八年级数学下第一章测试题及答案.doc
北师大版八年级数学下册第一章三角形的证明单元测试题(答案及解析)
北师大版八年级下册第一章三角形的证明测试题一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.一个等腰三角形的两边长分别为3,6,则它的周长为()A.9 B.12 C.15 D.12或153.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm²,则S阴影等于()A.2cm²B.1cm²C.cm²D.cm²二.填空题(共5小题)11.等边三角形是一个轴对称图形,它有______条对称轴.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为______.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为______.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?北师大版八年级下册第一章三角形的证明测试题参考答案与试题解析一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.cm2 D.cm2【解答】解:根据三角形的面积公式,知:等底等高的两个三角形的面积相等.即有:S阴影=S△BCE=S△ABC=1cm2.故选:B.二.填空题(共10小题)11.等边三角形是一个轴对称图形,它有 3 条对称轴【解答】解:等边三角形是轴对称图像,它有三个顶点,所以对应3条对称轴故答案为:312.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32a .【解答】解:∵△A1B1A2是等边三角形∴∠B1A1A2=60°,A1B1=B1A2=A1A2∵∠MON=30°∴∠OB1A1=30°(三角形的一个外角等于和它不相邻的两个外角和∠OB1A1=∠B1A1A2-∠MON)∴OA1=A1B1(等边对等角)∴OA1=A1A2=a同理,根据∠MON=∠OB2A2,可得:A2A3=A2B2=OA1+A1A2=2A1A2=2a同理,可推出:A3A4=2A2A3=4a同理,可推出:A4A5=2A3A4=8a同理,可推出:A5A6=2A4A5=16a同理,可推出:A6A7=2A5A6=32a 即题目所求另外我们不难发现,第n个(△A1B1A2为第一个)等边三角形的边长为AnAn+1=(2^n-1)a 注:2的n-1次方倍的a三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。
北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)
矩形形、正方形、菱形都属于平行四边形,
它们之间的关系是: .
二、填空题(本大题共有5小题,每小题5分,共25分)
16、已知矩形的一条对角线长 ,则另一条对角线的一半是 .
【答案】4
【解析】解:
根据矩形的对角线相等,另一条对角线长 ,则另一条对角线的一半是 .
故正确答案是 .
14、将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得 ,当 时,如图 , ( )
A.
B.
C.
D.
15、如图所示,设 表示平行四边形, 表示矩形, 表示菱形, 表示正方形,则下列四个图形中,能表示它们之间关系的是( )
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
对角线相等的菱形是正方形,该说法正确,不符合题意;
对角线垂直的矩形是正方形,该说法正确,不符合题意.
故正确答案选:四条边相等的四边形是正方形.
3、矩形、菱形、正方形都具有的性质是( ).
A. 对角线互相垂直
B. 对角线平分每一组对角
C. 对角线互相平分
6、 在 中, , 是边 上一点, 交 于点 , 交 于点 ,若要使四边形 是菱形,只需添加条件( ).
A.
B.
C.
D.
【答案】C
【解析】解:只需添加
,
四边形 是平行四边形
四边形 是菱形
故正确答案是:
7、过矩形 的四个顶点作对角线 、 的平行线分別交于 、 、 、 四点,则四边形 是().
第一章 二次根式单元测试题(困难)(含答案)
浙教版初中数学八年级下册第一单元《二次根式》(困难)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 在实数范围内,√x−1有意义,则x的取值范围是( )A. x≥1B. x≤1C. x>1D. x<12. 设等式√a(x−a)+√a(y−a)=√x−a−√a−y在实数范围内成立,其中a、x、y是两两不同的实数,则3x 2+xy−y2x2−xy+y2的值是( )A. 3B. 13C. 2 D. 533. 设x、y、z是两两不等的实数,且满足下列等式:√x3(y−x)3+√x3(z−x)3=√y−x−√x−z,则x3+y3+z3−3xyz的值是( )A. 0B. 1C. 3D. 条件不足,无法计算4. 化简二次根式√−8a3的结果为( )A. −2a√−2aB. 2a√2aC. 2a√−2aD. −2a√2a5. 如果a+√a2−6a+9=3成立,那么实数a的取值范围是( )A. a≤0B. a≤3C. a≥−3D. a≥36. 如图为直线l:y=mx+n(m,n为常数且m≠0)的图象,化简√n2−|m−n|的结果为( )A. −mB. mC. m−2nD. 2n−m7. a,b,c为有理数,且等式a+b√2+c√3=√5+2√6成立,则2a+999b+1001c的值是( )A. 1999B. 2000C. 2001D. 不能确定8. a,b,c为有理数,且等式a+b√2+c√3=√5+2√6成立,则2a+999b+1001c的值是( )A. 1999B. 2000C. 2001D. 不能确定9.如图,在长方形ABCD中,AB=6,BC=10,其内部有边长为a的正方形AEFG与边长为b 的正方形HIJK,两个正方形的重合部分也为正方形,且面积为5,若S2=4S1,则正方形AEFG 与正方形HIJK的面积之和为( )A. 20B. 25C. 492D. 81410. 已知x=1√2021−√2020,则x6−2√2020x5−x4+x3−2√2021x2+2x−√2021的值为( )A. 0B. 1C. √2020D. √202111. 下列根式中为最简二次根式的是( )A. √27B. √a2+b2C. √12D. √3a312. 二次根式:①√9−x2;②√(a+b)(a−b);③√a2−2a+1;④√1x;⑤√0.75中最简二次根式是( )A. ①②B. ③④⑤C. ②③D. 只有④第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 若√4−aa+2有意义,则a的取值范围为14. 已知a<b,化简二次根式√−2a2b的结果是______.15. 实数a、b、c在数轴上的位置如图所示,化简下列代数式的值√a2−√(c−a+b)2+|b+ c|−√b33=______.16. 若x <0,则√x 2−√x 33=___________ 三、解答题(本大题共10小题,共80分。
浙教版八年级数学下册第一章单元测试卷(含答案)
浙教版八年级数学下册第一章单元测试卷(含答案)一、单选题1.计算4√12+3√13−√8的结果是()A.√3+√2B.√3C.√33D.√3−√22.已知是正整数,则实数n的最大值为()A.12B.11C.8D.33.如果最简根式√3a−8与√17−2a是同类二次根式,那么使√4a−2x有意义的x的取值范围是()A.x≤10B.x≥10C.x<10D.x>104.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等5.已知x为实数,化简√−x3−x√−1x的结果为()A.(x−1)√−x B.(−1−x)√−x C.(1−x)√−x D.(1+x)√−x6.如果√−53−x是二次根式,那么x 应适合的条件是()A.x ≥3B.x ≤3C.x >3D.x <37.若等腰三角形的两边长分别为√50和√72,则这个三角形的周长为()A.11√2B.16√2或17√2C.17√2D.16√28.若√x−1+√x+y=0,则x2005+y2005的值为:()A.0B.1C.-1D.29.设等式√a(x−a)+√a(y−a)=√x−a−√a−y在实数范围内成立,其中a、x、y是两两不同的实数,则3x2+xy−y2x2−xy+y2的值是()A.3B.13C.2D.5 310.“分母有理化”是我们常用的一种化简的方法,2+√32−√3=(2+√3)(2+√3)(2−√3)(2+√3)=7+4√3,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于√3+√5√3−√5,设x= √3+√5√3−√5,易知√3+√5> √3−√5,故x>0,由x2= (√3+√5−√3−√5)2= 3+√5+3−√5−2√(3+√5)(3−√5)=2,解得x= √2,即√3+√5−√3−√5=√2。
根据以上方法,化简√3−√2√3+√2√6−3√3√6+3√3后的结果为()A.5+3 √6B.5+ √6C.5-√6D.5-3 √6二、填空题11.化简√14−8√3=12.化简√−a3=.13.若实数a=12−√3,则代数式a2−4a+4的值为.14.已知,y=√(x−3)2+4−x,当x分别取1,2,3,…,2021时,所对应的y值的总和是. 15.已知实数a满足|2014-a|+ √a−2015=a,那么a-20142+1的值是.16.若实数a,b,c满足关系式√a−9+b+√9−a−b=√4a−c+4b,则c的平方根为. 17.观察下列等式:①√3+1=√3−1(√3+1)(√3−1)=√3−12;②1√5+√3=√5−√3(√5+√3)(√5−√3)=√5−√32③√7+√5=√7−√5(√7+√5)(√7−√5)=√7−√52…参照上面等式计算方法计算:1+√3√3+√5√5+√7+⋯3√11+√101=.18.如果(x﹣√x2−2008)(y﹣√y2−2008)=2008,求3x2﹣2y2+3x﹣3y﹣2007=.19.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+b=.20.若实数x,y,m满足等式√3x+5y−3−m+(2x+3y−m)2=√x+y−2−√2−x−y,则m+4的算术平方根为.三、计算题21.先化简,再求值:[(√x+√y)(√x−√y)√x+√y√xy(√y−√x)÷√x−√y√xy,其中x=1,y=2.22.已知:x=√3+√2√3−√2,y=√3−√2√3+√2,求x3−xy2x4y−2x3y2+x2y3的值.四、综合题23.设a= √8−x,b=2,c= √6.(1)当a有意义时,求x的取值范围;(2)若a,b,c为直角三角形ABC的三边长,试求x的值.24.解答题.(1)已知x=√7+1,x的整数部分为a,小数部分为b,求ab的值.(2)已知a−b=√3+√2,b−c=√3−√2,求a2+b2+c2−ab−bc−ca的值.25.王老师让同学们根据二次根式的相关内容编写一道题,以下是王老师选出的两道题和她自己编写的一道题.先阅读,再回答问题.(1)小青编的题,观察下列等式:√3+1=√3(√3+1)(√3−1)=2(√3−1)(√3)2−12=2(√3−1)3−1=√3−1√5+√3=√5√3)(√5+√3)(√5−√3)=2(√5−√3)(√5)2−(√3)2=2(√5−√3)5−3=√5−√3直接写出以下算式的结果:√7+√5=;√2n+1+√2n−1(n为正整数)=;(2)小明编的题,由二次根式的乘法可知:(√3+1)2=4+2√3,(√5+√3)2=8+2√15,(√a+√b)2=a+b+2√ab(a≥0,b≥0)再根据平方根的定义可得√4+2√3=√3+1,√8+2√15=√5+√3,√a+b+2√ab=√a+√b(a≥0,b≥0)直接写出以下算式的结果:√6+2√5=,√4−2√3=,√7+4√3=:(3)王老师编的题,根据你的发现,完成以下计算:(√3+1√5+√3+√7+√5+√9+√7√11+√9)⋅√12+2√1126.阅读下列解题过程:例:若代数式√(2−a)2+√(a−4)2=2,求a的取值.解:原式=|a﹣2|+|a﹣4|,当a<2时,原式=(2﹣a)+(4﹣a)=6﹣2a=2,解得a=2(舍去);当2≤a<4时,原式=(a﹣2)+(4﹣a)=2,等式恒成立;当a≥4时,原式=(a﹣2)+(a﹣4)=2a﹣6=2,解得a=4;所以,a的取值范围是2≤a≤4.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题:(1)当3≤a≤7时,化简:√(3−a)2+√(a−7)2=;(2)请直接写出满足√(a−1)2+√(a−6)2=5的a的取值范围;(3)若√(a+1)2+√(a−3)2=6,求a的取值.27.阅读下列材料,然后回答问题,在进行二次根式的化简与运算时,我们有时会碰上如如2√3+1一样的式子,其实我们还可以将其进一步化简:√3+1=2×(√3−1)(√3+1)(√3−1)=2(√3−1)(√3)2−12=√3−1(1)以上这种化简的步骤叫做分母有理化.√3+1还可以用以下方法化简:2√3+1=3−1√3+1=(√3)2−12√3+1=(√3+1)(√3−1)√3+1=√3−1(2)(1)请参照(1)(2)的方法用两种方法化简:√7+√5方法一:√7+√5=方法二:2√7+√5=(2)直接写出化简结果:2√13+√11=2√15+√13=(3)计算:2√5+√2+2√8+√5+2√11+√8+…+2√32+√29+2√35+√3228.甲是第七届国际数学教育大会的会徽,会徽的主体图案是由图乙中的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1.细心观察图形,认真分析下列各式,然后解答问题:(√1)2+1=2,S1=√12;(√2)2+1=3,S2=√22;(√3)2+1=4,S3=√32;….(1)请用含有n(n是正整数)的等式表示上述变化规律,并计算出OA10的长;(2)求出S12+S22+S32+⋯+S102的值.参考答案1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】C7.【答案】B8.【答案】A9.【答案】B10.【答案】D11.【答案】2√2−√612.【答案】−a √−a .13.【答案】314.【答案】202715.【答案】201616.【答案】±617.【答案】√101−1218.【答案】119.【答案】2.520.【答案】321.【答案】解: [4(√x+√y)(√x−√y)√x+√y √xy(√y−√x)÷√x−√y √xy= [4x−y √x+√y √xy(√y−y ⃗⃗ )]×√xy √x−√y= 4x−y ×√xy √x−√y √x+√y √xy(√x−√y)√xy √x−√y = √xy (√x−√y)(x−y)√x+√y(√x−√y)2= √xy (√x−√y)(x−y)(√x+√y)2(√x−√y)2(√x+√y)= √xy−(√x+√y)2(√x−√y)(x−y)= √x−√y)2(√x−√y)(x−y)= −(√x−√y)x−y= √y−√xx−y;将x=1,y=2代入得:原式= √2−11−2=1−√2.22.