初一数学几何证明题答案

合集下载

初中数学几何证明经典试题(含答案)

初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二).如下图做GH ⊥AB,连接EO 。

由于GOFE 四点共圆,所以∠GFH =∠OEG , 即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。

2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二).3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)APCDB D 2C 2 B 2 A 2D 1C 1B 1C B DA A 1 AFGCEBOD4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.BF求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值. A P CB P A D CB C B D A F PD E CB A APCB3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

初中数学几何证明经典试题含答案

初中数学几何证明经典试题含答案

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

APCDBAFGCEBOD.如下图做GH ⊥AB,连接EO 。

由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)D 2C 2B 2A 2D 1C 1B 1DA A 14、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 求证:AP =AQ .(初二)BF4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、证:AB =DC ,BC =AD .(初三)经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC求:∠APB 的度数.(初二)2、设P是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA=200,求∠BED 的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

初一数学图形与证明试题答案及解析

初一数学图形与证明试题答案及解析

初一数学图形与证明试题答案及解析1.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】如图:根据题意可得:a∥b,∴∠3=∠1=20°,∵∠ABC=45°,∴∠2=∠ABC-∠3=45°-20°=25°,故选:B.【考点】1.平行线的性质;2.直角三角板的性质.2.(4分)如图所示的长方形或正方形三类卡片各有若干张,请你用这些卡片,拼成一个面积是2a2+3ab+b2长方形(要求:所拼图形中每类卡片都要有,卡片之间不能重叠。

)画出示意图,并计算出它的面积。

【答案】见解析【解析】因为第一类图形面积为ab,第二类图形面积为b2,第三类图形面积为a2,而要拼成的长方形的面积2a2+3ab+b2,所以需要第一B类卡片3张,第二类卡片1张,第三类卡片2张.试题解析:如图:因为第一类图形面积为ab,第二类图形面积为b2,第三类图形面积为a2,所以需要第一B类卡片3张,第二类卡片1张,第三类卡片2张,可以拼成一个长为2a+b,宽为a+b的长方形,所以长方形面积为(2a+b)(a+b)=2a2+3ab+b2.【考点】整式的运算.3.有两根13cm,15cm的木棒,要想以这两根木棒做一个三角形,可以选用第三根木棒的长为()A.2cm B.11cm C.28cm D.30cm【答案】B【解析】因为两边长13cm,15cm,所以第三边x的长满足:15-13<x<15+13,即2<x<28,所以选项A、C、D错误,B正确,故选:B.【考点】三角形的三边关系.4.(9分)如图,已知∠AOB是直角,∠BOC=600, OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=600”改为:∠AOB= x0,∠EOF=y0,条件不变.①则请用x的代数式来表示y.②如果∠AOB+∠EOF=1560.则∠EOF是多少度?【答案】(1)45°;m(2)①y=x,②52°.【解析】(1)根据角平分线的定义和角的和差倍分的关系即可求得∠EOF的度数;(2)①把(1)中的数字换成字母即可解得x与y的关系;②根据x+y=156°,y=x即可解得x、y的值.试题解析:(1)∵∠AOB=90°,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC-∠FOC=∠AOC-∠BOC= (∠AOB+∠BOC)-∠BOC=∠AOB=×=90°=45°.(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC-∠FOC=∠AOC-∠BOC= (∠AOB+∠BOC)-∠BOC=∠AOB.即y=x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=x.代入解得x=104°,y=52°.即∠EOF=52°.【考点】角平分线的性质;角的计算.5.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数相等,则x-2y=________.【答案】-6.【解析】由题意知:x=2,y=4,所以x-2y=2-8=-6.【考点】正方体的平面展开图.6.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE= °.【答案】10.【解析】∵AE是△ABC的角平分线,∴∠EAC=∠BAC=64º,∵∠C=36°,AD⊥BC,∴∠DAC=54º,∴∠DAE=64-54=10º.【考点】角分线和直角三角形两锐角互余的应用.7.如图,AB∥CD,∠CED=900,EF⊥CD,F为垂足,则图中与∠EDF互余的角有().A.4个B.3个C.2个D.1个【答案】B.【解析】因为∠CED=900,所以∠EDF+∠ECD=90°,因为EF⊥CD,所以∠EDF+∠FED=90°,因为AB∥CD,所以∠ECD=∠AEC,所以图中与∠EDF互余的角有∠ECD,∠FED,∠AEC,共3个.故选:B.【考点】互余的定义;平行线的性质;垂直的定义.8.