数学建模介绍

合集下载

数学建模简单13个例子全解

数学建模简单13个例子全解

数学建模简单13个例子全解数学建模是一种将数学方法和技术应用于实际问题解决的过程。

它是数学领域的一个重要分支,具有广泛的应用和重要的研究价值。

数学建模能够帮助我们理解和解决许多复杂的现实问题,对于推动科学研究和技术开发具有重要作用。

在现代科学和工程领域,数学建模被广泛运用于各种领域,包括物理、生物、经济、环境、社会等。

通过数学建模,我们可以通过数学方法对问题进行抽象和化简,然后利用数学工具和技术进行分析和求解。

数学建模的过程通常包括问题定义、模型构建、模型分析和模型验证等步骤,其中数学模型的选择和建立是关键的一步。

数学建模的重要性在于它能够帮助我们更好地理解和解决复杂的现实问题。

通过数学建模,我们可以用精确的数学语言和方法描述问题,通过数学分析和计算实现对问题的量化和定量化,为问题的解决提供科学的依据和方法。

数学建模还能够帮助我们发现问题中的规律和关联,提供新的洞察和预测,促进科学的发展和技术的创新。

本文将介绍数学建模的概念和重要性,并给出简单13个例子的全解。

通过这些例子,我们可以更加深入地了解数学建模的基本方法和技巧,培养和提高自己的数学建模能力,为解决实际问题提供有益的借鉴和参考。

描述如何利用数学建模解决鱼群聚集问题,并阐述模型的步骤和应用在鱼群聚集模型中,我们希望通过数学建模来解释鱼群在水中聚集的现象,并找到一种合适的模型来描述鱼群的行为。

步骤:收集数据:首先,我们需要收集关于鱼群聚集的现实数据。

这些数据可以包括鱼群的数量、鱼群的密度、鱼群的移动速度等。

建立模型:基于收集到的数据,我们可以建立一个数学模型来描述鱼群的聚集行为。

常用的模型包括离散模型和连续模型。

离散模型:离散模型将鱼群视为一组个体,每个个体根据一定的规则进行移动和相互作用。

常见的离散模型包括离散元胞自动机模型和离散粒子模型等。

连续模型:连续模型将鱼群视为一个连续的流体,采用偏微分方程来描述鱼群密度的演化。

常见的连续模型包括Navier-Stokes方程和Birds模型等。

数学建模介绍

数学建模介绍

数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。

一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。

究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。

这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。

(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。

如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。

这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。

数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。

数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。

建立数学模型的过程称为数学建模。

(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。

在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。

计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。

数学建模最简明易懂的介绍

数学建模最简明易懂的介绍

数学建模最简明易懂的介绍黑龙江农业经济职业学院基础部 邢进喜 157041一.什么是数学模型与数学建模简单地说,数学模型就是对实际问题的一种数学表述,可以是数学公式、函数、方程、不等式、算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。

二.数学建模的一般步骤(1)模型准备:了解问题的实际背景,明确题目的要求,查阅相关资料,收集各种必要的信息。

(2)模型假设:为了利用数学方法,通常要对问题做出必要的、合理的假设,使问题的主要方面凸现出来,忽略问题的非本质的、不影响问题解决的次要方面。

(3)模型构成:根据所做的假设及所研究对象的内在规律,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。