【答案】解:x=5+2 √6,y=5-2 √6,xy=1,x+y=10,x-y=4 √6,原式=x+yxy(x−y)=512√623.【答案】(1)解:8- x≥0,∴x≤8(2)解:若a是斜边,则有(√8−x)2=22 +(√6)2,8-x=10,解得x=-2.若a为直角边,则有( √8−x)2+22=( √6)2,∴8-x+4=6,解得x=6.∵x都满足x≤8,∴x的值为-2或6.24.【答案】(1)解:∵22<(√7)2<32,∴2<√7<3,∴3<√7+1<4,∵x的整数部分是a,小数部分是b,∴a=3,b=√7+1−3=√7−2,∴ab=√7−2=√7(√7−2)(√7+2)=√7+2(2)解:∵a−b=√3+√2,b−c=√3−√2,∴a−c=√3+√2+√3−√2=2√3,∴a2+b2+c2−ab−bc−ac=12(2a2+2b2+2c2−2ab−2bc−2ac) =12[(a−c)2+(a−b)2+(b−c)2]=12[(2√3)2+(√3+√2)2+(√3−√2)2]=12×(12+3+2√6+2+3−2√6+2)=12×22=11.25.【答案】(1)√7−√5;√2n+1−√2n−1(n为正整数)(2)√5+1;√3−1;2+√3(3)解:(2√3+1+2√5+√32√7+√52√9+√7+2√11+√9)⋅√12+2√11=(√3−1+√5−√3+√7−√5+√9−√7+√11−√9)(√11+1)=(√11−1)(√11+1)=10 26.【答案】(1)4(2)1≤a≤6(3)解:原式=|a+1|+|a﹣3|,当a<﹣1时,原式=﹣(a+1)+(3﹣a)=2﹣2a=6,解得a=﹣2;当﹣1≤a<3时,原式=(a+1)+(3﹣a)=4,等式不成立;当a≥3时,原式=(a+1)+(a﹣3)=2a﹣2=6,解得a=4;所以,a的值为﹣2或4.27.【答案】(1)√7−√5;√7−√5(2)√13−√11;√15−√13(3)解:√5+√2+√8+√5+√11+√8+…+√32+√29+√35+√32=2(√5−√2)3+2(√8−√5)3+2(√11−√8)3+···+2(√32−√29)3+2(√35−√32)3 =23(√5−√2+√8−√5+√11−√8+···+√32−√29+√35−√32)=23(√35−√2)=2√35−2√2328.【答案】(1)解:∵OA1=1= √1,OA1=A1A2=A2A3=…=A7A8=1,∴OA22= OA12+A1A22=1+1=2,∴OA2= √2,S1=12⋅OA1⋅A1A2=12×√1×1=√12,∵OA32= OA22+A2A32=(√2)2+1=3,∴OA3=√3,S2=12⋅OA2⋅A2A3=12×√2×1=√22,∵OA42= OA32+A3A42=(√3)2+1=4,∴OA4=2,S3=12⋅OA3⋅A3A4=12×√3×1=√32,⋯,∴OA n2=OA n−12+A n−1A n2=(√(n−1))2+1=n,S n=12⋅OA n⋅A n A n+1=12×√n×1=√n2,∴OA102= (√(10−1))2+1=10,∴OA10= √10,∴含有n (n 是正整数)的等式表示上述变化规律为: (√(n −1))2+1=n ,OA 10的长为 √10 ; (2)解:由(1)知: S n =√n 2, ∴S 1=√12 , S 2=√22 , S 3=√32 , ⋯ , S 10=√102 , ∴S 12+S 22+S 32+⋯+S 102 = (√12)2+(√22)2+(√32)2+⋯+(√102)2 = 554 .。
北师大版初中数学八下第一章综合测试试题试卷含答案
第一章综合测试一、选择题(共10小题,满分30分)1.如图已知100BAC ︒∠=,AB AC =,AB AC 、的垂直平分线分别交BC 于D E 、,则DAE ∠=( )A .40︒B .30︒C .20︒D .10︒2.如图,ABC △中,AB AC =,高BD CE 、相交于点O ,连接AO 并延长交BC 于点F ,则图中全等的直角三角形共有( )A .4对B .5对C .6对D .7对 3.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形 4.Rt ABC △中,9046C B ︒︒∠=∠=,,则A ∠=( ) A .44︒ B .34︒ C .54︒ D .64︒ 5.在ABC △中,若0A B C ∠+∠−∠=,则ABC △是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形6.如图,AC AD BC BD ==,,则( )A .AB 垂直平分CD B .CD 垂直平分ABC .CD 平分ACB ∠D .以上结论均不对7.如图,ABC △中,D 为BC 上一点,ABD △的周长为12cm ,DE 是线段AC 的垂直平分线,5AE =cm ,则ABC △的周长是( )A .17cmB .22cmC .29cmD .32cm8.如图,在ABC △中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,60B ︒∠=,30C ︒∠=,则FAE ∠为( )A .10︒B .15︒C .20︒D .30︒9.如图,AD 是ABC △的角平分线,,DF AB ⊥,垂足分别为点F ,DE DG =,若ADG △和ADE △的面积分别为50和39,则DEF △的面积为( )A .11B .7C .5.5D .3.510.如图,ABC △中,90C ︒∠=,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,若4DC =,则DE =( )A .3B .5C .4D .6二、填空题(共7小题,满分28分)11.若等腰三角形的一个内角为50︒,则这个等腰三角形的顶角为________.12.下列四组数:①5,12,13;②7,24,25;③1,2,4;④5,6,8其中可以作为直角三角形三边长的有________.(把所有你认为正确的序号都写上)13.如图,在ABC △中,90C ∠=︒,AC BC =,BD 平分ABC ∠交AC 于点D ,DE AB ⊥于点E .若AB =10cm ,则ADE △的周长为________cm .14.在ABC △中,AB AC =,AB 的垂直平分线交AC 于D ,交AB 于E ,连接BD ,若40ADE ︒∠=,则ABC ∠=________.15.如图,BD 垂直平分线段AC ,AE BC ⊥,垂足为E ,交BD 于点P ,3cm PE =,则点P 到直线AB 的距离是________cm .16.如图,在ABC △中,点D 是BC 边上一点,12∠=∠,34∠=∠,63BAC ︒∠=,则DAC ∠的度数为________.17.如图,在Rt ABC △中,90C ︒∠=,AD 平分BAC ∠,交BC 于点D ,若103AB CD ==,,则ABC S =△________.三、解答题(共8小题,满分62分)18.如图,ABC △中,90C =∠,4AC =,8BC =.(1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC 于点D ,求BD 的长.19.如图,已知ABC ∠,求作:(1)ABC ∠的平分线BD (写出作法,并保留作图痕迹);(2)在BD 上任取一点P ,作直线PQ ,使PQ AB ⊥(不写作法,保留作图痕迹).20.如图,ABC △中,D 是BC 上的一点,若10AB =,6BD =,8AD =,17AC =,求ABC △的面积.21.如图所示、AOB △和D CO ∆均为等腰直角三角形,90AOB COD ︒∠=∠=,D 在AB 上.(1)求证:AOC BOD △≌△;(2)若12AD BD ==,,求CD 的长.22.如图,已知ABC △中,AB AC BD CE =,、是高,BD 与CE 相交于点O . (1)求证:OB OC =;(2)若50ABC ︒∠=,求BOC ∠的度数.23.已知锐角ABC △,45ABC AD BC ︒∠=⊥,于D ,BE AC ⊥于E ,交AD 于F . (1)求证:BDF ADC △≌△;(2)若43BD DC ==,,求线段BE 的长度.24.如图,AB BC ⊥,射线CM BC ⊥,且5cm BC =,1cm AB =,点P 是线段BC (不与点B C 、重合)上的动点,过点P 作DP AP ⊥交射线CM 于点D ,连结AD .(1)如图1,若4cm BP =,则CD =________;(2)如图2,若DP 平分ADC ∠,试猜测PB 和PC 的数量关系,并说明理由;(3)若PDC △是等腰三角形,则CD =________cm .(请直接写出答案)25.如图,在ABC △中,20AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,如果点P 在线段BC 上以6厘米/秒的速度由点向点运动,同时点Q 在线段CA 上由C 点向A 点运动.当一个点停止运动时,另一个点也随之停止运动.(1)用含有t 的代数式表示CP ,则CP =________厘米;(2)若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,那么当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?第一章综合测试答案解析一、 1.【答案】C【解析】解:100BAC AC AB ︒∠==,,18040B C BAC ︒︒∴∠=∠=−∠=(),DM EN 、分别是边AB 和AC 的垂直平分线, BD AD AE CE ∴==,,4040B BAD C CAE ︒︒∴∠=∠=∠=∠=,, =100404020DAE ︒︒︒︒∴∠−−=.故选C. 2.【答案】D【解析】解:有7对全等三角形: ①BDC CEB △≌△,理由是:AB AC =, ABC ACB ∴∠=∠,BD 和CE 是两腰上的高, 90BDC CEB ︒∴∠=∠=,在BDC △和CEB △中,BDC CEB ACB ABC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,BDC CEB AAS ∴△≌△(), BE DC ∴=.②BEO CDO △≌△,理由是:在BEO △和CDO △中,BEO CDO BOE COD BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,BEO CDO AAS ∴△≌△(). ③AEO ADO △≌△,理由是: 由BEO CDO △≌△得:EO DO =,在Rt AEO △和Rt ADO △中,AO AO EO OD =⎧⎨=⎩,,Rt Rt AEO ADO HL ∴△≌△(), EAO DAO ∴∠=∠.④ABF ACF △≌△,理由是:在ABF △和ACF △中,AB AC EAO DAO AF AF =⎧⎪∠=∠⎨⎪=⎩,,,⑤BOF COF △≌△,理由是:AB AC BAF CAF =∠=∠,, BF FC AFB AFC ∴=∠=∠,,在BOF △和COF △中,OF OF AFB ADC BF FC =⎧⎪∠=∠⎨⎪=⎩,,,BOF COF SAS ∴△≌△(). ⑥AOB AOC △≌△,理由是:在AOB △和AOC △中,AO AO BAO CAO AB AC =⎧⎪∠=∠⎨⎪=⎩,,,AOB AOC SAS ∴△≌△(). ⑦ABD ACE △≌△,理由是: 在ABD △和ACE △中, ABD ACE SAS ∴△≌△(). 故选:D. 3.【答案】B 【解析】如右图,DE AB DF AC ⊥⊥,,90BED DFC ︒∴∠=∠=,在BDE △和CDF △,BD CD DE DF ==,,DBE DFC HL ∴△≌△(), B C ∴∠=∠, AB AC ∴=,∴这个三角形一定是等腰三角形. 故选B. 4.【答案】A【解析】解:9046904644C B A ︒︒︒︒︒∠=∠=∴∠=−=,,.故选A. 5.【答案】A【解析】解:0A B C ∠+∠−∠=,A B C ∴∠+∠=∠,180A B C ︒∠+∠+∠=,90C ︒∴∠=,ABC ∴△是直角三角形.故选择:A. 6.【答案】A 【解析】解:AC AD BC BD AB AB ===,,,CAB DAB ∴∠=∠,且AC AD =,AB ∴垂直平分CD .故选:A. 7.【答案】B【解析】因为DE 是AC 的垂直平分线,所以AD CD =,AE EC =,而5cm AE =,所以10cm AC =,而ABC C AB BC AC =++△,ABC C AB BD AD AB BD CD AB BC =++=++=+△,所以ABC ABD C C AC =+=△△cm 10c m 12m c 22+=.8.【答案】B【解析】解:在ABC ∆中,60B ︒∠=,30C ︒∠=,180690030BAC ︒︒︒︒∴−−=∠=,AF 平分BAC ∠,11904522CAF BAC ︒︒⨯∴∠=∠==;DE 垂直平分AC , AE CE ∴=,30EAD C ︒∴∠=∠=,453015FAE CAF CAE ︒︒︒∴∠=∠−∠=−=.故选:B. 9.【答案】C【解析】作DM DE =交AC 于M ,作DN AC ⊥于点N ,DE DG =, DM DG ∴=,AD 是ABC △的角平分线,DF AB ⊥, DF DN ∴=,在Rt DEF △和Rt DMN △中,DN DFDM DE ==⎧⎨⎩, Rt Rt DEF DMN HL ∴△≌△(), ADG △和AED △的面积分别为50和39, 503911MDG ADG ADM S S S ∴=−=−=△△△,1152.5112DNM EDF MDG S S S ===⨯=△△△.故选C. 10.【答案】C【解析】解:90C ︒∠=,AD 平分BAC DE AB ∠⊥,于E ,DE DC ∴=, 4DC =,4DE ∴=.故选:C. 二、11.【答案】50︒或80︒ 【解析】如右图所示,ABC △中,AB AC =,有两种情况:①顶角50A ︒∠=; ②当底角是50︒时,AB AC =,50B C ︒∴∠=∠=, 180A B C ︒∠+∠+∠=, 180505080A ︒︒︒︒∴∠=−−=,∴这个等腰三角形的顶角为50︒或80︒. 故答案为50︒或80︒. 12.【答案】①②【解析】解:①22251213+=,能构成直角三角形; ②22272425+=,能构成直角三角形; ③222124+≠,不能构成直角三角形; ④222568+≠,不能构成直角三角形, 所以可以作为直角三角形三边长的有①②, 故答案为:①②. 13.【答案】10 【解析】BD 平分ABC ∠交AC 于D ,DE AB ⊥于E ,90DBE DBC BED C BD BD ︒∴∠=∠∠=∠==,,,BDE BDC AAS ∴△≌△(), DE DC BE BC ∴==,,ADE ∴△的周长10cm DE DA AE DC DA AE CA AE BC AE BE AE AB =++=++=+=+=+==.