高中数学-圆与圆的位置关系教案

合集下载

【新教材精创】2.5.2 圆与圆的位置关系 教学设计-人教A版高中数学选择性必修第一册

【新教材精创】2.5.2 圆与圆的位置关系 教学设计-人教A版高中数学选择性必修第一册

【新教材精创】2.5.2 圆与圆的位置关系(教学设计)本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习圆与圆的位置关系。

学生在初中的几何学习中已经接触过圆与圆的位置关系,上节已经学习了直线与圆的位置关系,因此本节课是对已学内容的深化何延伸;另一方面,本节课对于后面学习直线与圆锥曲线的位置关系等内容又是一个铺垫,具有承上启下的地位。

坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。

通过坐标系,把点和坐标、曲线和方程联系起来,实现了形和数的统一。

重点:圆与圆的位置关系及判定方法难点:综合应用圆与圆的位置关系解决问题多媒体一、情境导学日食是一种天文现象,在民间称此现象为天狗食日。

日食只在月球与太阳呈现合的状态时发生。

日食分为日偏食、日全食、日环食、全环食。

我们将月亮与太阳抽象为圆,观察到的这些圆在变化的过程中位置关系是怎样的?前面我们运用直线的方程,圆的方程研究了直线与圆的位置关系,现在我们类比上述研究方法,运用圆的方程,通过定量计算研究圆与圆的位置关系。

二、探究新知圆与圆的位置关系的判定方法1.几何法:圆O1:(x-x1)2+(y-y1)2=r12(r1>0),圆O2:(x-x2)2+(y-y2)2=r22(r2>0),两圆的圆心距d=|O1O2|=√(x1-x2)2+(y1-y2)2,则有位置外离外切相交内切内含关系图示d与d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|d<|r1-r2|r1,r2的(2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.思路分析:(1)两圆方程相减求出公共弦所在直线方程,再根据半径、弦心距、弦长的关系求出弦长.(2)可求出两圆的交点坐标,结合圆心在直线x-y-4=0上求出圆心坐标与半径,也可利用圆系方程求解.解:(1)设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组{x 2+y 2+6x -4=0, ①x 2+y 2+6y -28=0,②的解.①-②,得x-y+4=0.∵A ,B 两点坐标都满足此方程,∴x-y+4=0即为两圆公共弦所在直线的方程.又圆C 1的圆心(-3,0),r=√13, C 1到直线AB 的距离为d=|-3+4|√2=√22, ∴|AB|=2√r 2-d 2=2√13-12=5√2,即两圆的公共弦长为5√2.(2)(方法1)解方程组{x 2+y 2+6x -4=0,x 2+y 2+6y -28=0,得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因圆心在直线x-y-4=0上,故b=a-4. 则√(a +1)2+(a -4-3)2=√(a +6)2+(a -4+2)2, 解得a=12,故圆心为12,-72,半径为√892.故圆的方程为(x-12)2+(y+72)2=892, 即x 2+y 2-x+7y-32=0.(方法2)设所求圆的方程为x 2+y 2+6x-4+λ(x 2+y 2+6y-28)=0(λ≠-1), 其圆心为(-31+λ,-3λ1+λ),代入x-y-4=0,解得λ=-7. 故所求圆的方程为x 2+y 2-x+7y-32=0. 相交弦及圆系方程问题的解决1.求两圆的公共弦所在直线的方程的方法:将两圆方程相减即得两圆答案:B2.圆C 1:x 2+y 2-12x-2y-13=0和圆C 2:x 2+y 2+12x+16y-25=0的公共弦所在的直线方程是 .详细解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0. 答案:4x+3y-2=03.半径为6的圆与x 轴相切,且与圆x 2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B .(x±4)2+(y-6)2=16 C .(x-4)2+(y-6)2=36 D .(x±4)2+(y-6)2=36 详细解析:设所求圆心坐标为(a ,b ),则|b|=6.由题意,得a 2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a 无解.故所求圆方程为(x±4)2+(y-6)2=36. 答案:D4.若圆C 1:x 2+y 2=4与圆C 2:x 2+y 2-2ax+a 2-1=0内切,则a 等于 .详细解析:圆C 1的圆心C 1(0,0),半径r 1=2.圆C 2可化为(x-a )2+y 2=1,即圆心C 2(a ,0),半径r 2=1,若两圆内切,需|C 1C 2|=√a 2+02=2-1=1.解得a=±1. 答案:±15. 已知两个圆C 1:x 2+y 2=4,C 2:x 2+y 2-2x-4y+4=0,直线l :x+2y=0,求经过C 1和C 2的交点且和l 相切的圆的方程.解:设所求圆的方程为x 2+y 2+4-2x-4y+λ(x 2+y 2-4)=0,即(1+λ)x 2+(1+λ)y 2-2x-4y+4(1-λ)=0. 所以圆心为11+λ,21+λ, 半径为12√(-21+λ) 2+(-41+λ) 2-16(1-λ1+λ),四、小结五、课时练针对本节课的特点,在教法上,采用以教师为主导、学生为主体的教学方法;在教学过程中,注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学们动手计算,采用一题多变的形式,让学生体会由简单到复杂,由特殊到一般的题型及相应解题策略,教师在学生活动后,给予帮助,促进数学概念的建构,促进数学基本素养的形成;在教学手段上,运用黑板板书和多媒体展示,激发学生的创造力,活跃了气氛,加深了理解。

高中数学圆的位置图像教案

高中数学圆的位置图像教案

高中数学圆的位置图像教案
目标:学生能够正确理解和描述圆在平面上的位置关系
教学过程:
一、引入(5分钟)
1. 激发学生对圆的兴趣:和学生讨论日常生活中常见的圆形物体,如轮胎、钟表等,引导学生思考圆在平面上的位置关系。

2. 导入本节课的主题:介绍本节课的学习目标和内容,让学生明确学习的重点。

二、认识圆的位置(10分钟)
1. 展示不同位置的圆的图片,让学生观察并描述圆的位置关系。

2. 通过示意图和实物展示,让学生理解圆的位置关系,如相切、相离、相交等。

三、练习与巩固(15分钟)
1. 让学生配对绘制不同位置的圆的图像,并进行讨论交流。

2. 布置练习作业,让学生巩固所学的知识。

四、拓展(10分钟)
1. 提出问题引导学生思考:如果在平面上有多个圆,它们的位置关系会是怎样的?
2. 引导学生拓展思维,思考更复杂的圆的位置关系,如同心圆、相交圆等。

五、总结与反思(5分钟)
1. 总结本节课的学习内容,让学生复述圆的位置关系。

2. 学生反馈和提出问题,教师解答学生的疑问。

教学反思:通过本节课的学习,学生能够正确理解和描述圆在平面上的位置关系,培养学生观察和思考的能力,为进一步学习几何知识打下基础。

高中数学圆与圆的位置关系教案

高中数学圆与圆的位置关系教案

4.2.2 圆与圆的位置关系省xx 袁雪梅一、内容和内容解析本节课选自《普通高中课程标准实验教科书数学必修2》第四章第4.2.2节《圆与圆的位置关系》第一课时,主要内容有用坐标法判断圆与圆的位置关系,两圆相交时的相交弦方程。

从教材安排顺序来看,在本小节之前学生学习了直线的方程、圆的方程,能够运用方程研究直线与直线、直线与圆的位置关系,再学习圆与圆的位置关系,旨在本章初步形成坐标法研究几何问题的根本思想和解题步骤,为后面选修系列1-1、2-1中的“圆锥曲线与方程〞等解析几何的学习打下根底。

本节课主要通过类比直线和圆的位置关系,利用数形结合思想,用坐标法来研究圆与圆的位置关系,一种方法是找到代数方程中的几何量〔圆的圆心和半径〕,利用圆心距与半径和差的大小进行比拟来得到两圆的位置关系;另一种方法是利用方程的思想,通过研究方程组的解的个数翻译为几何图形的公共点的个数,从而得出两圆的位置关系。

在熟练运用之后,能够对两种方法的优劣作一个简单的比照,并能用圆的方程通过数形结合的思想解决一些简单的几何问题。

二、目标与目标分析1.掌握判断两个圆的位置关系的方法,能够根据给定的圆的方程判断圆与圆的位置关系;2.理解两种判断方法的数学本质与不同的适用范围;3.通过方程与曲线的关系,理解两圆相交时相交弦方程的得来。

其中教学重点是:圆与圆的位置关系的两种判定方法及其操作步骤;教学的难点是:两种判断方法的数学本质与适用范围。

三、教学问题分析学生在第三章以及第四章的前面小节已经学习和研究了直线的方程、直线与直线的位置关系、圆的方程、圆与圆的位置关系,初步了解了坐标法的思想与方法,能够数形结合利用方程解决一些简单的几何问题,具备了良好的学习根底,在本堂课的学习中可能在以下方面还存在一些问题:1.对于圆与圆的位置关系的定义以及几何判定方法可能有遗忘。

2.利用圆的方程通过方程组的思想判断两圆的位置关系有大体思路,但对具体问题把握不够准确;3.能够采用两种不同的方法判断圆与圆的位置关系,但难以抓住两个方法本质的区别与联系,难以根据具体的题目做方法的选择;4.不易理解“两圆相交弦方程〞的得来。

