1) 31(2)列表如下:AB AC BC A 1B 1× √ √ A 1C 1 √ × √B 1C 1 √ √ ×所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,∴P=96=32.16.为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋、投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【答案】(1)∵垃圾要按A ,B ,C 三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类的概率为31.(2)画树状图如下:由图可知,共有18种等可能的结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,∴P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)= 1812=32.17.甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9.芳芳和明明用摸球记数的方法在如图所示的正六边形ABCDEF 的边上做游戏,游戏规则为游戏者从甲、乙两袋中随机摸出一个小球,小球上的数字是几,就从顶点A 按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点A 按顺时针方向连跳4个边长,跳到点E ,再从点E 按顺时针方向连跳7个边长,跳到点F.请分别求出芳芳、明明跳回起点A 的概率,并指出游戏规则是否公平.(第17题) 图1 图2(第17题答图)【答案】芳芳:画树状图如答图1所示,有4种等可能的结果,其中1种能跳回起点A ,故芳芳跳回起点A 的概率为41.明明:画树状图如答图2所示.有12种等可能的结果,其中3种能跳回起点A ,故明明跳回起点A 的概率为123=41.∴芳芳、明明跳回起点A 的概率相等.∴游戏规则公平.(第18题)18.【济南】如图所示,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C 或D 出口离开的概率是(B ).A. 21B. 31C. 61D. 3219.【盐城】某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择.若随机选择其中一个,则小明回答正确的概率是21.(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择.若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.(第19题)【答案】(1) 21(2)画树状图如下:由树状图可知共有4种等可能的结果,其中正确的有1种,∴小丽回答正确的概率为41.20.一个不透明的口袋里装有红、黄、蓝三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意摸出1个球是红球的概率为21.(1)试求口袋中蓝球的个数.(2)现将一个红球从口袋中取出.根据以下两种取法用列表法计算概率:①一次性取出两个球,有一个红球和一个黄球的概率.②连续两次,一次一个(不放回)取出一个红球和一个黄球的概率.试比较两种情况的可能性.【答案】(1)设蓝球有x 个,则212++x =21,解得x=1.∴蓝球有1个.(2)①列表如下:情况球的种类 1红、黄 2红、蓝 3 蓝、黄∴P (一红一黄)=31.②列表如下:红 黄 蓝 红- 黄、红 蓝、红 黄红、黄 - 蓝、黄 蓝 红、蓝 黄、蓝 -∴P(一红一黄)=62=31.∴两种情况的可能性一样.。

2018-2019学年浙教版九年级上数学2.2简单事件的概率(1)同步导学练含答案

2018-2019学年浙教版九年级上数学2.2简单事件的概率(1)同步导学练含答案

2.2 简单事件的概率(1)等可能性事件A 发生的概率P(A)=nm,n 表示结果总数,m 表示事件A 发生的结果数.1.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为(D ). A.1 B.21 C. 31 D. 41 2.从分别标有数-3,-2,-1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是(D ). A.71 B. 72 C. 73 D. 74 3.一个不透明口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸出一个球不是白球的概率是(B ). A.54 B. 53 C. 52 D. 51 4.有五张背面完全相同的卡片,正面分别写有(9,2)0,8,722,2-2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是(B ). A.51 B. 52 C. 53 D. 54 5.掷一枚均匀立方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有:(1)P(掷出的数字是1)=61. (2)P(掷出的数字大于4)= 31.(第6题)6.如图所示为一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为138. 7.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取一个球,摸到红球的概率是85,则这个袋子中有红球 5个. 8.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,摸到的卡片是2的倍数的概率是多少?3的倍数呢?5的倍数呢? 【答案】P (摸到的卡片是2的倍数)=105=21;P (摸到的卡片是3的倍数)=103; P (摸到的卡片是5的倍数)=102=51.9.用24个球设计一个摸球游戏,使得:(1)摸到红球的概率是21,摸到白球的概率是31,摸到黄球的概率是61. (2)摸到白球的概率是41,摸到红球和黄球的概率都是83.【答案】(1)袋内装12个红球、8个白球、4个黄球.(2)袋内装红球和黄球各9个,白球6个.10.如图所示,从图中的四张印有品牌标志图案的卡片中任取一张,取出图案是轴对称图形的卡片的概率是(C ).(第10题) A.41 B. 21 C. 43D.1 11.某电视节目中有一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。

九年级数学上册第2章简单事件的概率2.2简单事件的概率第2课时用列举法求事件发生的概率(二)练习浙

九年级数学上册第2章简单事件的概率2.2简单事件的概率第2课时用列举法求事件发生的概率(二)练习浙

2018年秋九年级数学上册第2章简单事件的概率2.2 简单事件的概率第2课时用列举法求事件发生的概率(二)同步练习(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋九年级数学上册第2章简单事件的概率2.2 简单事件的概率第2课时用列举法求事件发生的概率(二)同步练习(新版)浙教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋九年级数学上册第2章简单事件的概率2.2 简单事件的概率第2课时用列举法求事件发生的概率(二)同步练习(新版)浙教版的全部内容。

第2章简单事件的概率2。

2 简单事件的概率第2课时用列举法求事件发生的概率(二)知识点1 用列表法求概率1.同时抛掷两枚质地均匀的硬币,填写下列表格:由表格可知,出现“一正一反"的概率是________.2.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.错误! B。

错误! C.错误! D。

错误!3.某校九年级共有1,2,3,4四个班级,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是________.4.一个不透明的口袋中有3个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同,甲先从口袋中随机摸出一个小球,记下数字后放回;乙再从口袋中随机摸出一个小球记下数字.用列表法求摸出的两个小球上的数字之和为偶数的概率.知识点2 用画树状图法求概率5.2017·德州改编淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,通过列如图2-2-5所示的树状图,可知他们两人都抽到物理实验的概率是________.图2-2-56.小明与甲、乙两人一起玩“手心手背"的游戏.他们约定:若三人中仅有一人出“手心”或“手背”,则这个人获胜;若三人都出“手心”或“手背”,则不分胜负.在一个回合中,若小明出“手心”,则他获胜的概率是多少?7.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同.小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字.用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.8.如图2-2-6,随机闭合开关S1,S2,S3中的两个,则灯泡发光的图2-2-6概率是( )A。

第32讲 简单事件的概率及其应用 课件-2021年中考数学复习

第32讲 简单事件的概率及其应用 课件-2021年中考数学复习

类型二 计算简单事件的概率
例2 (1)(2019·绍兴)为了解某地区九年级男生的身高情况,随机抽取了
该地区 100 名九年级男生,他们的身高 x(cm)统计如下:
组别 x< 160≤x< 170≤x< x≥18
(cm) 160 170
180
0
人数
5
38
42
15
根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于 180cm
2.(2018·金华)如图,一个游戏转盘中,红、黄、蓝三 个扇形的圆心角度数分别为 60°,90°,210°.让转盘
自由转动,指针停止后落在黄色区域的概率是( B )
A.16
B.14
C.13
D.172
3.(2019·嘉兴)从甲、乙、丙三人中任选两人参加“青
2
年志愿者”活动,甲被选中的概率为__3 __.
(2018·南京模拟)学校实施新课程改革以来,学生的学 习能力有了很大提高.王老师为进一步了解本班学生
自主学习、合作交流的现状,对该班部分学生进行调 查,把调查结果分成四类(A:特别好,B:好,C:一 般,D:较差)后,再将调查结果绘制成两幅不完整的 统计图(如图).请根据统计图解答下列问题: (1)本次调查中,王老师一共调查了____2_0___名学生; (2)将条形统计图补充完整; (3)为了共同进步,王老师从被调查的A类和D类学生中 分别选取一名学生进行“兵教兵”互助学习,请用列表或 画树状图的方法求出恰好选中一名男生和一名女生的 概率.
4.(2020·铜仁)从-2,-1,2三个数中任取
两个不同的数,作为点的坐标,则该点在 第三象限的概率等于___13_____.
5.一个不透明的袋中装有5个黄球、13个黑球和22个 红球,它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率; (2)现从袋中取出若干个黑球,并放入相同数量的黄球, 搅拌均匀后,使从袋中摸出一个球是黄球的概率不小 于 1 问至少取出了多少个黑球?