故答案为:10. 14.【答案】65︒ 【解析】DE 是AB 的垂直平分线,DE AB ∴⊥,90AED ︒∴∠=.又40ADE ︒∠=,50A ︒∴∠=.又AB AC =,18050265ABC ACB ︒︒︒∴∠=∠=−÷=().故答案为65︒. 15.【答案】3【解析】过点P 作PM AB ⊥与点M ,BD 垂直平分线段AC , AB CB ∴=,ABD DBC ∴∠=∠,即BD 为角平分线,又PM AB PE CB ⊥⊥,,3PM PE ∴==.16.【答案】24︒【解析】设12x ∠=∠=,则43122x ∠=∠=∠+∠=,63DAC ︒∠=, 63DAC x ︒∴∠=−,在ABC △中,有263180x x ︒︒++=,39x ︒=,°°6324DAC x ∴∠=−=,故答案为:24︒. 17.【答案】15 【解析】解:作DE AB ⊥于E ,90C ︒∠=, DC AC ∴⊥,AD 平分BAC DC AC DE A ∠⊥⊥,,, DE CD ∴=, 103AB CD ==,,∴111031522ABDSAB DE =⨯⨯=⨯⨯=. 故答案为15. 三、18.【答案】(1)如图直线MN 即为所求.(2)5BD =【解析】(2)MN 垂直平分线段AB ,DA DB ∴=,设DA DB x ==,在Rt ACD △中,222AD AC CD =+,()22248x x ∴=+−,解得5x =, 5BD ∴=.19.【答案】解:(1)如下图所示,作法:①以B 点为圆心,任意长为半径画弧分别交BA BC 、于M N 、点; ②再以M N 、为圆心,以大于它们之间的距离的二分之一为半径画弧,两弧在ABC ∠内相交于E ,则BD 为所作;(2)如下图,PQ 为所作.20.【答案】解:2222226810BD AD AB +=+==,ABD ∴△是直角三角形,AD BC ∴⊥,在Rt ACD △中,15CD ===,()111 21884222ABC BC AD BD CD S AD ∴==+=⨯⨯=△, 因此ABC △的面积为84.答:ABC △的面积是84.21.【答案】解:(1)证明:如右图,1903︒∠=−∠,2903︒∠=−∠,12∴∠=∠.又OC OD =,OA OE =,AOC BOD ∴△≌△.(2)由AOC BOD △≌△有:2AC BD ==,45CAO BOD ︒∠=∠=,90CAB ︒∴∠=,故CD =22.【答案】解:(1)证明:AB AC =,ABC ACB ∴∠=∠,BD CE 、是ABC △的两条高线,DBC ECB ∴∠=∠,OB OC ∴=.(2)50ABC AB AC ︒∠==,,18025080A ︒︒︒∴∠=−⨯=,18080100BOC ︒︒︒∴∠=−=.23.【答案】解:(1)证明:45AD BC ABC ︒⊥∠=,, 45ABC BAD ︒∴∠=∠=,AD BD ∴=,DA BC BE AC ⊥⊥,,9090C DAC C CBE ︒︒∴∠+∠=∠+∠=,,CBE DAC ∴∠=∠,且90AD BD ADC ADB ︒=∠=∠,=,BDF ADC ASA ∴△≌△(). (2)BDF ADC △≌△,43AD BD CD DF BF AC ∴=====,,,5BF ∴=,5AC ∴=,11 22ABCBC A S AD C BE =⨯⨯=⨯⨯, 745BE =∴⨯⨯, 285BE ∴=. 24.【答案】(1)4cm (2)PB PC =,理由:如图2,延长线段AP DC 、交于点E , DP 平分ADC ∠,ADP EDP =∴∠∠.DP AP ⊥,90DPA DPE ︒∴∠==∠,在DPA △和DPE △中,ADP EDP DP DP DPA DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩DPA DPE ASA ∴△≌△(), PA PE ∴=.AB BP CM CP ⊥⊥,,ABP ECP Rt ∴∠=∠=∠.在APB △和EPC △中,ABP ECP APB EPC PA PE ∠=∠⎧⎪∠=⎨⎪=⎩APB EPC AAS ∴△≌△(), PB PC ∴=.(3)4【解析】(1)5cm 4cm BC BP ==,,1cm PC ∴=,AB PC ∴=,DP AP ⊥,90APD ︒=∴∠,90APB CPD ︒∴∠=∠+,90APB CPD ︒∠=∠+,90APB BAP ︒∠=+∠, BAP CPD =∴∠∠,在ABP △和PCD △中,B CBAP CPD AB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,ABP PCD ∴△≌△,4cm BP CD =∴=.(3)PDC △是等腰三角形,PCD ∴△为等腰直角三角形,即45DPC ︒∠=, 又DP AP ⊥,45APB ︒∴∠=,1cm BP AB ∴==,4cm PC BC BP ∴=−=,4cm CD CP ∴==.25.【答案】(1)166t −(2)当1t =时,616BP CQ ==⨯=(厘米), 20AB =厘米,点D 为AB 的中点,10BD ∴=厘米.又PC BC BP =−,16BC ∴=厘米,16610PC ∴=−=(厘米),PC BD =在BPD △和CQP △中,BD PC B C BP CQ =∠=∠=,,,BPD CQP SAS ∴△≌△()(3)P Q v v ≠BP CQ ∴≠又BPD CPQ △≌△,B C ∠=∠,8cm BP PC ∴==,10cm CQ BD ==, ∴点P ,点Q 运动的时间4863t =÷=(秒),107.543Q CQv t ∴===(厘米/秒).【解析】(1)6BP t =,则166PC BC BP t =−=−.。
(完整版)北师大版八年级下册数学第一章测试题
2017—2018 学年度第二学期阶段性测试题八年级下册数学(第一章)出题人:分数:注意事项1.本试卷满分150 分,考试时间120 分钟。
2.请将密封线内的项目填写清楚。
3.请在密封线外答题。
题号一二三总分得分一、选择题(每小题3 分,共36 分)1、已知△ABC 的三边长分别是 6cm、8cm、10cm,则△ABC 的面积是()A.24cm2B.30cm2C.40cm2D.48cm22、已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝3、面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对4、△ABC中,AB = AC,BD 平分∠ABC交AC 边于点D,∠BDC= 75°,则∠A的度数为()A 35°B 40°C 70°D 110°5、如图,△ABC中,AC=BC,直线l 经过点C,则 ( )A.l 垂直ABB.l 平分ABC.l 垂直平分ABD.不能确定6、已知△ABC中,AB=AC,AB 的垂直平分线交 AC 于D,△ABC和△DBC的周长分别是60 cm 和38 cm,则△ABC的腰和底边长分别为 ( ) A.24 cm 和12 cm B.16 cm 和22 cm C.20 cm 和16 cm D.22 cm 和 16 cm7、下列条件中能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF8、下列命题中正确的是( )A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等9、对“等角对等边”这句话的理解,正确的是( )A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的10、△ABC 中,AB=AC,BD 平分∠ABC 交 AC 于点 D,∠BDC=75°,则∠A的度数为()A. 35°B. 40°C. 70°D. 110°11、如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列一个B条件后,仍无法判断△ABE≌△ACD的是()DA E CA. AD=AEB. ∠AEB=∠ADCC. BE=CDD. AB=AC 图 5图图12、如图,AD∥BC,∠ABC的平分线 BP 与∠BAD的平分线 AP 相交于点P,作PE⊥AB于点E,若PE=2,则两平行线 AD 与BC 间的距离为()A. 2B. 3C. 4D. 5二、填空题。
北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)
第一章三角形的证明综合测试卷一、选择题。
01如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35º,则∠C的度数为 ( )A.35º B.45º C.55º D.60º02若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为( )A.2 cm B.4 cm C.6 cm D.8 cm03如图,在△ABC中,∠ACB=90º,BE平分∠ABC,ED⊥AB于D.如果∠A=30º,AE=6 cm,那么CE等于 ( )A .3 cmB .2 cm C.3 cm D.4 cm04如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC 的长为半径作弧,两弧相交于M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50º,则∠ACB的度数为 ( )A.90º B.95º C 100º D.105º05如图,AD是△ABC中∠BAC的平分线,DE⊥AB,垂足为点E,DE=4,AC=6,则△ACD 的面积为 ( )A.8 B 10 C.12 D.2406如图,∠A=50º,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为 ( )A.100º B.140º C.130º D.115º07如图,在Rt△ABC中,∠ACB=60º,DE是斜边AC的垂直平分线,分别交AB,AC 于D,E两点,若BD=2,则AC的长是 ( )A.4 B.43 C.8 D.8308 将一个有45º角的直角三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30º角,如图,则三角尺的最长边的长为 ( )A.6 cm B.2 cm C.2 cm D.209如图,∠ACB=90º,AC=BC,AE⊥CE,垂足为点E,BD⊥CE,交CE的延长线于点D,AE=5 cm,BD=2 cm,则DE的长是( )A.8 cm B.5 cm C.3 cm D.2 cm10如图,AD⊥BC于D,且DB=DC,有下列结论:①△ABD≌△ACD;②∠B=∠C;③AD 是∠BAC的平分线;④△ABC为等边三角形.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个11如图,∠A=15º,AB=BC=CD=DE=EF,则∠DEF等于( )A.90º B.75º C.70º D.60º12如图,在△ABC中,BC=10,DH,EF分别为AB、AC的垂直平分线,则△ADE的周长是 ( )A.6 B.8 C.10 D.12二、填空题。
浙教版八年级数学下册第一章【二次根式】单元测试卷(一)含答案与解析
浙教版八年级数学下册第一章单元测试卷(一)二次根式学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式中,一定能成立的是( )A 2B 2C =x-1D =2.下列二次根式中,最简二次根式是()A B C D3.x y x x y >=->+中,二次根式有( )A .2个B .3个C .4个D .5个 4.下列二次根式中,是最简二次根式的是( )A B C D5( )A .1B .﹣1C . D6x 的取值范围是( )A .2x >B .2x ≥C .2x ≤D .2x <7x 的取值范围是( )A .1x ≥B .1x >C .1x <D .1x ≤ 8.下列计算正确的是( )A .=B =C .6233÷=D .552233-= 9.设,x y 为实数,且455y x x =+-+-,则x y 的值是( ) A .1 B .9 C .4D .5 10.若二次根式3x +有意义,则x 应满足( )A .x ≥3B .x ≥﹣3C .x >3D .x >﹣3 11.已知a <b ,则化简二次根式3a b -的正确结果是( )A .a ab --B .-a abC .a abD .-a ab12.二次根式的计算结果是( ) A .3 B .-3 C .5 D .15 二、填空题(本大题共6小题,每小题3分,共18分)13.已知3232,3232x y +-==-+,则代数式223x xy y -+的值为_________. 14.若28n 是整数,则满足条件的最小正整数n 为________.15.若式子12x x --在实数范围内有意义,则x 的取值范围是________. 16.已知实数a b c 、、在数轴上的位置如图所示,化简()2-a c b c +-=________17.当x=73+时,代数式x²-6x-2的值是________.18.若5a -+5a -=2b ++|2c -6|,则b c +a 的值为____.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.若,x y 是实数,且41143y x x =-+-+,求()3294253x x x x xy ⎛⎫+-+ ⎪⎝⎭. 20.(1)若x ,y 为实数,且y =++,求-的值;(2)化简。
北师大版八年级数学下册第一章测试卷及答案