【教案】2.5.2圆与圆的位置关系 教学设计-高中数学人教版(2019)选择性必修一

【教案】2.5.2圆与圆的位置关系 教学设计-高中数学人教版(2019)选择性必修一

2.5.2圆与圆的位置关系一、内容和内容解析1.内容圆与圆的位置关系.2.内容解析图形之间的位置关系,既可以直观定性描述,也可以严格定量刻画.定量刻画的方法既可以完全运用代数方法,通过运算求解,得到图形的性质;也可以综合使用几何方法、代数方法,得到图形的性质.本课时教学中,应引导学生根据初中学习图形与几何的经验,类比直线和圆的位置关系,研究圆与圆的位置关系.结合以上分析,确定本节课的教学重点:运用圆的方程,判断圆与圆的位置关系.二、目标和目标解析1.目标(1)会用圆的方程判定两圆的位置关系;(2)能利用坐标法解决简单的平面几何问题.2.目标解析达成上述目标的标志是:(1)会将两个圆的方程联立方程组,并通过降次和消元得到一个一元二次方程,通过判断方程判别式大于0,等于0,小于0分别得出两圆相交,相切,相离.能通过圆的方程得到圆心坐标和半径长,比较圆心距和两半径和差大小来判断两圆相交、外切、内切、外离、内含的关系.(2)知道两圆相交时,两个圆的方程消去二次项后得到的二元一次方程的几何意义,能表示出经过两圆的交点的所有圆的方程.三、教学问题诊断分析在上一节课,我们研究了如何利用直线和圆的方程,判断它们的位置关系.学生容易类比地得到判断圆与圆位置关系的方法.因此教学重点应让学生注意两个圆的方程消元后得到的一元二次方程的判别式小于0或等于0,只能判断出两圆相离或相切,无法具体判断两圆是外离(外切)还是内含(内切).这就很自然地引出用圆心距和半径和差来具体判断.同时,应理解教材例5选取对两圆相交的判断,用意在于让学生知道解二元二次方程组的一般流程,还有当两圆相交时,公共弦所在直线方程的求法,求两圆的交点坐标也是方法二所不能做到的.本节课的例6是探求满足某种几何条件的动点的轨迹问题,是对前面介绍的坐标法解决平面几何问题的“三步曲”的再应用,教师要引导学生建立坐标系,把几何条件代数化,最后再将代数方程翻译为几何轨迹.这个问题的解决是为下一章圆锥曲线方程的推导做准备.本节课的教学难点是应用代数方法解决几何问题.四、教学过程设计(一)复习引入1.已知点A (x 1,y 1),B (x 2,y 2),如何求线段AB 的长?设计意图:在计算两圆圆心距时要用到两点间的距离公式.2.已知圆的方程为()2222040x y Dx Ey F D E F ++++=+->,如何确定圆心和半径?设计意图:回顾圆的一般方程和标准方程的互化,以及利用圆的方程求出圆心坐标和半径长,对本节课的学习是有帮助的.3.已知直线和圆的方程,如何判断直线和圆的位置关系?师生活动:设计意图:为后面学生类比直线和圆的位置关系的判定得出判断圆与圆的位置关系的方法作准备.(二)探究新知问题1:按照两个圆的公共点个数来划分,两个圆之间有哪些位置关系?师生活动:两圆有两个公共点,它们相交;两圆只有一个公共点,它们相切,包括外切和内切;两圆没有公共点,它们相离,包括外离和内含.设计意图:让学生初步体会用公共点个数只能判断两圆相交、相切或相离,对于只有一个公共点(没有公共点)的情况无法具体判定外切还是内切(外离还是内含).照应方法一利用方程组解的个数判断位置关系时的局限性.问题2:类比运用直线和圆的方程,研究直线与圆的位置关系的方法,如何利用圆的方程,判断它们之间的位置关系?师生活动:方法1通过两个圆的方程组成的方程组的解的个数来判断;方法2通过比较两个圆的连心线的长与两半径的和或两半径的差的绝对值的大小来判断.例5 已知圆C 1:222880x y x y +++-=,圆C 2:224420x y x y +---=,试判断圆C 1与圆C 2的位置关系.解法1:将圆C 1与圆C 2的方程联立,得到方程组222228804420x y x y x y x y ⎧+++-=⎪⎨+---=⎪⎩ ①-②,得 210x y +-= ③ 由③,得12x y -=. 把上式代入①,并整理,得2230x x --=.④方程④的根的判别式()()224130∆=--⨯⨯->,所以方程有两个不相等的实数根x 1,x 2.把x 1,x 2分别代入方程③,得到y 1,y 2. 因此圆C 1与圆C 2有两个公共点A (x 1,y 1),B (x 2,y 2),这两个圆相交.问题3:画出圆C 1与圆C 2以及方程③表示的直线,你发现了什么?你能说明为什么吗? 师生活动:方程③表示的直线经过圆C 1与圆C 2的交点,因为圆C 1与圆C 2的交点A 、B 的坐标既满足圆C 1的方程,又满足圆C 2的方程,方程③是两圆方程作差得到的,A 、B的坐标满足方程③.今后求相交两圆的公共弦所在直线方程时,可以用两圆的一般方程作差得到.问题4:你能求出圆C 1与圆C 2的交点坐标吗?设计意图:体会使用解法一的必要性,判断方程解的个数不需要解方程,但要求出交点坐标需要解方程.问题5:如果两圆方程联立消元后得到的方程的0∆=,它说明什么?你能据此确定两圆是内切还是外切吗?如何判断两圆是内切还是外切呢?如果0∆=,则两圆相切,此时无法判定是内切还是外切,还要根据两圆的半径与连心线的长作进一步判断.下面总结一下用连心线的长d 与两半径r 1,r 2的关系判断圆与圆的位置关系.设计意图:引出例5的解法2.解法2:把圆C 1的方程化为标准方程,得()()221425x y +++=,圆心为(-1,-4),半径15r =.把圆C 1的方程化为标准方程,得()()222210x y -+-=,圆心为(2,2),半径2r =圆C 1与圆C 2的连心线的长d =因为55<<1212r r d r r -<<+,所以圆C 1与圆C 2相交.(三)巩固提升例6 已知圆O 的直径AB=4,动点M 与点A 的距离是它与点B .试探究点M 的轨迹,并判断该轨迹与圆O 的位置关系.师生活动:本题是探究满足某种几何条件的动点的轨迹问题,我们通常采用“坐标法”,前面我们介绍了坐标法解决平面几何问题的“三步曲”,先来回顾一下:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何要素,如点、直线、圆,把平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题第三步:把代数运算的结果“翻译”成几何结论.问题6:回到本例,如何建立适当的平面直角坐标系,用坐标和方程表示题中的几何要素?如何把几何问题转化为代数问题?解:如图,以线段AB 的中点O 为原点,AB 所在直线为x 轴,线段AB 的垂直平分线 为y 轴,建立平面直角坐标系.由AB =4,得A (-2,0),B (2,0).设点M 的坐标为(x ,y ),由MA MB =,=221240x y x +-+=.所以点M 的轨迹是以点P (6,0)为圆心,半径为.因为两圆的圆心距为|PO |=6,两圆的半径为12r =,2r =又2112r r PO r r -<<+,所以点M 的轨迹与圆O 相交.设计意图:熟练用坐标法解决动点轨迹问题,为后续推导椭圆标准方程时建立坐标系作准备,同时复习本节课圆与圆位置关系的判断方法.问题7:如果把例6中的改为“k (k >0)倍”,你能分析并解决这个问题吗? 师生活动:设点M 的坐标为(x ,y ),由MA k MB =,得= ()()()()2222221411410k x k x k y k -+++-+-=.当k =1时,方程为x =0,可知点M 的轨迹是线段AB 的垂直平分线;当k >0且k ≠1时,方程可化为()()2222222211611k k x y k k ⎡⎤+⎢⎥-+=-⎢⎥-⎣⎦,点M 的轨迹是以2222,01k k ⎛⎫+ ⎪-⎝⎭为圆心,半径为241k k -的圆. 设计意图:进一步拓展学生思维,体会从特殊到一般的研究方法.(三)归纳总结、布置作业与判断直线与圆的位置关系一样,判断圆与圆的位置关系也有两种思路:一种是根据两个圆的公共点个数判断两圆相交、相切、相离,即利用两个圆的方程组成的方程组解的情况来判断的方法;另一种是利用圆的方程求出圆心和半径,比较连心线的长和两圆半径和差的大小关系来判断的方法.本节课还探究了满足某种几何条件的动点的轨迹问题,用的是坐标法.这种方法建立了几何与代数之间的联系,体现了数形结合思想.设计意图:从知识内容和研究方法两个方面对本节课进行小结.布置作业:教科书98页 练习 第1题,第2题.习题2.5 第7题,第9题.五、目标检测设计1.求圆心在直线40x y --=上,并且经过圆22640x y x ++-=与圆226280x y y ++-=的交点的圆的方程.设计意图:会求圆与圆的交点坐标,公共弦的垂直平分线的直线方程,能类比直线系方程利用圆系方程解题.2.已知点P (-2,-3)和以点Q 为圆心的圆()()22429x y -+-=.(1)画出以PQ为直径的圆,设这个圆的圆心为C,求圆C的方程;(2)圆C与圆Q相交于A、B两点,直线P A、PB是圆Q的切线吗?为什么?(3)求直线AB的方程.设计意图:巩固圆的方程的知识,能利用初中平面几何知识解决问题,会求相交两圆公共弦所在直线方程.。

高中数学必修二《圆与圆的位置关系》优秀教学设计

高中数学必修二《圆与圆的位置关系》优秀教学设计

圆与圆的位置关系(探究)一.教学目标知识与能力目标:1、通过探究,了解圆与圆有哪些位置关系;2、通过探究,得到判断圆与圆的位置关系的方法;3、通过探究,得到求出相交圆公共弦所在直线的方法;过程与方法目标:在探究的过程中,渗透数形结合思想;形成严谨的数学逻辑思维;学会发现问题,解决问题.情感态度与价值观:在探究过程中感受数学的魅力,提高数学学习兴趣.二.课程内容探究一:圆与圆有哪些位置关系?1、请根据上面5组圆的方程,完成表1第一列 圆心与半径 位置关系 圆心距dr r '+(1)C 1(, ),r 1=________;(2)C 2( , ),r 2=________ (3)C 3( , ),r 3=________;(4)C 4( , ),r 4=________ (5)C 5( , ),r 5=________;(6)C 6( , ),r 6=________ (7)C 7( , ),r 7=________;(8)C 8( , ),r 8=________ (9)C 9( , ),r 9=________;(10)C 10( , ),r 10=________2、请在下面5个坐标系中分别画出以上5组圆(每个坐标系中画出两个圆) (请按比例尺取长度 )(1) (2)⎪⎩⎪⎨⎧=+++=-+-1)2()2(:4)2()1(:1222221y x C y x C )(⎪⎩⎪⎨⎧=++=+2)2-()2(:2:2224223y x C y x C )(⎪⎩⎪⎨⎧=+=++9)1-(:1)1(:4228227y x C y x C )(⎪⎩⎪⎨⎧=++=+9)1()1-(:1:52210229y x C y x C )(⎪⎩⎪⎨⎧=++=++4)1-(2:11:3226225y x C y x C )()()(1表2(3) (4)(请完成表1第二列)(5)3、小结:圆与圆的位置关系有5种。

分别是外离、外切、相交、内切、内含探究二、如何使用代数法判断圆与圆的位置关系?1、如何判断一元二次方程解的个数?2、实例探究练习:已知圆C 1:x 2+y 2+2x +8y -8=0和圆C 2:x 2+y 2-4x -4y -2=0,试判断圆C 1与圆C 2的位置关系. 方法分析:联立方程,作差,消元3、 方法小结:①联立方程、消元得到一元二次方程②利用△判断解的个数局限性:无法区分内切与外切,内含与外离探究三、如何从几何的角度判断圆的位置关系?1、 完成表1 后3列;有什么猜想?2、 根据猜想,完成表2. 验证猜想位置关系 数量关系位置关系 数量关系外离 内切 外切 内含 相交3、使用几何法判断两个圆位置关系的步骤:(1)将两圆的方程化为标准方程;(2)求两圆的圆心坐标和半径R 、r ; (3)求两圆的圆心距d 及|R-r|,R +r ; (4)比较d 与|R-r|,R +r 的大小关系:4、练习:已知圆C 1:x 2+y 2+2x +8y -8=0和圆C 2:x 2+y 2-4x -4y -2=0,试判断圆C 1与圆C 2的位置关系.2表探究四、两圆相交时,如何求出公共弦所在直线方程?1、 练习探究:已知圆C 1:x 2+y 2+2x +8y -8=0和圆C 2:x 2+y 2-4x -4y -2=0,两圆相交于A 、B 两点,求出A 、B两点所在直线方程。

高中数学-圆与圆的位置关系

高中数学-圆与圆的位置关系

4.2.2 圆与圆的位置关系教案一、教学目标1、知识与技能(1)理解圆与圆的位置的种类;(2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;(3)会用连心线长判断两圆的位置关系.2、过程与方法设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切;(3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;3、情态与价值观让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想.二、教学重点、难点重点与难点:用坐标法判断圆与圆的位置关系.三、教学过程1.已知两圆:圆C 1:(x-a )2+(y-b )2=r 12(r 1>0)圆C 2:(x-c )2+(y-d )2=r 22(r 2>0)(1)利用连心线长与|r 1+r 2|和| r 1-r 2 |的大小关系判断:连心线长> |r1圆C 1与圆C 2相离连心线长= |r1圆C 1与圆C 2外切|r1-r 2|<连心线长< |r 1圆C 1与圆C 2相交连心线长= |r1圆C 1与圆C 2内切连心线长< |r1圆C 1与圆C 2内含(2)利用两个圆的方程组成方程组的实数解的个数: n r d y c x r b y a x 的解的个数为设方程组⎩⎨⎧=-+-=-+-22222122)()()()(△n两个圆相离△n两个圆相切△n两个圆相交2.例1 已知圆C1 : x2+y2+2x+8y-8=0和圆C2:x2+y2-4x-4y-2=0,试判断圆C1与圆C2的位置关系.3.练习(1)已知圆C1: x2+y2+2x+3y+1=0和圆C2 :x2+y2+4x+3y+2=0,试判断圆C1与圆C2的位置关系.(2)圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是( ).A、x+y-1=0B、 2x-y+1=0C、x-2y+1=0D、 x-y+1=0四、课堂小结△n两个圆相离△n两个圆相切△n两个圆相交2448822222=---+=-+++yxyxyxyx解:将两圆方程联立:圆相交。