九年级数学上册第二章简单事件的概率2.2简单事件的概率第1课时简单事件的概率(一)随堂练习(含解析

九年级数学上册第二章简单事件的概率2.2简单事件的概率第1课时简单事件的概率(一)随堂练习(含解析

九年级数学上册第二章简单事件的概率2.2 简单事件的概率第1课时简单事件的概率(一)随堂练习(含解析)(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二章简单事件的概率2.2 简单事件的概率第1课时简单事件的概率(一)随堂练习(含解析)(新版)浙教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二章简单事件的概率2.2 简单事件的概率第1课时简单事件的概率(一)随堂练习(含解析)(新版)浙教版的全部内容。

2。

2__简单事件的概率__第1课时简单事件的概率(一)1.[2017·宁波]一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( C )A.错误!B。

错误! C。

错误!D。

错误!2.课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是( B )A.错误!B.错误! C。

错误!D.错误!3.如图2-2-1,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( D )图2-2-1A。

错误! B.错误! C。

错误!D。

错误!4.下列四个转盘中,C,D转盘分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( A )A B C D5.[2016·海南]三张外观相同的卡片分别标有数字 1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于 3 的概率是( A )A。

错误!B。

错误! C.错误!D.错误!6.[2016·扬州]如图2-2-2所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为__错误!__.图2-2-27.[2017·淮安]一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是__错误!__.8.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是__错误!__.图2-2-39.[2017·徐州]如图2-2-3,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为__23__.【解析】∵共6个数,小于5的有4个,∴P(小于5)=错误!=错误!.10.如图2-2-4,有四张不透明的卡片除正面的函数关系式不同外,其余均相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到函数的图象不经过第四象限的卡片的概率为__错误!__.错误!错误!错误!错误!图2-2-411.[2017·盐城]如图2-2-5是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是__1 3 __图2-2-512.袋中有11个黑球,2个红球,3个白球,4个绿球,闭上眼睛从袋中摸出一球,下列事件发生的机会谁大谁小,将它们按从小到大的顺序在如图2-2-6所示的直线上排序.(1)摸出黑球;(2)摸出黄球;(3)摸出红球;(4)摸出黑球或白球;(5)摸出黑球,红球或白球;(6)摸出黑球,红球,白球或绿球.图2-2-6解:由题意,得袋中有11个黑球,2个红球,3个白球,4个绿球,共20个球,则(1)摸出黑球的概率为错误!;(2)∵袋中没有黄球,∴摸出黄球的概率为0;(3)摸出红球的概率为220=110;(4)摸出黑球或白球的概率为错误!=错误!;(5)摸出黑球,红球或白球的概率为错误!=错误!;(6)摸出黑球,红球,白球或绿球是必然事件,故它的概率为 1.比较大小作图如答图.第12题答图13.[2016·济宁]如图2-2-7,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( B )图2-2-7A.错误!B.错误!C。

浙教版数学九年级上册《简单事件的概率》习题

浙教版数学九年级上册《简单事件的概率》习题

《简单事件的概率》习题1.我国西部一个地区的年降水量在下列区间内的概率如下表所示:年降水量/mm[100,150) [150,200) [200,250) [250,300]概率0.210.160.130.12则年降水量在[200,300](mm)范围内的概率是___________.2.从一批准备出厂的电视机中,随机抽取10台进行质量检查,其中有一台是次品,能否说这批电视机的次品的概率为0.10?3.某篮球运动员在同一条件下进行投篮练习,结果如下表所示:投篮次数n8 101520304050进球次数m 6 8 1217253238进球频率nm(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约是多少?4.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:直径6.88<d≤6.89 6.89<d≤6.90 6.90<d≤6.91 6.91<d≤6.92 6.92<d≤6.93 6.93<d≤6.94 6.94<d≤6.95 6.95<d≤6.96 6.96<d≤6.97 6.97<d≤6.98个数12 10 17 17 26 15 822从这100个螺母中,任意抽取1个,求事件A(6.92<d≤6.94)事件B(6.90<d≤6.96)、事件C(d>6.96)、事件D(d≤6.89)的频率.5.某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗,根据概率的统计定义解答下列问题:(1)求这种鱼卵的孵化概率(孵化率);(2)30000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5000尾鱼苗,大概得备多少鱼卵?(精确到百位)6.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.7.某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率,(2)至少射中7环的概率;(3)射中环数不足8环的概率.初中数学试卷灿若寒星制作。

第32讲 简单事件的概率及其应用 知识梳理+考题体验-2021年中考数学复习

第32讲 简单事件的概率及其应用 知识梳理+考题体验-2021年中考数学复习

第32讲简单事件的概率及其应用
4.求概率的常用方法①概率的定义.
②列表法.
③画树状图法.
④用频率估计概率:在大量重复试验中,事件A发生
的频率逐渐稳定在概率附近.
⑤几何概率:求出阴影区域面积与总面积之比即为
该事件发生的概率.
上完成的事件.
例:在一个不透明的布袋
中装有黄、白两种颜色
的球,除颜色外其他都相
同.小红通过多次摸球
试验后发现,摸到黄球的
频率稳定在0.3左右,则
摸到白球的概率
为.
1.(2020·衢州)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()
A.1
3
B.1
4
C.1
6
D.1
8
2.(2020·金华)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()
第2题图
A.1
2B.1
3
C.2
3
D.1
6
3.(2020·湖州)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示:
则两次摸出的球都是红球的概率是.
参考答案
第32讲简单事件的概率及其应用【知识梳理】
关键点拨及对应举例:0.7 1.关键点拨及对应举例:④③①②3.m
n
【考题体验】
1.A
2.A
3.4
9。