构造各种量之间的关系,把问题化为数学问题。

(4)模型求解:运用适当的数学方法求解上一步所得到的数学问题,有时还要借助数学软件。

(5)模型分析:对所得的结果进行数学上的分析,特别要注意当数据变化时所得结果是否稳定。

(6)模型检验:分析所得结果的实际意义,与实际现象、数据等情况进行比较,检验模型的准确性、合理性和适用性。

如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。

如果不够理想,应该修改、补充假设,或重新建模,不断完善。

(7)模型应用:所建立的模型必须能在实际中应用,能产生实际效益,能在应用中不断改进和完善。

应用方式与问题性质、建模目的及最终结果有关。

三.简单实例示意――观看塑像的最佳位置[注:这仅是一个要点式的数学建模方法示例]问题提出大型的塑像通常都有一个比人还高的底座,看起来雄伟壮观。

但当观看者与塑像的水平距离不同时,观看像身的视角就不一样。

那么,在离塑像的水平距离为多远时, 观看像身的视角最大?模型假设与符号说明a OS MT ==-------人眼高;b AB =-------塑像身高;c AT =-------底座高, c a >;d AM c a ==-;x ST OM ==-------人与塑像水平距离;;MOA MOB αβ=∠=∠;AOB θβα=∠=-------观看像身的视角.模型建立、求解与分析∵tan α=/AM OM =/d x , tan β=/BM OM =()/b a x +()arctanarctan b d d x x x θ+∴=-, 2222()d d b d dx x d x b d θ+=-+++ 令0d dxθ=,解出唯一驻点 ,此数恰是AM 与BM 的几何平均 根据经验,此问题θ必有最大值,且x =模型检验、应用与推广举例例1.上海外滩海关大钟直径为5.5米, 钟底到地面高为56.75米.设某观看者眼高为1.55米,则b=5.5,d=56.75-1.55=55.2,最佳位置是x=57.88米, 0min 243'θ=例2.设有甲乙两观看者,甲高乙矮,则两者的最佳位置不同,谁前谁后? 谁的最佳视角更大?四.详细资料可查阅下列书籍及网站《数学模型》姜启源,谢金星,叶俊编 全国大学生数学建模竞赛网站 中国数学建模网站/undergraduate/contests 美国大学生数学建模竞赛网站 美国建模论坛网站。

数学专业的数学建模

数学专业的数学建模

数学专业的数学建模数学建模是数学专业中重要的一门课程,它通过数学的方法和技巧解决实际问题。

本文将介绍数学建模的定义、应用领域、建模过程以及数学专业学生在数学建模中的作用。

一、数学建模的定义数学建模是将实际问题转化为数学问题,并应用数学方法和工具解决这些问题的过程。

它是数学与现实世界之间的桥梁,通过数学的抽象和建模能力,解决现实问题,提高生产效益和科学研究水平。

二、数学建模的应用领域数学建模广泛应用于各个领域,包括经济、生态、环境、物理、工程等。

在经济领域,数学建模可以帮助企业分析市场需求,制定最优营销策略;在生态领域,数学建模可以评估生物多样性,分析环境问题;在物理领域,数学建模可以解释物质运动规律;在工程领域,数学建模可以优化工艺流程,提高工程效率。

三、数学建模的过程数学建模的过程一般包括问题的分析、建立数学模型、求解模型和对结果的验证。

首先,需要对实际问题进行充分的分析,明确问题的要求和限制条件;其次,根据问题的特点,运用数学知识建立数学模型,将实际问题抽象为数学符号和方程;然后,对建立的数学模型进行求解,可以使用数值计算、优化算法等方法得到解析结果;最后,对结果进行验证,比较实际情况和模型预测,评估模型的准确性和可行性。

四、数学专业学生在数学建模中的作用数学专业学生在数学建模中发挥着重要的作用。

首先,他们具备扎实的数学基础和数学思维能力,能够快速理解和应用数学方法解决问题;其次,数学专业学生熟练掌握常用的数学工具和软件,能够高效地进行数学计算和模型求解;此外,他们对数学理论有深入的研究,能够通过对数学模型的优化和改进提升模型的准确性和可靠性。