北师大版八年级数学下册第一章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.若等腰三角形的顶角为40°,则它的底角度数为( )A.40° B.50° C.60° D.70°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是( )A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3. 已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可假设( )A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A..6,7,8 D.2,3,45.如图,已知AB⊥BD,CD⊥BD,若用"HL"判定Rt△ABD和Rt△CDB全等,则需要添加的条件是( )A.AD=CB B.∠A=∠C C.BD=DC D.AB=CD6.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( )A.40° B.50° C.60° D.75°7.如图,在△ABC中,AB=AC,AD平分∠BAC,点E是AD上的点,且AE=EC,若∠BAC=45°,BD=3,则CE的长为( )A.3 B.C.D.48.为了加快灾后重建的步伐,某市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )A.仅有一处B.有四处 C.有七处D.有无数处9.如图,在四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为( )A ..4 C ..4.510. 如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,过点O 作EF ∥BC 交AB 于点E,交AC 于点F,过点O 作OD ⊥AC 于点D,下列结论:①EF =BE +CF ;②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离都相等;④设OD =m,AE +AF =n,则S △AEF =mn ;⑤S △EOB =S FOC .其中,正确的有( )A .2个B .3个C .4个D .5个二.填空题(共8小题,每小题3分,共24分)11.如图,在△ABC 中,∠C =40°,CA =CB ,则△ABC 的外角∠ABD =________.12. 如图,在△ABC 中,AB =AC =BC =4,AD 平分∠BAC ,点E 是AC 的中点,则DE 的长为________.13.已知命题:"如果两个三角形全等,那么这两个三角形的面积相等."写出它的逆命题:____________________________________________,该逆命题是________(填"真"或"假")命题.14.如图,已知直线l 1∥l 2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有________个.①∠A =∠B -∠C ;②∠A ∶∠B ∶∠C =3∶4∶5;③a 2=(b +c )(b -c );④a ∶b ∶c =5∶12∶13.16.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB .若AC =2,DE =1,则S △ACD =________.17.如图,E是等边三角形ABC中AC边上的点,∠1=∠2,BE=CD ,则△ADE是________三角形.18.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E 在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.三.解答题(共7小题, 66分)19.(8分) 如图,△ABC,△CDE均为等边三角形,连接BE,AD交于点O,BE与AC交于点P.求证:∠AOB=60°.20.(8分) 如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD与CE的交点,求证:BO=CO.21.(8分) 如图,四边形ABCD是长方形,用尺规作∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连接QD,在新图形中,你发现了什么?请写出一条.22.(8分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A,F的直线垂直平分线段BC.23.(10分)如图,已知∠1=∠2,P BN上的一点,PF⊥BC于点F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12 cm,AB=6 cm,PA=5 cm,求BP的长.24.(10分) 如图,点P是等边三角形ABC内一点,AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G.求证:AD=PE+PF+PG.25.(14分) 如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 c m/s,点Q运动的速度是2 c m/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为ts,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.参考答案1-5DDCBA 6-10BBABB11. 110°12. 2 13. 如果两个三角形的面积相等,那么这两个三角形全等;假14. 20°15. 316.117. 等边18. 108°19. 证明:∵△ABC和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC∠ACD=∠BCECD=CE∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∵∠APO=∠BPC,∴∠AOP=∠BCP=60°,即∠AOB=60°.20.证明:∵AB=AC,∴∠ABC=∠ACB.∵BD⊥AC,CE⊥AB,∴∠BDC=∠CEB=90°,在△BCE和△CBD中, {∠ABC=∠ACB∠CEB=∠BDC=90°BC=CB∴△BCE≌△CBD(AAS),∴∠BCE=∠CBD,∴BO=CO.21. 解:如图所示.发现:QD=AQ或∠QAD=∠QDA等22. 解:(1)∠ABE=∠ACD.理由:在△ABE和△ACD中,{AB=AC∠A=∠AAE=AD∴△ABE≌△ACD,∴∠ABE=∠ACD(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A,F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC23.解:(1)证明:过点P作PE⊥AB于点E,∵∠1=∠2,PF⊥BC,PE⊥AB,∴PE=PF.在△APE和△CPF中, {PA=PCPE=PF∴△APE≌△CPF(HL),∴∠PAE=∠PCB.∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°.(2)∵△APE≌△CPF,∴AE=FC,∵BC=12 cm,AB=6 cm,∴AE=12×(12-6)=3 (cm),BE=AB+AE=6+3=9(cm),在Rt△PAE中,PE 4 (cm),在Rt△PBE中,PB.24. 证明:连接PA,PB,PC,如图.∵AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G,∴S△ABC=1 2×BC×AD,S△PAB=12×AB×PE,S△PAC=12×AC×PF,S△PBC=12×BC×PG.∵S△ABC =S△PAB+S△PAC+S△PBC,∴12×BC×AD=12(AB×PE+AC×PF+BC×PG).∵△ABC是等边三角形,∴AB=BC=AC,∴BC×AD=BC×(PE+PF+PG),∴AD=PE+PF+PG.25. 解:(1)当点Q到达点C时,PQ与AB垂直.理由:∵点Q到达点C时,BQ=BC=6 cm,∴t=62=3.∴AP=3cm.∴BP=AB-AP=3 cm=AP.∴点P为AB的中点.∴PQ⊥AB.(2)能.∵∠B=60°,∴当BP=BQ时,△BPQ为等边三角形.∴6-t=2t,解得t=2.∴当t=2时,△BPQ是等边三角形.。
北师大版八年级数学下《第一章三角形的证明》单元测试题(有答案)
北师大版八年级数学下册第一章三角形的证明单元测试题一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配.A.①B.②C.③D.①和②2.下列说法中,正确的是().A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等3.如图2,AB⊥C D,△AB D、△B CE都是等腰三角形,如果C D=8cm,BE=3c m,那么A C长为().A.4c m B.5c m C.8c m D.34c m4.如图3,在等边ABC 的度数是().,中,D E分别是B C A C上的点,且,B D CE,A D与BE相交于点P,则12450B.55C.60D.75A.0005.如图4,在ABC中,A B=A C,A 36ABC ACB,B D和CE分别是和的平分线,且相交于点P.在图4中,等腰三角形(不再添加线段和字母)的个数为().A.9个B.8个C.7个D.6个,l,l6.如图5,l表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可123供选择的地址有().A.1处B.2处C.3处D.4处7.如图 6,A 、C 、E 三点在同一条直线上,△D A C 和△EB C 都是等边三角形,AE 、B D 分别与 C D 、CE 交于点 M 、N ,有如下结论:①△AC E ≌△D C B ;② C M =C N ;③ A C =D N. 其中,正确结论的个数是().A .3 个B .2 个C . 1 个D .0 个8.要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C ,D ,使 C D=B C ,再作出 BFABC ED C ≌ ,得 ED =A B. 因此,的垂线 DE ,使 A ,C ,E 在同一条直线上(如图 7),可以证明 ABC ED C ≌测得 DE 的长就是 A B 的长,在这里判定 的条件是( ). A .AS AB .S ASC .SSSD .H L9.如图 8,将长方形 A B C D 沿对角线 B D 翻折,点 C 落在点 E 的位置,BE 交 A D 于点 F. BDF 求证:重叠部分(即 )是等腰三角形. 证明:∵四边形 A B C D 是长方形,∴A D ∥B CBDE 又∵ 与 BD C 关于 B D 对称, 2 3. ∴ B D F 是等腰三角形.∴ 请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().1 2 ;②1 3;③3 4;④BDC BDE ① A .①③B .②③C .②①D .③④10.如图9,已知线段a,h作等腰△AB C,使AB=A C,且BC=a,B C边上的高A D=h.张红的作法是:(1)作线段BC=a;(2)作线段BC的垂直平分线M N,M N与BC相交于点D;(3)在直线M N上截取线段h;(4)连结AB,AC,则△AB C为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A.(1)B.(2)C.(3)D.(4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△A B C和△D C B中,A C=D B,若不增加任何字母与辅助线,要使△A B C≌△D C B,则还需增加一个条件是____________.2.如图11,在Rt AB C中,BA C90,,AB A C,分别过点B C作经过点A的直线的垂线段B D,C E,若B D=3厘米,CE=4厘米,则DE的长为_______.3.如图12,P,Q是△A B C的边B C上的两点,且BP=P Q=Q C=A P=A Q,则∠A B C等于_________度.4.如图13,在等腰ABC中,A B=27,A B的垂直平分线交A B于点D,交AC于点E ,若BCE的周长为50,则底边BC的长为_________.ABC中,A B=A C,A B的垂直平分线与A C所在的直线相交所得的锐角为50,则0 5.在底角B的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边A C=5c m,B C=10c m,将△A B C 折叠,点B 与点A 重合,折痕为DE,则C D 的长为________.8.如图15,在ABC中,A B=A C ,A 120 ,D 是BC 上任意一点,分别做D E⊥A B 于E,DF⊥A C于F,如果BC=20cm,那么DE+D F= _______cm.9.如图16,在Rt△ABC中,∠C=90°,∠B=15°,D E是AB的中垂线,垂足为D,交BCE于点,若BE 4,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)ABC 中,ACB 90,C D 是A B 边上的高,A 301.(7 分)如图18,在.求证:A B= 4BD.0 02.(7分)如图19,在ABC900中,C ,A C=B C,A D平分CAB交B C于点D,DE⊥A B于点E,若A B=6c m.你能否求出BDE的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D、E分别为△AB C的边AB、AC上的点,BE与C D相交于O点.现有四个条件:①AB=AC;②OB=O C;③∠ABE=∠ACD;④BE=C D.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:..命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC中,A 900,AB=A C,AB C的平分线B D交A C于D,CE⊥B D的延1BD2长线于点E.求证:CE.ABC中,C 900.5.(8分)如图22,在(1)用圆规和直尺在A C上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P到A B、B C的距离相等时,求∠A的度数.6.(8分)如图23,AOB90,O M平分A O B,将直角三角板的顶点P在射线O M上移动,两直角边分别与O A、O B相交于点C、D,问PC与P D相等吗?试说明理由.四、拓广探索(本大题12分)ABC如图24,在中,A B=A C,A B的垂直平分线交A B于点N,交B C的延长线于点M,若A400.(1)求N M B 的度数;(2)如果将(1)中A的度数改为70,其余条件不变,再求N M B的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A改为钝角,你对这个规律性的认识是否需要加以修改?答案:一、精心选一选,慧眼识金1.C;2.B;3.D.点拨:B C=BE=3c m,A B=B D=5c m;ABD≌BCE;4.C.点拨:利用5.B;6.D.点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B.点拨:①②正确;8.A;9.C;10.C.点拨:在直线M N上截取线段h,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACB DBC;ABD≌CAE;2.7厘米.点拨:利用3.30;BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.EBF F 90,ACF F 900 ,∴ EBFACF .∵ 0 在 RtABD Rt ACF 中,∵DBA ACF和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.BE CE AC AB 27 ,可得 B C 50 27 23;4.23.