浙江省2018年中考数学总复习 第六章 统计与概率 第32讲 简单事件的概率及其应用讲解篇

浙江省2018年中考数学总复习 第六章 统计与概率 第32讲 简单事件的概率及其应用讲解篇

第32讲简单事件的概率及其应用1.事件的分类2.概率的意义与计算1.(2017·宁波)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .12B .15C .310D .7102.(2017·舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )游戏规则:若一人出“剪刀”,另一人出“布”,则出“剪刀”者胜;若一人出“锤子”,另一人出“剪刀”,则出“锤子”者胜;若一人出“布”,另一人出“锤子”,则出“布”者胜.若两人出相同的手势,则两人平局.A .红红不是胜就是输,所以红红胜的概率为12B .红红胜或娜娜胜的概率相等C .两人出相同手势的概率为13D .娜娜胜的概率和两人出相同手势的概率一样3.(2017·金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A .12B .13C .14D .16【问题】小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1,2,3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树状图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜;两次抽出的纸牌数字之和为偶数,则小明获胜.这个游戏公平吗?为什么?(3)通过(1)、(2)解答,①你认为求概率有哪几种方法,应注意哪些问题? ②利用概率设计游戏方案应注意哪些问题?【归纳】通过开放式问题,归纳、疏理用列举法求概率;用树状图(表)求概率;用频率估计概率;用树状图或列表的方法来求事件的概率时:①要认真弄清题意,分清是“一步实验”还是“两步或两步以上实验”;②要在所有等可能的结果中,仔细筛选出符合题意的结果个数,代入“P(A)=事件A发生的可能的结果总数”中求出概率,谨防出错.所有可能的结果总数类型一判断事件的类型例1事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是( )A.P(C)<P(A)=P(B) B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)【解后感悟】判断简单基本事件的概率,必然事件的概率为1,不可能事件的概率为0,不确定事件的概率值在0与1之间.1.某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是( )A.购买100个该品牌的电插座,一定有99个合格B.购买1000个该品牌的电插座,一定有10个不合格C.购买20个该品牌的电插座,一定都合格D.即使购买1个该品牌的电插座,也可能不合格2.(2015·广西)小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为____________________事件(填“必然”或“不可能”或“随机”).类型二计算简单事件的概率例2在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4,从袋中随机地摸取一个小球后然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是________.【解后感悟】当一次试验涉及多个因素(对象)时,常用“列表法”或“树状图法”求出事件发生的等可能性,然后找出要求事件发生的结果数,根据概率的意义求其概率.简单事件的概率的求法一般有列表法、画树状图法和列举法;通过画树状图或列表的方法可以将复杂的问题化繁为简,化难为易,这种方法能把所有可能的结果一一列举出来,从而能较简便地求出事件发生的概率.3.(1)(2017·湖州)一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是( )A .116B .12C .38D .916(2)(2015·内江)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )A .112B .512C .16D .12(3)(2015·牡丹江)学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A .19B .16C .13D .124.(2015·南昌)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.类型三 用频率估计概率例3 (2016·兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 个.【解后感悟】利用频率估计概率,一般地,在大量重复实验中,如果事件A 发生的概率mn稳定于某个常数p ,那么这个常数p 就叫做事件A 的概率,记做P(A)=p(0≤P(A)≤1).5.(2017·上虞模拟)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是4类型四 与概率有关的一些数学问题例4 (2017·黄岗模拟)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A .12B .13C .14D .16【解后感悟】此题运用了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是根据平行线的性质求出阴影部分的面积与总面积的比.6.(1)(2015·泰安)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .45(2)(2017·武汉模拟)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A .12B .25C .37D .477.(1)(2015·烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为____________________.(2)(2015·郴州)在m2□6m□9的“□”中任意填上“+”或“-”号,所得的代数式为完全平方式的概率为____________________.类型五概率的实际应用例5(2015·资阳)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【解后感悟】此题运用了列表法或树状图法求概率以及条形统计图与扇形统计图,概率=所求情况数与总情况数之比.例6(2016·宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.【解后感悟】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.(2015·扬州)“2015扬州鉴真国际半程马拉松”的赛事共有三项:A.“半程马拉松”、B.“10公里”、C.“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为 ; (2)求小明和小刚被分配到不同项目组的概率.【实际应用题】一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于13,问至少取出了多少个黑球?【方法与对策】此题主要是概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=mn ;该题亮点在于概率应用于不等量关系之中,即概率与一元一次不等式结合,概率还可以和方程、几何结合.这类题型是中考命题的方向.【不画树状图产生的错误.】掷两枚硬币,规定落地后,国徽朝上为“正”,国徽朝下为“反”,则会出现以下三种情况:“正正”、“反反”、“正反”,分别求出每种情况的概率.参考答案第32讲简单事件的概率及其应用【考点概要】1.必然事件不可能事件可能发生也可能不发生 2.概率m n【考题体验】 1.C 2.A 3.D 【知识引擎】【解析】(1)列表如下:(2)可能出现的数字之和分别为2,3,4,3,4,5,4,5,6共9种可能,它们出现的可能性相同.其中奇数共4个,偶数共5个.∴P (小昆获胜)=49,P (小明获胜)=59.∵49≠59,∴游戏不公平. (3)①列举法求概率;用树状图(表)求概率;利用频率估计概率.注意列表和画树状图的目的都是不重不漏地列举所有可能性相等的结果;利用频率估计概率应在大量重复实验中去估计. ②游戏公平与否,关键是根据规则算出各自的概率,概率均等则游戏公平,否则就不公平.设计游戏规则时,应先根据题意求出随机事件的各种可能出现的情况的概率,再根据其中概率相等时的情况设计公平的游戏规则,也可根据概率不相等时的情况设计公平的游戏规则.【例题精析】例1 事件A :打开电视,它正在播广告,是不确定性事件,其概率0<P(A)<1;事件B :抛掷一个均匀的骰子,朝上的点数小于7,是必然事件,其概率P(B)=1;事件C :在标准大气压下,温度低于0℃时冰融化,是不可能事件,其概率P(C)=0.于是有P(C)<P(A)<P(B).故选B .例2 29例3 ∵摸到黄球的频率稳定在30%,∴在大量重复上述实验下,可估计摸到黄球的概率为30%=0.3,而袋中黄球只有6个,∴推算出袋中小球大约有6÷0.3=20(个),故答案为:20.例4 根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成四个面积相等的三角形,根据平行线的性质可得S 1=S 2,则阴影部分的面积占14,故飞镖落在阴影区域的概率为:14;故选:C .例5 (1)20 (2)如图(3)列表如下:A 类中的两名男生分别记为A 1和A 2共有6和一位女生的概率为:36=12.例6 (1)“小李同学在该天早餐得到两个油饼”是不可能事件; (2)树状图法:即小张同学得到猪肉包和油饼的概率为212=16.【变式拓展】1.D 2.随机 3.(1)D (2)A (3)C4. (1)当袋子中全为黑球,即取出4个红球时,摸到黑球是必然事件;当取出2个或3个红球时,摸到黑球为随机事件,故答案为:4;2,3. (2)根据题意得:6+m 10=45,解得:m =2,所以m 的值为2.5. D6.(1)C (2)D7.(1)34 (2)128.(1)13(2)设三种赛事分别为1,2,3,列表得:;(2,3);(3,1);(3,2);(3,3),小明和小刚被分配到不同项目组的情况有6种,所以P(小明和小刚被分配到不同项目组)=69=23.【热点题型】【分析与解】(1)根据概率公式,求摸到黄球的概率,即用黄球的个数除以小球总个数即可得出黄球的概率.∵一个不透明的袋中装有5个黄球,13个黑球和22个红球,∴摸出一个球摸到黄球的概率为:55+13+22=18. (2)假设取出了x 个黑球,则放入x 个黄球,进而利用概率公式得出不等式,求出即可.由题意,得5+x 5+13+22≥13,解得:x≥253,答:至少取出了9个黑球.【错误警示】 画树状图如下:因此共有四种情况,其中“正正”出现一次,概率为14;“正反”出现二次,概率为12;“反反”出现一次,概率为14.。