总结:数学建模作为数学专业中重要的课程,对于培养学生的数学思维和解决实际问题的能力具有重要意义。

通过数学建模,学生能够将所学的数学知识应用到实际中,提升自己的综合素质。

希望广大学生能够重视数学建模的学习,不断提高自己的数学建模能力,为社会的发展做出贡献。

数学建模的介绍

数学建模的介绍

一、数学建模的意义 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

数学建模就是用数学语言描述实际现象的过程。

这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。

这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。

数学模型一般是实际事物的一种数学简化。

它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。

要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。

为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

使用数学语言描述的事物就称为数学模型。

有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。

建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。

要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。

这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。

数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。

对数学建模的认识

对数学建模的认识

对数学建模的认识数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。

关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。

数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。

一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济…,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进.应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1)比例分析法--建立变量之间函数关系的最基本最常用的方法.(2)代数方法--求解离散问题(离散的数据,符号,图形)的主要方法.(3)逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用.(4)常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式.(5)偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.(1)回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2)时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3)回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4)时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法,在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1)计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.①离散系统仿真--有一组状态变量.②连续系统仿真--有解析表达式或系统结构图.(2)因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3)人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化.线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系,利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型是运用数学方法描述现实或抽象问题的一种工具或方法。

数学模型又可分为解析模型和仿真模型两种。

解析模型是指基于已知公式和数据进行分析求解,得到数学表达式或数值解的模型。

仿真模型是指利用计算机建立的模拟系统模型,根据模型建立的规则模拟输入变量所产生的输出结果。

数学建模是指通过数学知识把实际问题抽象为数学问题,并基于其建立数学模型。

数学建模技术可应用于各个领域,如自然科学、工程技术、社会科学、医学等。

下面就对数学模型和数学建模的一些概念和应用进行详细介绍。

一、数学模型的分类数学模型主要包括解析模型和仿真模型。

下面分别介绍:1、解析模型解析模型是指通过已知数据和公式,进行分析推导求解数学表达式或数值解的模型。

它是基于数学理论和分析方法的,其主要步骤为:建立问题的数学模型、求解模型、验证模型和应用模型。

解析模型主要包括以下几种类型:(1)几何模型几何模型是指通过几何图形描述实际问题的模型。

如,根据实际问题的条件,建立几何图形,求解图形的面积、周长、体积等数学问题,就是利用几何模型进行的建模。

几何模型常用于计算机图形学、工程地质学、建筑工程学等领域。

(2)微积分模型微积分模型是指通过微积分的方法求解实际问题的模型。

微积分是数学分析的基础,微积分模型广泛应用于科学工程领域。

如在热力学、流体力学、电磁学、生物学等领域,常用微积分模型来研究问题。

(3)代数模型代数模型是指通过代数方程和不等式描述实际问题的模型。

如根据实际问题建立代数模型求解方程组、解析几何等问题。

代数模型广泛应用于物理、经济、金融等领域。

(4)概率统计模型概率统计模型是指通过概率统计理论描述实际问题的模型。

如,许多保险公司的经营决策是基于概率统计模型的建立和分析的。

又如,酒店的房价决定也取决于概率统计模型。

2、仿真模型仿真模型是指利用计算机模拟系统建立的模型。

计算机可以模拟出一些人工难以模拟或难以观测的复杂系统,并通过模拟结果对系统进行推理分析或进行决策。

大学生数学建模介绍及其入门

大学生数学建模介绍及其入门

大学生数学建模介绍及其入门1.数学建模介绍1.1数学建模概念数学建模是运用数学模型解决比较实际的问题,如某区域水资源评价问题、水利工程项目风险评价问题、水资源污染增长预测问题、快递员派送快递的最短路径问题等等。

1.2数学模型的概念数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型,通俗的讲就是数学方法,例如初中就学过的线性规划模型,高中学过的方差分析模型、排队论、图论,大学学过的插值拟合模型、常微分方程模型等等。