如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF平分∠AOD,∠AOE=36°.(1)求∠COD的度数;(2)求∠BOF的度数.【答案】(1)144°;(2)63°【解析】(1)先根据互余的关系求出∠COE=54°,然后利用∠COD=∠DOE+∠COE计算即可;(2)先根据互余的关系求出∠AOD=54°,再求出∠BOD和∠DOF,利用角的和差关系即可求出∠BOF.试题解析:(1)∵∠AOC=90°,∴∠COE=90°﹣AOE=90°﹣36°=54°,∴∠COD=∠DOE+∠COE=90°+54°=144°;(2)∵∠DOE=90°,∠AOE=36°,∴∠AOD=90°﹣36°=54°,∵∠AOB=90°,∴∠BOD=90°﹣54°=36°,∵OF平分∠AOD,∴∠DOF=∠AOD=27°,∴∠BOF=36°+27°=63°.【考点】1.余角和补角;2.角平分线的定义.9.如图,线段AD=18cm,线段AC=BD=12cm,E、F分别是线段AB、CD的中点,求线段EF的长.【答案】12cm【解析】先利用线段的和差故选求出BC的长,从而可得(AB+CD)的长,然后根据线段中点的性质,可得AE与AB的关系,FD与CD的关系,再根据线段的和差关系解答即可.试题解析:根据图形可知:AC+BD=AC+(CD+BC)=AC+CD+BC=12+12=24cm,由AD=18cm,得18+BC=24,解得BC=6cm.所以AB+CD=AD﹣BC=18﹣6=12cm.因为E、F分别是线段AB、CD的中点,所以AE= AB,FD= CD.所以AE+FD= AB+ CD=(AB+CD)=×12=6cm,所以EF=AD﹣AE﹣FD=18﹣6=12cm.【考点】两点间的距离.10.如图,把一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2=.【答案】25°.【解析】如图:因为直尺的对边平行,所以∠1的内错角=∠1=20°,所以∠2=45°-20°=25°.【考点】平行线的性质.11.(本题满分12分)如图(1),四边形ABCD中,AD∥BC,点E是线段CD上一点,(1)说明:∠AEB=∠DAE+∠CBE;(2)如图(2),当AE平分∠DAC,∠ABC=∠BAC.①说明:∠ABE+∠AEB=900;②如图(3)若∠ACD的平分线与BA的延长线交于点F,且∠F=600,求∠BCD.【答案】(1)见解析;(2)见解析;(3)∠BCD=600【解析】(1)如图(1),过点E作EF∥BC,交AB于F.根据平行线的性质可证得结论;(2)①如图(2),根据平行线的性质和互为补角,角平分线的性质可证;②根据平行线的性质和角平分线的性质,可求结果.试题解析:解:(1)如图(1),过点E作EF∥BC,交AB于F.∵EF∥BC,AD∥BC∴EF∥AD∥BC∴∠DAE=∠AEF,∠CBE=∠BEF∴∠AEF+∠BEF=∠DAE+∠CBE∵∠AEB=∠AEF+∠BEF∴∠AEB=∠DAE+∠CBE.(2)如图(2)∠ABC+∠BAC+∠ACB=180°∵∠ABC=∠BAC,∠ACB=2∠DAE∴2∠ABC+2∠DAE=180°即∠ABC+∠DAE=90°∠ABC=∠ABE+∠CBE由(1)得∠AEB=∠DAE+∠CBE∴∠ABE+∠AEB=90°.(3)∠ACB=180°-∠ABC-∠BAC=180°-2∠BAC∵∠BAC=∠F+∠ACF∴∠ACB=180°-2(∠F+∠ACF)=180°-2×60°-2∠ACF∵CF平分∠ACD∴∠ACD=2∠ACF即∠ACB=180°-2×60°-∠ACD得∠ACB+∠ACD=60°即∠BCD=60°.【考点】平行线的性质,角平分线的性质,互为补角12.(3分)已知∠AOB=40°,∠CDE的边CD⊥OA于点D,边DE∥OB,那么∠CDE= .【答案】50°或130°.【解析】根据题意,作出草图,如图,DE∥OB,由平行线的性质可得∠AED=∠AOB=40°,又因CD⊥OA,可求得∠1=50°,∠2=130°,∠CDE可能是∠1也可能是∠2,所以∠CDE等于50°或130°.【考点】平行线的性质.13.有如下命题:①负数没有立方根;②同位角相等;③对顶角相等;④如果一个数的立方根是这个数本身,那么这个数是1或0,其中,是假命题的有()A.①②③B.①②④C.②④D.①④【答案】B【解析】因为负数有一个负的立方根,所以①为假命题;因为两直线平行,同位角相等,所以②为假命题;对顶角相等,所以③为真命题;因为如果一个数的立方根是这个数本身,那么这个数是1或0或﹣1,所以④为假命题.故选B.【考点】命题与定理.14.如图,钟表8时30分时,时针与分针所成的锐角的度数为.【答案】75°.【解析】8点30分,时针和分针中间相差2.5个大格,∵钟面12个大格,第相邻两个数字之间的夹角为30°,∴8时30分时,时针与分针的夹角是2.5×30°=75°.【考点】钟面角.15.如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是.【答案】两点之间线段最短.【解析】由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理:两点之间线段最短.【考点】线段的性质:两点之间线段最短.16.如图,已知AB∥CD,直线EF分别交 AB、CD于点E,F,EG平分∠BEF交CD于点G.如果∠1=70°,那么∠2的度数是()A.70° B.65° C.55° D.22.5°【答案】C【解析】根据平行线的性质可由EG平分∠BEF,得∠BEG=∠GEF,再根据平行线的性质:两直线平行,内错角相等,由AB∥CD,求得∠BEG=∠2,再根据等量代换可求∠2=∠GEF,因此由三角形的内角和定理知∠1=70°,∠1+∠2+∠GEF=180°,可得∠2=55°.故选C.【考点】平行线的性质17.如图,∠AOC=90°,ON是锐角∠COD的角平分线,OM是∠AOD的角平分线,那么,∠MON= °.【答案】45°【解析】根据ON是锐角∠COD的角平分线,OM是∠AOD的角平分线,得出∠AOM=∠MOD,∠CON=∠NOD,又∠AOC=90°即可得出∠AOM=∠MOD=45°+∠COD.进而求出∠MON的度数为45°.【考点】角平分线的定义18.把命题“同角的余角相等”改写成“如果…那么…”的形式.【答案】如果两个角是同一个角的余角,那么这两个角相等.【解析】根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,【考点】命题与定理.19.(7分)如图所示,O是直线AB上一点,∠AOC=∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数.(2)判断OD与AB的位置关系,并说出理由.【答案】(1)45°(2)OD⊥AB.理由见试题解析。