浙江省2018年中考数学复习 第一部分 考点研究 第八单元 统计与概率 第33课时 事件的概率与应用(含近9年中

浙江省2018年中考数学复习 第一部分 考点研究 第八单元 统计与概率 第33课时 事件的概率与应用(含近9年中

第一部分考点研究第八单元统计与概率第33课时事件的概率与应用浙江近9年中考真题精选(2009~2017)命题点1事件的分类及意义(杭州2012.3,台州2考)1. (2010杭州14题3分)“a是实数,|a|≥0”这一事件是( )A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件2. (2012杭州3题3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到白球是不可能事件C. 摸到红球与白球的可能性相等D. 摸到红球比摸到白球的可能性大命题点2概率的意义(台州2014.6)3. (2014台州6题4分)某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是( )A. 购买100个该品牌的电插座,一定有99个合格B. 购买1000个该品牌的电插座,一定有10个不合格C. 购买20个该品牌的电插座,一定都合格D. 即使购买1个该品牌的电插座,也可能不合格命题点3概率的计算类型一一步概率(杭州4考,台州2考,温州4考,绍兴必考)4. (2016绍兴5题4分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A. 16B. 13C. 12D. 235. (2014湖州7题3分)已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A. 1B. 2C. 3D. 46. (2013义乌9题3分)为支援雅安灾区,小慧准备通过爱心热线捐款,他只记得号码的前5位,后三位由5、1、2这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是( )A. 12B. 14C. 16D. 187. (2016湖州7题3分)有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6.若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是( )A. 16B. 14C. 13D. 128. (2014宁波7题4分)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A. 12B. 25C. 37D. 47第8题图9. (2015杭州9题3分)如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为 3的线段的概率为( )第9题图A. 14B. 25C. 23D. 5910. (2017丽水14题3分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是________.第10题图11. (2013衢州13题4分)小芳同学有两根长度为4 cm 、10 cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是________.第11题图12. (2012温州20题9分)一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是310.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.13. (2013杭州21题10分)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其他均相同)打乱顺序重新排列,从中任.意.抽取..1.张.卡片. (1)在序号中,是20的倍数的有:20,40,能整除20的有:1、2、4、5、10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k 是满足1≤k≤50的整数),则序号是k 的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.类型二 两步概率(杭州2考,台州4考,温州2015.12)14. (2017金华8题3分)某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A. 12B. 13C. 14D. 1615. (2014杭州9题3分)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )第15题图A. 316B. 38C. 58D. 131616. (2016台州5题4分)质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )A. 点数都是偶数B. 点数的和为奇数C. 点数的和小于13D. 点数的和小于217. (2015温州12题5分)一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同,现随机从袋中摸出两个球,颜色是一红一蓝的概率是________.18. (2017台州15题5分)三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.类型三三步概率(绍兴2012.13)19. (2012绍兴13题5分)箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是________.命题点4概率与统计结合 (杭州2考,温州2017.19)20.(2016杭州12题4分)已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图,在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是________.第20题图21. (2017温州19题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数;(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”.已知小聪不在A班,求他和小慧被分到同一个班的概率(要求列表或画树状图).第21题图22. (2016衢州20题8分)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展、体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整).请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级数比较合理?第22题图答案1. A2. D 【解析】A.摸到红球是随机事件,故A 选项错误;B.摸到白球是随机事件,故B 选项错误;C.∵袋中装有红球2个,白球1个,故摸到红球的可能性大于摸到白球的可能性,故C 选项错误;D 选项正确.3.D4. C 【解析】易知每次出现1、2、3、4、5、6的机会均等,则出现偶数的可能性为2、4、6,故投掷一次,朝上一面的数字是偶数的概率为36=12.5. A 【解析】根据题意得:22+3+a =13,解得a =1,经检验,a =1是原方程的解,∴a =1.6. C 【解析】∵他只记得号码的前5位,后三位由5,1,2这三个数字组成,∴可能的结果有512,521,125,152,251,215,∴他第一次就拨通电话的概率是16.7. C 【解析】任意抛掷一次,朝上的面的点数有6种等可能的结果,其中满足|x -4|=2的x 有2和6两种情况,所以所求概率为26=13.8. D 【解析】如解图,C 1,C 2,C 3,C 4均可与点A 和B 组成直角三角形,∴P =47.第8题解图第9题解图9. B 【解析】可计算出连接正六边形任意两顶点所得到的线段共有5+4+3+2+1=15条,如解图,在正六边形ABCDEF 中,连接AC ,设中心为点O ,连接OB 交AC 于点G ,连接OA .由正六边形的性质易知∠AOB =60°,OA =OB ,则△AOB 为等边三角形,∴∠ABO=60°,∵AB =1,∴AG =32,∴AC = 3 .∴隔一个顶点连接两点所得到的线段长为3,即长度为3的线段有6条,∴在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为615=25.10. 13【解析】如解图,由6个小正方形组成的2×3网格中任意选取5个小正方形涂黑的方法有6种,而黑色部分图形是轴对称图形的只有②和⑤共2种,故所求概率为26=13.第10题解图11. 25 【解析】根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”得,第三边x 应满足6 cm<x <14 cm ,从而可知能钉成三角形相框的第三边可取10 cm ,12 cm 长的木棒,∴从中任选一根,能钉成三角形相框的概率是25.12. 解:(1)100×310=30,∴红球有30个;(3分)(2)设白球有x 个,则黄球有(2x -5)个, 根据题意得x +2x -5=100-30, 解得x =25.∴摸出一个球是白球的概率为P =25100=14;(6分)(3)从剩余的球中摸出一个球是红球的概率为P =30100-10=13.(9分)13. 解:(1)由题意可知,在序号中,是20的倍数的有:20,40两个,能整除20的有:1,2,4,5,10五个,∴P(取到的卡片上序号是20的倍数或能整除20的概率)=250+550=750;(3分)(2)不公平,无论k 为何值都能被1整除,则序号为1的学生被选中去参加活动的概率为1,而其他学生被选中的概率不为1;(7分)(3)分五组,1~10,11~20,21~30,31~40,41~50,任取一张卡片,这张卡片是哪一组的,这一组的人就全部选中,每个人的选中概率P =15×110=150.(10分)14. D 【解析】列表如下:第一名第二名 甲乙丙丁甲 乙,甲 丙,甲 丁,甲 乙 甲,乙 丙,乙 丁,乙 丙 甲,丙 乙,丙 丁,丙丁甲,丁乙,丁丙,丁由列表可知共有12种等可能情况,其中甲、乙同学获得前两名的情况有2种,则甲、乙同学获得前两名的概率P =212=16.15. C 【解析】列表如下:所有等可能的情况有16种,其中两个数的和是2的倍数或3的倍数的情况有10种,则所求概率P =1016=58.16. C 【解析】质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,共有以下36种等可能情况:其中点数都是偶数的情况有9种,点数的和为奇数的情况有18种,点数的和小于13的情况有36种,点数的和小于2的有0种,所以点数的和小于13的可能性最大.17. 23 【解析】随机摸出两个球共有3种不同的情况:红蓝1、红蓝2、蓝1蓝2,其中一红一蓝的情况共有2种,所以P (一红一蓝)=23. 18. 13【解析】根据题意画树状图如解图,每个运动员抽签的可能性相等,∵每个运动员的出场顺序都发生变化的有两种情况:乙、丙、甲,丙、甲、乙,∴每个运动员的出场顺序都发生变化的概率为26=13.第18题解图19. 13【解析】画树状图如解图,∵共有24种等可能的结果,第二个人摸出红球且第三个人摸出白球的有8种情况,∴第二个人摸出红球且第三个人摸出白球的概率是824=13.第19题解图20. 12【解析】棕色糖果占总数的百分比为1-(20%+15%+30%+15%)=20%.绿色糖果或棕色糖果占总数的百分比为30%+20%=50%,∴取出的糖果的颜色为绿色或棕色的概率=50%,即12. 21. 解:(1)由条形统计图可知,本次共调查了15+27+18+36=96(人),其中选择“数学故事”的有18人,则选择“数学故事”的人数的频率为1896=316,(2分)所以该校七年级480名学生中,选择“数学故事”的有480×316=90(人);(4分)(2)列表如下:小慧小聪 A B CB AB BB CBC AC BC CC由列表可知,共有6种等可能情况,其中小聪和小慧分到同一班的可能性有2种, ∴P(小聪小慧分到同一班)=26=13.(8分)22. 解:(1)总人数:15÷25%=60(人),选A 的人数:60-24-15-9=12(人),12÷60=0.2=20%,∴m =20.(2分)补全条形统计图如解图所示;某校选课意向情况条形统计图第22题解图(3分)(2)所求概率是24+960=1120;(5分)(3)800×25%=200(人),200÷20=10(班),∴学校开设10个“实践活动类”课程的班级数比较合理.(8分)。