这些都是学过的,还有些没有学过的主要有:层次分析法、神经网络模型、模糊数学模型、灰色系统理论模型、遗传算法模型、模拟退火算法模型。

1.3数学建模模型分类及其应用领域数学建模模型主要分为三大类:预测模型、优化模型、评价模型。

➢预测模型:神经网络预测、灰色预测、拟合插值预测(线性回归)、时间序列预测、马尔科夫链预测、微分方程预测、Logistic模型等等。

应用领域:人口预测、水资源污染增长预测、病毒蔓延预测、竞赛获胜概率预测、月收入预测、销量预测、经济发展情况预测等在工业、农业、商业等经济领域,以及环境、社会和军事等领域中都有广泛的应用。

➢优化模型:规划模型(目标规划、线性规划、非线性规划、整数规划、动态规划)、图论模型、排队论模型、神经网络模型、现代优化算法(遗传算法、模拟退火算法、蚁群算法、禁忌搜索算法)等等。

应用领域:快递员派送快递的最短路径问题、水资源调度优化问题、高速路口收费站问题、军事行动避空侦察的时机和路线选择、物流选址问题、商区布局规划等各个领域。

➢评价模型:模糊综合评价法、层次分析法、聚类分析法、主成分分析评价法、灰色综合评价法、人工神经网络评价法等等。

应用领域:某区域水资源评价、水利工程项目风险评价、城市发展程度评价、足球教练评价、篮球队评价、水生态评价、大坝安全评价、边坡稳定性评价等领域。

1.4数学建模发展介绍最早起源于美国,即美国大学生数学建模竞赛(1985年),美赛是数学建模的鼻祖,初始只有几十支队伍参赛,后来清华大学、北京大学、复旦大学等也参加了美国赛,后来由清华大学姜启源等教授把数学建模逐渐引入国内,1992年开始举办中国大学生数学建模竞赛,1999年美国大学生数学建模竞赛有了跨学科的数学建模竞赛(与经济学、政治学、化学、生物学等学科交叉),1999年美国又开始举办了中学生数学建模竞赛,2004年中国开始举办全国研究生数学建模竞赛,2014年中国开始举办全国中学生数学建模竞赛。

数学建模的概念、方法和意义

数学建模的概念、方法和意义

2.1.2 数学建模的全过程
由于在数学建模的过程中都要对实际情况作出 由于在 数学建模的过程中都要对实际情况作出 一定的简化假设,所以对数学模型进行强健性分析是 一定的简化假设,所以对数学模型进行强健性分析是 很有必要的. 在学习数学建模课程的过程中, 很有必要的. 在学习数学建模课程的过程中,我们会 发现很多数学模型是强健的,也就是说, 发现很多数学模型是强健的,也就是说,虽然模型建 立在较强的假设上, 立在较强的假设上,假设对实际情况做出了较多的简 但是模型解答已经符合或近似现实对象的信息, 化,但是模型解答已经符合或近似现实对象的信息, 已经获得预期的建模效果. 已经获得预期的建模效果
2.1.3 数学建模论文的撰写
(3)问题重述(restatement of the problem) )问题重述( ) , 或者问题澄清( ,或者引 或者问题澄清(clarification of the problem) 或者引 ) , :按照作者对问题的理解 言(introduction) 按照作者对问题的理解,陈述论 ) 按照作者对问题的理解, : 文要研究的实际问题,包括背景和任务; 文要研究的实际问题,包括背景和任务; :陈述 (4)问题分析(analysis of the problem) 陈述 )问题分析( ) : 作者对实际问题的分析和提出的数学问题, 作者对实际问题的分析和提出的数学问题,陈述作者 为建立数学模型选择采用的数学方法,陈述建立数学 为建立数学模型选择采用的数学方法, 模型的动机和思路; 模型的动机和思路;
2.1.2 数学建模的全过程
数学建模( 数学建模(Mathematical Modeling)是建立数学 ) 模型解决实际问题的全过程,包括数学模型的建立、 解决实际问题的全过程 数学模型的建立 模型解决实际问题的全过程,包括数学模型的建立、 求解、分析和检验四大步骤 四大步骤( 求解、分析和检验四大步骤(见下图). 现实对象 的信息 检验 现实对象 的解答 分析 建立 数学模型 求解 数学模型 的解答