点拨:由 5.7020 .点拨;当ABC 为锐角三角形时,B 70ABC 为钝角三角形时,B 20 ;或 ;当 0 0 0 06.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;15cm C D x B D AD 10 x Rt ACD (10 x)x 5 ,解得 7. . 点拨:设 ,则易证得 .在 中, 2 2 2 4 15 x .4 1 18.10.点拨:利用含30角的直角三角形的性质得, D E DF BD C D BC . 0 22Rt AEC 中,AEC 309.2 . 点拨:在,由 AE=BE= 4,则得 A C=2; 0 10.16.点拨:AB=26 米,A C+B C =34 米,故少走 8 米,即 16 步. 三、耐心做一做,马到成功 1.∵ACB 90,A 300 ,∴AB=2BC ,B 60.0 0又∵C D ⊥A B ,∴DCB 30,∴B C=2B D.∴AB= 2BC= 4B D.2.根据题意能求出BDE的周长.C 900 ,DEA 90,又∵A D 平分C A B∵ 在 ,∴DE=D C.Rt AD C Rt A D E 和 Rt AD C Rt A D E≌ (HL ). 中,DE=D C ,A D =A D ,∴ ∴A C=A E ,又∵A C =B C ,∴AE=B C.BDE DE DB EB BC EB AE EB AB ∴ 的周长 . BDE ∵A B=6c m ,∴ 3.(1)①,③;②,④.的周长=6cm. (2)已知:D 、E 分别为△ABC 的边 AB 、AC 上的点,BE 与 C D 相交于 O 点,且AB =AC ,∠ABE =∠AC D. 求证:OB =O C ,BE =C D.证明:∵ A B=A C ,∠ ABE =∠ AC D ,∠ A=∠A ,∴△ A B E ≌△ A C D (AS A ).∴BE=C D. 又∵ABC ACB ,∴BC D AC BAC D AB C ABE CBEBOC ∴ 是等腰三角形,∴OB =O C. 4.延长 CE 、B A 相交于点 F.和,A B=A C ,ABD Rt ACF ≌ B D CF.∴ Rt (AS A ). ∴ 在 Rt BCE Rt BFE 中,∵BE=BE ,EBC EBF和,BCE Rt BFE≌ (ASA ).∴ Rt 1 12 EF ∴CE . ∴CE C F B D .25.(1)图略. 点拨:作线段 A B 的垂直平分线. (2)连结 BP.∵点 P 到 A B 、B C 的距离相等, ∴BP 是ABC的平分线,∴ABP PBC .又∵点 P 在线段 A B 的垂直平分线上,∴P A=PB ,∴A ABP.1 A ABP PB C 90 30 ∴ 0 0 . 36.过点 P 作 PE ⊥O A 于点 E ,PF ⊥O B 于点 F. ∵O M 平分AOB,点 P 在 O M 上,∴PE=PF.又∵A OB 9090 ,∴ EPF .0 0 ∴EPF CP D,∴EPC FPDRt PCE Rt PDF .∴ ≌ (AS A ),∴PC=P D.四、拓广探索1 1 B ACB 180 1804070 (1)∵A B=A C ,∴ .∴ BA 0.0 00 22N M B 90B 90 70 20 ∴ . 0 0 0 0 (2)解法同(1).同理可得, (3)规律:NM BN M B 35.的度数等于顶角A 度数的一半.1 证明:设A .∵A B=A C ,∴B C180 .0 ,∴ B21 1 BN M 900 ,∴N MB 90 B 90 180 . ∵ 0 0 0 22N M B的度数等于顶角 A 度数的一半.即A (4)将(1)中的 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.。
八年级数学下册第一章单元测试卷-浙教版(含答案)
八年级数学下册第一章单元测试卷-浙教版(含答案)时间:100分钟满分:120分班级:________姓名:________一、选择题(每小题3分,共30分)1.下列各式一定是二次根式的是()A.-7B.32m C.a2+b2D.ab2.下列二次根式中,最简二次根式是( )A.15B.0.5 C. 5 D.503.若式子m+2(m-1)2有意义,则实数m的取值范围是( )A.m>-2 B.m>-2且m≠1 C.m≥-2 D.m≥-2且m≠1 4.下面计算正确的是( )A.3+3=3 3 B.27÷3=3 C.2·3= 5 D.(-2)2=-2 5.若a<1,化简(a-1)2-1=( )A.a-2 B.2-a C.a D.-a6.方程|4x-8|+x-y-m=0,当y=1时,m的值是( )A.-2 B.-1 C.1 D.27.如图,一个小球由地面沿着坡比为1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( )A.5 m B.103m C.4 5 m D.2 5 m8.如果x+y=2xy,那么yx的值为( )A.-1 B.1 C.2 D.以上答案都不对9.下列选项错误的是( )A.3-2的倒数是3+ 2B.x2-x一定是非负数C.若x<2,则(x-1)2=1-x;D.当x<0时,-2x在实数范围内有意义10.如图,数轴上A,B两点对应的实数分别是1和3,若A点关于B点的对称点为点C,则点C所对应的实数为( )A.23-1 B.1+ 3 C.2+ 3 D.23+1【解析】设点C所对应的实数是x.则有x-3=3-1,x=23-1.二、填空题(每小题4分,共24分)11.18-8=___.12.已知矩形的长为2 5 cm,宽为10 cm,则面积为____ cm2.13.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=a+ba-b,如3※2=3+23-2=5,那么12※4=____.14.已知a,b为等腰三角形的两条边长,且a,b满足b=3-a+2a-6+4,则此三角形的周长为____.15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=14[a2b2-(a2+b2-c22)2].现已知△ABC的三边长分别为1,2,5,则△ABC的面积为_____.16.若|2 021-a|+a-2 022=a,则a-2 0212=___.三、解答题(共66分)17.(12分)计算:(1)(-144)×(-169);(2)-1 3225;(3)-12 1 024×5;(4)18m2n.18.(8分)(1)解方程:(3+1)(3-1)x=72-18.(2)先化简,再求值:(1x+1-1)÷x2-xx+1,其中x=2+1.19.(8分)作图题:如图,是一个边长为1的正方形网格,请在网格中画出一个边长为22,5和3的三角形.(要求三角形的顶点在小格的顶点处).20.(8分)如图,港口A在观测站O的正东方向,OA=4 km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向.求该船航行的距离AB的长(结果保留根号).21.(10分)细心观察图形,认真分析各式,然后解答问题.如图,OA22=(1)2+1=2,S1=12;OA23=12+(2)2=3,S2=22;OA24=12+(3)2=4,S3=3 2;…(1)请用含有n(n为正整数)的等式表示上述变化规律:OA2n=________;S n=________;(2)若一个三角形的面积是22,计算说明它是第几个三角形?(3)求出S21+S22+S23+…+S29的值.22.(10分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在的直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC =∠CDE=30°,DE=80 cm,AC=165 cm.求:(1)支架CD的长;(2)真空热水管AB的长(结果保留根号).23.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+22mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得:a=________,b=________;(2)若a+63=(m+n3)2,且a,m,n均为正整数,求a的值.参考答案一、选择题(每小题3分,共30分)1.C2.C3.D4.B5.D6.C7.D8.B9.C10.A二、填空题(每小题4分,共24分)11.212.10213.214.10或1115.116.2 022【解析】由题意可得a-2 022≥0,解得a≥2 022,∴2 021-a<0,∴a-2 021+a-2 022=a,∴原式=2 022.三、解答题(共66分)17.解:原式=144×169=144×169=12×13=156;(2)-13225;解:原式=-13×15=-5;(3)-12 1 024×5; 解:原式=-12322×5=-12×325=-165; =3|m |2n=±3m 2n .(4)18m 2n .解:原式=32×m 2×2n18.(8分)(1)解方程:(3+1)(3-1)x =72-18.解:2x =62-32x =322.(2)先化简,再求值:(1x +1-1)÷x 2-x x +1,其中x =2+1. 解:原式=1-(x +1)x +1·x +1x (x -1)=1-x -1x (x -1)=-x x (x -1) =11-x . 当x =2+1时,原式=11-2-1=-22. 19.(8分)作图题:【解析】22看作是2,2为直角边的直角三角形的斜边.5可看作是以2和1为直角边的直角三角形的斜边,从而可画出三角形.AB=22,AC=5,BC=3.△ABC符合要求.20.解:如图,过点A作AD⊥OB于点D.∵∠ADO=90°,∠AOD=30°,OA=4 km,∴AD=12OA=2(km).∵∠ADB=90°,∠B=∠CAB-∠AOB=45°,∴BD=AD=2(km).∴AB=22+22=22(km).∴该船航行的距离(即AB的长)为2 2 km. 21.解:(1)∵每一个三角形都是直角三角形,由勾股定理,得OA1=1,OA2=2,OA3=3,OA n=n,∴OA2n=n,S n=12·1·n=n2;(2)当S n=22时,有22=n2,解得n=32,即说明它是第32个三角形;(3)原式=14+24+…+94=454.即S21+S22+S23+…+S29的值为454.22.解:(1)在Rt△CDE中,∵∠CDE=30°,DE=80 cm,∴CE=12DE=40 cm,∴CD=802-402=403(cm).(2)在Rt△OAC中,∵∠BAC=30°,∴OA=2OC.设OC=x(cm),则OA=2x(cm).由勾股定理,得OC2+AC2=OA2,即x2+1652=(2x)2,解得x=553,∴OC=55 3 cm,∴OD=OC-CD=553-403=153(cm),∴AB=AO-OB=2OC -OD=2×553-153=953(cm).23.解:(1)(m+n3)2=m2+3n2+23mn,∴a=m2+3n2,b=2mn;(2)a=m2+3n2,2mn=6,∵a,m,n均为正整数,∴m=3,n=1或m=1,n=3,当m=3,n=1时,a=9+3=12,当m=1,n=3时,a=1+3×9=28,∴a的值为12或28.。
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
2022年最新北师大版八年级数学下册第一章三角形的证明专题测试练习题(含详解)
北师大版八年级数学下册第一章三角形的证明专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是()A.等腰三角形的角平分线、中线、高线互相重合B.一个三角形被截成两个三角形,每个三角形的内角和是90度C.有两个角是60°的三角形是等边三角形D.在△ABC中,2∠=∠=∠,则ABC为直角三角形A B C2、下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.所有的直角三角形都是全等三角形D.所有的等边三角形都是全等三角形3、下列命题成立的有()个.①等腰三角形两腰上的中线相等;②有两边及其中一边上的高线分别相等的两个三角形全等;③三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形使点C落在AB边上的点E 处,折痕为BD.则△AED的周长为7cm;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC.A .1B .2C .3D .44、如图,在△AAA 中,AD 是角平分线,且AD AC =,若60BAC ∠=︒,则B 的度数是( )A .45°B .50°C .52°D .58°5、如图,Rt△ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .26、如图,在△ABC 中,AB =AC =6cm ,AD ,CE 是△ABC 的两条中线,CE =4cm ,P 是AD 上的一个动点,则BP +EP 的最小值是( )A .3cmB .4cmC .6cmD .10cm7、下列各组数据中,能构成直角三角形的三边的长的一组是( )A .1,2,3B .4,5,6C .5,12,13D .13,14,158、下列以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =1,b =1,c =√2B .a =2,b =3,c =√13C .a =3,b =5,c =7D .a =6,b =8,c =109、如图,在Rt △ABC 中,∠C =90°,AC =12,AB =13,AB 边的垂直平分线分别交AB 、AC 于N 、M 两点,则△BCM 的周长为( )A .18B .16C .17D .无法确定10、如图,等腰△AAA 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,上午9时,一艘船从小岛A 处出发,以12海里/时的速度向正北方向航行,10时40分到达小岛B 处,若从灯塔C 处分别测得小岛A 、B 在南偏东34°、68°方向,则小岛B 处到灯塔C 的距离是______海里.2、如图,已知△ABC 是等边三角形,边长为3,G 是三角形的重心,那么GA =______.3、等腰△AAA 的顶角为30°,腰长为8,则△AAA 的面积为______.4、如图,△AAA 是等腰直角三角形,AB 是斜边,以BC 为一边在右侧作等边三角形BCD ,连接AD 与BC 交于点E ,则BED ∠的度数为______度.5、如图,在△AAA 中,AB AC =,70BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线交于点O ,将∠的度数为________.