2018年秋九年级数学上册第2章简单事件的概率2.1事件的可能性同步练习2(新版)浙教版

2018年秋九年级数学上册第2章简单事件的概率2.1事件的可能性同步练习2(新版)浙教版

2.1事件的可能性一、选择题1. 2017 •新疆下列事件中,是必然事件的是 ( )A. 购买一张彩票,中奖B. 通常温度降到 0 C 以下,纯净的水结冰C. 明天一定是晴天D. 经过有交通信号灯的路口,遇到红灯 2 •“若a 是实数,则| a | > 0”这一事件是( )A.必然事件 B .不可能事件C.随机事件 D •无法判断5个黑球和3个白球,这些球的大小、质 地完全相同,随机从袋子中摸出口 4个球.则下列事件是必然事件的是二(一曰九二 冃小 •丿 > :A. 摸出的4个球中至少有一个球是白球 订彳[行二?[0彳”B. 摸出的4个球中至少有一个球是黑球L「巖曲t 信号全品初中优渤师(;小州「则C. 摸出的4个球中至少有两个球是黑球D.摸出的4个球中至少有两个球是白球4•在日常生活中,我们经常使用一些成语来形容事情发生的可能性的大小:①十拿九 稳;②平分秋色;③百发百中;④希望渺茫;⑤天方夜谭•按可能性从大到小排列为( )A.①②③④⑤ B .③①②⑤④ C.③①②④⑤ D .③①④⑤②5. 2016 •台州一枚质地均匀的骰子的六个面上分别刻有 得到向上一面的两个点数,则下列事件中,发生可能性最大的是A.点数都是偶数 B .点数的和为奇数 C.点数的和小于13 D .点数的和小于 23. 2016 •金华期中一个不透明的袋子中装有二】1到6的点数,扔两次骰子, ( )6. 袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A. 3个B .不足3个 C. 4个D . 5个或5个以上 二、填空题7. 2017 •泰州一只不透明的袋子共装有3个小球,它们的标号分别为1 , 2, 3,从中摸出1个小球,标号为“ 4”,这个事件是 _________ .(填“必然事件”“不可能事件”或“随 机事件”)&甲、乙、丙、丁四名运动员参加4X 100米接力赛,丁必须为第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有 ____________ 种.9. 从一副扑克牌中任意抽取 1张.④这张牌是“红色的”._ s 1■. C? i I £ I " J J _ , ”/ . f I10. 甲、乙两人各自掷一枚质地均匀的正方体骰子,如果朝上一面的点数之积为奇数,那么甲得1分,乙不得分;如果朝上一面的点数之积为偶数,那么乙得;髡則ip 1分,甲不得分•连 续投掷20次,谁得分高,谁获胜,那么 __________ 获胜的可能性大.11•有一枚质地均匀的正方体骰子,其中有5个面分别写有数字1, 2, 2, 3, 4,任意掷一次,如果“3”朝上的可能性与“ 2”朝上的可能性相同,那么该骰子第6个面上应标上 数字 _________ .①这张牌是 “ A”;②这张牌是 “红桃”; ③这张牌是 “大王”; ―1 L ----- J s ——上(填序号,用“V”连接) 填讥用〔严接将这些事件按发生的可能性从小到大排列EZZl諮&赃牟齐5个红球、3个蓝球和2个白 不可能事件,还是必然事件.(2)从口袋中一次任意取出 5个球,全是蓝球;(3)从口袋中一次任意取出5个球,只有蓝球和白球,没有红球;(4)从口袋中一次任意取出 6个球,恰好红、蓝、白三种颜色的球都齐全了;三、解答题12. 在一个不透明的口袋中装有大小、外形等一模一样的球,它们已经在口袋中被搅匀了. 请判断以下事件是随机事件、(1) 从口袋中任意取出1个球,是白球;⑸从口袋中一次任意取出6个球,有红色的球.13. 有A, B, C三种不同款式和颜色的上衣和D, E, F三种不同款式和颜色的裤子,而且任何一种上衣均可和任何一种裤子配套,已知A种上衣,D种裤子均由甲设计,B, C两种上衣和E, F 两种裤子均由乙设计.(1) 选取A种上衣和F种裤子是甲设计,这属于哪类事件?选取B种上衣和E种裤子是乙设计,这属于哪类事件?(2) 选取一种上衣,有几种不同的可能?它们属于哪类事件?(3) 选取一种上衣和一种裤子配套,共有几种不同的可能?请用列表法或树状图表示出来.14. 一个质地均匀的转盘被等分成六个扇形,并在上面依次写上 1 , 2, 3, 4, 5, 6, 自由转动转盘,当转盘停止转动时:(1) 指针所指数字有几种可能情况?(2) 比较指针指向奇数与指向偶数的可能性的大小;(3) 请你设计一个方案,使转盘停止转动时,指针指向区域的可能性大于指针指向其他区域的可能性.15两个多项式相加,和是多项式,这个事件是什么事件?请举例说明.16 某篮球队在平时训练中,运动员甲的3 分球命中率是80%,运动员乙的3 分球命中率是40%.在一场比赛中,甲投 3 分球 5 次,命中一次;乙投 3 分球 6 次,命中5 次.全场比赛即将结束,甲、乙两人所在球队还落后对方球队 2 分,但只有最后一次进攻机会了,若你是这个球队的教练,问:最后一个3 分球由甲、乙两人谁来投,可使获胜的机会更大?请简要说明你的理由.1. [答案]B2. [答案]A3. [答案]B4. [答案]C5. [答案]C6. [答案]D7. [答案]不可能事件 & [答案]69. [答案]③<①<②<④ 10. [答案]乙11. [答案]313 .解:(1)不可能事件,必然事件. (2)有3种不同的可能,属于不确定事件.⑶列表如下:件.件.12.解:(1)从口袋中任意取出-||l 个球, .■一 r •翠口(2)从口袋中一次任意取出 5个球,全是蓝球,I 联碗号步5个球, rm 厶、音-给金u是白球,可能发生,也可能不发生,是随机事(3)从口袋中一次任意取出 发生,是随机事件.:笙品初甲优甥靱隅只有蓝球和白球,没有红球,可能发生,也可能不(4) 从口袋中一次任意取出 也可能不发生,是随机事件.6个球, 恰好红、蓝、白三种颜色的球都齐全了, 可能发生, (5)从口袋中一次任意取出6个球,有红色的球,一定会发生,是必然事件.•••共有9 种可能:(A , D), (A , E), (A , F) , (B , D), (B , E), (B , F), (C, D), (C, E), (C,F).14. 解:(1)转盘停止转动时,指针所指数字是一个随机事件,数字1〜6都有可能被指到,因此指针所指数字共有 6 种可能情况.(2)在数字1〜6中,奇数与偶数的个数相同(均为3个),因此当转盘停止转动时,指针指向奇数和指向偶数的可能性的大小相同.(3)答案不唯一,如可设计为:当转盘停止转动时,指针指向的数字不小于 3.15. 解:是不确定事件.如多项式2a + 1与3a + 1的和是5a+ 2,仍是多项式;又如多项式2a+ 1与3a—1的和是5a,是单项式而不是多项式.16. 解:由于在平时训练中,运动员甲的 3 分球的命中率高,故由甲来投;或由于运动员乙在场上的命中率高,故由乙来投. (答案不唯一)。