人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题(含答案)

人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题(含答案)

人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题1、如图,已知∠2=∠3,∠C=∠D,求证:∠A=∠F.证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3.∴DB∥CE.∴∠DBA=∠C.∵∠D=∠C,∴∠D=∠DBA.∴DF∥AC.∴∠A=∠F.2、如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).3、如图,∠1=115°,∠2=50°,∠3=65°,EG为∠NEF的平分线.求证:AB∥CD,EG∥FH.证明:∵∠1=115°,∴∠FCD=180°-∠1=180°-115°=65°.∵∠3=65°,∴∠FCD=∠3.∴AB∥CD.∵∠2=50°,∴∠NEF=180°-∠2=180°-50°=130°.∵EG为∠NEF的平分线,∴∠GEF=12∠NEF=65°.∴∠GEF=∠3.∴EG∥FH.4、如图,已知∠B=∠D,∠E=∠F,判断BC与AD的位置关系,并说明理由.解:BC∥AD,理由:∴BE∥FD.∴∠B=∠BCF.又∵∠B=∠D,∴∠BCF=∠D.∴BC∥AD.5、如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°.∴AD∥EG.∴∠1=∠2,∠E=∠3.∵∠E=∠1,∴∠2=∠3.∴AD平分∠BAC.6、如图,B,C,E三点在一条直线上,A,F,E三点在一条直线上,AB∥CD,∠1=∠2,∠3=∠4.求证:AD∥BE.证明:∵AB∥CD,∴∠4=∠BAE.∴∠3=∠BAE.∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAF,即∠BAE=∠CAD.∴∠3=∠CAD.∴AD∥BE.7、如图,已知AB∥CD,试判断∠B,∠BED和∠D之间的关系,并说明理由.解:∠BED=∠B+∠D.理由如下:过点E作EF∥AB,则∠B=∠BEF.∵AB∥CD,∴EF∥CD.∴∠DEF=∠D.∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D.8、如图,∠AEF+∠CFE=180°,∠1=∠2,EG与HF平行吗?为什么?解:平行.理由:∵∠AEF+∠CFE=180°,∴AB∥CD.∴∠AEF=∠EFD.∴∠AEF -∠1=∠EFD -∠2,即∠GEF =∠HFE.∴EG ∥HF.9、如图,A ,B ,C 三点在同一直线上,∠1=∠2,∠3=∠D ,试判断BD 与CF 的位置关系,并说明理由.解:BD ∥CF.理由如下:∵∠1=∠2,∴AD ∥BF.∴∠D =∠DBF.∵∠3=∠D ,∴∠3=∠DBF.∴BD ∥CF.10、如图,∠ABC =∠ADC ,BF ,DE 分别是∠ABC ,∠ADC 的平分线,∠1=∠2,试说明:DC ∥AB.解:∵BF ,DE 分别是∠ABC ,∠ADC 的平分线,∴∠3=12∠ADC ,∠2=12∠ABC. ∵∠ABC =∠ADC ,∴∠3=∠2.∵∠1=∠2,∴∠1=∠3.∴DC∥AB.11、如图,AD平分∠BAC,AD⊥BC于D,点E,A,C共线,∠DAC=∠EFA,延长EF 交BC于点G.求证:EG⊥BC.证明:∵AD平分∠BAC,∴∠DAC=∠DAB.又∵∠DAC=∠EFA,∴∠DAB=∠EFA.∴AD∥EG.∴∠ADC=∠EGD.∵AD⊥BC,∴∠ADC=90°.∴∠EGD=90°.∴EG⊥BC.12、已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.13、如图,把一张长方形纸片ABCD沿EF折叠后,D,C分别落在D′和C′的位置上,ED′与BC的交点为G.若∠EFG=50°,求∠1,∠2,∠3的度数.解:根据折叠的性质可知,∠DEF=∠D′EF,∠EFC=∠EFC′.∵∠EFG=50°,∴∠EFC=180°-50°=130°.∴∠EFC′=∠EFC=130°.∴∠3=∠EFC′-∠EFG=130°-50°=80°.∵AD∥BC,∴∠DEF=∠EFG=50°.∴∠DED′=2∠DEF=100°.∴∠1=180°-∠DED′=180°-100°=80°.∵AD∥BC,∴∠1+∠2=180°.∴∠2=180°-∠1=100°.故∠1=80°,∠2=100°,∠3=80°.14、如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.解:(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF.∴∠2=∠A.∵∠1=∠2,∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°.∵∠D =∠3+60°,∠CBD =70°,∴∠3=25°.∵AB ∥CD ,∴∠C =∠3=25°.15、(1)如图1,AB ∥CD ,则∠E +∠G 与∠B +∠F +∠D 有何关系?(2)如图2,若AB ∥CD ,又能得到什么结论?请直接写出结论.解:(1)过点E 作EM ∥AB ,过点F 作FN ∥AB ,过点G 作GH ∥CD. ∵AB ∥CD ,∴AB ∥EM ∥FN ∥GH ∥CD.∴∠1=∠B ,∠2=∠3,∠4=∠5,∠6=∠D.∴∠1+∠2+∠5+∠6=∠B +∠3+∠4+∠D ,即∠BEF +∠FGD =∠B +∠EFG +∠D.(2)∠B +∠F 1+∠F 2+…+∠F n -1+∠D =∠E 1+∠E 2+…+∠E n .16、已知E ,F 分别是AB ,CD 上的动点,P 也为一动点.(1)如图1,若AB ∥CD ,求证:∠P =∠BEP +∠PFD ;(2)如图2,若∠P =∠PFD -∠BEP ,求证:AB ∥CD ;(3)如图3,AB ∥CD ,移动E ,F ,使∠EPF =90°,作∠PEG =∠BEP ,则∠AEG∠PFD =2.证明:(1)过点P作PG∥AB,则∠EPG=∠BEP.∵AB∥CD,∴PG∥CD.∴∠GPF=∠PFD.∴∠EPF=∠EPG+∠FPG=∠BEP+∠PFD.(2)过点P作PQ∥AB,则∠QPE=∠BEP.∵∠EPF=∠PFD-∠BEP,∴∠PFD=∠EPF+∠BEP=∠EPF+∠QPE=∠FPQ. ∴DC∥PQ.∴AB∥CD.。

初中数学几何证明经典题(含答案)

初中数学几何证明经典题(含答案)

初中数学几何证明经典题(含答案)初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二).如下图做GH ⊥AB,连接EO 。

由于GOFE 四点共圆,所以∠GFH =∠OEG , 即△GHF ∽△OGE,可得EOGF=GO GH=CO CD,又CO=EO ,所以CD=GF 得证。

APDA F G C EB O D3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .D 2 C 2B 2 A 2 D 1C 1B 1CD A A1A N F EC DM B经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O外一直线,过O · AD HE M C B O于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A 任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)·OQPB DECN M ·AP CG F B Q A D E4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)AFD ECB2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C DED A CBFFEP C BA为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)APC B PA DCB3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)CBD AFP DE CB A经典难题(五)1、 设P 是边长为1的正△内任一点,L=PA +PB +PC , 求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =0、AP CB ACBP D ACBPDE分别是AB、AC上的点,∠DCA=300,∠EBA =200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

初中数学几何证明经典试题(含答案)

初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .3、设P 是正方形ABCD 一边求证:PA =PF .4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF B、D .求证:AB =DC ,BC =AD .经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.2、设P是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC·4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCBACBPDEDCB AA CBPD经典题(一)1.如下图做GH⊥AB,连接EO。

初中数学几何证明经典题含答案

初中数学几何证明经典题含答案

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

.如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。

APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 AN FE CDMB· A DHEM CBOF2、设MN 是圆O 外始终线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、假如上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的间隔 等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 及CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD.(初三)经典1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 及CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACBPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

初中数学几何证明经典试题(含答案)

初中数学几何证明经典试题(含答案)

初中几何证明题经典题1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC=AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCBACBPDEDCB AA CBPD经典题(一)1.如下图做GH⊥AB,连接EO。

初中数学几何证明经典试题(含答案)