人教课标版高中数学必修二《圆与圆的位置关系》教案-新版

人教课标版高中数学必修二《圆与圆的位置关系》教案-新版

4.2.2 圆与圆的位置关系(一)核心素养通过学习圆与圆的位置关系,掌握解决问题的方法――代数法、几何法. (二)学习目标1.明确两个圆之间的五种位置关系.2.能根据给定的两个圆的方程判断两个圆的位置关系.3.两圆相交时的公共弦方程及弦长计算.(三)学习重点圆与圆的位置关系及其判断方法.(四)学习难点1.用圆的方程解决问题.2.用几何法和代数法判断两圆之间的位置关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材,明确:圆与圆的五种位置关系——外离、外切、相交、内切、内含的几何含义是:(2)记一记:直线与圆的位置关系的判断方法 方法一:几何方法设两圆的圆心距d ,半径12,r r ,则: ①当12d r r >+时,圆1C 与圆2C 相离; ②当12d r r =+时,圆1C 与圆2C 外切; ③当<-||21r r 12d r r <+时,圆1C 与圆2C 相交; ④当12||d r r =-时,圆1C 与圆2C 内切; ⑤当12||d r r <-时,圆1C 与圆2C 内含;步骤:①计算两圆半径12,r r ;②计算两圆圆心距d ;③根据d 与12,r r 的关系判断两圆的位置关系. 方法二:代数方法方程组22111222220x y D x E y F x y D x E y F ⎧++++=⎪⎨++++=⎪⎩ 有两组不同实数解⇔相交;有两组相同实数解⇔相切(内切或外切);无实数解⇔相离(外离或内含). 2.预习自测(1)根据图片说出圆与圆之间的位置关系.【知识点】圆与圆位置关系 【数学思想】数形结合【解题过程】根据图像和定义直接得出结果 【思路点拨】看两圆交点个数【答案】(图一至图六依次为)外离、内含、内含、外切、内切、相交. (2)判断下列两圆的位置关系()()12222=-++y x 与()()165222=-+-y x .【知识点】圆与圆位置关系 【数学思想】数形结合 ()()221222255r r --+-==+,所以两圆外切.【思路点拨】看圆心距和半径间的关系 【答案】外切. (二)课堂设计 1.知识回顾(1)直线与圆的位置关系:相离、相交、相切;(2)判断直线与圆的位置关系的方法:根据圆心到直线的距离;根据直线的方程和圆的方程组成方程组的实数解的个数; (3)与圆相切的直线方程的计算方法. 2.问题探究探究一 圆与圆的位置关系★●活动① 明确概念我们知道根据圆心到直线距离的长度与圆半径长度的比较之后,明确了直线与圆有三种位置关系,分别是:相离、相切和相交. 那么圆与圆之间也同样有这样的关系,我们通过两个圆半径之间与两圆圆心之间距离的长度还有公共点的个数比较来判断两个圆的位置关系:当公共点个数为0时,若21r r d +>,则两圆外离,若21r r d -<,则两圆内含;当公共点个数为1时,若21r r d +=,则两圆外切,若21r r d -=,则两圆内切;当公共点个数为2时,2121r r d r r +<<-,则两圆相交. 【例题】【知识点】圆与圆位置关系 【数学思想】数形结合【解题过程】根据图像和定义直接得出结果 【思路点拨】看两圆圆心距和两半径的关系【答案】(图一至图五依次为)外离、外切、相交、内切、内含. 【设计意图】解决数学问题,体会概念与数形结合方法. ●活动② 给定方程,判断位置关系当我们给定两圆的方程,有几种判别两圆位置关系的方法呢?(抢答)首先是代数法:设两个圆的方程组成的方程组为22111222220,0,x y D x E y F x y D x E y F ⎧++++=⎪⎨++++=⎪⎩ 如果方程组有两组不同的实数解⇔两圆相交; 有两组相同的实数解⇔两圆外切或内切;无实数解⇔ 两圆相离或内含. 其次是几何法:设两圆圆心分别为O 1、O 2,半径为r 1、r 2(r 1≠r 2),则O 1O 2>r 1+r 2⇔相离;O 1O 2=r 1+r 2⇔外切;|r 1-r 2|<O 1O 2<r 1+r 2⇔相交;O 1O 2=|r 1-r 2|⇔内切;O 1O 2<|r 1-r 2|⇔内含.看下面的例题判断两圆07622=-++x y x 与027622=-++y y x 的位置. 【知识点】圆与圆位置关系 【数学思想】数形结合、方程思想【解题过程】第一个圆的方程07622=-++x y x 可以改写为()16322=++y x ,第二个圆的方程027622=-++y y x 可以改写为()36322=++y x ,两圆圆心的的距离为()()23030322=-+-半径和为1021=+r r ,半径差为122r r -=,故两圆相交.【思路点拨】看两圆圆心距和两半径的关系 【答案】相交.【设计意图】通过对概念理解和计算方法的运用,加深对圆与圆位置关系的理解. 探究二 两圆相交时的公共弦方程及弦长计算 ●活动① 根据图像判断公切线的条数在直线与圆的位置关系一节中我们探究了在圆内、圆上、圆外一点做圆的切线的问题,发现在圆内没有切线、在圆上有一条切线、在圆外有两条切线. 同理我们可以探究两圆的位置关系,再以此判断两圆的公切线的条数. 那么大家可以总结出来吗?(抢答)总结公切线条数如下:若两圆外离,两圆有四条公切线;相交,两圆有两条公切线;若两圆外切,两圆有三条公切线;若两圆内切,两圆有一条公切线;若两圆内含,两圆没有公切线.●活动② 给定两圆的方程,判断公切线的条数我们想要判定公切线的条数首先需要我们判定两圆位置关系.【例题】判断两圆07622=-++x y x 与027622=-++y y x 的公切线条数. 【知识点】圆与圆位置关系、公切线【数学思想】数形结合【解题过程】2211(3)16,(3,0),4x y o r ++=-=,2221(3)36,(0,3),6x y o r ++=-=122121210o o r r r r =-=<<+=则,则两圆相交,所以有2条公切线 【思路点拨】两圆的位置关系是相交 【答案】2●活动③ 过两圆交点的圆系方程的应用当两圆相交时,两圆有两个交点,这两个交点所在直线就是一条公共弦,那么这条弦的方程该如何计算呢?(举手回答)法一:联立两圆方程求出两圆交点,并用两点式求出直线方程. 法二:两圆相交,则两圆相减的方程为公共弦方程.例1 圆224410x y x y ++--=与圆222130x y x ++-=相交于,P Q 两点,求直线PQ 的方程.【知识点】圆与圆位置关系、公共弦问题 【数学思想】方程思想【解题过程】两圆的公共弦方程就是两式相减的直线方程,22(441)x y x y ++---22(213)0x y x ++-=可得260x y -+=【思路点拨】两圆方程相减得出一条直线 【答案】260x y -+=;【同类训练】求以圆1C :22122130x y x y +---=和圆2C :221216250x y x y +++-=公共弦为直径的圆的方程.【知识点】圆与圆位置关系、公共弦问题 【数学思想】方程思想【解题过程】解法一:22221221301216250x y x y x y x y ⎧+---=⎪⎨+++-=⎪⎩相减得公共弦所在直线方程4320x y +-=,再由224320122130x y x y x y +-=⎧⎨+---=⎩联立得两交点坐标()1,2A -、()5,6B -.∵所求圆以AB 为直径,∴圆心是AB 的中心点()2,2M -,圆的半径为152r AB ==.于是圆的方程()()222225x y -++=. 解法二:(使用圆系方程求解:120o o λ+=)设所求圆2212x y x +--()222131216250y x y x y λ-++++-=()λ参数,得圆心()()1212162,2121λλλλ⎛⎫---- ⎪ ⎪++⎝⎭, ∵圆心在公共弦AB 所在直线上,∴()()121216243202121λλλλ⎛⎫⎛⎫--⨯-+--= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,解得12λ=. 故所求圆的方程2244170x y x y +-+-=即()()222225x y -++=. 【思路点拨】圆心在公共弦上 【答案】2244170x y x y +-+-= 探究三 两圆位置关系中的参数问题 ●活动① 已知两圆位置关系,求参数范围同直线与圆位置关系一样,我们在圆与圆位置关系的题目中同样涉及到参数的求解问题,接下来就根据这一道例题来掌握这一类问题中使用的代数思想. 例2 m y x =+22与圆0118622=--++y x y x 相交,求实数m 的范围. 【知识点】圆与圆位置关系 【数学思想】数形结合、方程不等式【解题过程】圆0118622=--++y x y x 改写为()()364322=-++y x ,则两圆圆心距离为5,使得两圆相交,则6562121+=+<<-=-m r r m r r ,最终解出.()121,1∈m【思路点拨】根据定义即可 【答案】()121,1∈m 【同类训练】已知圆0542:2221=-++-+m y mx y x C ,圆03222222=-+-++m my x y x C :,当m 为何值时,(1)圆C 1与圆C 2外切;(2)圆C 1与圆C 2内含?【知识点】圆与圆位置关系 【数学思想】数形结合、方程不等式【解题过程】对于圆C 1与圆C 2的方程,经配方后()()92221=++-y m x C :;()()41222=-++m y x C :. (1)如果C 1与C 2外切,则有()()232122+=+++m m ,()()252122=+++m m ,01032=-+m m ,解得25=-=m m 或.(2)如果C 1与C 2内含,则有()()232122-<+++m m ,1)2()1(22<+++m m ,0232<++m m ,解得12-<<-m ,∴当25=-=m m 或时,圆C 1与圆C 2外切;当12-<<-m 时,圆C 1与圆C 2内含. 【思路点拨】根据定义建立不等式 【答案】25=-=m m 或;12-<<-m 3.课堂总结 知识梳理(1)两个圆的位置关系一共有五种:外离、外切、相交、内切、内含. (2)给定两圆方程来判断两个圆之间的位置关系可以使用代数方法和几何方法. (3)两圆相交时公共弦所在直线和弦长的计算以及该弦的圆系方程. 重难点归纳(1)圆与圆的位置关系及其判断方法. (2)圆系方程解决问题. (三)课后作业 基础型 自主突破1.两个大小不等的圆,其位置关系有几种?分别是什么? 【知识点】考察几种圆与圆位置关系的定义 【数学思想】归类总结 【解题过程】直接根据定义回答 【思路点拨】根据定义即可【答案】五种,内含、内切、相交、外切、外离2.圆4)2(22=++y x 与圆9)1()2(22=-+-y x 的位置关系为__________.【知识点】两圆方程判断两圆位置 【数学思想】【解题过程】∵两圆的圆心距为17)01()22(22=-++, 又∵231723+<<-,∴两圆相交 【思路点拨】定义 【答案】相交3.已知圆0882221=-+++y x y x C :和 圆0144:222=---+y x y x C ,试判断圆C 1与圆C 2的位置关系.【知识点】已知两圆方程判断两圆位置 【数学思想】【解题过程】圆心距:5335-<<+ 【思路点拨】定义解题 【答案】相交4.若圆222x y m +=与圆2268x y x y ++-110-=相交,求实数m 的取值范围. 【知识点】已知位置关系,求参数范围,不等式 【数学思想】不等式方程思想【解题过程】1122(0,0),;(3,4),6O r m O r =-=,125,O O = 则因为两圆相交,所以656,m m -<<+解得m ∈(11,1)(1,11)--.【思路点拨】使用相交时圆心距离与两圆半径之间的关系来求解 【答案】(11,1)(1,11)--.5.判断两圆2220x y x +-=与2240x y y +-=的位置关系,若相交,请求出其公共弦长 .【知识点】两圆位置关系,弦长 【数学思想】方程思想【解题过程】把两圆改写成222212:(1)1;:(2)4;o x y o x y -+=+-=122112o o -<=<+ ,所以两圆相交,两圆相减可得直线方程为20x y -=,1o d l ===到直线的弦长 【思路点拨】定义解题. 6.两圆2222440,2120x y x y x y x ++-=++-=相交于A ,B 两点,则直线AB 的方程是 .【知识点】两圆相交时求公共弦的方程 【数学思想】方程思想【解题过程】()()0122442222=-++--++x y x y x y x 【思路点拨】两圆方程相减即可 【答案】260x y --=. 能力型 师生共研7.已知01r <<+,则两圆222x y r +=与22(1)(1)2x y -++=的位置关系是 .【知识点】圆与圆的位置关系判别 【数学思想】数形结合【解题过程】两圆心距离为2,与两圆半径和与两圆半径差比较 【思路点拨】定义解题 【答案】相交8.已知圆()22422010x y ax ay a +-++-=与圆224x y +=相切,则a 的值为_________.【知识点】圆与圆的位置关系 【数学思想】方程思想.、分类讨论 【解题过程】圆()22422010x y ax ay a +-++-=改写成222(2)()5(2)x a y a a -+-=-,d =圆心距相切可得22+或者22-解得1a =±.【思路点拨】定义解题,得出方程【答案】1a =±探究型 多维突破9.求过圆221:420C x y x y +-+=和圆222:240C x y y +--=的交点,且圆心在直线:2410l x y +-=上的圆的方程. 【知识点】过两圆交点的圆系问题【数学思想】方程思想【解题过程】圆方程可设为222242(24)0x y x y x y y λ+-+++--=,求出圆心21(,)11λλλ-++,带入直线:2410l x y +-=可得13λ=,再代入所设方程可得圆的方程为22310x y x y +-+-=【思路点拨】圆系【答案】22310x y x y +-+-=10.已知圆2260x y x +-=与圆22244x y y m +-=-(0)m >,则m = 时,两圆相切.【知识点】两圆位置【数学思想】分类讨论思想【解题过程】 两圆改成2211(3)9,(3,0),3x y o r -+==,22222(2),(0,2),x y m o r m +-==d =圆心距,若外切则3,3;3m m m =+=-=-,解得3m =+【思路点拨】两圆相切分为两种:内切和外切3±自助餐1.已知圆221:2610C x y x y ++-+=,圆222:42110C x y x y +-+-=,求两圆的公共弦所在的直线方程及公共弦长.【知识点】相交两圆的公共弦问题【数学思想】数形结合【解题过程】两圆相减【思路点拨】结论解题【答案】0643=+-y x ;245. 2.已知圆0342:22=+-++y x y x C .若圆Q 与圆C 关于直线03=--y x 对称,求圆Q 的方程;【知识点】圆与圆位置关系的综合运用【数学思想】数形结合【解题过程】(1)将圆的方程化成标准式()()22122=-++y x ,圆心()21,-C ,半径2=r ,圆心()21,-C 关于直线03=--y x 的对称点()45-,Q ,圆Q 半径2=r ,∴圆Q 的方程为()()24522=++-y x . 【思路点拨】圆关于直线对称还是圆【答案】()()24522=++-y x ; 3.已知点(5,4)P ,圆C :2268110x y x y +---=,过P 作圆D ,使C 与D 相切,并且使D 的圆心坐标是正整数,求圆D 的标准方程.【知识点】位置关系、圆的方程【数学思想】分类讨论思想【解题过程】点P 在圆C 内部,所以圆D 与圆C 内切,设圆D ()()222x a y b r -+-=,由点在圆上和两圆内切得到133a r =-,14r ≤≤,讨论r后只有2r =和4满足,圆D 方程为()()22744x y -+-=或()()221416x y -+-=.【思路点拨】在圆与圆的位置关系中有内切和外切两种【答案】()()22744x y -+-=或()()221416x y -+-=.4.圆经过直线240x y ++=与圆222410x y x y ++-+=的两个交点,并且面积最小,求此圆的方程.【知识点】两圆位置关系、圆系方程【数学思想】数形结合【解题过程】抓住直线即为直径【思路点拨】通过圆系方程可知,该直径是公共弦 【答案】221364()()555x y ++-= 5.已知圆1C :222210x y kx k +-+-=和圆2C :2222(1)20x y k y k k +-+++=,则当它们圆心之间的距离最短时,两圆的位置关系如何?【知识点】两圆位置关系、最值【数学思想】函数思想【解题过程】圆1C 的方程可以改写为()122=+-y k x ,圆2C 改写为()()1122=+-+k y x 两圆圆心距离最短时1222++k k ,21-=k ,此时22min =d 【思路点拨】两圆距离最短不仅大于0而且小于2.【答案】两圆的位置关系为相交.6.在平面直角坐标系xOy 中,已知圆4)1()3(221=-++y x C :和圆4)5()4(222=-+-y x C :.(1)若直线l 过点)04(,A ,且被圆C 1截得的弦长为32,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.【知识点】直线与圆、圆与圆位置关系的综合运用【数学思想】数形结合、方程思想【解题过程】(1)由于直线4=x 与圆C 1不相交,所以直线l 的斜率存在 设直线l 的方程为)4(-=x k y ,圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为32,所以1)3(222=-=d . 由点到直线的距离公式,得21)43(1k k d +---=,从而0)724(=+k k ,即0=k 或247-=k , 所以直线l 的方程为0=y 或028247=-+y x .(2)设点),(b a P 满足条件,不妨设直线l 1的方程为0),(≠-=-k a x k b y ,则直线l 2的方程为)(1a x kb y --=-. 因为圆C 1和C 2的半径相等,及直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即2211)4(151)3(1kb a k k b a k +--+=+----,整理得bk a k b ak k --+=-++4531, 从而bk a k b ak k --+=-++4531或bk a k b ak k ++--=-++4531, 即3)2(+-=-+a b k b a 或5)8(-+=+-b a k b a ,因为k 的取值有无穷多个,所以⎩⎨⎧=+-=-+0302a b b a 或⎩⎨⎧=-+=+-0508b a b a , 解得5212a b ⎧=⎪⎪⎨⎪=-⎪⎩或⎪⎩⎪⎨⎧=-=21323b a 这样点P 只可能是点⎪⎭⎫ ⎝⎛-21,251P 或点⎪⎭⎫ ⎝⎛-213,232P . 经检验点P 1和P 2满足题目条件【思路点拨】条件直译【答案】(1)0282470=-+=y x y 或;(2)⎪⎭⎫ ⎝⎛-21,251P 或点⎪⎭⎫ ⎝⎛-213,232P .。