∠沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则OECC三、解答题(5小题,每小题10分,共计50分)1、如图所示,校园里有两条路AA,AA,在交叉口附近有两块宣传牌A,A,学校准备在这里(∠AAA内部)安装一盏路灯,要求灯柱A离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置A.(不写过程,保留作图痕迹)2、如图,△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,E为△ABC内一点,AC=CE,∠BAE=15°,AD与CE相交于点F.(1)求∠DFE的度数;(2)求证:AE=BE.3、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.4、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上.(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标.5、数学课上,王老师布置如下任务:如图,已知∠MAN<45°,点B是射线AM上的一个定点,在射线AN上求作点C,使∠ACB=2∠A.下面是小路设计的尺规作图过程.作法:①作线段AB的垂直平分线l,直线l交射线AN于点D;②以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求.根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=,( )(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠,( )(填推理的依据)∴∠ACB=2∠A.-参考答案-一、单选题1、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为180606060︒-︒-︒=︒,所以三角形是等边三角形,故此选项正确;D.设C x ∠=,则2A B x ∠=∠=,故22180x x x ++=︒,解得36x =︒,所以72A B ∠=∠=︒,36C ∠=︒,此三角形不是直角三角形,故此选项错误.故选:C .【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.2、B【分析】根据全等三角形的性质,等边三角形的性质判断即可.【详解】解:A 、全等三角形是指形状和大小相同的两个三角形,该选项错误;B 、全等三角形的周长和面积分别相等,该选项正确;C 、所有的直角三角形不一定都是全等三角形,该选项错误;D 、所有的等边三角形不一定都是全等三角形,该选项错误;故选:B .【点睛】本题考查的是全等三角形的性质,掌握全等形的概念,全等三角形的性质是解题的关键.3、C【分析】利用等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质分别判断后即可确定正确的选项.【详解】解:①等腰三角形两腰上的中线相等,故原命题正确;②有两边及其中一边上的高线分别相等的两个三角形不一定全等,故原命题错误;③三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形使点C落在AB边上的点E处,折痕为BD.如图:由折叠知:BC=BE=6,CD=DE,则△AED的周长为AD+DE+AE=AD+CD+AB-BE= AC+AB-BC=7cm,故原命题正确;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC,故原命题正确,成立的有3个,故选:C.【点睛】要题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质,难度不大.4、A【分析】根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.【详解】解:∵AD是角平分线,60∠=︒,BAC∴∠DCA=12BAC=30°,∵AD=AC,∴∠C=(180°-∠DCA)÷2=75°,∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,故选:A.【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.5、C【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【详解】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键.6、B【分析】连接CE交AD于点P,则BP+EP的最小值为CE的长.【详解】如图,连接CE交AD于点P,∵AB=AC,AD是BC的中线,∴AD⊥BC,∴BP=CP,∴BP+EP=CP+EP≥CE,∴BP+EP的最小值为CE的长,∵CE=4cm,∴BP+EP的最小值为4cm,故选:B.【点睛】本题是典型的将军饮马问题,考查了等腰三角形三线合一的性质和两点间线段最短知识,关键是把BP+EP的最小值转化为CP+EP的最小值,从而根据两点间线段最短解决最小值的问题.7、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题.【详解】解:A.2221+23≠,不是直角三角形,故A 不符合题意;B. 2224+56≠,不是直角三角形,故B 不符合题意;C. 2225+12=13,是直角三角形,故C 不符合题意;D. 22213+1415≠,不是直角三角形,故D 不符合题意,故选:C .【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.8、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A 、22211+=,该三角形是直角三角形,故此选项不符合题意;B 、22223+=,该三角形是直角三角形,故此选项不符合题意;C 、222357+≠,该三角形不是直角三角形,故此选项符合题意;D 、2226810+=,该三角形是直角三角形,故此选项不符合题意;故选:C .【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.【详解】解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.10、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC 是等边三角形,故③正确;④如图2,在AC 上截取AE =PA ,∵∠PAE =180°﹣∠BAC =60°,∴△APE 是等边三角形,∴∠PEA =∠APE =60°,PE =PA ,∴∠APO +∠OPE =60°,∵∠OPE +∠CPE =∠CPO =60°,∴∠APO =∠CPE ,∵OP =CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO =CE ,∴AC =AE +CE =AO +AP ,∴AB =AO +AP ,故④正确;正确的结论有:①③④,故选:A.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.二、填空题1、20【分析】根据所给的角的度数,容易证得BCA∆是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.【详解】解:据题意得,34∠=︒,DBC∠=︒,68A∠=∠+∠,DBC A C∴∠=∠=︒,34A C∴=,AB BC51220AB=⨯=,3∴=(海里).BC20故答案是:20.【点睛】本题考查了等腰三角形的性质及方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.2【分析】延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.【详解】解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32,由勾股定理得,AD =,∴GA =23AD 故答案为:3.【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.3、16【分析】过点B 作BD ⊥AC ,利用30°所对的直角边是斜边的一半,可求出BD ,然后求面积即可.【详解】解:如图所示,过点B 作BD ⊥AC ,∵∠A =30°,AB =AC =8,∴BD =12AB =4,∴S △ABC =12BD ·AC =16故答案为:16.【点睛】此题考查的是直角三角形的性质:30°所对的直角边是斜边的一半和面积的求法,掌握构造辅助线的方法是解决此题的关键.4、75【分析】由题意,ACD △是等腰三角形,然后求出CAE ∠的度数,再根据三角形的外角性质,即可求出BED ∠的度数.【详解】解:∵ABC 是等腰直角三角形,∴AC =BC ,∠ABC =∠BAC =45°,∠ACB =90°,∵△BCD 是等边三角形,∴BC =CD ,∠BCD =60°,∴AC =CD ,∠ACD =90°+60°=150°,∴ACD △是等腰三角形, ∴1(180150)152CAE CDE ∠=∠=⨯︒-︒=︒,∴451530BAE ∠=︒-︒=︒,∴304575BED BAE ABE ∠=∠+∠=︒+︒=︒;故答案为:75.【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出15CAE CDE ∠=∠=︒.5、140°【分析】连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA =OB ,根据等边对等角可得∠ABO =∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB =OC ,再根据等边对等角求出∠OCB =∠OBC ,根据翻折的性质可得OE =CE ,然后根据等边对等角求出∠COE ,再利用三角形的内角和定理列式计算即可.【详解】解:如图:连接OB 、OC ,∵∠BAC =70°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×70°=35°,又∵AB =AC ,∴∠ABC =12(180°−∠BAC )=12(180°−70°)=55°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =35°,∴∠OBC =∠ABC −∠ABO =55°−35°=20°,∵AO 为∠BAC 的平分线,AB =AC ,∴OB =OC ,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=20°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=20°,在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−20°−20°=140°,故答案为:140°.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,作辅助线,构造出等腰三角形是解题的关键.三、解答题1、见详解【分析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【详解】解:连结CD,作CD的垂直平分线,和∠AOB的平分线,两线交于P,如图,点P为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.2、(1)∠DFE=90°;(2)见解析【分析】(1)先求得∠BAD=30°,∠BAE=∠EAD=15°,即可求得∠EAC=75°,由AC=CE,可求得∠EAC=∠AEC=75°,即可求得∠DFE=90°;(2)在Rt△AFC中,求得∠FCA=30°,AC=2AF=AB,过点E作EG⊥AB于点G,求得AG=AF,得到BG=AG,即可得到△ABF为等腰三角形,即可证明AE=BE.【详解】解:(1)∵△ACD是等边三角形,∴∠CAD=60°,∵∠BAC=90°,∴∠BAD=90°-60°=30°,∵∠BAE=15°,∴∠BAE=∠EAD=15°,∴∠EAC=90°-15°=75°,∵AC=CE,∴∠EAC=∠AEC=75°,∴∠DFE=∠EAD+∠AEC=15°+75°=90°;(2)由(1)得∠DFE=90°,即∠AFC=∠AFE=90°,∵△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,∴∠CAD=60°,AB=AC,∴∠FCA=30°,∴AC =2AF ,即AB =2AF ,过点E 作EG ⊥AB 于点G ,∵∠BAE =∠EAD =15°,且∠EFA =90°,EG ⊥AB ,∴EG =EF ,又AE = AE ,∴Rt △EAG ≌Rt △EAF (HL ),∴AG =AF ,∴AB =2AG ,∴BG =AG ,又EG ⊥AB ,∴△ABF 为等腰三角形,∴AE =BE .【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.3、见解析【分析】根据等腰三角形的性质,可得∠ADB =∠ADC =90°,∠ABC =∠ACB ,BD =CD ,从而得到△BDE ≌△CDE ,进而得到∠DCE =∠DBE ,再由BE 平分∠ABC ,可得12DBE ABC ∠=∠ ,进而得到12DCE ACB ∠=∠,即可求证.【详解】解:∵AB=AC,AD是△ABC的中线,∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,∵DE=DE,∴△BDE≌△CDE,∴∠DCE=∠DBE,∵BE平分∠ABC,∴12DBE ABC∠=∠,∴12DCE ABC ∠=∠,∴12DCE ACB ∠=∠,∴CE平分∠ACB.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.4、(1)见解析;(2)(0,94)【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标.【详解】解:(1)如图,点P即为所求;(2)∵A的坐标(0,6),点B的坐标(3,0),∴OA=6,OB=3,∴PA=PB=OA-OP=6-OP,∵PB2-OP2=OB2,∴(6-OP)2-OP2=32,解得OP=94,∴点P的坐标为(0,94).【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质.5、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC;等边对等角.【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可.(2)根据垂直平分线的性质以及等边对等角进行解答即可.【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;(2)解:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=DB,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)∴∠ACB=2∠A.【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.。