初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、 E 是圆上的两点,CD⊥ AB,EF⊥ AB, EG⊥ CO.求证: CD= GF.(初二)CEGA BD O F2、已知:如图,P 是正方形ABCD内点,∠ PAD=∠ PDA= 150.求证:△ PBC是正三角形.(初二)A DPB C3、如图,已知四边形ABCD、 A1B1C1D1都是正方形, A2、 B2、 C2、 D2分别是AA1、BB1、 CC1、 DD1的中点.A DA2D2求证:四边形 A B C D 是正方形.(初二)A12222D1B1C1B22CB C4、已知:如图,在四边形ABCD中, AD= BC,M、N 分别是 AB、CD的中点, AD、BC的延伸线FEN C交 MN于 E、 F.求证:∠ DEN=∠ F.经典题(二)1、已知:△ ABC中, H 为垂心(各边高线的交点), O为外心,且 OM⊥ BC于M.( 1)求证: AH=2OM;A( 2)若∠ BAC= 600,求证: AH= AO.(初二)O·H EB M D C2、设 MN是圆 O外向来线,过 O作 OA⊥ MN于 A,自 A引圆的两条直线,交圆于B、C及D、E,直线 EB及 CD分别交 MN于 P、 Q.GE求证: AP= AQ.(初二)O·CB DMP A Q N3、假如上题把直线MN由圆外平移至圆内,则由此可得以下命题:设 MN是圆 O的弦,过 MN的中点 A 任作两弦 BC、DE,设 CD、 EB分别交 MN于 P、 Q.求证: AP=AQ.(初二)CEA M Q·P N·O B D4、如图,分别以△ABC的 AC和 BC为一边,在△ ABC的外侧作正方形ACDE和正方形 CBFG,点 P是 EF的中点.求证:点P 到边 AB的距离等于AB的一半.(初二)DGCEPFA Q B经典题(三)1、如图,四边形ABCD为正方形, DE∥AC, AE=AC, AE与 CD订交于 F.求证: CE=CF.(初二)AB2、如图,四边形ABCD为正方形, DE∥AC,且 CE= CA,直线 EC交 DA延伸线于求证: AE= AF.(初二)DF ECF.F A DB C3、设 P 是正方形ABCD一边 BC上的任一点,PF⊥ AP, CF均分∠ DCE.求证: PA= PF.(初二)AE DFBP C E4、如图, PC切圆 O于 C,AC为圆的直径, PEF为圆的割线, AE、AF 与直线 PO订交于 B、D.求证: AB= DC, BC= AD.(初三)AB O DPEFC经典题(四)A1、已知:△ ABC是正三角形, P 是三角形内一点,PA=3, PB= 4, PC= 5.P 求:∠ APB的度数.(初二)B C2、设 P 是平行四边形ABCD内部的一点,且∠PBA=∠ PDA.求证:∠ PAB=∠ PCB.(初二)A DPB C3、设 ABCD为圆内接凸四边形,求证:AB· CD+AD· BC=AC· BD.(初三)ADB C4、平行四边形ABCD中,设 E、 F 分别是 BC、 AB上的一点, AE 与 CF订交于 P,且AE= CF.求证:∠ DPA=∠ DPC.(初二)A DFPB E C经典难题(五)A1、设 P 是边长为 1 的正△ ABC内任一点, L= PA+ PB+ PC,PB C求证:≤ L<2.2、已知: P 是边长为 1 的正方形ABCD内的一点,求PA+ PB+ PC的最小值.A DPCB3、 P 为正方形ABCD内的一点,而且PA= a, PB= 2a, PC= 3a,求正方形的边长.A DPCB4、如图,△ ABC中,∠ ABC=∠ ACB= 800, D、 E 分别是 AB、 AC上的点,∠ DCA= 300,∠ EBAAE= 200,求∠ BED的度数.经典题(一)1.以下列图做 GH⊥ AB,连结 EO。

初中数学-几何证明经典试题(含答案)

初中数学-几何证明经典试题(含答案)

初中数学-几何证明经典试题(含答案)初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)A P CDB A F G CE B O D D 2C 2B 2A 2D 1C 1B 1CD A A 14、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .·AD H EM C BOF3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)A FDEC B2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B、D .求证:AB =DC ,BC =AD .(初三)DFE P C B A经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB·CD +AD·BC =AC·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)PADC B C BDA经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =30,求∠BED 的度数.APC B A CB PD参考答案经典题(一)1.如下图做GH ⊥AB,连接EO 。

初一数学几何证明题答案

初一数学几何证明题答案

初一典型几何证明题1、已知: AB=4,AC=2,D是BC中点, AD是整数,求AD解:延长A D到 E,使AD=DE∵D是 BC中点A ∴BD=DC在△ ACD和△ BDE中AD=DE∠BDE=∠ADC B CDBD=DC∴△ACD≌△ BDE∴AC=BE=2∵在△ ABE中AB-BE<AE<AB+BE∵AB=4即 4-2<2AD<4+21<AD<3∴AD=22、已知: BC=DE,∠B=∠E,∠ C=∠D,F 是 CD中点,求证:∠1=∠2A21B EC F D证明:连接BF和 EF∵BC=ED,CF=DF∠, BCF=∠EDF∴△BCF≌△ EDF 第1页共22 页∴BF=EF,∠CBF=∠DEFB E连接在△ BEF中,BF=EF∴∠EBF=∠BEF。

∵∠ABC=∠AED。

∴∠ABE=∠AEB。

∴AB=AE。

在△ ABF和△ AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△ AEF。

∴∠BAF=∠EAF (∠1=∠2)。

3、已知:∠1=∠2,CD=D,E EF证明:连接EF ∵AB∥CD共22 页第9页∴∠B=∠C∴△BEM≌△CFM( SAS)∵M是 BC中点∴CF=BE∴BM=CM在△BEM和△CFM中BE=CF∠B=∠CBM=CM7. 已知:如图所示,AB=AD,BC=DC,E、F 分别是DC、BC的中点,求证:AE=AF。

证:连接AC DE=BF∵在△ ADC和△ABC中∴△ADE≌△ ABF(SAS)AD=AB ∴AE=AFDC=BCAC=AC∴△ADC≌△ ABC(SSS)D∴∠B=∠ DE∵E、F 分别是DC、BC的中点AC又∵ BC=DCF∴DE=BFB∵在△ ADE和△ABF中AD=AB∠D=∠B8. 如图,在四边形ABCD中, E是AC上的一点,∠1=∠2,∠3=∠4,求证 : ∠5=∠6.证明:∵在△ADC和△ ABC中∴△DEC≌△ BEC(SAS)∠BAC=∠DAC ∴∠DEC=∠BEC∠BCA=∠DCAAC=AC∴△ADC≌△ ABC(AAS)D∵AB=AD,BC=CD在△ DEC与△ BEC中A12E5634CCE=CEB∠BCA=∠DCABC=CD9. 如图,在△ABC中, AD为∠ BAC的平分线,DE⊥AB于 E,DF⊥AC于 F。

初一数学几何证明题答案

初一数学几何证明题答案

初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23、4、 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDFBC DF ADBC∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。

∴ ∠BAF=∠EAF (∠1=∠2)。

已知:∠1=∠2,CD=DE ,EFP 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABBA CDF2 1 EA在AC 上取点E , 使AE =AB 。