数学建模简介word文档-华南师范大学数学科学学院

数学建模简介word文档-华南师范大学数学科学学院

1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。

即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。

例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。

模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。

――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。

―――适用于卫星的发射。

二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。

上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。

数学建模资料

数学建模资料

数学建模资料数学建模是一种将数学方法应用于现实问题解决的过程,通过建立数学模型,分析问题,得出结论,并给出合理的建议和决策。

本文将介绍数学建模的基本概念、常用方法和应用领域。

一、数学建模的基本概念数学建模是一种将现实问题转化为数学问题的过程。

在建模过程中,需要明确问题的目标和约束条件,并选择合适的数学模型进行描述和求解。

数学建模可以分为确定性建模和随机建模两种类型,分别适用于不同类型的问题。

确定性建模是指在建模过程中,假设所有的参数和变量都是确定的,不存在随机性。

常用的确定性建模方法包括线性规划、整数规划、动态规划等。

随机建模是指在建模过程中,考虑随机因素对问题的影响。

常用的随机建模方法包括概率模型、统计模型、随机过程等。

二、数学建模的常用方法1. 数学规划方法数学规划是一种通过建立数学模型,求解最优解的方法。

常见的数学规划方法包括线性规划、整数规划、非线性规划等。

数学规划方法适用于优化问题,如资源分配、生产计划等。

2. 统计分析方法统计分析是通过收集和分析数据,得出结论的方法。

常见的统计分析方法包括假设检验、回归分析、方差分析等。

统计分析方法适用于数据分析和预测问题,如市场调研、销售预测等。

3. 数值计算方法数值计算是通过数值方法求解数学模型的方法。

常见的数值计算方法包括迭代法、差分法、积分法等。

数值计算方法适用于求解复杂的数学问题,如微分方程、偏微分方程等。

4. 图论方法图论是一种研究图的性质和关系的方法。

常见的图论方法包括最短路径算法、最小生成树算法、网络流算法等。

图论方法适用于描述和分析复杂的网络结构,如交通网络、电力网络等。

三、数学建模的应用领域数学建模在各个领域都有广泛的应用,以下列举几个常见的应用领域:1. 金融与投资数学建模可以用于金融市场的风险评估、投资组合优化等问题。

通过建立数学模型,分析市场趋势和风险,帮助投资者做出合理的投资决策。

2. 环境与资源管理数学建模可以用于环境保护和资源管理的问题。

数学建模简介

数学建模简介

阻滞增长模型(Logistic模型)
人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假定 r是x的减函数
r ( x) r sx (r, s 0)
r
o
r~固有增长率(x很小时)
r(x)
xm
x
r ( x) r sx (r, s 0)
线性和非线性
建模目的
了解程度
描述、优化、预报、决策、…
白箱 灰箱 黑箱
怎样学习数学建模
数学建模与其说是一门技术,不如说是一门艺术
技术大致有章可循 想象力 艺术无法归纳成普遍适用的准则 洞察力 判断力
• 学习、分析、评价、改进别人作过的模型
• 亲自动手,认真作几个实际题目
数学建模工具软件介绍 数学建模一般借助于数学软件. 如:Mathematica、 Matlab、SAS、 SPSS、MathCAD、lingo、 Maple…
数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。 数学建模作为用数学方法解决实际问题的第一 步,越来越受到人们的重视。
• 在一般工程技术领域数学建模仍然大有用武之地;
• 在高新技术领域数学建模几乎是必不可少的工具
数学建模的具体应用
• 分析与设计
• 预报与决策
D
a φ
O C
b
D
1. 问题分析与建立模型 如图所示:设钢管与地面夹角为
φ
C O
a
b
,钢管在廊尽拐角处的长度为L(φ), b a 则 L() CO OD
.
图1-1-1
cos
sinΒιβλιοθήκη dL b sin a cos b sin a cos 2 2 d cos sin sin2 cos2