湘教版高中数学必修第三册 7.3.3直线与圆、圆与圆的位置关系_教案设计

湘教版高中数学必修第三册  7.3.3直线与圆、圆与圆的位置关系_教案设计

直线与圆、圆与圆的位置关系【学情分析】圆是平面图形中又一基本而典型的图形,对于圆的研究和学习,不仅能进一步丰富对于平面图形的认识,而且也能体会对于曲线形的研究过程。

教材在研究了圆的基本性质后,进行了点与圆,直线与圆,圆与圆的位置关系的研究。

在点与圆的位置关系的学习中,学生已经归纳出三种位置关系和数量关系,并能用数量关系判断位置关系,这为本节课研究直线与圆的位置关系,在研究方法和研究内容上打下了基础。

根据学生的已有经验和抽象能力,本节课的学习中,对于从公共点的个数这个角度来理解直线与圆的三种位置关系应该是容易的。

但对于相应地可用哪些数量之间的关系来刻画,以及如何刻画每一种位置关系,则会有一定的困难,特别是对于某位置关系,在直观地找到了与之相对应的数量关系后,要说明该等量关系等价于该位置关系的定义则更难。

尽管如此,考虑到初三的学生已经具备较强的演绎推理能力,所以我认为在师生共同的讨论中帮助学生理解是完全可能的。

【教学目标】1.理解并掌握直线与圆的三种位置关系,并会用有关的数量关系进行判断。

2.在理解圆与直线相切的基础上,进一步理解切线的性质。

3.在发现位置关系,并探寻各位置关系所对应的数量关系的过程中,体会分类讨论,类比,数形结合等数学思想,锻炼分析,概括,归纳的能力,并进一步提高逻缉推理能力,在此过程中,培养严谨的科学的学习态度。

【教学重难点】重点:1.正确理解直线和圆的三种位置关系的概念;2.直线和圆的位置关系与圆心到直线的距离和半径大小关系的对应;3.切线的性质定理。

难点:对d与r数量关系和直线与圆的位置关系之间联系的理论分析。

教法学法分析:在学习了点与圆的位置关系以后,尤其是学习了通过点到圆心距离d与半径r之间的数量关系来判断点与圆位置关系的基础上,本节课通过类比的方法引导学生学习直线与圆的位置关系。

学生通过猜想,验证,归纳并理论分析的方法学习本节课的知识点。

【课时安排】2课时【教学过程】【第一课时】一、情景引入,产生新知:师:早晨的日出非常美丽,照片就是海边日出的一个瞬间,如果我们把海平面看成一条直线,而把太阳抽象成一个运动着的圆,通过太阳缓缓升起的这样一个过程,你能想象直线和圆有几种位置关系么?生:三种。

高中数学二 4.2.2 圆与圆的位置关系 教案

高中数学二 4.2.2 圆与圆的位置关系 教案

4.2。

2 圆与圆的位置关系教学目标1.知识与技能:(1)理解圆与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断圆与圆的位置关系,会用代数的方法来判断圆与圆的位置关系。

2.过程与方法:加深对数形结合思想和待定系数法的理解;增强应用数学的意识。

从高考发展的趋势看,高考越来越重视学生的分析问题、解决问题的能力。

因此,要求学生在学习中遇到问题时,不要急于求成,而要根据问题提供的信息回忆所学知识,涉及到转化思想,数形结合的思想,应用平面解析几何的相关知识。

经历公理的推导过程,体验由特殊到一般、数形结合的数学思想方法.使学生初步学会把一些实际问题转化为圆和圆的位置关系的问题,关键是要使该问题是否满足圆和圆的位置关系以及它们之间的关系,培养学生分析问题、解决问题的能力3。

情感态度价值观:(1)空间教学的核心问题是让学生了解圆的特征,加强与实际生活的联系,以科学的态度评价身边的一些现象;(2)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想重点难点1。

教学重点:利用平面直角坐标系中的距离公式求圆心到圆心的距离与半径的大小关系,从而判定圆与圆的位置关系;2。

教学难点:会用点到直线的距离来判断圆与圆的位置关系,会用代数的方法来判断圆与圆的位置关系。

教学过程两圆的位置关系:外离外切相交内切d>R+r d=R+r|R-r|<d<R+rd=|R—r|在解析几何中,我们用代数的方法如何判断圆与圆之间的位置关系呢?这就是我们本堂课研究的课题,教师板书课题圆与圆的位置关系.推进新课新知探究提出问题①初中学过的平面几何中,圆与圆的位置关系有几种?②判断两圆的位置关系,你有什么好的方法吗?③你能在同一个直角坐标系中画出两个方程所表示的圆吗?④根据你所画出的图形,可以直观判断两个圆的位置关系.如何把这些直观的事实转化为数学语言呢?⑤如何判断两个圆的位置关系呢?。