北师大版数学八年级下册 第一章 三角形的证明 达标测试卷(含答案)
第一章三角形的证明达标测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列长度的三条线段能组成直角三角形的是()A.2,3,4 B.3,4,5C.4,6,7 D.5,11,122.在△ABC中,AB=AC,∠A=50°,则∠B的度数是()A.50°B.65°C.80°D.130°3.对于命题“若x2>y2,则x>y”,能说明它是假命题的反例是() A.x=-2,y=-1 B.x=-1,y=-2C.x=2,y=1 D.x=1,y=24.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10(第4题)(第5题)5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加的一个条件是()A.AE=DF B.∠A=∠DC.∠B=∠C D.AB=DC6.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,且AD交BC于点D,DE⊥AB于点E,则下列说法错误的是()A.∠CAD=30°B.AD=BDC.BE=2CD D.CD=ED7.如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,CE平分∠BCA交AB于点E,AD、CE相交于点F,则∠CF A的度数是()A.100°B.105°C.110°D.120°(第7题)(第8题)(第10题)8.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是() A.30°B.35°C.40°D.45°9.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()10.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,连接EF,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③DA平分∠EDF;④AD垂直平分EF.其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(本题共6小题,每小题3分,共18分)11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=________.12.命题“等边三角形是等腰三角形”的逆命题是________________________,该逆命题是______命题(填“真”或“假”).13.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3 cm到D,则橡皮筋被拉长了________cm.(第13题)(第14题)14.如图,正方形的网格中,网格线的交点称为格点,已知点A,B是两个格点,若C点也是格点,且使△ABC是等腰三角形,则满足条件的点C的个数为________个.15.如图,△ABC中,AB+AC=6,BC的垂直平分线DE交AB于点D,交BC 于点E,连接CD,则△ACD的周长为________.(第15题)(第16题)16.如图,等边三角形ABC的边长为12,AD是BC边上的中线,M是AD上的动点,E是AC边上的一点.若AE=4,则EM+CM的最小值为________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)已知:∠ABC,射线BC上一点D(如图所示).求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC 的内部,且点P到∠ABC两边的距离相等.(要求:请用直尺、圆规作图,不写作法,但要保留作图痕迹)318.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C 作CF∥AB,CF交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.20.(8分)如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.(1)求证:△ABD≌△CBE;(2)求证:CF⊥AD;(3)当∠C=30°,CE=8时,直接写出线段AE、CF的长度.21.(10分)如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:5(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由;(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.22.(10分)已知,在△ABC中,∠A=90°,AB=AC=4,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,试探究BE和AF之间的数量关系,并说明四边形AEDF的面积是否为定值,若是,请求出;若不是,请说明理由;(2)如果点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.答案一、1.B 2.B 3.A 4.C 5.D 6.C7.C 8.C点拨:∵AB=AC,∠A=30°,∴∠ACB =12×(180°-30°)=75°.∵∠1=∠A+∠AED=145°,∴∠AED=145°-30°=115°.∵a∥b,∴∠AED=∠2+∠ACB.∴∠2=115°-75°=40°.9.D10.D二、11.110°12.等腰三角形是等边三角形;假13.214.815.616.4 7点拨:如图,在AB上截取AE′=AE=4,连接CE′,CE′与AD交于点M,连接ME,易知此时EM+CM的值最小,即为线段CE′的长度.过点C 作CF⊥AB,垂足为F.∵△ABC是等边三角形,∴AF=12AB=6,∴CF=AC2-AF2=6 3,E′F=AF-AE′=2,∴CE′=CF2+E′F2=4 7.三、17.解:如图,△PBD为所求作的三角形.18.(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD.∴△BDE≌△CDF(AAS).7(2)解:∵△BDE ≌△CDF ,∴BE =CF =2.∴AB =AE +BE =1+2=3.∵AD ⊥BC ,BD =CD ,∴AC =AB =3.19.(1)证明:∵OB =OC ,∴∠OBC =∠OCB .∵BE ,CD 是两条高,∴∠BDC =∠CEB =90°.又∵BC =CB ,∴△BDC ≌△CEB (AAS).∴∠DBC =∠ECB .∴AB =AC ,即△ABC 是等腰三角形.(2)解:点O 在∠BAC 的平分线上.理由:∵△BDC ≌△CEB ,∴DC =EB .∵OB =OC ,∴OD =OE .又∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上.20.(1)证明:∵AB ⊥CD ,∴∠CBE =∠ABD =90°.在Rt △CBE 和Rt △ABD 中,⎩⎨⎧CE =AD ,BE =BD ,∴Rt △CBE ≌Rt △ABD (HL),(2)证明:∵Rt △CBE ≌Rt △ABD ,∴∠C =∠A .∵∠AEF =∠CEB ,∴∠AFE =∠CBE =90°,∴CF ⊥AD .(3)解:AE =4 3-4,CF =6+2 3.21.解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由如下:∵点Q 到达点C 时,BQ =BC =6 cm ,∴t =62=3.∴AP =3 cm.∴BP =AB -AP =3 cm =AP .∴点P 为AB 的中点.∴PQ ⊥AB .(2)能.∵∠B =60°,∴当BP =BQ 时,△BPQ 为等边三角形.9 ∴6-t =2t ,解得t =2.∴当t =2时,△BPQ 是等边三角形.22.解:(1)BE =AF ,四边形AEDF 的面积为定值.理由:如图①所示,连接AD .∵∠BAC =90°,AB =AC ,∴△ABC 为等腰直角三角形,∠EBD =45°.∵点D 为BC 的中点,∴AD =12BC =BD ,∠F AD =45°.∵∠BDE +∠EDA =90°,∠EDA +∠ADF =90°,∴∠BDE =∠ADF .在△BDE 和△ADF 中,⎩⎨⎧∠EBD =∠F AD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴BE =AF ,S △ADF =S △BDE ,∴S 四边形AEDF =S △ADE +S △ADF =S △ADE +S △BDE =S △ABD =12×12×4×4=4, ∴四边形AEDF 的面积是定值,定值为4.(2)BE =AF ,理由如下:连接AD ,如图②所示.∵∠ABD =∠BAD =45°,∴∠EBD =∠F AD =135°.∵∠EDB +∠BDF =90°,∠BDF +∠FDA =90°,∴∠EDB =∠FDA .在△EDB 和△FDA 中,⎩⎨⎧∠EBD =∠F AD ,BD =AD ,∠EDB =∠FDA ,∴△EDB≌△FDA(ASA),∴BE=AF.。
(完整版)八年级数学下册第一单元测试题及答案
八年级数学下册第一单元测试题及答案一、选择题(每小题3分,共30分)1.下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A.1个B。
2个C.3个D.4个2。
如图,在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC 于点D,则BD的长为()A。
B。
C.D。
3.如图,在△ABC中,,点D在AC边上,且,则∠A的度数为()A。
30°B。
36°C.45°D.70°4.(2015&#8226;湖北荆门中考)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A。
8或10B。
8C.10D.6或125。
如图,已知,,,下列结论:①;②;③;④△≌△.其中正确的有()A.1个B.2个C.3个D.4个6。
在△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边cm,则最长边AB的长是()A.5cmB。
6cmC。
cmD.8cm7.如图,已知,,下列条件能使△≌△的是( )A。
B。
C.D。
三个答案都是8.(2015&#8226;陕西中考)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )A。
2个B。
3个C。
4个D。
5个9。
已知一个直角三角形的周长是2,斜边上的中线长为2,则这个三角形的面积为()A.5B.2C.D.110。
如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E,如果cm,那么△的周长是()A。
6cmB.7cmC.8cmD.9cm二、填空题(每小题3分,共24分)11。
如图所示,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF折叠后与点O重合,则∠OEC 的度数是.12.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是______三角形.13。
最新北师大版八年级数学下册第一章测试题及答案
北师八(下)第一章有理数1.1-1.3水平测试题河北饶阳县第二中学 郭杏好 053900一、选择题(每题3分,共24分)1.绝对值小于3的非负整数有( )A .1,2B .0,1C .0,1,2D .0,1,2,32.有理数a 、b 在数轴上的位置如图所示,在下列各式中对a 、b 之间的关系表达不正确的是( )A .b -a >0B .ab >0C .c -b <c -aD .ab 11 3.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA .2B .3C .4D .54.不等式-4≤x <2的所有整数解的和是( )A .-4B .-6C .-8D .-95.若不等式(a +1)x <a +1的解集为x <1,那么a 必须满足( )A .a <0B .a ≤-1C .a >-1D .a <-16.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A .x <2B .x >-2C .当a >0时,x <2D .当a >0时,x <2;当a <0时,x >27.不等式3(x -2)≤x +4的非负整数解有几个( )A .4B .5C .6D .无数个8.下列说法错误的是( )A .-3x >9的解集为x <-3B .不等式2x >-1的整数解有无数多个C .-2是不等式3x <-4的解D .不等式x >-5的负整数解有无数多个二、填空题(每题3分,共24分)9.已知a >0,b <0,且a +b <0,将a ,-b ,-|a |,-|b |用“<”号按从小到大的顺序连接起来是 .10.已知|x -5|=5-x ,则x 的取值范围是 .11.若a <b ,则-3a +1________-3b +1.12.若a >b ,c ≤0,则ac ________bc .13.若ba b a --||=-1,则a -b ________0. 14.大于________的每一个数都是不等式5x >15的解. 15.如果不等式(a -3)x <b 的解集是x <3-a b ,那么a 的取值范围是________. 16.方程x +2m =4(x +m )+1的解为非负数,则m 的取值应为________.三、解答题(3小题,共30分)17、(10分)已知不等式2x -1>x 与ax -6>5x 同解,试求a 的值. 18、(10分)爱心援助:小明和小刚在学习时,遇到以下两题,被难住了,请你伸出援助之手……(1)不等式a (x -1)>x +1-2a 的解集是x <-1,请确定a 是怎样的值.(2)如果不等式4x -3a >-1与不等式2(x -1)+3>5的解集相同,请确定a 的值.19. (10分)已知方程组⎩⎨⎧-=+=-k y x k y x 5132的解x 与y 的和为负数,求k 的取值范围. 四、综合探索题:(22分)20、(10分)小宁一家10点10分离家赶11点整的火车去某地旅游,他们家离火车站10千米.他们先以3千米/时的速度走了5分钟到达汽车站,然后乘公共汽车去火车站.公共汽车每小时至少走多少千米他们才能不误当次火车?21、(12分)某校校长带领该校市级“三好学生”外出旅游,甲旅行社说:如果买一张全票则其余学生可享受半价优惠.