浙江省2018年中考数学总复习 第六章 统计与概率 课后练习32 简单事件的概率及其应用作业本

浙江省2018年中考数学总复习 第六章 统计与概率 课后练习32 简单事件的概率及其应用作业本

课后练习32 简单事件的概率及其应用A 组1.(2016·金华)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.342.(2016·台湾)甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?( )A.13B.16C.27D.7123.(2016·湖北)一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球 个.4.(2016·重庆)从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是 .5.(2017·台州)三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为____________________.6.有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为____________________.7.小芳同学有两根长度为4cm 、10cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是 .第7题图8.(2016·沈阳)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A ,B ,C 依次表示这三个诵读材料),将A ,B ,C 这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.B组9.(2017·温州模拟)同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=-x2+3x上的概率为( )A.118B.112C.19D.1610.(2016·衢州)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:第10题图(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?11.(2017·武汉模拟)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:第11题图(1)本次抽样测试的学生人数是____________________;(2)图1中∠α的度数是____________________,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为____________________;(4)测试老师想从4位同学(分别记为E 、F 、G 、H ,其中E 为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.12.如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全..等.但面积相等的三角形是 (只需要填一个三角形);第12题图(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表格求解).C 组13.“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为13;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为25. (1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)参考答案课后练习32 简单事件的概率及其应用A 组1.A 2.B 3.8 4.16 5.13 6.19 7.258.(1)13(2)列表得:6种.所以小明和小亮诵读两个不同材料的概率=69=23. B 组9.A第10题图10.(1)总人数=15÷25%=60(人).A 类人数=60-24-15-9=12(人).∵12÷60=0.2=20%,∴m =20.条形统计图如图; (2)抽到选“体育特长类”或“艺术特长类”的学生的概率=24+960=1120; (3)∵800×25%=200人,200÷20=10个,∴开设10个“实践活动类”课程的班级比较合理.11.(1)40人 (2)54° C 级人数14人,补图略. (3)700人 (4)列表或画树形图略,P (选中小明)=12. 12.(1)△DFG 或△DHF (2)画树状图:第12题图由树状图可知共有6种等可能结果.其中与△ABC 面积相等的有3种,即△DHF ,△DFG ,△EGF ,∴所画三角形与△ABC 面积相等的概率P =36=12.C 组13.(1)设爸爸买的火腿粽子和豆沙粽子分别为x 只、y 只,根据题意得:⎩⎪⎨⎪⎧x x +y =13,x -3x -3+y -7=25,解得:⎩⎪⎨⎪⎧x =5,y =10.经检验符合题意,所以爸爸买了火腿粽子5只、豆沙粽子10只. (2)由题可知,盒中剩余的火腿粽子和豆沙粽子分别为2只、3只,我们不妨把两只火腿粽子记为a 1、a 2;3只豆沙粽子记为b 1、b 2、b 3,则可列出表格如下:∴P =1220=35.。