数学建模的介绍

数学建模的介绍

4.模型假设与符号说明 在数学建模时,要根据问题的特征 和建模目的,抓住问题的本质,忽略 次要因素,对问题进行必要的简化, 做出一些合理的做设。模型假设部分 要求用精练、准确的语言列出问题中 所给出的假设,以及为了解决问题作 者所做的必要、合理的假设。
假设做得不合理或太简单,会导致错 误的或无用的模型;假设做得过分详尽, 试图把复杂对象的众多因素都考虑进 去,会使工作变得很难或无法继续下 去,因此常常需要在合理与简化之间 作出恰当的折中。因为这一项是论文 评奖中的重要指标之一,所以必须逐 一书写清楚。
数 学 建 模
1、数学建模简介; 2、数学建模论文写作; 3、数学建模资料查询; 4、数学建模竟赛的解题方法总结。
数学建模简介
什么是数学模型?数学模型应 该说是每个人都十分熟悉的. 譬如你一定解过这样的所谓"航 行问题":甲乙两地相距750千米,船 从甲到乙顺水航行需30小时,从乙到 甲逆水航行需50小时,问船的速度是 多少.
为使模型易懂,可借助于适当的图形、 表格来描述问题或数据。因为这一部 分是论文的核心内容,也是评奖中的 重要指标之一,主要反映在"建模的创 造性"上,所以必须认真撰写。
6.模型求解 使用各种数学方法或软件包求解数 学模型。此部分应包括求解过程的公 式推导、算法步骤及计算结果。为求 解而编写的计算机程序应放在附录部 分。有时需要对求解结果进行数学上 的分析,如结果的误差分析、模型对 数据的稳定性或灵敏度分析等。
这里提请读者注意,摘要在整篇论文 评阅中占有重要权重,需要认真书写。 在地区和全国评阅时。首先根据摘要 和论文整体结构及概貌对论文优劣进 行初步筛选,然后再根据论文的内容 确定获奖等级。
3.问题重述 数学建模竞赛要求解决给定的具体 问题,所以论文中应叙述给定问题。 撰写这部分内容时,有的学生不动脑 筋,照抄原题,这样不太好,应把握 住问题的实质,用较精练的语言叙述 原问题,并提出数学建模需要解决的 问题。