高中数学教案 第4讲 直线与圆、圆与圆的位置关系

高中数学教案 第4讲 直线与圆、圆与圆的位置关系

第4讲直线与圆、圆与圆的位置关系1.能根据给定直线、圆的方程判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )相离相切相交图形量化方程观点Δ□1<0Δ□2=0Δ□3>0几何观点d □4>r d □5=r d □6<r 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|O 1O 2|□7>r 1+r 2⇔⊙O 1与⊙O 2相离;|O 1O 2|□8=r 1+r 2⇔⊙O 1与⊙O 2外切;|r 1-r 2|□9<|O 1O 2|<r 1+r2⇔⊙O 1与⊙O 2相交;|O 1O 2|□10=|r 1-r 2|⇔⊙O 1与⊙O 2内切(r 1≠r 2);|O 1O 2|□11<|r 1-r 2|⇔⊙O 1与⊙O 2内含.两圆的位置关系与公切线的条数①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.常用结论1.过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r2.2.过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )·(y -b )=r 2.3.过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)设f(x,y)=0表示直线l,g(x,y)=0表示⊙C,则方程g(x,y)+λf(x,y)=0表示过l与⊙C交点的所有圆.()(4)设f(x,y)=0表示⊙C1,g(x,y)=0表示⊙C2,则方程f(x,y)+λg(x,y)=0表示过⊙C1与⊙C2交点的所有圆.()答案:(1)×(2)×(3)√(4)×2.回源教材(1)直线y=3x被圆C:x2+y2-2x=0截得的线段长为.解析:圆C:x2+y2-2x=0的圆心为(1,0),半径为1,圆心到直线y=3x的距离为d=3 2,故弦长为2×1-(32)2=1.答案:1(2)圆x2+y2-2y=0与圆x2+y2-4=0的位置关系为.解析:圆x2+y2-2y=0的圆心为C1(0,1),半径r1=1,圆x2+y2-4=0的圆心为C2(0,0),半径r2=2,由于|C1C2|=r2-r1,所以两圆内切.答案:内切(3)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为.解析:2+y2-4=0,2+y2-4x+4y-12=0,得两圆公共弦所在直线方程x-y+2=0.又圆x2+y2=4的圆心到直线x-y+2=0的距离为22= 2.由勾股定理得弦长为24-2=2 2.答案:22直线与圆的位置关系例1(1)(2024·南充高级中学模拟)已知直线l:kx-y-k-2=0和圆C:x2-2x+4y+y2-1=0,则直线l与圆C的位置关系是()A.相切B.相交C.相离D.相交或相切解析:B圆C的标准方程为(x-1)2+(y+2)2=6,圆心C(1,-2),直线l:kx-y-k-2=0可化为y+2=k(x-1),则直线l过定点(1,-2),因此直线l经过圆心C,所以直线l与圆C相交.故选B.(2)(2024·菏泽期中)已知直线l:x-y+2=0与圆C:x2+y2-2y-2m=0相离,则实数m的取值范围是()A.-12,-14 B.(-∞,-14)C.(-12,-14) D.(-12,+∞)解析:C圆C的标准方程为x2+(y-1)2=2m+1,则m>-12,所以圆心为(0,1),半径为2m+1,由直线与圆相离,可知圆心C到直线l的距离12>2m+1,可得-12<m<-14,即实数m的取值范围为(-12,-14).故选C.反思感悟判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系判断.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.训练1(1)(多选)(2021·新高考Ⅱ卷)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切解析:ABD选项A ,∵点A 在圆C 上,∴a 2+b 2=r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b 2=|r |,∴直线l 与圆C 相切,A 正确.选项B ,∵点A 在圆C内,∴a 2+b 2<r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b2>|r |,∴直线l 与圆C相离,B 正确.选项C ,∵点A 在圆C 外,∴a 2+b 2>r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b 2<|r |,∴直线l 与圆C 相交,C 错误.选项D ,∵点A 在直线l 上,∴a 2+b 2=r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b2=|r |,∴直线l 与圆C 相切,D 正确.故选ABD.(2)(2022·新高考Ⅱ卷)设点A (-2,3),B (0,a ),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是.解析:由题意知点A (-2,3)关于直线y =a 的对称点为A ′(-2,2a -3),所以k A ′B =3-a 2,所以直线A ′B 的方程为y =3-a2x +a ,即(3-a )x -2y +2a =0.由题意知直线A ′B 与圆(x +3)2+(y +2)2=1有公共点,易知圆心为(-3,-2),半径为1,所以|-3(3-a )+(-2)×(-2)+2a |(3-a )2+(-2)2≤1,整理得6a 2-11a +3≤0,解得13≤a ≤32,所以实数a 的取值范围是13,32.答案:13,32圆的切线、弦长问题切线问题例2(2023·新课标Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64解析:B如图,由x 2+y 2-4x -1=0得(x -2)2+y 2=5,所以圆心坐标为(2,0),半径r =5,所以圆心到点(0,-2)的距离为(2-0)2+(0+2)2=2 2.由于圆心与点(0,-2)的连线平分角α,所以sin α2=r 22=522=104,又α2∈(0,π2),所以cos α2=64,所以sin α=2sin α2cos α2=2×104×64=154,故选B.弦长问题例3(2023·新课标Ⅱ卷)已知直线x -my +1=0与⊙C :(x -1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.解析:设直线x -my +1=0为直线l ,由条件知⊙C 的圆心为C (1,0),半径R =2,则圆心C 到直线l 的距离d =21+m 2,|AB |=2R 2-d 2=24-(21+m2)2=4|m |1+m 2.由S △ABC =85,得12×4|m |1+m 2×21+m 2=85,整理得2m 2-5|m |+2=0,解得m =±2或m =±12,故答案可以为2.答案:2(答案不唯一,可以是±12,±2中任意一个)最值(范围)问题例4由直线x-y+4=0上一点向圆(x-1)2+(y-1)2=1引切线,则切线长的最小值为()A.7B.3C.22D.22-1解析:A圆(x-1)2+(y-1)2=1的圆心C(1,1),半径为1,由直线x-y+4=0上一点P向圆(x-1)2+(y-1)2=1引切线,设切点为M,连接PC,MC(图略),则|PM|=|PC|2-|MC|2=|PC|2-1,要使切线长最小,则|PC|最小,而|PC|的最小值等于圆心C到直线x-y+4=0的距离,故|PC|min=|1-1+4|2=22,故切线长的最小值为(22)2-1=7.故选A.反思感悟直线与圆问题的解决方法(1)设圆的半径为r,圆心到直线的距离为d,若直线与圆相切,则d=r;若直线与圆相交,则所得弦长l=2r2-d2.(2)涉及与圆的切线有关的线段长度范围(最值)问题,解题关键是能够把所求线段长度表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求得结果.训练2(1)(2024·陕西第一次大联考)已知圆C:x2+y2-4x+8y=0关于直线3x-2ay-22=0对称,则圆C中以(a2,-a2)为中点的弦长为()A.25B.5C.10D.210解析:D圆C的方程可化为(x-2)2+(y+4)2=20,圆心C(2,-4),r=25,∵圆C关于直线3x-2ay-22=0对称,∴直线过圆心C(2,-4),即3×2+8a -22=0,解得a=2.圆心C与点(1,-1)的距离的平方为10,则圆C中以(1,-1)为中点的弦长为2(25)2-10=210,故选D.(2)(2023·全国乙卷)已知实数x,y满足x2+y2-4x-2y-4=0,则x-y的最大值是()A.1+322B.4C.1+32D.72解析:C将方程x2+y2-4x-2y-4=0化为(x-2)2+(y-1)2=9,其表示圆心为(2,1),半径为3的圆.设z=x-y,数形结合知,只有当直线x-y-z=0与圆相切时,z才能取到最大值,此时|2-1-z|2=3,解得z=1±32,故z=x-y的最大值为1+3 2.故选C.圆与圆的位置关系例5(多选)(2024·福建师大附中第三次月考)已知⊙O1:x2+y2-2mx+2y=0,⊙O2:x2+y2-2x-4my+1=0,则下列说法中,正确的有()A.若点(1,-1)在⊙O1内,则m≥0B.当m=1时,⊙O1与⊙O2共有两条公切线C.若⊙O1与⊙O2存在公共弦,则公共弦所在直线过定点(13,16)D.∃m∈R,使得⊙O1与⊙O2公共弦的斜率为12解析:BC因为⊙O1:x2+y2-2mx+2y=0,⊙O2:x2+y2-2x-4my+1=0,所以⊙O1:(x-m)2+(y+1)2=m2+1,⊙O2:(x-1)2+(y-2m)2=4m2,则O1(m,-1),r1=m2+1,O2(1,2m),r2=2|m|,则m≠0.对于A,由点(1,-1)在⊙O1内,可得(1-m)2+(-1+1)2<m2+1,即m>0,故A错误;对于B,当m=1时,O1(1,-1),r1=2,O2(1,2),r2=2,所以|O1O2|=3∈(2-2,2+2),所以两圆相交,有两条公切线,故B正确;对于C,⊙O1和⊙O2的方程相减,得(-2m+2)x+(2+4m)y-1=0,即m(-2x+4y)+(2x+2y-1)=02x+4y=0,x+2y-1=0,=13,=16,所以⊙O1与⊙O2的公共弦所在直线过定点(13,16),故C正确;对于D,公共弦所在直线的斜率为2m-22+4m,令2m-22+4m=12,无解,故D错误.故选BC.反思感悟1.判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和与差的绝对值的关系,一般不用代数法.2.两圆公共弦长的求法先求出公共弦所在直线的方程,在其中一圆中,由弦心距d,半弦长l2,半径r构成直角三角形,利用勾股定理求解.训练3(1)圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,则m的取值范围是()A.(-∞,-5]B.[5,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:D将x2+2mx+y2+m2-1=0化为标准方程得(x+m)2+y2=1,即圆心为(-m,0),半径为1,圆x2+(y-2)2=4的圆心为(0,2),半径为2,因为圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,所以两圆的位置关系为外切或相离,所以m2+4≥2+1,即m2≥5,解得m∈(-∞,-5]∪[5,+∞).故选D.(2)(多选)已知圆O1:x2+y2-2x=0和圆O2:x2+y2+2x-8y=0的交点为A,B,则下列结论正确的是()A.直线AB的方程为x-2y=0B.|AB|=255C.线段AB的垂直平分线方程为2x+y-2=0D.若点P为圆O1上的一个动点,则点P到直线AB的距离的最大值为55+1解析:ACD根据题意,由x2+y2-2x=0,得(x-1)2+y2=1,则圆心O1(1,0),半径r=1,由x2+y2+2x-8y=0,得(x+1)2+(y-4)2=17,则圆心O2(-1,4),半径R=17.对于A 2+y2-2x=0,2+y2+2x-8y=0,得x-2y=0,即直线AB的方程为x-2y=0,A正确;对于B,圆心O1到直线AB的距离为d=|1-0|1+4=55,则|AB|=2×1-15=455,B错误;对于C,线段AB的垂直平分线即直线O1O2,由O1(1,0),O2(-1,4),易得直线O1O2的方程为2x+y-2=0,C正确;对于D,由圆心O1到直线AB的距离d=55,知点P到直线AB的距离的最大值为55+1,D正确.故选ACD.限时规范训练(六十)A级基础落实练1.圆(x+1)2+(y-2)2=4与直线3x+4y+5=0的位置关系为()A.相离B.相切C.相交D.不确定解析:B由题意知,圆(x+1)2+(y-2)2=4的圆心为(-1,2),半径r=2,则圆心到直线3x+4y+5=0的距离d=|-3+8+5|32+42=2=r,所以直线3x+4y+5=0与圆(x+1)2+(y-2)2=4的位置关系是相切.2.(2024·南京模拟)在平面直角坐标系中,圆O1:(x-1)2+y2=1和圆O2:x2+(y-2)2=4的位置关系是()A.外离B.相交C.外切D.内切解析:B由题意知,圆O1:(x-1)2+y2=1,可得圆心坐标O1(1,0),半径r1=1,圆O2:x2+(y-2)2=4,可得圆心坐标为O2(0,2),半径r2=2,则两圆的圆心距O1O2=1+4=5,则2-1<5<2+1,即|r2-r1|<O1O2<r1+r2,所以圆O1与圆O2相交.3.(2023·浙江嘉兴期末)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为22,则过圆心C且与直线l垂直的直线的方程为()A.x+y-3=0B.x-y+3=0C.x +y +3=0D.x -y -3=0解析:A 设所求的直线方程为x +y +m =0,圆C 的圆心坐标为(a ,0),则由题意知(|a -1|2)2+2=(a -1)2,解得a =3或a =-1,因为圆心在x 轴的正半轴上,所以a =3.因为圆心(3,0)在所求的直线上,所以有3+0+m =0,得m =-3,故所求的直线方程为x +y -3=0.故选A.4.(2024·深圳罗湖区期末)圆O 1:x 2+y 2-4y -6=0与圆O 2:x 2+y 2-6x +8y =0公共弦长为()A.5B.10C.25D.35解析:C联立两个圆的方程2+y 2-4y -6=0,2+y 2-6x +8y =0,两式相减可得公共弦方程为x -2y -1=0,圆O 1:x 2+(y -2)2=10的圆心坐标为O 1(0,2),半径r =10,圆心O 1(0,2)到公共弦的距离d 1=|0-4-1|1+4=5,公共弦长d =2r 2-d 21=210-5=25,故选C.5.(2024·抚州临川一中期末)已知圆C :(x -3)2+(y -4)2=4和两点A (-3m ,0),B (3m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最小值为()A.6B.5C.2D.3解析:D 由题意得,点P 在以原点为圆心,3m 为半径的圆上,因为点P 在圆C 上,所以只要两圆有交点即可,所以|3m -2|≤5≤3m +2,解得3≤m ≤733,所以m 的最小值为3,故选D.6.(2024·皖江名校第五次联考)已知⊙O :x 2+y 2=4,⊙C 与一条坐标轴相切,圆心C 在直线x -y +7=0上.若⊙C 与⊙O 相切,则满足条件的⊙C 有()A.1个B.2个C.3个D.4个解析:D设圆心C (a ,a +7).当⊙C 与x 轴相切时,半径r =|a +7|,故a 2+(a +7)2=2+|a +7|,即a 2-4=4|a +7|,解得a =-4或a =8,所以⊙C的方程为(x+4)2+(y-3)2=9或(x-8)2+(y-15)2=225.当⊙C与y轴相切时,半径r=|a|,故a2+(a+7)2=2+|a|,即(a+7)2=4+4|a|,解得a=-3或a=-15,所以⊙C的方程为(x+3)2+(y-4)2=9或(x+15)2+(y+8)2=225,则满足条件的⊙C有4个.故选D.7.(2024·长沙模拟)若圆C1:(x-1)2+(y-a)2=4与圆C2:(x+2)2+(y+1)2=a2相交,则正实数a的取值范围为.解析:|C1C2|=9+(a+1)2,因为圆C1:(x-1)2+(y-a)2=4与圆C2:(x+2)2+(y+1)2=a2相交,所以|a-2|<9+(a+1)2<a+2,解得a>3.答案:(3,+∞)8.若一条光线从点A(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为.解析:点A(-2,-3)关于y轴的对称点为A′(2,-3),故可设反射光线所在直线的方程为y+3=k(x-2),化为kx-y-2k-3=0,∵反射光线与圆(x+3)2+(y-2)2=1相切,∴圆心(-3,2)到直线的距离d=|-3k-2-2k-3|k2+1=1.化为24k2+50k+24=0,∴k=-43或-34.答案:-43或-349.(2024·苏北四市模拟)过点P(1,1)作圆C:x2+y2=2的切线交坐标轴于点A,B,则PA→·PB→=.解析:∵12+12=2,∴点P 在圆C 上,∴PC ⊥AB .∵k CP =1-01-0=1,∴直线AB 的斜率k AB =-1,∴直线AB 的方程为y -1=-(x -1),即x +y -2=0.不妨设直线AB 与x 轴交点为A ,与y 轴交点为B ,得点A (2,0),B (0,2),∴PA →=(1,-1),PB →=(-1,1),∴PA →·PB →=-1-1=-2.答案:-210.已知圆C :x 2+y 2-6x -8y +21=0,直线l 过点A (1,0).(1)求圆C 的圆心坐标及半径长;(2)若直线l 与圆C 相切,求直线l 的方程;(3)当直线l 的斜率存在且与圆C 相切于点B 时,求|AB |.解:圆C 的方程为(x -3)2+(y -4)2=22.(1)圆C 的圆心坐标是(3,4),半径长是2.(2)①当直线l 的斜率不存在,即其方程是x =1,满足题意.②当直线l 的斜率存在时,可设直线l 的方程是y =k (x -1),即kx -y -k =0.由圆心(3,4)到直线l 的距离等于圆C 的半径,即|3k -4-k |k 2+1=2,解得k =34,此时直线l 的方程是3x -4y -3=0.综上,直线l 的方程是x =1或3x -4y -3=0.(3)由(2)得直线l 的方程是3x -4y -3=0.圆C 的圆心是点C (3,4),则|AC |=4+16=25,所以|AB |=|AC |2-|BC |2=20-22=4.11.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0.(1)设直线l 与圆C 交于不同两点A ,B ,求弦AB 的中点M 的轨迹方程;(2)若定点P (1,1)分弦AB 为AP ∶PB =1∶2,求此时直线l 的方程.解:(1)直线l :mx -y +1-m =0变形为m (x -1)-y +1=0,可知直线l 恒过点(1,1),由圆C 的方程可知圆心C (0,1),过C 作CM ⊥l 于M ,可知M 为线段AB 的中点,设M (x ,y ),则有x 2+(y -1)2+(x -1)2+(y -1)2=12,化简得x 2+y 2-x -2y +1=0,点(1,1)也满足此方程,故M 的轨迹方程为x 2+y 2-x -2y +1=0.(2)设A (x 1,y 1),B (x 2,y 2),由AP ∶PB =1∶2,得1-x 1=12(x 2-1),化简得x 2=3-2x 1,①-y +1-m =0,2+(y -1)2=5,消去y 得(1+m 2)x 2-2m 2x +m 2-5=0,②∴x 1+x 2=2m 21+m 2,③由①③解得x 1=3+m 21+m 2,代入②式,解得m =±1,∴直线l 的方程为x -y =0或x +y -2=0.B 级能力提升练12.(2024·南通海安期末)已知圆心均在x 轴上的两圆外切,半径分别为r 1,r 2(r 1<r 2),若两圆的一条公切线的方程为y =24(x +3),则r 2r 1=()A.43B.2C.54D.3解析:B不妨设两圆为圆C 1和C 2,圆C 1:(x -a )2+y 2=r 21,圆C 2:(x -b )2+y 2=r 22,其中r 1>0,r 2>0,-3<a <b .由于两圆的公切线方程为x -22y +3=0,则r 1=|a +3|1+(-22)2=a +33,r 2=|b +3|1+(-22)2=b +33.由两圆外切,得|C 1C 2|=b -a =r 1+r 2=a +33+b +33,化简得b =2a +3,则r 2r 1=b +3a +3=2,故选B.13.(多选)有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),则下列命题正确的是()A.不论k 如何变化,圆心C k 始终在一条直线上B.所有圆C k 均不经过点(3,0)C.存在定直线始终与圆C k 相切D.若k ∈(-22,322),则圆C k 上总存在两点到原点的距离均为1解析:ABC圆C k 的圆心C k (k ,k ),在直线y =x 上,A 正确;由(3-k )2+(0-k )2=4,化简得2k 2-6k +5=0,Δ=36-40=-4<0,无实数解,B 正确;由A 选项的分析知,圆心C k 在直线y =x 上,半径为定值2,假设存在定直线始终与圆C k 相切,则定直线的斜率一定为1,设为y =x +b ,则圆心到定直线的距离为|b |2=2,得b =±22,故存在定直线y =x ±22始终与圆C k 相切,C 正确;圆C k 上总存在两点到原点的距离均为1,可转化为圆x 2+y 2=1与圆C k 有两个交点,则2-1<|2k |<2+1,得-322<k <-22或22<k <322,即k ∈(-322,-22)∪(22,322),D 错误.故选ABC.14.已知圆C :(x -3)2+(y -4)2=4.(1)若直线l :(m -2)x +(1-m )y +m +1=0(m ∈R ),证明:无论m 为何值,直线l 都与圆C 相交;(2)若过点P (1,0)的直线m 与圆C 相交于A ,B 两点,求△ABC 面积的最大值,并求此时直线m 的方程.解:(1)证明:转化l 的方程(m -2)x +(1-m )y +m +1=0,可得m (x -y +1)-2x +y +1=0,-y +1=0,2x +y +1=0,=2,=3,所以直线l 恒过点(2,3),由(2-3)2+(3-4)2=2<4,得点(2,3)在圆内,即直线l恒过圆内一点,所以无论m为何值,直线l都与圆C相交.(2)由C的圆心为(3,4),半径r=2,易知此时直线m的斜率存在且不为0,故设直线m的方程为x=my+1(m≠0),直线m的一般方程为my-x+1=0,圆心到直线m的距离d=|4m-3+1|m2+(-1)2=|4m-2|m2+1,所以|AB|=2r2-d2=24-(4m-2)2 m2+1,所以S2=(12|AB|·d)2=4-(4m-2)2m2+1·(4m-2)2m2+1,令t=(4m-2)2m2+1,可得S2=4t-t2,当t=2时,S2max=4,所以△ABC面积的最大值为2,此时由2=(4m-2)2m2+1,得7m2-8m+1=0,得m=1或m=17,符合题意,此时直线m的方程为x-y-1=0或7x-y-7=0.。