浙江省2018年中考数学总复习 第六章 统计与概率 第31讲 数据的分析及其应用讲解篇

浙江省2018年中考数学总复习 第六章 统计与概率 第31讲 数据的分析及其应用讲解篇

第31讲数据的分析及其应用1.数据的代表2.数据的波动1.(2017·湖州)数据-2,-1,0,1,2,4的中位数是( )A .0B .0.5C .1D .22.(2017·温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是( )A.5个B.6个C.7个D.8个3.(2017·绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A.甲B.乙C.丙D.丁4.(2017·台州)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A.方差B.中位数C.众数D.平均数【问题】某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表(1)a=________,x乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中;(4)通过(1)、(2)、(3)解答体验,数据的分析应运用哪些统计量,这些统计量特点是什么?【归纳】通过开放式问题,归纳、疏理统计量:平均数、中位数、众数、极差、方差、标准差,以及它们的特征;对统计量进行合理地选择和恰当地运用,全面、多角度地去分析已有数据,利用数据进行决策.类型一 平均数、众数和中位数的计算与应用例1 (2017·嘉兴模拟)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2017年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( )A .中位数是55B .众数是60C .方差是29D .平均数是54【解后感悟】此题主要运用了平均数、众数、中位数及方差的知识,解题时分别计算出众数、中位数、平均数及方差后找到正确的选项即可.求中位数这类问题一般要把数据从小到大排列,设数据的总数为n ,若n 为奇数,则中位数为第n +12个数;若n 为偶数,则中位数为第n 2个数与n2+1个数的平均数.例2 (2016·衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的( )A .众数B .方差C .平均数D .中位数【解后感悟】此题反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用;解决这类问题的关键是弄清概念,平均数的大小与一组数据里的每一个数据均有关系,其中任何一个数据的变动都会引起平均数的变动;众数着眼于各数据出现的频率,其大小只与这组数据中的部分数据有关,可以是一个或多个;中位数则与数据的排列位置有关,某些数据的变动对中位数没有影响,计算时要分清数据是奇数个,还是偶数个.1.(1)(2015·宁波)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是( )A.方差B.平均数C.中位数D.众数(2)(2016·台湾)图1、图2分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b;中位数分别为c、d,则下列关于a、b、c、d的大小关系,何者正确?( )A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d2.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9.乙:5,9,7,10,9.(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差____________________.(填“变大”、“变小”或“不变”).类型二方差、标准差的计算与应用例3(2015·吉林)要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差S2甲,S2乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选______参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.【解后感悟】方差是用来衡量一组数据波动大小的量,一般地设n个数据,x1,x2,…,x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.(2017·舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a-2,b-2,c-2的平均数和方差分别是( )A.3,2 B.3,4 C.5,2 D.5,44.(2017·郑州模拟)九(3)班为了参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,根据成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数x甲组=7,方差S2甲组=1.5.请通过计算说明,哪一组成绩优秀的人数较稳定?类型三利用统计量解决实际问题例4(2016·青岛)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【解后感悟】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用;熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.5.八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).【实际探究题】小亮和小红在公园放风筝,不小心让风筝挂在树梢上,风筝固定在A处(如图),为测量此时风筝的高度,他俩按如下步骤操作:第一步:小亮在测点D处用测角仪测得仰角∠ACE=β.第二步:小红量得测点D处到树底部B的水平距离BD=a.第三步:量出测角仪的高度CD=b.之后,他俩又将每个步骤都测量了三次,把三次测得的数据绘制成如下的条形统计图和折线统计图.请你根据两个统计图提供的信息解答下列问题.(1)把统计图中的相关数据填入相应的表格中:(2)根据表中得到的样本平均值计算出风筝的高度AB.(参考数据:3≈1.732,2≈1.414,结果保留3个有效数字).【方法与对策】本题是实践性应用题,通过社会实践活动来收集数据、整理和分析数据,得出结论;同时该题利用统计图来结合直角三角形,在解直角三角形时,如果有直角三角形直接利用边角关系直接求出,如果没有直角三角形可以构造直角三角形再利用边角关系去解.这类题型解直角三角形与统计结合是中考命题趋向.【忽视选用合适的公式计算平均数】某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表,则这20户家庭这个月的平均用水量是吨.参考答案第31讲数据的分析及其应用【考点概要】1.x1+x2+…+x nnx1f1+x2f2+…+x n f nf1+f2+…+f n中间位置平均数次数最多 2.平均数1n[(x1-x)2+(x2-x)2+…+(x n-x)2] 大大【考题体验】 1.B 2.C 3.D 4.A 【知识引擎】【解析】(1)求乙射的总环数→计算表中已知总环数→求a ,x乙.故答案4,6. (2)观察乙表中成绩数→在折线图上描点连线.如图. (3)方差的概念→计算乙的方差→比较甲、乙方差大小→结论.①乙,乙的方差=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于甲的方差是3.6,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.(4)平均数、中位数、众数、极差、方差、标准差.反映数据集中程度的统计量有平均数、中位数、众数;反映数据的离散程度的统计量有极差、方差、标准差.【例题精析】 例1 C例2 因为7名学生进入前3名肯定是7名学生中最高成绩的3名,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D .例3 (1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环); (2)根据图象可知:甲的波动大于乙的波动,则S 2甲>S 2乙; (3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.例4 (1)甲的平均成绩a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b =7+82=7.5(环),其方差c =110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2; (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【变式拓展】 1.(1)D (2)A2. (1)8 8 9 (2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛. (3)变小3. B4.(1)∵第一次成绩优秀的人数是11人,优秀率为55%,∴选取的学生总人数为1155%=20(人).∴第三次成绩的优秀率是1320×100%=65%.∴乙组第四次成绩优秀的人数为20×85%-8=9(人),补图略. (2)乙组成绩优秀人数的平均数为x 乙组=6+8+5+94=7,方差S 2乙组=14[(6-7)2+(8-7)2+(5-7)2+(9-7)2]=2.5.∵两组成绩优秀人数的平均数相同,甲组成绩优秀人数的方差小于乙组成绩优秀人数的方差,∴甲组成绩优秀的人数较稳定.5.(1)x =(19+17+15+17)×5+(2+2+1)×(-2)4=82.5(分). (2)①设E同学答对x 题,答错y 题,由题意得⎩⎪⎨⎪⎧5x -2y =58,x +y =13,解得⎩⎪⎨⎪⎧x =12,y =1,∴E 同学答对12题,答错1题. ②C 同学,他实际答对14题,答错3题,未答3题.【热点题型】【分析与解】(1)要根据题中所给的条形统计图和折线统计图完成下列表格.(2)四边形BDCE 为矩形,∴EC =BD =15.81m ,BE =CD =1.32m ,∠AEC =90°,在Rt △AEC 中,∠AEC =90°,∠β=30°,∵tan β=AE EC .∴AE =EC·tan 30°=15.81×33≈15.81×0.577≈9.122m .∴AB =AE +BE =9.122+1.32≈10.4(m ).∴风筝的高度AB 约为10.4m .【错误警示】平均用水量为x =4×3+5×8+6×4+8×520=5.8(吨),故填5.8.。

浙教版九年级上册《简单事件的概率》各节知识点及典型例题

浙教版九年级上册《简单事件的概率》各节知识点及典型例题

浙教版九年级上册《简单事件的概率》各节知识点及典型例题(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--浙教版九年级上册《简单事件的概率》各节知识点及典型例题第一节事件的可能性第二节简单事件的概率第三节用频率估计概率第四节概率的简单应用【课本相关知识点】1、在一定条件下一定发生的事件叫作必然事件;在一定条件下一定不会发生的事件叫作不可能事件;在一定条件下可能发生,也可能不发生的事件叫作不确定事件或随机事件。

2、为了确定简单事件发生的各种可能的结果,通常用列表、画树状图法。

当实验包含两步时,用列表法与画树状图法求发生的结果数均比较方便;但当实验存在三步或三步以上时,用画树状图的方法求事件发生的结果数较为方便。

【典型例题】题型一、识别事件类型例1、下列事件是必然事件的是()A. 水加热到100℃就要沸腾B. 如果两个角相等,那么它们是对顶角C.两个无理数相加,一定是无理数D. 如果|a|+,那么a=0,b=0练习.(2013•武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球 B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球 D.摸出的三个球中至少有两个球是白球题型二、用列表、画树状图法确定简单事件发生的各种可能的结果例2、(2011•成都)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试。