高中数学建模

高中数学建模

高中数学建模数学建模是一种应用数学的方法,将现实生活中复杂的问题抽象出来,通过数学模型进行描述和分析,从而得出有意义的结论。

高中数学建模作为一门新兴的学科,对于培养学生的科学研究能力、数学思维能力和实践能力具有重要意义。

数学建模是基于现实问题的,其解决的问题一般都具有一定的实际意义。

比如,对于一个小区内的固定几个出入口,如何设置监控,使得不漏视任何一个入口又不重复监控。

将其抽象为图论问题,通过建立模型,可以找到最优的监控方案。

再比如,中学生压力较大,家长、老师常常采取各种方式来化解其压力,但效果不一。

通过调查分析得知其压力来源,进而将其建立为多目标规划模型,通过寻找优化方案,使得中学生的压力得到有效缓解。

数学建模通常涉及的领域很广泛,如生命科学、环境科学、经济管理等。

我们以经典的废水处理问题为例,探讨数学建模在实际问题中的应用。

我们知道,废水处理的过程通常包括初次处理、二次处理和消毒三个阶段。

为了达到国家相关标准,处理过程必须满足一定的效果,且造价较低。

而初次处理过程又分为化学、物理和生物等方法,每个方法的设备和工艺各有不同,其处理效果和完全去除率差异较大。

采用数学建模,我们可以将处理过程的影响因素进行抽象,建立相应的数学模型,对不同处理方案进行比较,找出效果最优、成本最低的处理方案。

常见的数学建模方法包括可视化、统计分析、最优化方法等。

其中最优化在数学建模中的应用尤为广泛,它的核心思想是通过寻找最大或最小值,来寻找最优解。

而为了使最优化方法更加有效地应用于实际问题中,我们必须借助计算机的高效性能来进行求解。

总之,高中数学建模是一门具有实际意义的学科,为学生提供了锻炼科学研究能力、数学思维能力和实践能力的机会。

在学习过程中,我们应注重对实际问题的挖掘、模型建立和求解方法的掌握。

只有不断提高自己的数学建模能力,才能更好地为现实生活中的问题提供解决方案。

数学建模简介

数学建模简介

图. 地貌示意图
进一步问题: 你怎样使你的模型适合于下面两个限制 条件的情况呢? 1.当道路转弯时,角度至少为140度; 2.道路必须通过一个已知地点(如P)。
其他例子:
• 关于肥猪的最佳销售时机问题 • 中国男女人口失衡问题研究与对策
谢谢大家!
据标本的主要制作者辽宁大学生命科 学系刘明玉教授介绍,这头猪体长2.5米, 腰围2.23米,体重900公斤,獠牙长144毫米, 属于长白与梅山杂交品种。这头猪能长到 如此重的 程度,主要是由于猪的主人精心 饲养以及生长年限较长所致。
在我国饲养猪主要是用来食用,很少 有人能将猪养至3年以上,而这头猪的主人 徐长金老人5年多来,一直将猪养在室内, 精心地饲喂,直至猪由于躯体过于庞大, 无法正常活动而死亡。
数学建模入门简介


1. 数学建模的基本概念 2. 数学建模竞赛 3. 数学建模技术与数学方法 4. 学习建议 5. 建模案例
1. 数学建模的基本概念
1.1 数学模型 1.2 数学建模目的 1.3 数学建模一般过程 1.4 数学建模综合技能
1.1数学模型
数学模型(E.A.Bendar 定义):关于部分 现实世界为一定目的而做的抽象、简化 的数学结构。
数学模型是现实世界的简化而本质的描述, 是用数学符号、数学公式、程序、图、表 等刻画客观事物的本质属性与内在联系的 理想化表述.
1.2数学建模目的
• 优化决策及控制 • 预测目的 • 解释现象
1.3数学建模一般过程
Step1:问题分析:明确目标,分析条件与数据 Step2:建立模型:简化及假设,总体任务设计, 模型建立 Step3:模型求解:借助软件(包括数学软件), 编写程序求解(直接调用或自己设计算法) Step4:结果分析与检验 Step5:如果发现结果有问题或不满意,从上面 某些步骤开始重新操作(自己分析再定) Step6:回答实际问题、模型评价与改进方向