圆与圆的位置关系-高中数学获奖教案

圆与圆的位置关系-高中数学获奖教案

2.5.2 圆与圆的位置关系(人教A 版普通高中教科书数学选择性必修第一册第二章)一、教学目标1.知识与技能(1)圆与圆的位置关系的判断方法.(2)圆与圆的位置关系的应用(3)轨迹方程培养学生“数形结合”的意识.2.过程与方法几何法:设两圆的连心线长为,则判断圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;(5)当时,圆与圆内含.代数法: 有两组不相同的实数解⇔ 两圆相交 ;有两组相同的实数解⇔两圆相切(内切或外切);无实数解⇔两圆相离(外离或内含).3.情态与价值观 (1)动点圆的轨迹问题,数形结合的思想.,培养数学抽象能力.(2)根据圆的方程判断圆与圆的位置关系.培养数学运算能力.(3)综合应用圆与圆的位置关系解决问题.培养学生逻辑推理能力.二、教学重难点重点:掌握圆与圆的位置关系的判断方法难点:能综合应用圆与圆的位置关系解决问题.l 21r r l +>1C 2C 21r r l +=1C 2C 2121r r l r r +<<-1C 2C 21r r l -=1C 2C 21r r l -<1C 2C ⎩⎨⎧=++++=++++0022********F y E x D y x F y E x D y x 方程组:三、教学过程1.1创设情境,引发思考【实际情境】每逢节假日农村集市上套圈游戏盛行,商家圈起来一小片空地,撒满一元,五角和一角的硬币,玩家10元钱可套20环,看似简单套起来却没有那么容易,要求圆环落地后不能触碰硬币,毕竟硬币面值越大,想套中就越难。

问题1:(1)一次套圈中把玩家的目标硬币和圆环看成两个圆,那么这两个圆满足什么位置关系才算套中?(2)为什么硬币面值越大,想套中就越难?(3)两个圆的位置关系和圆心距以及半径存在怎样的数量关系?【预设的答案】(1)内含(2)硬币面值越大,套中时要求两个圆心距离越近,难度越大相交,外切和内切(3)类比研究判断直线与圆的位置关系的方法.【设计意图】问题的提出源于实际生活,结合学生已有的知识经验,启发学生思考,激发学生学习兴趣.【数学情境】尺规作图,请同学们在纸上分别画出半径为3cm 和5cm 的圆,以小组为单位进行汇总,看看可以画出多少种位置关系,并探讨不同位置关系的圆心距满足的条件.【设计意图】创设数学情境,通过动手画图,小组讨论的形式,让学生处于数学学习的主导地位,增强学生的学习兴趣和自主学习能力.【活动预设】学生以小组为单位总结出判断两个圆位置关系的几何法:利用两圆半径的和或差的绝对值与圆心距作比较,满足相应的条件,判断两圆的位置关系.设两圆的圆心距为,则判断圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;d 21r r d +>1C 2C 21r r d +=1C 2C 2121r r d r r +<<-1C 2C 21r r d -=1C 2C(5)当时,圆与圆内含.问题2:如果建立平面直角坐标系,目标硬币和圆环看成两个圆,得到两个圆的方程,类比直线与圆的位置关系,是否可以通过方程组解的个数,来判断两个圆的位置关系?【设计意图】进一步引导学生用代数法判断两个圆的位置关系,把两圆位置关系的判定完全转化为代数问题,转化为方程组的解的组数问题.1.2探究典例,初步应用活动:已知圆C 1:x 2+y 2-2ax -2y +a 2-15=0(a >0),圆C 2:x 2+y 2-4ax -2y +4a 2=0(a >0).试求a 为何值时,两圆C1,C2的位置关系为: (1)相切;(2)相交;(3)外离;(4)内含【活动预设】根据数学情景总结出的结论,把圆的一般方程化为标准方程,比较两个圆的圆心距与两半径的和或两半径的差的绝对值的大小,满足相应条件,求解参数a.【预设的答案】(1)当a =5时,两圆外切;当a =3时,两圆内切.(2)当3<a <5时,两圆相交.(3)当a >5时,两圆外离.(4)当0<a <3时,两圆内含.【设计意图】理论结合实际,运用几何法判断两圆位置关系.1.3具体感知,理性分析活动:已知圆C1:,圆C 2: 分别用几何法和代数法判断圆C1与圆C2的位置关系.【设计意图】(1)灵活运用判断两圆的位置关系的两种方法:几何法和代数法.(2)比较两种方法判断两个圆位置关系的异同 .问题3:用代数法判断两个圆的位置关系时,如果两圆方程联立消元后得到的方程的 ,它说明什么?你能据此确定两圆是内切还是外切吗?如何判断两圆是内切还是外切呢?21r r d -<1C 2C 088222=-+++y x y x 024422=---+y x y x 0=∆【预设的答案】如果,则两圆相切;此时无法判定两圆是内切还是外切,还要根据两圆的半径与连心线的长作进一步判断.【设计意图】(1)更深入的理解判别式对两圆位置关系的影响根源在于交点个数;(2)仅仅由交点个数无法判断两个圆的位置关系.问题4:在平面直角坐标系中画出活动2中两个圆的图像,若将两个圆的方程相减,你发现了什么?并求出圆C1与圆C2的交点坐标.【预设的答案】两相交圆方程相减得公共弦方程,交点坐标.【活动预设】教师引导学生阅读教科书中的相关内容,学生观察图形并思考,发表自己的解题方法.【设计意图】运用数形结合的思想,探究相交的两个圆引出的公共弦方程,以及交点坐标问题.2. 初步应用,理解概念例1.(2021·皖南八校联考)已知圆O1的方程为x2+y2=4,圆O2的方程为(x -a)2+y2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是( )A .{1,-1}B .{3,-3}C .{1,-1,3,-3}D .{5,-5,3,-3}【预设的答案】C 两圆只有1个公共点,则两圆外切或内切.如果两圆外切,则|a|=2+1=3,a =±3;如果两圆内切,则|a|=1,a =±1.综上,a∈{1,-1,3,-3}【设计意图】巩固判断两个圆的位置关系的两种方法.A.(1,0)和(0,1)B.(1,0)和(0,-1)C. (-1,0)和(0,-1)D.(-1,0)和(0,1)0=∆012=-+y x )1,3(),1,1(--B A 的交点坐标为()与圆圆例01221.22222=++++=+y x y x y x【预设的答案】C【设计意图】求相交圆的交点坐标:(1)代数法(2)答案带入题目检验例3.已知两圆和.求公共弦的长度.【预设的答案】解法一:两方程联立,得方程组Error!两式相减得x =2y -4 ③,把③代入②得y 2-2y =0,∴y 1=0,y 2=2.∴Error!或Error!∴交点坐标为(-4,0)和(0,2). ∴两圆的公共弦长为(-4-0)2+(0-2)2=25.解法二:两方程联立,得方程组Error!两式相减得x -2y +4=0,即两圆相交弦所在直线的方程;由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心为C 1(1,-5),半径r 1=52.圆心C 1到直线x -2y +4=0的距离d =|1-2×(-5)+4|1+(-2)2=35,∴两圆的公共弦长为2r 2-d 2=250-45=25.两圆的公共弦长为.【设计意图】探讨求公共弦长的方法.(1)代数法:求交点的坐标,利用两点间的距离公式求出公共弦长.(2)几何法:利用圆的半径、公共弦的一半、圆心到弦的垂线段构成的直角三角形,根据勾股定理求出公共弦长.02410222=-+-+y x y x 082222=-+++y x y x 52【设计意图】利用中点坐标公式,坐标系解决平面几何问题.3. 归纳小结,文化渗透思考:构成奥运五环中的圆之间有哪些位置关系,生活中的日用百货,建筑学领域,还有哪些涉及两个圆的位置关系?【设计意图】(1)梳理对判断两个圆的位置关系方法的理解和应用;(2)进行数学文化渗透,鼓励学生积极攀登知识高峰,进一步体会学习两个圆位置关系的必要性 .四、归纳小结,课后作业1.判断圆与圆的位置关系的两种方法:几何法和代数法2.求两个相交圆公共弦长的两种方法:几何法和代数法3.满足某种几何条件的动点圆的轨迹问题,用的是坐标法.这种方法建立了几何与代数之间的联系,体现了数形结合思想.例4(1)如图所示,圆O 1和圆O 2的半径长都等于1,|O 1O 2=4.过动点P 分别作圆O 1,圆O 2的切线PM ,PN(M ,N 为切点),使得|PM|=2|PN|.试建立平面直角坐标系,并求动点P 的轨迹方程.(2)已知圆x 2+y 2=4上一定点A(2,0),B(1,1)为圆内一点,P ,Q 为圆上的动点.①求线段AP 中点的轨迹方程;②若∠PBQ =90°,求线段PQ 中点的轨迹方程.1.教科书130页练习.习题4.2 A组第4、9、10、11题.2.步步高《圆与圆的位置关系》习题。

高中数学圆与圆的位置关系教案(优选.)

高中数学圆与圆的位置关系教案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改4.2.2圆与圆的位置关系教学要求:能根据给定圆的方程,判断圆与圆的位置关系; 教学重点:能根据给定圆的方程,判断圆与圆的位置关系教学难点:用坐标法判断两圆的位置关系教学过程:一、复习准备1. 两圆的位置关系有哪几?2.设两圆的圆心距为d.当d R r >+时,两圆 , 当d R r =+时,两圆当||R r d R r -<<+ 时,两圆 ,当||d R r =+时,两圆当|d R r <+时,两圆3.如何根据圆的方程,判断两圆之间的位置关系?(探讨)二、讲授新课:1.两圆的位置关系利用半径与圆心距之间的关系来判断例1. 已知圆221:2880C x y x y +++-=,圆0244:222=---+y x y x C ,试判断圆1C 与圆2C 的关系?方法(一)(配方→圆心与半径→探究圆心距与两半径的关系)方法(二)解方程组探究:相交两圆公共弦所在直线的方程。

2. 两圆的位置关系利用圆的方程来判断方法:通常是通过解方程或不等式和方法加以解决 (以例1为例说明)例2.圆1C 的方程是:2222450x y mx y m +-++-=圆2C 的方程是: 2222230x y x my m ++-+-=,m 为何值时,两圆(1)相切.(2)相交(3)相离(4)内含思路:联立方程组→讨论方程的解的情况(消元法、判别式法)→交点个数→位置关系)练习:已知两圆2260x y x +-=与224x y y m +-=,问m 取何值时,两圆相切。

例3.已知两圆221:420C x y x y +-+=和圆222:240C x y y +--=的交点为A 、B,(1)求AB 的长; (2)求过A 、B 两点且圆心在直线:2410l x y +-=上的圆的方程.3.小结:判断两圆的位置关系的方法:(1)由两圆的方程组成的方程组有几组实数解确定.(2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系.三、巩固练习:1.求经过点M(2,-2),且与圆2260x y x +-=与224x y +=交点的圆的方程2.已知圆C 与圆2220x y x +-=相外切,并且与直线0x +=相切于点,求圆C 的方程.3.求两圆221x y +=和()2234x y -+=的外公切线方程四、作业:《习案》作业二十八。

高中数学_【课堂实录】圆与圆的位置关系教学设计学情分析教材分析课后反思

高中数学_【课堂实录】圆与圆的位置关系教学设计学情分析教材分析课后反思

《圆与圆的位置关系》教学设计【课标解读】1.课标表述:通过实例,掌握圆与圆的位置关系的两种判断方法,会求相交两圆的公共弦所在的直线方程及公共弦长。

2.目标分解:教科书通过直线与圆的位置关系的判断方法类比圆与圆的位置关系的判断方法,并进一步通过例题1要掌握圆与圆的位置关系的两种判断方法,会求相交两圆的公共弦所在的直线方程及公共弦长。