小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.用树状图或列表法表示出所有可能的结果练习.(2013•江西)甲、乙、丙三人聚会,每人带了一个从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第32讲简单事件的概率及其应用1.事件的分类2.概率的意义与计算1.(2017·宁波)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .12B .15C .310D .7102.(2017·舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )游戏规则:若一人出“剪刀”,另一人出“布”,则出“剪刀”者胜;若一人出“锤子”,另一人出“剪刀”,则出“锤子”者胜;若一人出“布”,另一人出“锤子”,则出“布”者胜.若两人出相同的手势,则两人平局.A .红红不是胜就是输,所以红红胜的概率为12B .红红胜或娜娜胜的概率相等C .两人出相同手势的概率为13D .娜娜胜的概率和两人出相同手势的概率一样3.(2017·金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A .12B .13C .14D .16【问题】小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1,2,3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树状图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜;两次抽出的纸牌数字之和为偶数,则小明获胜.这个游戏公平吗?为什么?(3)通过(1)、(2)解答,①你认为求概率有哪几种方法,应注意哪些问题? ②利用概率设计游戏方案应注意哪些问题?【归纳】通过开放式问题,归纳、疏理用列举法求概率;用树状图(表)求概率;用频率估计概率;用树状图或列表的方法来求事件的概率时:①要认真弄清题意,分清是“一步实验”还是“两步或两步以上实验”;②要在所有等可能的结果中,仔细筛选出符合题意的结果个数,代入“P(A)=事件A发生的可能的结果总数”中求出概率,谨防出错.所有可能的结果总数类型一判断事件的类型例1事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是()A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)【解后感悟】判断简单基本事件的概率,必然事件的概率为1,不可能事件的概率为0,不确定事件的概率值在0与1之间.1.某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是()A.购买100个该品牌的电插座,一定有99个合格B.购买1000个该品牌的电插座,一定有10个不合格C.购买20个该品牌的电插座,一定都合格D.即使购买1个该品牌的电插座,也可能不合格2.(2015·广西)小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为____________________事件(填“必然”或“不可能”或“随机”).类型二计算简单事件的概率例2在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4,从袋中随机地摸取一个小球后然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是________.【解后感悟】当一次试验涉及多个因素(对象)时,常用“列表法”或“树状图法”求出事件发生的等可能性,然后找出要求事件发生的结果数,根据概率的意义求其概率.简单事件的概率的求法一般有列表法、画树状图法和列举法;通过画树状图或列表的方法可以将复杂的问题化繁为简,化难为易,这种方法能把所有可能的结果一一列举出来,从而能较简便地求出事件发生的概率.3.(1)(2017·湖州)一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是( )A .116B .12C .38D .916(2)(2015·内江)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )A .112B .512C .16D .12(3)(2015·牡丹江)学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A .19B .16C .13D .124.(2015·南昌)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.类型三 用频率估计概率例3 (2016·兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球 个.【解后感悟】利用频率估计概率,一般地,在大量重复实验中,如果事件A 发生的概率mn稳定于某个常数p ,那么这个常数p 就叫做事件A 的概率,记做P(A)=p(0≤P(A)≤1).5.(2017·上虞模拟)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是4类型四 与概率有关的一些数学问题例4 (2017·黄岗模拟)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A .12B .13C .14D .16【解后感悟】此题运用了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是根据平行线的性质求出阴影部分的面积与总面积的比.6.(1)(2015·泰安)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .45(2)(2017·武汉模拟)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A .12B .25C .37D .477.(1)(2015·烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为____________________.(2)(2015·郴州)在m2□6m□9的“□”中任意填上“+”或“-”号,所得的代数式为完全平方式的概率为____________________.类型五概率的实际应用例5(2015·资阳)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【解后感悟】此题运用了列表法或树状图法求概率以及条形统计图与扇形统计图,概率=所求情况数与总情况数之比.例6(2016·宜昌)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.【解后感悟】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.(2015·扬州)“2015扬州鉴真国际半程马拉松”的赛事共有三项:A.“半程马拉松”、B.“10公里”、C.“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为 ; (2)求小明和小刚被分配到不同项目组的概率.【实际应用题】一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于13,问至少取出了多少个黑球?【方法与对策】此题主要是概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=mn ;该题亮点在于概率应用于不等量关系之中,即概率与一元一次不等式结合,概率还可以和方程、几何结合.这类题型是中考命题的方向.【不画树状图产生的错误.】掷两枚硬币,规定落地后,国徽朝上为“正”,国徽朝下为“反”,则会出现以下三种情况:“正正”、“反反”、“正反”,分别求出每种情况的概率.参考答案第32讲 简单事件的概率及其应用【考点概要】1.必然事件 不可能事件 可能发生也可能不发生 2.概率 m n【考题体验】 1.C 2.A 3.D 【知识引擎】【解析】(1)列表如下:(2)可能出现的数字之和分别为2,3,4,3,4,5,4,5,6共9种可能,它们出现的可能性相同.其中奇数共4个,偶数共5个.∴P (小昆获胜)=49,P (小明获胜)=59.∵49≠59,∴游戏不公平. (3)①列举法求概率;用树状图(表)求概率;利用频率估计概率.注意列表和画树状图的目的都是不重不漏地列举所有可能性相等的结果;利用频率估计概率应在大量重复实验中去估计. ②游戏公平与否,关键是根据规则算出各自的概率,概率均等则游戏公平,否则就不公平.设计游戏规则时,应先根据题意求出随机事件的各种可能出现的情况的概率,再根据其中概率相等时的情况设计公平的游戏规则,也可根据概率不相等时的情况设计公平的游戏规则.【例题精析】例1 事件A :打开电视,它正在播广告,是不确定性事件,其概率0<P(A)<1;事件B :抛掷一个均匀的骰子,朝上的点数小于7,是必然事件,其概率P(B)=1;事件C :在标准大气压下,温度低于0℃时冰融化,是不可能事件,其概率P(C)=0.于是有P(C)<P(A)<P(B).故选B .例2 29例3 ∵摸到黄球的频率稳定在30%,∴在大量重复上述实验下,可估计摸到黄球的概率为30%=0.3,而袋中黄球只有6个,∴推算出袋中小球大约有6÷0.3=20(个),故答案为:20.例4 根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成四个面积相等的三角形,根据平行线的性质可得S 1=S 2,则阴影部分的面积占14,故飞镖落在阴影区域的概率为:14;故选:C .例5 (1)20 (2)如图(3)列表如下:A 类中的两名男生分别记为A 1和A 2共有6和一位女生的概率为:36=12.例6 (1)“小李同学在该天早餐得到两个油饼”是不可能事件; (2)树状图法:即小张同学得到猪肉包和油饼的概率为212=16.【变式拓展】1.D 2.随机 3.(1)D (2)A (3)C4. (1)当袋子中全为黑球,即取出4个红球时,摸到黑球是必然事件;当取出2个或3个红球时,摸到黑球为随机事件,故答案为:4;2,3. (2)根据题意得:6+m 10=45,解得:m =2,所以m 的值为2.5. D6.(1)C (2)D7.(1)34 (2)128.(1)13(2)设三种赛事分别为1,2,3,列表得:,3);(3,1);(3,2);(3,3),小明和小刚被分配到不同项目组的情况有6种,所以P(小明和小刚被分配到不同项目组)=69=23.【热点题型】【分析与解】(1)根据概率公式,求摸到黄球的概率,即用黄球的个数除以小球总个数即可得出黄球的概率.∵一个不透明的袋中装有5个黄球,13个黑球和22个红球,∴摸出一个球摸到黄球的概率为:55+13+22=18. (2)假设取出了x 个黑球,则放入x 个黄球,进而利用概率公式得出不等式,求出即可.由题意,得5+x 5+13+22≥13,解得:x ≥253,答:至少取出了9个黑球.【错误警示】 画树状图如下:因此共有四种情况,其中“正正”出现一次,概率为14;“正反”出现二次,概率为12;“反反”出现一次,概率为14.。

相关文档
最新文档