数学建模30种经典模型matlab

数学建模30种经典模型matlab

一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。

Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。

本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。

二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。

在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。

2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。

产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。

此时,可以建立线性规划模型,使用Matlab求解最大化利润。

三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。

在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。

4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。

四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。

在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。

6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。

设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。

可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。

五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。

在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。

8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。

可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题
在实际过程中用那一
种方法建模主要是根据我们
对研究对象的了解程度和建 模目的来决定。机理分析法
抽象、简化、假设 确定变量、参数 建立数学模型并数学、数值地 求解、确定参数
建模的具体步骤大致可见右
图。
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
ቤተ መጻሕፍቲ ባይዱ
交付使用,从而可产生 经济、社会效益
建模过程示意图
例:人口模型
1、指数增长模型(马尔萨斯人口模型): 英国人口学家马尔萨斯(Malthus1766~1834) 于1798年提出。 2、阻滞增长模型(Logistic模型) 3、更复杂的人口模型 随机性模型、考虑人口年龄分布的模型等 可见数学模型总是在不断的修改、完善使之能 符合实际情况的变化。
数学建模的作用: 数学建模将各种知识综合应用于解决实际 问题中,是培养和提高同学们应用所学知识 分析问题、解决问题的能力的必备手段之一。
数学模型及其分类:
直观模型 具体模型 物理模型 模型 思维模型 符号模型 抽象模型 数学模型 数式模型
据说这样做是为了保暖,即减少室内向室外的热量流失。
我们要建立一个模型来描述热量通过窗户的热传导
(即流失)过程,并将双层玻璃窗与用同样多材料做成的 单层玻璃窗(如右图,玻璃厚度为)的热量传导进行对比, 对双层玻璃窗能够减少多少热量损失给出定量分析结果。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模 式,但一个理想的模型应能反映系统的全部重要 特征: 模型的可靠性和模型的使用性 建模的一般方法: ◆ 机理分析 ◆ 测试分析方法
机理分析:根据对现实对象特性的认识,分析 其因果关系,找出反映内部机理的规律,所建立 的模型常有明确的物理或现实意义。 测试分析方法:将研究对象视为一个“黑箱” 系统,内部机理无法直接寻求,通过测量系统的 输入输出数据,并以此为基础运用统计分析方法, 按照事先确定的准则在某一类模型中选出一个数 据拟合得最好的模型。 测试分析方法也叫做系统 辩识。 将这两种方法结合起来使用,即用机理分析 方法建立模型的结构,用系统测试方法来确定模 型的参数,也是常用的建模方法。
图形模型
数学模型的分类:
◆ 按研究方法和对象的数学特征分: 初等模型、几何模型、优化模型、微分方 程模型、图论模型、逻辑模型、稳定性模 型、扩散模型等。 ◆ 按研究对象的实际领域(或所属学 科)分:人口模型、交通模型、环境模型、 生态模型、生理模型、城镇规划模型、水 资源模型、污染模型、经济模型、社会模 型等。
数学建模的产生:
数学是在人们对现实生活与生产实际应用的需 求中产生的,要解决生活及生产实际中的问题就必 需建立数学模型。从此意义上讲,数学建模和数学 学科一样有古老历史,且是数学学科发展的重要支 柱。今天,数学以空前的广度和深度向其他科学技 术领域渗透,过去很少应用数学的领域现在正迅速 走向定量化、数量化、和数字化,数学在许多高新 技术领域起着十分关键的作用。因此,数学建模被 时代赋予更为重要的意义。
数学建模
什么是数学建模:
准确地说,数学建模就是用数学语言来描述 现实现象的过程。也就是,实际问题数学化。它是 一个过程,是一个经历观察、思考、归类、抽象与 总结的过程,也是一个信息捕捉、筛选、整理的过 程,更是一个思想与方法的产生与选择过程。它重 视、强调了探究的过程。在这一过程中,许多细想、 方法、技能、与技巧都相对伴生。值得注意的是, 数学建模过程,尤其是现代数学建模过程,一般不 是一个人完成的,而是群体智慧的结晶,它强调了 合作性。同时,在建模过程中需要尝试各种方法, 需要建模策略的多样探试、比较、综合与最优化。
数学建模的发展:
数学建模是一个世界性的研究课题,它起源于上 世纪七十年代末的英国剑桥大学。1983 年开始在美 国每两周年举行一次数学建模与用模国际会议,与 会国家逐步发展到了欧美、日本、澳大利亚、中国 等近百个国家和地区。1985年美国率先举办全美大 学生数学建模联赛,使大学生数学建模竞赛活动逐 渐成为世界大学生活动的一大潮流。我国的大学生 数学建模竞赛活动起步于1992年,虽然起步较晚, 但近年来已成燎原之势。
思考:关于建模的实例
1、椅子能在不平的地面放稳吗?
把四只脚的椅子往不平的地面上一放,通 常只有三只脚着地,放不稳,然而有人认 为只要稍挪动几次,就可以四脚着地,放
稳了,对吗?
2.双层玻璃的功效
北方城镇的有些建筑物的窗户是双层的,即窗户上装
两层厚度为的玻璃夹着一层厚度为的空气,如左图所示,
相关文档
最新文档