∵AE =AB AP =AP ∠EAP =∠BAE ,∴△EAP ≌△BAP ∴PE =PB 。

PC <EC +PE∴PC <(AC -AE )+PB ∴PC -PB <AC -AB 。

8. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE 证明:在AC 上取一点D ,使得角DBC=角C ∵∠ABC=3∠C∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C ; ∵∠ADB=∠C+∠DBC=2∠C; ∴AB=AD∴AC – AB =AC-AD=CD=BD在等腰三角形ABD 中,AE 是角BAD 的角平分线, ∴AE 垂直BD∵BE ⊥AE∴点E 一定在直线BD 上,在等腰三角形ABD 中,AB=AD ,AE 垂直BD ∴点E 也是BD 的中点 ∴BD=2BE ∵BD=CD=AC-AB ∴AC-AB=2BE9. 如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .P DACB解:延长AD 至BC于点E,∵BD=DC ∴△BDC是等腰三角形∴∠DBC=∠DCB又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2即∠ABC=∠ACB∴△ABC是等腰三角形∴AB=AC在△ABD和△ACD中AB=AC∠1=∠2BD=DC∴△ABD和△ACD是全等三角形(边角边)∴∠BAD=∠CAD∴AE是△ABC的中垂线∴AE⊥BC∴AD⊥BC10. 如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA证明:∵OM平分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO =∠MBO =90 ∵OM =OM∴△AOM ≌△BOM (AAS ) ∴OA =OB ∵ON =ON∴△AON ≌△BON (SAS ) ∴∠OAB=∠OBA ,∠ONA=∠ONB ∵∠ONA+∠ONB =180 ∴∠ONA =∠ONB =90 ∴OM ⊥AB11. 如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB . 证明:在AB 上取F ,使AF =AD ,连接EF ∵AE 平分∠DAB ∴∠DAE=∠FAE 在⊿ADE 和⊿AFE 中AD =AF ∠DAE=∠FAE AE = AE∴⊿ADE ≌⊿AFE (SAS ) ∴∠ADE=∠AFE∵AB 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立若成立PEDCBA{{请给予证明;若不成立请说明理由.(1)证:∵DE ⊥AC 于E ,BF ⊥AC 于F , ∴∠DEC=∠BFA=90°,DE ∥BF , 在Rt △DEC 和Rt △BFA 中, ∵AF=CE ,AB=CD , ∴Rt △DEC ≌Rt △BFA (HL ) ∴DE=BF .在△DEM 和△BFM 中 ∠DEM=∠BFM ∠DME=∠BMF DE=BF∴△DEM ≌△BFM(AAS) ∴MB=MD ,ME=MF(2) 证:∵DE ⊥AC 于E ,BF ⊥AC 于F , ∴∠DEC=∠BFA=90°,DE ∥BF , 在Rt △DEC 和Rt △BFA 中, ∵AF=CE ,AB=CD , ∴Rt △DEC ≌Rt △BFA (HL ) ∴DE=BF .在△DEM 和△BFM 中 ∠DEM=∠BFM ∠DME=∠BMF DE=BF{{∴△DEM≌△BFM(AAS)∴MB=MD,ME=MF13如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.证:∵∠CEB=∠CAB=90°∠ADB=∠CDE在△ABD中,∠ABD = 180°-∠CAB-∠ADB 在△CED中,∠DCE = 180°-∠CEB-∠CDE ∴∠ABD =∠DCE在△ABD和△ACF中∠DAB=∠CAFAB=AC∠ABD =∠DCF∴△ABD≌△ACF(ASA)∴BD=CF∵BD是∠ABC的平分线∴∠FBE =∠CBE在△FBE和△CBE中∠FBE =∠CBEBE=BE∠BEF =∠BEC∴△FBE≌△CBE(ASA)∴CE=FE CF=2CE∴BD=2CEFEDC BA{ {14. 如图:DF=CE,AD=BC,∠D=∠C。

初一数学几何图形的性质与证明练习题及答案

初一数学几何图形的性质与证明练习题及答案

初一数学几何图形的性质与证明练习题及答案几何图形是数学中的一个重要概念,它们具有独特的性质和特征。

在初一的数学学习中,学生需要了解不同几何图形的性质,并且能够通过证明来验证这些性质。

本文将提供一些初一数学几何图形的性质与证明练习题及答案,帮助学生深入理解几何图形。

一、直线和线段的性质及证明性质1:两点确定一条直线。

证明:设有两点A和B,我们可以通过连接这两个点的直线来得到一条直线。

性质2:直线上的任意一点都在直线的同一侧。

证明:设直线上有一点C,在直线上我们可以找到一点D,并通过连接点C和D得到一条直线。

点C和点D的连接线与原始直线重合,因此点C和原始直线上的点A、B都在直线的同一侧。

性质3:线段的中点即为线段上到两个端点距离相等的点。

证明:设线段AB上有一点E,若点E到点A和点B的距离相等,则点E为线段AB的中点。

二、三角形的性质及证明性质4:三角形的内角和等于180度。

证明:设三角形ABC,我们可以通过在点B处做一条平行于边AC的直线,连接点A和点C,构成直线ABCD。

由于直线ABCD是一条直线,所以角ABC + 角BCD = 180度。

因此,三角形ABC的内角和等于180度。

性质5:等腰三角形的底边上的高线也是中位线。

证明:设等腰三角形ABC中,AB = AC,点D为底边BC上的中点,我们需要证明AD是三角形ABC的高线。

通过连接点A和点D,我们可以得到线段AD。

由于AB=AC,所以角BAD =角CAD,即角B = 角C。

又因为线段AD是BC的中点,所以BD = CD。

根据三角形的SAS相等性质,我们可以得知三角形ABD与三角形ACD全等。

根据全等三角形的性质,我们可以得出AD是三角形ABC的高线。

性质6:直角三角形的斜边平方等于两直角边平方和。

证明:设直角三角形ABC ,其中∠C为直角。

我们需要证明AB² = AC² + BC²。

通过在边AC上做一条垂直于AC的高线AD,我们可以将直角三角形ABC分为两个矩形,分别为ABCD和ABDE。

初中数学几何证明经典题(含答案)

初中数学几何证明经典题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二).如下图做GH ⊥AB,连接EO 。

由于GOFE 四点共圆,所以∠GFH =∠OEG ,即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。

APDAFGCEBOD2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF =GOGH=COCD,又CO=EO,所以CD=GF得证。

.如下图做GH⊥AB,连接EO。

由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF =GOGH=COCD,又CO=EO,所以CD=GF得证。

3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=、CD的中点,AD、BC的延长线交求证:∠DEN=∠F.D2C2B2A2D1C1B1C BD AA1经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(2)若∠BAC=600,求证:AH=AO.F2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于条直线,交圆于B 、C 及D 、E ,直线EB 及Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)4、如图,PC切圆O于C,ACAF与直线PO相交于B、D经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PC =5.求:∠APB的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA. 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L求证:≤L<2.2、已知:P 是边长为1的正方形ABCD的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

初中数学几何证明经典试题(含答案)

初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1F1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .3、设P 是正方形ABCD求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DCE经典题(四)1、已知:△ABC 是正三角形,P=5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)D经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA =300,∠EBA=200,求∠BED的度数.参考答案经典题(一)1.如下图做GH⊥AB,连接EO。