3.具体目标:掌握圆与圆的位置关系的两种判断方法:几何法和代数法;会求相交两圆的公共弦所在的直线方程及公共弦长。

【教材分析】1.教材的地位和作用:本节内容是在学习了直线与圆的位置关系的基础上,系统地研究圆与圆的位置关系,是全章的主要内容之一。

这一节无论从知识性还是思想性来讲,在几何教学中都占有重要的地位。

2.教学重点、难点:(1).两圆的五种位置关系与两圆的半径、圆心距的数量之间的关系的相互转化;(2).求过两圆的交点的相交直线方程;(3).求过两圆的相交弦长。

【学情分析】学生在初中已学过圆与圆的五种位置关系,同时在上一节课也学习了直线与圆的位置关系及判断方法,因此,本节课的教学可以用类比的思想来引导学生来学习圆与圆的五种位置关系及判断方法。

通过《几何画板》的动态演示以及数量的变化,让学生利用已有的知识,去探究圆与圆的位置关系,并利用圆的方程用代数的角度来研究两圆的位置关系,从而提高学生自主学习、分析问题和解决问题的能力,培养学生的学习兴趣。

【目标分析】1.知识目标:能根据给定两圆的方程,判断两圆的位置关系;求过两圆的交点的相交直线方程;求过两圆的相交弦长。

2.能力目标:(1)培养学生运用旧知识探求新知识的能力。

(2)体会数形结合思想,形成代数方法处理几何问题能力。

(3)培养学生观察、类比、分析、概括的思维能力。

3.情感目标:向学生渗透用运动变化的观点来研究两圆的位置关系;进一步培养学生辩证唯物主义观点和理论联系实际的作风。

【教法分析】1.教学方法:通过类比的方式引导学生自己探索圆与圆的位置关系。

高中数学 2.3 圆的方程 2.3.4 圆与圆的位置关系教案 新人教B版必修2-新人教B版高一必修2

高中数学 2.3 圆的方程 2.3.4 圆与圆的位置关系教案 新人教B版必修2-新人教B版高一必修2

圆与圆的位置关系示X教案整体设计教学分析教材通过例题介绍了利用方程判断两圆的位置关系.让学生进一步感受坐标方法在研究几何问题中的作用.值得注意的是针对学生的实际情况来学习坐标法讨论两圆的位置关系,对于基础较差的学生,建议不学习,对于基础较好的学生可以作为课后阅读教材,否那么本节课的教学目标完不成.三维目标1.掌握圆与圆的位置关系的判定,培养学生分析问题和解决问题的能力.2.了解用坐标方法讨论两圆位置关系,体会坐标方法在研究几何问题中的作用,提高应用能力.重点难点教学重点:利用方程判定两圆位置关系.教学难点:用坐标方法讨论两圆位置关系.课时安排1课时教学过程导入新课设计1.前面我们学习了利用方程判断点与圆的位置关系、直线与圆的位置关系,那么,圆与圆的位置关系有哪几种呢?如何利用方程判断圆与圆之间的位置关系呢?教师板书课题:圆与圆的位置关系.设计 2.我们知道,日食和月食都是一种自然现象,如果把月球、地球、太阳都抽象成圆,那么这两种自然现象就展现了两圆的位置关系,如何利用方程来描述这一现象呢?教师点出课.推进新课新知探究提出问题初中学过的平面几何中,圆与圆的位置关系有几种?画图表示,并指出判断方法.讨论结果:应用示例思路1例1判断以下两个圆的位置关系:(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0.解:(1)两圆的方程可分别变形为(x-1)2+y2=22,(x-2)2+(y+1)2=(2)2.由此可知圆心C1的坐标为(1,0),半径r1=2;圆心C2的坐标为(2,-1),半径r2= 2.设两圆的圆心距为d,那么:d=|C1C2|=2-12+-12= 2.r1+r2=2+2,r1-r2=2- 2.所以r1-r2<d<r2+r2.因此这两个圆相交.(2)两圆的方程分别变形为:x2+(y-1)2=12,(x-3)2+y2=32.由此可知圆心C1的坐标为(0,1),半径r1=1;圆心C2的坐标为(3,0),半径r2=3,那么两圆的圆心距d=32+12=2,所以d=r2-r1.因此这两个圆内切.点评:判断两个圆的位置关系.几何法:即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为d,那么判别圆与圆的位置关系的依据有以下几点:①当d>R+r时,圆C1与圆C2外离;②当d=R+r时,圆C1与圆C2外切;③当|R-r|<d<R+r时,圆C1与圆C2相交;④当d=|R-r|时,圆C1与圆C2内切;⑤当d<|R-r|时,圆C1与圆C2内含.变式训练1.在平面直角坐标系中分别作出圆心为C1(0,0),C2(1,1),半径分别为1,2的两圆,并判断两圆的位置关系.解:作出两圆,如下图.两圆半径分别记作r1和r2,那么r1=1,r2=2,圆心距d=|C1C2|=0-12+0-12=2,于是,1=|r1-r2|<d<r1+r2=3,所以两圆相交.2.判断圆C1:x2+y2+2x-6y-26=0与圆C2:x2+y2-4x+2y+4=0的位置关系,并画出图形.解:由得圆C1:(x+1)2+(y-3)2=36,其圆心C1(-1,3),半径r1=6;圆C2:(x-2)2+(y+1)2=1,其圆心C2(2,-1),半径r2=1.于是|C1C2|=2+12+-1-32=5.又|r1-r2|=5,即|C1C2|=|r1-r2|,所以两圆内切.如下图.3.x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切解析:圆O 1:x 2+y 2-2x =0(x -1)2+y 2=1, 故圆心为(1,0),半径为1.圆O 2:x 2+y 2-4y =0x 2+(y -2)2=4, 故圆心为(0,2),半径为2.那么圆心距d =1-02+0-22= 5. 而2-1<5<1+2,即两圆相交. 答案:B例2试用坐标方法讨论两圆位置关系.(此题针对学生实际选用)解:如下图所示,以O 1为坐标原点,使x 轴通过O 1,O 2,且O 2在x 轴的正半轴上,建立直角坐标系xOy.这样,可设⊙O 2的圆心的坐标为(d,0).这时两圆的圆心距等于d ,两圆的方程分别为 x 2+y 2=r 21 ①(x -d)2+y 2=r 22. ②将①②两式联立,研究此方程组的解. ①-②,整理可得x =r 21-r 22+d22d .将x 值代入①,得 y 2=r 21-r 21-r 22+d224d2=2dr 1+r 21-r 22+d 22dr 1-r 21+r 22-d 24d2=[r 1+d2-r 22][r 22-r 1-d2]4d2=r 1+r 2+d r 1-r 2+dr 1+r 2-dr 2-r 1+d4d2=[r 1+r 22-d 2][d 2-r 1-r 22]4d2.由此可见,如果 |r 1-r 2|<d<r 1+r 2那么等式右边两个因式都为正数,于是方程组有解,且有两解.这时相应的两圆相交于两点(如下图).如果:r 1+r 2=d 或|r 1-r 2|=d ,那么等式右边分子的因式中至少有一个为0,那么方程组有唯一解,这时两圆相切(外切或内切)(上图(2)(3)).如果:r 1+r 2<d 或|r 1-r 2|>d ,那么方程组无解,这时两圆不相交(相离或内含)(上图(4)(5)).思路2例3圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.分析:因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x 2项、y 2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.解:设两圆交点为A(x 1,y 1)、B(x 2,y 2),那么A 、B 两点坐标满足方程组⎩⎪⎨⎪⎧ x 2+y 2+2x -6y +1=0,x 2+y 2-4x +2y -11=0,①②①-②,得3x -4y +6=0. 因为A 、B 两点坐标都满足此方程,所以3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r =3.又点C 1到直线的距离为d =|-1×3-4×3+6|32+-42=95. 所以AB =2r 2-d 2=232-952=245,即两圆的公共弦长为245. 点评:处理圆有关的问题,利用圆的几何性质往往比较简单,要注意体会和应用.此题中求两圆公共弦所在直线方程可以作为结论记住.变式训练判断以下两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x +2)2+(y -2)2=1与(x -2)2+(y -5)2=16,(2)x 2+y 2+6x -7=0与x 2+y 2+6y -27=0.解:(1)根据题意,得两圆的半径分别为r 1=1和r 2=4,两圆的圆心距d =[2--2]2+5-22=5. 因为d =r 1+r 2,所以两圆外切.(2)将两圆的方程化为标准方程,得(x +3)2+y 2=16,x 2+(y +3)2=36. 故两圆的半径分别为r 1=4和r 2=6, 两圆的圆心距d =0-32+-3-02=3 2.因为|r 1-r 2|<d<r 1+r 2,所以两圆相交. 两圆方程相减得公共弦的方程: 6x -6y +20=0,即3x -3y +10=0.例4求过点A(0,6)且与圆C :x 2+y 2+10x +10y =0切于原点的圆的方程.分析:如下图.所求圆经过原点和A(0,6),且圆心应在圆的圆心与原点的连线上.根据这三个条件可确定圆的方程.解:将圆C 化为标准方程,得(x +5)2+(y +5)2=50,那么圆心为C(-5,-5),半径为5 2.所以经过此圆心和原点的直线方程为x -y =0.设所求圆的方程为(x -a)2+(y -b)2=r 2.由题意,知O(0,0),A(0,6)在此圆上,且圆心M(a ,b)在直线x -y =0上,那么有⎩⎪⎨⎪⎧0-a 2+0-b 2=r 2,0-a 2+6-b 2=r 2,a -b =0,解得⎩⎨⎧a=3,b =3,r =3 2.于是所求圆的方程是(x -3)2+(y -3)2=18.点评:求圆的方程,一般可从圆的标准方程和一般方程入手,至于选择哪一种方程形式更恰当,要根据题目的条件而定,总之要让所选择的方程形式使解题过程简单.变式训练求经过点A(4,-1),且与圆C :(x +1)2+(y -3)2=5相外切于点B(1,2)的圆的方程.解:如下图,设所求的圆C′的方程为(x -a)2+(y -b)2=R 2.因为C′既在弦AB 的垂直平分线上,又在直线BC 上,AB 中垂线方程为x -y -2=0,BC 所在直线的方程为x +2y -5=0,所以,圆心C′的坐标应满足方程组⎩⎪⎨⎪⎧a -b -2=0,a +2b -5=0.解得a =3,b =1.因为所求圆C′过点A(4,-1),所以(4-3)2+(-1-1)2=R 2=5.所以,所求圆的方程为(x -3)2+(y -1)2=5.知能训练1.在(x +k)2+(y +2k +5)2=5(k +1)2(k≠-1)所表示的一切圆中,任意两圆的位置关系是( )A .相切或相交B .相交C .相切D .内切或相交 答案:C2.圆x 2+y 2+m =0与圆x 2+y 2-6x +8y =0没有公共点,那么实数m 的取值X 围为( ) A .-10<m<0 B .-100<m<-10 C .m<-100 D . 答案:C3.半径为5且与圆x 2+y 2-6x +8y =0相切于原点的圆的方程是________.答案:x 2+y 2+6x -8y =04.一圆过两圆x 2+y 2+6x -3=0和x 2+y 2-6y -3=0的交点,圆心在直线x +y +6=0上,求此圆的方程.答案:x 2+y 2+9x +3y -3=05.求圆心在直线x -y -4=0上,且经过两圆x 2+y 2-4x -3=0和x 2+y 2-4y -3=0的交点的圆的方程.解:设经过两圆的交点的圆的方程为x 2+y 2-4x -3+λ(x 2+y 2-4y -3)=0(λ≠-1),那么其圆心坐标为(21+λ,2λ1+λ).∵所求圆的圆心在直线x -y -4=0上,∴21+λ-2λ1+λ-4=0,λ=-13.∴所求圆的方程为x 2+y 2-6x +2y -3=0.拓展提升求经过原点,且过圆x 2+y 2+8x -6y +21=0和直线x -y +5=0的两个交点的圆的方程.解法一:由⎩⎪⎨⎪⎧x 2+y 2+8x -6y +21=0,x -y +5=0,求得交点(-2,3)或(-4,1).设所求圆的方程为x 2+y 2+Dx +Ey +F =0.因为(0,0),(-2 3),(-4,1)三点在圆上,所以⎩⎪⎨⎪⎧F =0,4+9-2D +3E +F =0,16+1-4D +E +F =0,解得⎩⎪⎨⎪⎧F =0,E =-95,D =195.所以所求圆的方程为x 2+y 2+195x -95y =0.解法二:设过交点的圆系方程为x 2+y 2+8x -6y +21+λ(x-y +5)=0(λ为参数). 将原点(0,0)代入上述方程得λ=-215.那么所求方程为x 2+y 2+195x -95y =0.课堂小结本节课学习了:利用方程判断两圆位置关系,解决与两圆有关的问题.作业本节练习A 1,2题.设计感想这堂课是建立在初中已经对圆与圆的位置关系有个粗略地了解的基础上,对这个位置关系的进一步深化,而且前一堂课学习过直线与圆的位置关系,圆与圆的位置关系的研究和直线与圆的位置关系的研究方法是类似的,所以可以用类比的思想来引导学生自主地探究圆与圆的位置关系.作为解析几何的一堂课,判断圆与圆的位置关系,表达的正是解析几何的思想:用代数方法处理几何问题,用几何方法处理代数问题.所以在教材处理上,对判断两圆位置关系用了几何方法,使学生对解析几何的本质有所了解.备课资料圆的参数方程一般地,在取定的坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f t ,y =gt.①并且对于t 的每一个允许值,由方程①所确定的点M(x ,y)都在一条曲线上,那么方程组①就叫这条曲线的参数方程,联系x ,y 之间的关系的变数叫做参变数,简称参数.参数方程中的参数可以是有物理、几何意义的变数,也可以是没有明显意义的变数.相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程.参数方程能把曲线上的点坐标通过参数直接地写出来,因此,能比较清楚地说明曲线上点的坐标的特点,尤其是借助于参数方程,可以使有的问题变得容易解决.这也正是在解有关问题时,将普通方程化为参数方程来解的原因.当然在解答有关问题时,根据问题的需要,有时也将参数方程化为普通方程,比如研究有关曲线的性质时,由于我们对普通方程下曲线性质比较熟悉,这时,常把曲线参数方程化为普通方程来研究问题.圆的参数方程参数方程:⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rsinθ.其中,θ为参数,圆心为(a ,b),r 为半径.需注意的两点:(1)标准方程含有a ,b ,r ,当a ,b ,r 确定下来时,圆的参数方程才唯一地确定下来,确定圆的参数方程同样需要三个独立条件.(2)要掌握圆的标准方程(x -a)2+(y -b)2=r 2与参数方程⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rcosθ(θ为参数)之间的互化.。