乙旅行社说:包括校长在内全部按票价的6折优惠(即按全价的60%收费).已知全票价为240元.(1)设学生人数为x ,甲、乙旅行社收费分别用y 甲、y 乙表示,分别写出y 甲、y 乙与x 的函数关系式.(2)当学生是多少时,两家旅行社收费相同?(3)当x >4时,选择哪家旅行社较合算?五、备选题:22. 一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成多少土方?23. 不等式的解集中是否一定有无限多个数?不等式|x|≤0、x2<0的解集是什么?不等式x2>0和x2+4>0的解集分别又是什么?24.请写出满足下列条件的一个不等式(1)0是这个不等式的一个解.(2)-2,-1,0,1都是不等式的解.(3)0不是这个不等式的解.(4)与x ≤-1的解集相同的不等式.(5)不等式的整数解只有-1,0,1,2.参考答案:一、1.C 2.D 3.B 4.D(提示:满足-4≤x <2的整数解有-4,-3,-2,-1,0,1,切勿漏解或多解 5.C 6.D(提示:因a 的符号未知,因此应用不等式的哪条性质不定,故需分类讨论) 7. C(提示:非负整数包括正整数和零) 8. D(提示:x >-5的负整数解有-4,-3,-2,-1)二、9.-|b |<-|a |<a <-b 10.x ≤5 11.> 12.≤(提示:勿丢c=0) 13.<(提示:由于a-b 在分母上,故a-b ≠0) 14.3 15.a >3(提示:因为在解的过程中不等号的方向没变,由不等式的性质2可知,a-3>0,故a>3) 16.m ≤-21 三、17、218、(1)解:不等式a (x -1)>x +1-2a 可变形为ax -a >x +1-2a (a -1)x >1-a∵ 原不等式的解集为x <-1 ∴ a -1<0,即a <1(2)解:解2(x -1)+3>5得:x >2解不等式4x -3a >-1得:x >413-a ∵ 以上两个不等式的解集相同∴413-a =2,解得a =3 19. k >31(提示:注意观察方程组的结构特点,让两个方程巧相加,可使运算简便) 20.设公共汽车速度为x 千米/时 根据题意得:3×6045605+x ≥10 解得:x ≥13,所以公共汽车每小时至少行13千米.21.解:(1)y 甲=240+240x ·50%,即y 甲=240+120xy 乙=240(x +1)·60%,即y 乙=144x +144(2)若y 甲=y 乙,则240+120x =144x +144解得:x =4(3)y 甲-y 乙=240+120x -(144x +144)=-24x +96当x >4时,-24x +96<0,即y 甲<y 乙这时选择甲旅行社较合算22. 8023.不等式的解集中不一定有无数多个数.|x|≤0的解集是x =0,x2<0无解.x2>0的解集为x >0或x <0,x2+4>0的解集为一切实数.24. (1)x >-1(或x ≥0,x >-2等都可以)(2)x <2(或x ≤1,x ≥-2,x >-5等均可)(3)x >1(或x <-1等均可=(4)2x ≤-2(或x +1≤0,2x +2≤0等均可)(5)-1≤x ≤2(或-1.5<x <2.1等)。
教材全解湘教版八年级数学下册第一章检测题及答案解析
EP O D 第1题图 B A第1章 直角三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共24分) 1.如图所示,平分∠,,,垂足分别为,下列结论正确的是( ) A. B. C.∠∠D.2.如图所示,有两棵树,一棵高10 m ,另一棵高4 m ,两树相距8 m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( ) A.8 m B.10 mC.12 mD.14 m3.如图所示,已知,,下列条件能使△≌△的是( ) A. B. C. D.三个答案都是4.一直角三角形的两边长分别为3和4,则第三边的长为( ) A.5 B.7C.5D.5或75.如图所示,一棵树在一次强台风中,从离地面处折断,倒下的部分与地面成角,这棵树在折断前的高度是( ) A. B. C.D.6.如图所示,在△中,,点在上,为的中点,相交于点,且.若,则( )A. B. C. D.7.(2015·浙江湖州中考)如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A.10 B.7 C.5 D.4第7题图8.(2015·广西桂林中考)下列各组线段能构成直角三角形的一组是( ) A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6二、填空题(每小题3分,共24分)9.若直角三角形的两直角边长为a ,b ,且满足26940a a b -++-=,则该直角三角形的斜边长为 . 10.在△中,,,⊥于点,则_______.11.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是 . 12.如图所示,是△的角平分线,于点,于点F ,连接交于点,则与的位置关系是 .13.(长沙中考)如图所示,BD 是∠ABC 的平分线,点P 是BD 上的一点,PE ⊥BA 于点E ,PE =4 cm,则点P 到边BC 的距离为________cm. 14.如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对. 15.如图所示,在Rt △中,,平分,交于点,且,,则点到的距离是________.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为),却踩伤了花草.第12题图AB C DEF GABD C OE第14题图三、解答题(共52分) 17.(6分)若△的三边满足下列条件,判断△是不是直角三角形,并说明哪个角是直角. (1);,,14543===AC AB BC (2)).1(12122>+==-=n n c n b n a ,, 18.(6分)若三角形的三个内角的比是,最短边长为,最长边长为.求:(1)这个三角形各角的度数; (2)另外一边长的平方. 19.(6分)如图所示,在△中,,∠,交于点.求证:.20.(6分)如图所示,是∠内的一点,,,垂足分别为,. 求证:(1);(2)点在∠的平分线上. 21.(6分) (2015·湖北孝感中考)我们把两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AB =CB ,AD =CD .对角线AC ,BD 相交于点O ,OE ⊥AB ,OF ⊥CB ,垂足分别是E ,F .求证:OE =OF .第20题图ABDC第19题图第21题图22.(6分)如图所示,为△的高,为上一点,交于点,且有,.求证:. 23.(8分)已知:在△中,,,点是的中点,点是边上一点. (1)垂直于于点,交于点(如图①),求证:. (2)垂直于,垂足为,交的延长线于点(如图②),找出图中与相等的线段,并证明.24.(8分)如图,折叠长方形的一边,使点落在边上的点处,cm ,cm , 求:(1)的长;(2)的长.第1章 直角三角形检测题参考答案第23题图①②A BCDE F第22题图1.A 解析:由平分∠,于,于,知故选项A 正确.2.B 解析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所飞行的路程最短,运用勾股定理可将两树梢之间的距离求出. 如图所示,设大树高AB =10 m ,小树高CD =4 m . 连接AC ,过点C 作CE ⊥AB 于点E ,则四边形EBDC 是长方形. 故EB =4 m ,EC =8 m ,AE =AB -EB =10-4=6(m ). 在Rt △AEC 中,AC = 22AE EC =2268+=10(m ).3.D 解析:添加A 选项中条件可用“”判定两个三角形全等;添加B 选项中条件可用“”判定两个三角形全等;添加C 选项中条件可用“”判定两个三角形全等,故选D .4.D 解析:当已知的两边均为直角边时,由勾股定理,得第三边长为5;当4为斜边长时,由勾股定理,得第三边长为7. 点拨:本题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.注意不要漏解.5.B 解析:如图,在Rt △中,∠,,∠,所以,所以大树的高度为.故选B . 6.C 解析:因为,,,,所以,.因为所以.因为.所以.故选C .7.C 解析:过点E 作EF ⊥BC ,垂足为F ,根据角平分线上的点到角的两边的距离相等可得ED =EF =2,所以1152522BCES BC EF △,故选C.第7题答图8.A 解析:在选项A 中,∵ =2 500,=2 500,∴,∴ 30,40,50能构成直角三角形; 在选项B 中,∵ =193,=169,∴ ≠,∴ 7,12,13不能构成直角三角形; 在选项C 中,∵ =106,=144,∴,∴ 5,9,12不能构成直角三角形;在选项D 中,∵ =25,=36,∴ ≠,∴ 3,4,6不能构成直角三角形.故选A.9.5 解析:∵ 26940a a b -++-=,∴ 2690a a -+=,40b -=,解得3a =,4b =. ∵ 直角三角形的两直角边长为a ,b ,∴ 该直角三角形的斜边长为2222345a b +=+=.点拨:本题考查了勾股定理、非负数的性质、绝对值和算术平方根的意义. 10.解析:如图所示,因为等腰三角形底边上的高、中线以及顶角平分线“三线合一”,所以.因为cm ,所以.因为 ,所以.11.15 解析:设第三个数是. ①若为最长边长,则,不是正整数,不符合题意;②若17为最长边长,则,三边长都是整数,能构成勾股数,符合题意.故答案为15. 12.垂直平分解析:因为是△的角平分线,B 于点,于点F ,所以.在Rt △和Rt △中,所以Rt △≌Rt △,所以.又是△的角平分线,所以垂直平分.13.4 解析:本题考查了角平分线的性质.∵ 角平分线上的点到角两边的距离相等,∴ 点P 到边BC 的距离等于PE 的长度.14. 解析:△和△,△和△△和△△和△共4对. 15.3 解析:如图,过点作于. 因为,,, 所以.因为平分,,ABCDE所以点到的距离.16.4 解析:在Rt△中,,则,少走了.17. 解:(1)因为,根据三边满足的条件,可以判断△是直角三角形,其中∠为直角.(2)因为,所以,根据三边满足的条件,可以判断△是直角三角形,其中∠为直角.18.解:(1)因为三个内角的比是,所以设三个内角的度数分别为.由,得,所以三个内角的度数分别为.(2)由(1)可知此三角形为直角三角形,则一条直角边长为1,斜边长为2.设另外一条直角边长为,则,即.所以另外一条边长的平方为3.19.证明:在△中,因为,∠,所以.又因为,所以所以.所以.所以.所以.20.证明:(1)连接.因为,,,,所以Rt△≌Rt△,所以(2)因为Rt△≌Rt△(HL),所以,所以点在∠的平分线上.21.证明:在△ABD和△CBD中,∴△ABD≌△CBD(SSS),∴∠ABD=CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.22.证明:在Rt△和在Rt△中,因为,所以Rt△≌Rt△.所以.因为,所以.又在Rt△中,,即,所以∠AEB=90°,所以23.(1)证明:因为垂直于于点,所以∠,所以.又因为∠∠,所以∠∠.因为, ∠,所以.又因为点是的中点,所以.因为,,,所以△≌△,所以.(2)解:.证明如下:在△中,因为,∠,所以,∠∠.因为,即∠,所以,所以.因为为等腰直角三角形斜边上的中线,所以,.在△和△中,,,,所以△≌△,所以.24. 解:(1)由题意可得,在Rt△中,因为,所以,所以.(2)由题意可得,可设的长为,则.在Rt△中,由勾股定理,得,解得,即的长为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下第一章检测题-----(专用)
一选择题
1 已知等腰三角形的两条边长是7 和3,那么第三条边长是()
A 8
B 7
C 4
D 3
2、如图,由∠1=∠ 2, BC=DC, AC=EC,得△ ABC≌△ EDC的根据是()
A、 SAS
B、ASA
C、AAS
D、SSS
3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是()
A、 4
B、10
C、4或10
D、以上答案都不对
4、如图,△ ABC中,∠ ACB=90°, BA的垂直平分线交CB边于 D,若 AB=10, AC=5,则图中等于
60°的角的个数为()A、2B、3C、4D、5
(第 2题图)
5.如图 1,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E,则图中全等
三角形的对数为()A.1 B .2 C . 3 D . 4
6.在△和△中,已知∠=∠,∠ =∠,要判定这两个三角形
ABC DEF C DB E
全等,还需要条件()
A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F
7.一个三角形的三边长分别为a, b, c,且(a b)(b c)(c a) 0 ,则该三角形必为()A.等腰三角形B.直角三角形 C .等边三角形 D .等腰直角三角形
8.如图 2 所示,△ ABC为直角三角形, BC为斜边,将△ ABP绕点 A 逆时针旋转后,能与
△′重合.如果=3,那么′的长等于()
ACP AP PP
A. 3 B.2 3 C.3 2 D. 4
二、填空题
1.如图 3,等腰三角形ABC的顶角为120°,腰长为 10,则底边上的高AD= .
2.已知等腰三角形的一个内角是100°,则其余两个角的度数分别为.
3.如图 5,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A等于.
4.如图 ,D,E 分别为 AB,AC的中点 , 将△ ABC沿线段 DE折叠 , 使点 A 落在点 F 处 , 若∠ B=50°,
则∠ BDF=.
5. 等腰三角形一腰上的高与另一腰的夹角为30° , 腰长为 a, 则其腰上的高是.
6.如图,∠ AOP=∠ BOP=15°, PC∥OA, PD⊥OA,若 PC=4,则 PD的长为
三. 解答题
1.已知:如图8,D是△ABC的边AB上一点,AB∥FC,DF交AC于点E,DE=FE.
求证: AE= CE.
2.如图 12,ABCD是一张长方形的纸片,折叠它的一边AD,使点D落在BC边上的F点处,AB= 8cm,BC=10cm,那么 EC等于多少
3. 已知:如图,∠A=∠ D=90°, AC=BD.求证:OB=OC
4.如图,点 C为线段 AB上一点,△ ACM,△ CBN是等边三角形,直线 AN,MC交于点 E, 直线 BM、 CN 交与 F点。
(1) 求证: AN=BM;(2) 求证:△ CEF为等边三角形;
(3) 将△ ACM绕点 C 按逆时针方向旋转900,其他条件不变,在图 2 中补出符合要求的图形,并判断
第( 1)、( 2)两小题的结论是否仍然成立(不要求证明)。