初中数学-几何证明经典试题(含答案)

初中数学-几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)AP C DB A F GC EB O D3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)D 2C 2 B 2 A 2D 1 C 1 B 1 C BD A A 14、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.F3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)D4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)经典题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:≤L <2.1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.APCBACBP D A CBPD4中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠=200,求∠BED的度数.参考答案经典题(一)1.如下图做GH⊥AB,连接EO。

初一数学图形与证明试题答案及解析

初一数学图形与证明试题答案及解析

初一数学图形与证明试题答案及解析1.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”. 则半径为2的“等边扇形”的面积为【答案】2【解析】根据扇形的面积公式S=lr,其中l=r,求解即可.解:∵S=lr,∴S=×2×2=2,故答案为2.本题是一个新定义的题目,考查了扇形面积的计算,注:扇形面积等于扇形的弧长与半径乘积的一半.2.如图,直线,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°【答案】C.【解析】如图:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选C.【考点】1.三角形内角和定理;2.对顶角、邻补角;3.平行线的性质3.如图,C、D是线段AB上的两个点,CD="8" cm,M是AC的中点,N是DB的中点,MN="12" cm,那么线段AB的长等于 cm.【答案】16【解析】由CD=8cm,MN=12cm,可得MC+DN=4cm,由M是AC的中点,N是DB的中点可得AC+DB=2MC+2DN=8cm,即可求得AB=AC+CD+DB=16cm.【考点】比较线段的长短4.在一块长为,宽为的长方形草地上,有一条弯曲水泥小路,小路任何地方的水平宽度都是1个单位,则草地面积为_________.【答案】(ab-b).【解析】∵小路任何地方的水平宽度都是1个单位,∴通过平移把小路变成长为b,宽为1的面积相等的矩形,所以草地面积为(ab-b).【考点】1.图形的平移规律;2.矩形面积的计算.5.下列命题中,①对顶角相等.②等角的余角相等.③若,则.④同位角相等.其中真命题的个数有()A.1个B.2个C.3个D.4个【答案】B【解析】①对顶角相等,正确;②等角的余角相等,正确;③若|a|=|b|,则a=b,错误,如|-2|=|2|,但-2≠2;④同位角相等,错误,如图,∠1与∠2是同位角,但∠1≠∠2;故2个正确;故选B.【考点】真命题与假命题.6.下列长度的3条线段,能构成三角形的是()A.1,2,3B.2,3,4C.6,6,12D.5,6,12【答案】B【解析】三角形中任意两边之和大于第三边,任意两边之差小于第三边.A、1+2=3;C、6+6=12;D、5+6=11<12.故选B.【考点】三角形三边关系.7.已知点P是线段AB的中点,若AB=6cm,则PB= cm.【答案】3【解析】根据线段的中点平分线段的长度.根据点P是线段AB的中点,则PB=AB==3cm.【考点】两点间的距离.8.如图,若PE平分∠BEF,PF平分∠DFE,∠1=35°,∠2=55°,则AB与CD平行吗?为什么?【答案】见解析.【解析】先根据角平分线的性质得出∠BEF与∠DFE的度数,再由等式的性质得出∠BEF+∠DFE=180°,从而根据同旁内角互补,两直线平行得出结论.试题解析:AB∥CD.理由:∵PE平分∠BEF,PF平分∠DFE,∠1=35°,∠2=55°,∴∠BEF=2∠1=70°,∠DFE=2∠2=110°(角平分线的定义),∴∠BEF+∠DFE=70°+110°=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行).【考点】平行线的判定9.下列命题中是假命题的是()A.对顶角相等B.同位角相等C.邻补角互补D.平行于同一条直线的两条直线平行【答案】B.【解析】根据正确的命题叫真命题,错误的命题叫做假命题可知:选项A,对顶角相等是真命题;选项B,同位角相等是假命题,只有两直线平行,同位角才相等;选项C,邻补角互补是真命题;选项D,平行于同一条直线的两条直线平行是真命题;故答案选B.【考点】真假命题.10.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为.【答案】20.【解析】分两种情况:第1种情况,腰长为8,底边长为4,等腰三角形的周长为20;第2种情况,腰长为4,底边长为8,这种情况不存在,故答案为20.【考点】分类讨论;等腰三角形的性质.11.下列说法中:①因为对顶角相等,所以相等的两个角是对顶角;②在平面内,不相交的两条直线叫做平行线;③过一点有且只有一条直线与已知直线垂直;正确的有().A.个B.个C.个D.个【答案】C.【解析】①说法错误,因对顶角有特殊的位置关系,相等的角不一定是对顶角;②是平行线的定义,正确;③是垂线的性质,正确,故选C.【考点】1.对顶角的理解;2.平行线意义;3.垂线性质.12.如图,下列不能判定∥的条件是( ).A.B.C.D.【答案】B.【解析】选项A,根据同旁内角互补,两直线平行可判定∥;选项B,根据内错角相等,两直线平行可判定AD∥BC,不能判定∥;选项C,根据内错角相等,两直线平行可判定∥;选项D,根据同位角相等,两直线平行可判定∥.故答案选B.【考点】平行线的判定.13.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角【答案】D【解析】根据同位角、内错角、同旁内角的定义可知:∠A与∠B是同旁内角,所以A说法正确;∠3与∠1是同旁内角,所以B说法正确;∠2与∠3是内错角,所以C说法正确;∠1与∠2是邻补角,所以D说法错误,故选:D.【考点】1.同位角;2.内错角;3.同旁内角.14.如图,等边三角形ABC的边长为10厘米.点D是边AC的中点.动点P从点C出发,沿BC的延长线以2厘米/秒的速度作匀速运动,设点P的运动时间为t(秒).若△BDP是等腰三角形,则为t= .【答案】【解析】过点D作DG⊥BC,利用等边三角形的性质得出BD=5,再利用含30°的直角三角形得出BG=,即可得出PC的长度.过点D作DG⊥BC,如图:∵等边三角形ABC的边长为10厘米,点D是边AC的中点,∴BD=5,∠DBG=30°,∴BG=,∴PC=-5=,可得t=.【考点】等边三角形的性质;等腰三角形的判定15.(3分)下面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。

(完整版)初中数学几何证明经典试题(卷)[含答案解析],推荐文档

(完整版)初中数学几何证明经典试题(卷)[含答案解析],推荐文档

求证:AE=AF.(初二)
F
A
D
B
C
3、设 P 是正方形 ABCD 一边 BC 上的任一点,PF⊥AP,CF 平分∠DCE.
E
求证:PA=PF.(初二)
A
D
F
B
P
C
E
4、如图,PC 切圆 O 于 C,AC 为圆的直径,PEF 为圆的割线,AE、AF 与直线 PO 相交于 B、D.求证:AB=DC,BC=AD.(初三)
C
D P
C
A D
B
C
4、平行四边形 ABCD 中,设 E、F 分别是 BC、AB 上的一点,AE 与 CF 相交于 P,且 AE=CF.求证:∠DPA=∠DPC.(初二)
A
D
F
B
经 典 难 题(五)
1 设 P 是边长为 1 的正△ABC 内任一点,L=PA➡PB➡PC, 求证: ≤L<2.
B
P EC
C

B
D
MP
A
QN
3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:
设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC、DE,设 CD、EB 分别交 MN 于
P、Q. 求证:AP=AQ.(初二)
C MP
E
A
Q
·
N
·O
B
D
4、如图,分别以△ABC 的 AC 和 BC 为一边,在△ABC 的外侧作正方形 ACDE 和正方形
初中几何证明题 经 典 题(一)
1、已知:如图,O 是半圆的圆心,C、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二)
.如下图做 GH⊥AB,连接 EO。由于 GOFE 四点共圆,所以∠GFH=∠OEG,

(完整版)初中数学几何证明经典试题(含答案)

(完整版)初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)E经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)D经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.APCBACBPDEDCB AA CBPD经典题(一)1.如下图做GH⊥AB,连接EO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一典型几何证明题1、已知: AB=4,AC=2,D是 BC中点, AD是整数,求 AD解:延长 AD到 E, 使 AD=DE∵D是 BC中点∴ BD=DC在△ ACD和△ BDE中AAD=DE∠BDE=∠ADC BD=DC∴△ ACD≌△ BDE ∴AC=BE=2∵在△ ABE中AB-BE<AE< AB+BE ∵AB=4即4-2 <2AD< 4+2 1<AD<3∴AD=2B CD2、已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A12B EC F D证明:连接 BF 和 EF∵BC=ED,CF=DF,∠ BCF=∠EDF∴△ BCF≌△ EDF (S.A.S)∴BF=EF,∠ CBF=∠ DEF连接 BE在△ BEF中 ,BF=EF∴ ∠ EBF=∠ BEF。

∵ ∠ ABC=∠ AED。

∴ ∠ ABE=∠ AEB。

∴AB=AE。

在△ ABF和△ AEF中AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠AEB+∠BEF=∠AEF∴△ ABF≌△ AEF。

∴ ∠ BAF=∠ EAF ( ∠1=∠ 2) 。

3、已知:∠ 1=∠2,CD=DE, EF//AB,求证: EF=ACA12FCDEB过C 作 CG∥EF 交 AD的延长线于点G CG∥EF,可得,∠ EFD= CGDDE=DC∠FDE=∠ GDC(对顶角)∴△ EFD≌△ CGDEF=CG∠CGD=∠ EFD又, EF∥AB∴,∠ EFD=∠1∠1=∠2∴∠ CGD=∠2∴△ AGC为等腰三角形,AC=CG又EF=CG∴EF=AC4、已知: AD平分∠ BAC,AC=AB+BD,求证:∠ B=2∠C证明:延长 AB取点 E,使 AE=AC,连接 DE∵AD平分∠ BAC∴∠ EAD=∠ CAD∵AE=AC,AD= AD∴△ AED≌△ ACD (SAS)∴∠ E=∠ C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠ BDE=∠ E∵∠ ABC=∠ E+∠BDE∴∠ ABC=2∠E∴∠ ABC=2∠C5、已知: AC平分∠ BAD,CE⊥ AB,∠ B+∠D=180°,求证: AE=AD+BE证明:在AE上取 F,使 EF=EB,连接 CF∵CE⊥AB∴∠ CEB=∠ CEF=90°∵EB=EF,CE= CE,∴△ CEB≌△ CEF∴∠ B=∠ CFE∵∠ B+∠ D=180°,∠ CFE+∠ CFA=180°∴∠ D=∠ CFA∵AC平分∠ BAD∴∠ DAC=∠ FAC∵AC=AC∴△ ADC≌△ AFC(SAS)∴AD=AF∴AE=AF+FE= AD+BE6、如图,四边形 ABCD中, AB∥DC,BE、CE分别平分∠ ABC、∠BCD,且点 E 在 AD上。

求证: BC=AB+DC。

又∵∠ DCE=∠FCE在 BC上截取 BF=AB,连接 EF CE 平分∠ BCD∵ BE平分∠ ABC CE=CE∴∠ ABE=∠FBE∴⊿ DCE≌⊿ FCE(AAS)又∵ BE=BE∴CD=CF∴⊿ ABE≌⊿ FBE(SAS)∴BC=BF+CF=AB+CD∴∠ A=∠ BFE∵ AB//CD∴∠ A+∠ D=180o∵∠ BFE+∠CFE=180o∴∠ D=∠ CFE7. P 是∠ BAC平分线 AD上一点, AC>AB,求证: PC-PB<AC-AB在 AC上取点 E,∴PC<(AC-AE)+PB使 AE= AB。

∴PC-PB<AC-AB。

∵AE= ABAP =AP∠EAP=∠ BAE,∴△ EAP≌△ BAPCAP D∴PE= PB。

PC<EC+ PE B8.已知∠ ABC=3∠C,∠ 1=∠ 2,BE⊥AE,求证:AC-AB=2BE证明:∴点 E 一定在直线 BD上,在 AC上取一点 D,使得角 DBC=角 C在等腰三角形ABD中,AB=AD,AE垂直BD ∵∠ ABC=3∠C∴点E也是BD的中点∴∠ ABD=∠ABC- ∠DBC=3∠C- ∠C=2∠C;∴BD=2BE∵∠ ADB=∠C+∠DBC=2∠C;∵BD=CD=AC-AB∴ AB=AD∴AC-AB=2BE∴ AC – AB =AC-AD=CD=BD在等腰三角形 ABD中,AE是角 BAD的角平分线,∴ AE垂直 BD∵BE⊥AE9.如图,在△ ABC中, BD=DC,∠ 1=∠2,求证: AD⊥BC.解:延长 AD至 BC于点 E,∵BD=DC ∴△ BDC是等腰三角形∴∠ DBC=∠DCB又∵∠ 1=∠2 ∴∠ DBC+∠1=∠DCB+∠2即∠ ABC=∠ACB∴△ ABC是等腰三角形∴AB=AC在△ ABD和△A CD中AB=AC∠1=∠2BD=DC∴△ ABD和△ ACD是全等三角形(边角边)∴∠ BAD=∠CAD∴AE是△ ABC的中垂线∴AE⊥BC∴AD⊥BC10.如图, OM平分∠ POQ, MA⊥OP, MB⊥OQ, A、 B 为垂足, AB交OM于点 N.求证:∠ OAB=∠OBA证明:∵OM平分∠ POQ∴∠ POM=∠ QOM∵MA⊥ OP,MB⊥OQ∴∠ MAO=∠ MBO=90∵OM= OM∴△ AOM≌△ BOM ( AAS)∴OA= OB∵ON= ON∴△ AON≌△ BON ( SAS)∴∠ OAB=∠OBA,∠ ONA=∠ONB∵∠ ONA+∠ONB= 180∴∠ ONA=∠ ONB=90∴OM⊥ AB11.如图,已知AD∥BC,∠ PAB的平分线与∠ CBA的平分线相交于E,CE的连线交 AP 于D.求证: AD+BC=AB.证明:在AB上取 F,使 AF=AD,连接 EF ∵AE平分∠ DAB∴∠ DAE=∠FAE在⊿ ADE和⊿ AFE中AD= AF∠DAE=∠FAEAE=AE∴⊿ ADE≌⊿ AFE(SAS)∴∠ ADE=∠AFE∵AB//CD∴∠ ADE+∠C=180o∵∠ AFE+∠BFE=180o∴∠ C=∠ BFEPCEDA B∵BE 平分∠ ABC∠CBE=∠ FBE在⊿ BFE和⊿ BCE中∠C=∠ BFE∠CBE=∠FBECE=CE∴⊿ BFE≌⊿ BCE(AAS)∴CB=BF12.如图①,E、F 分别为线段 AC上的两个动点,且 DE⊥AC于 E,BF⊥AC于 F,若 AB=CD,AF=CE,BD交 AC于点 M.(1)求证: MB=MD,ME=MF(2)当 E、 F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.(1)证:∵ DE⊥AC于 E,BF⊥AC于 F,∴∠ DEC=∠BFA=90°, DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE, AB=CD,∴Rt△DEC≌Rt△BFA( HL)∴DE=BF.在△ DEM和△ BFM中∠DEM=∠BFM∠D ME=∠B MFDE=BF∴△ DEM≌△ BFM(AAS)∴MB=MD,ME=MF(2)证:∵ DE⊥AC于 E,BF⊥A C于 F,∴∠ DEC=∠BFA=90°, DE∥BF,在 Rt△DEC和 Rt△BFA中,∵AF=CE, AB=CD,∴Rt△DEC≌Rt△BFA(HL)∴DE=BF.在△ DEM和△ BFM中∠DEM=∠BFM∠D ME=∠B MFDE=BF∴△ DEM≌△ BFM(AAS)∴MB=MD,ME=MF13 如图,△ ABC中,∠ BAC=90 度, AB=AC,BD是∠ ABC的平分线, BD的延长线垂直于过C点的直线于 E,直线 CE交 BA的延长线于 F.求证: BD=2CE.证:∵∠ CEB=∠ CAB=90°∠ADB=∠ CDE在△ ABD中,∠ ABD = 180°- ∠CAB-∠ADB 在△ CED中,∠ DCE = 180°- ∠CEB-∠CDE ∴∠ ABD =∠ DCEFAEDB C在△ ABD和△ ACF中∠DAB=∠ CAFAB=AC∠ABD =∠DCF∴△ ABD≌△ ACF(ASA)∴BD=CF∵BD是∠ ABC的平分线∴∠ FBE =∠ CBE在△ FBE和△ CBE中∠FBE =∠CBEBE=BE∠BEF =∠BEC∴△ FBE≌△ CBE(ASA)∴CE=FE CF=2CE∴BD=2CE14.如图: DF=CE, AD=BC,∠ D=∠C。

求证:△ AED≌△ BFC。

证明:∵ DF=CE,∴DF-EF=CE-EF,D EFC 即 DE=CF,在△ AED和△ BFC中,∵AD=BC,∠D=∠C , DE=CF∴△ AED≌△ BFC( SAS)A B15.如图: AE、 BC交于点 M,F 点在 AM上, BE∥CF, BE=CF。

求证: AM是△ ABC的中线。

证明:∵ BE‖CF∵BE=CF∴∠ E=∠ CFM,∠ EBM=∠FCM∴△ BEM≌△ CFM∴BM=CM∴AM是△ ABC的中线AFBMCE16.AB=AC,DB=DC, F 是 AD的延长线上的一点。

求证:BF=CF 证:在△ ABD与△ ACD中AB=ACBD=DCAD=AD∴△ ABD≌△ ACD(SSS)∴∠ ADB=∠ADC∴∠ BDF=∠FDC在△ BDF与△ FDC中BD=DC∠BDF=∠FDC DF=DF17.如图: AB=CD, AE=DF,CE=FB。

求证:证:∵ CF=CE+EFEB=EF+FB又∵ CE=FB∴CF=EB在△ CDF与△ ABE中AB=CDAE=DFBE=CF∴△ CDF≌△ ABE(SSS)∴∠ DCB=∠ABF在△ ABF与△ CDE中∴△ FBD≌△ FCD(SAS)∴BF=FCADB CFAF=DE。

AB=CD∠ABF =∠ DCEBF=CE∴△ ABF≌△ CDE (SAS)∴AF=EDA BFEC D18.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳 E,F,M,且 BE=CF,M在 BC的中点,试说明三只石凳 E,F,M恰好在一条直线上 .证明:连接 EF∵AB∥CD∴∠ B=∠C∴△ BEM ≌△ CFM ( SAS )∵M 是 BC 中点∴CF=BE∴BM=CM在△ BEM 和△ CFM 中BE=CF ∠B=∠CBM=CM19. 已知:如图所示, AB =AD , BC =DC ,E 、F 分别是 DC 、 BC 的中点,求证: AE =AF 。

证:连接 ACDE=BF∵在△ ADC 和△ ABC 中∴△ ADE ≌△ ABF (SAS )AD=AB ∴AE=AFDC=BC AC=AC∴△ ADC ≌△ ABC (SSS )D∴∠ B=∠ DE∵ E 、 F 分别是 DC 、 BC 的中点 AC又∵ BC = DC F∴ DE=BFB∵在△ ADE 和△ ABF 中AD=AB∠D=∠B20. 如图,在四边形 ABCD 中, E 是 AC 上的一点,∠ 1=∠2,∠ 3=∠4,求证 : ∠5=∠6.证明:∵在△ ADC 和△ ABC 中∴△ DEC ≌△ BEC (SAS )∠BAC=∠ DAC ∴∠ DEC=∠BEC∠BCA=∠ DCA AC=ACD∴△ ADC ≌△ ABC (AAS )∵ AB=AD ,BC=CD A153 C在△ DEC 与△ BEC 中2E 64CE=CEB ∠BCA=∠ DCABC=CD21. 如图,在△ ABC 中, AD 为∠ BAC 的平分线, DE ⊥AB 于 E , DF ⊥AC 于 F 。

相关文档
最新文档