湘教版高中数学必修第三册 7.3.3 直线与圆、圆与圆的位置关系_教案设计

湘教版高中数学必修第三册  7.3.3 直线与圆、圆与圆的位置关系_教案设计

《圆与圆的位置关系》教学设计教材:湘教版数学必修三一、教材分析1、教材的地位和作用本节课是《普通高中课程标准实验教科书》(湖南教育出版社)必修三第七章《解析几何初步》第三节《圆与方程》中“直线与圆、圆与圆的位置关系”的第二课时,教材是在初中平面几何对圆与圆的位置关系初步分析的基础上结合前面学习的点与圆、直线与圆的位置关系,得到判断两圆位置关系的两种方法.代数法:将两圆的方程联立方程组,通过讨论方程组的解的不同情况来判断(本方法主要突出代数法的思想且具有一般性,可类比地推广到今后解析几何同类问题的研究中);几何法:利用两圆心之间的距离与半径的和以及差的绝对值比较.解析几何是中学数学的一个重要知识,它建立了数与形、代数与几何等联系.用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化.因此,继续深化用代数方法来分析解决,这样有利于培养学生数形结合、几何问题代数化等解析几何思想方法,其基本思维方法和解决问题的技巧对今后整个圆锥曲线的学习有着非常重要的意义.因此,本节课在教材中起到了承上启下的重要作用.2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标如下:知识目标(1)能根据给定圆的方程,用几何和代数的方法判断两圆的位置关系.(2)若两圆相切时,会求公切线方程;若两圆相交时,会求两圆的公共弦所在的直线方程及公共弦长.(3)理解几何问题代数化的思想,深入了解解析几何的本质.能力目标(1)类比直线与圆的位置关系,通过对圆与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习能力.(2)强化学生用数形结合的方法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.情感目标通过对本节课知识的探究活动,加深学生对圆与圆的位置关系的认识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯及创新意识和进取精神.3、教学重点和难点教学重点:圆与圆的位置关系及判断方法;两圆相切时的公切线问题;两圆相交时公共弦问题.教学难点:运用代数方法解决几何问题的数学思想.二、学情分析本节内容面对的是高一年学生,所授课的班级中学生层次不同,存在一定差异.虽在初中已经接触过圆与圆相交、相切、相离的定义等已有的认知基础的条件下,同时也经历直线、圆的方程学习后,学生已经具备了一定的判断圆与圆位置关系的能力,但学生仅仅停留在模仿、类比的知识表面,知识的来龙去脉并不知晓,这时需要教师的引导和帮助.而且解析几何的学习刚刚开始,对代数法还处于初步了解的层次.因此,我在教学中通过提供的丰富的数学学习环境,创设便于观察和思考的情境,给他们提供自主探究的空间,使学生经历完整的数学学习过程,引导学生在已有数学认知结构的基础上,通过积极主动的思维而将新知识内化到自己的认知结构中去.同时为他们施展创造才华搭建一个合理的平台,使他们感知学习数学的快乐.三、教法与学法 根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,通过图形的动态演示,学生的动手实验,变抽象为直观,为学生的数学探究与数学思维提供支持. 丰富学生的学习方式,改进学生的学习方法是高中教学课程追求的理念.学生的数学学习不应只限于概念,结论和方法的记忆,模仿和接受.本节课主要是学习如何判断圆与圆的位置关系,学习过程中,要使学生理解判断方法,并会灵活应用,要鼓励学生积极参与教学活动,包括思维的参与和行为的参与,既要有教师的讲授和指导,也要有学生的自主探究与合作交流.因此,结合本课的教学内容与学生实际,本设计主要采用的教学方法是诱思探究法.四、教学过程(一)引入课题问题1:观察屏幕所给出的图形,找找圆与圆的不同位置关系图.设计意图:由非常有意思生活常见图形入手,调动学生的学习热情,让学生充分体会数学来源于生活,同时引入本节课题:圆与圆的位置关系.(二)探索实践【探究活动一】在纸上画一个半径为3cm 的☉C ,把一枚硬币当作另一个圆,在纸上向圆移动这枚硬币(1)观察两圆公共点的个数的变化情况。

《直线与圆、圆与圆的位置关系》大单元教学设计方案【高中数学】

《直线与圆、圆与圆的位置关系》大单元教学设计方案【高中数学】

直线与圆、圆与圆的位置关系大单元教学
设计
用几何方法和代数方法,这种综合是充分借助图形的几何性质,一定程度上简化代数运算,最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题,是初中平面几何的综合运用,是在学习了点和圆的位置关系的基础上进行的,又为后面学习圆与圆的位置关系作了铺垫,对解题及几何证明将起到重要的作用.
本单元综合运用直线和圆的方程研究直线与圆、圆与圆的位置关系, 以及一些简单的数学问题和实际问题. 直线与圆的教学在平面解析几何乃至整个中学数学中都占有重要的地位, 直线和圆的位置关系应用也比较广泛、图形之间的位置关系, 既可以直观定性描述, 也可以严格定量刻画.定量刻画的方法既可以是完全运用代数的方法, 通过运算求解, 得到图形之间的位置关系, 也可以综合运用几何方法和代数方法, 这种综合是充分借助图形的几何性质, 一定程度上简化代数运算, 最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题, 是初中平面几何的综合运用, 是在学习了点和圆的位置关系的基础上进行的, 又为后面学习圆与圆的位置关系作了铺垫, 对解题及几何证明将起到重要的作用.
本单元综合运用直线和圆的方程研究直线与圆、圆与圆的位置关系,以及一些简单的数学问题和实际问题. 直线与圆的教学在平面解析几何乃至整个中学数学中都占有重要的地位,直线和圆的位置关系应用也比较广泛、图形之间的位置关系,既可以直观定性描述,也可以严格定量刻画.定量刻画的方法既可以是完全运用代数的方法,通过运算求解,得到图形之间的位置关系,也可以综合运用几何方法和代数方法,这种综合是充分借助图形的几何性质,一定程度上简化代数运算,最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题,是初中平面几何的综合运用,是在学习了点和圆的位置关系的基础上进行的,又为后面学习。

高中数学必修二《圆与圆的位置关系》教学设计

高中数学必修二《圆与圆的位置关系》教学设计

《圆与圆的位置关系》教学设计1.教学目标(1)知识与技能目标:通过探索两圆的位置关系,了解两圆位置关系的定义,熟练掌握不同位置关系的性质及判定方法,并能在实际生活中运用。

发展学生分类讨论的思想、数形结合的思想、运动变化、相互联系、相互转化的思想。

(2)过程与方法目标:通过几何画板的演示和作图活动,发展学生观察、比较、猜想、分析、综合、抽象和概括的能力。

(3)情感态度和价值观目标:通过学生自主探索与合作交流,培养学生与人合作、与人交流的良好品质,形成事物运动变化。

培养用数学的意识,感受数学的美,激发学生对数学的热爱。

2.教学重点与难点重点:圆与圆的五种位置关系的性质和判定的探究及应用。

难点:圆与圆位置关系的数量关系的发现。

3.教学方法采用“情境─问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。

借助几何画板、Powerpoint和自制的两张圆形硬纸板等工具,加强直观性,分散知识难点。

4. 设计思路笔者结合几何画板,制作了多媒体课件采用情境—问题的教学模式,先通过日食现象使生活中的问题联系到数学问题,引出圆与圆的位置关系,再运用课前准备好的教具让学生分组演示两圆位置关系与公共点个数的联系,然后通过几何画板进行演示,得出两圆的五种位置关系,并通过等圆情况下的位置关系进一步巩固知识点。

结合电脑演示与学生讨论,利用圆心距d、R、r分析五种两圆的位置关系。

通过习题一题多解的形式引出判断两圆位置关系的两种不同的方法:几何法、代数法,并通过课堂设计引导学生比较两种方法的优缺点,又进一步加深学习了共点圆系方程的概念及其应用,最后利用相关习题进行巩固。

5.教学过程(1)创造情景,引出主题展示日食现象的动画,问:首先我们来欣赏一段动画,你们见过这种现象吗?目的:创造现实情景,引导学生发现现实数学问题,引导学生了解知识,使学生理解生活中存在数学问题,数学源自生活。

(2)学生活动引导学生利用课前准备的教具分组试验,合作探究,分类讨论弄清两圆的各种位置关系。

高中数学圆和圆的位置教案

高中数学圆和圆的位置教案

高中数学圆和圆的位置教案
教学目标:
1. 理解并掌握圆和圆的位置关系,包括相离、相切、相交等情况;
2. 能够通过几何图形分析圆和圆的位置关系。

教学重点:
1. 圆和圆的相离、相切、相交的判断;
2. 圆和圆的位置关系的应用。

教学难点:
1. 圆和圆位置关系的几何证明;
2. 圆和圆位置关系的整体把握。

教学准备:
1. 教师准备圆规、圆规器、白板、笔等教学工具;
2. 教师准备相关练习题目。

教学步骤:
一、导入(5分钟)
教师引导学生回顾圆的相关知识,并提出一个问题:“两个圆的位置可能有哪些情况?”
二、讲解(10分钟)
1. 教师介绍两个圆的位置可能的情况:相离、相切、相交;
2. 教师通过图示和示例讲解不同情况的判断方法和特点。

三、示例分析(15分钟)
1. 教师提供几个实际例子,让学生分析两个圆的位置关系;
2. 学生根据情况判断圆的位置关系,并用圆规验证。

四、练习与讨论(15分钟)
1. 学生完成相关练习题,互相讨论解题思路;
2. 教师引导学生讨论圆和圆位置关系的具体应用场景。

五、总结(5分钟)
1. 教师总结本节课的教学内容,强调圆和圆的位置关系;
2. 学生回答问题,确定是否掌握了本节课的内容。

六、作业布置(5分钟)
教师布置相关练习题目,让学生巩固所学知识,并在下节课进行讲解。

扩展延伸:
教师可以提供更复杂的问题,引导学生深入思考和解答,进一步提高学生的解题能力和判断能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆与圆的位置关系教案
【教学目标】
1.能根据给定圆的方程,判断圆与圆的位置关系.
2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想.
3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.
【教学重难点】
教学重点:能根据给定圆的方程,判断圆与圆的位置关系. 教学难点:用坐标法判断两圆的位置关系.
【教学过程】 ㈠复习导入、展示目标
问题:如何利用代数与几何方法判别直线与圆的位置关系?
前面我们运用直线与圆的方程,研究了直线与圆的位置关系,这节课我们用圆的方程,讨论圆与圆的位置关系.
㈡检查预习、交流展示
1.圆与圆的位置关系有哪几种呢? 2.如何判断圆与圆之间的位置关系呢?
㈢合作探究、精讲精练
探究一:用圆的方程怎样判断圆与圆之间的位置关系?
例1.已知圆
C 1:01322
2
=++++y x y x ,圆C
2

02342
2
=++++y x y
x ,是
判断圆C 1
与圆C 2
的位置关系.
解析:方法一,判断圆与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据连心线的长与两半径长的和或两半径长的差的绝对值的大小关系,判断圆与圆的位置关系. 解:(法一)
圆C 1
的方程配方,得4
923)1(2
2
=
+⎪⎭
⎫ ⎝⎛++y x . 圆心的坐标是⎪⎭⎫ ⎝⎛-
-23,1,半径长2
3
1
=r . 圆C 2
的方程配方,得4
1723)2(2
2
=
+⎪

⎫ ⎝⎛++y x .
圆心的坐标是⎪⎭
⎫ ⎝⎛--23,2,半径长
2
172=
r . 连心线的距离为1,
217321+=
+r r ,2
3
1721-=-r r . 因为
2
17
312317+<<-, 所以两圆相交. (法二) 方程
01322
2
=++++y x y
x 与02342
2
=++++
y x y
x 相减,得
2
1
=
x 把2
1=
x 代入01322
2=++++y x y
x ,得
011242
=++y y
因为根的判别式016144>-=∆,所以方程011242
=++y y
有两个实数根,因此两
圆相交.
点评:巩固用方程判断圆与圆位置关系的两种方法.
变式2
2
2
2
(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系
解:根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距
5.d == 因为 12d r r =+,所以两圆外切.
㈣反馈测试 导学案当堂检测 ㈤总结反思、共同提高
判断两圆的位置关系的方法:
(1)由两圆的方程组成的方程组有几组实数解确定;
(2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系.
【板书设计】 一.圆与圆的位置关系 (1)相离,无交点 (2)外切,一个交点 (3)相交,两个交点;
(4)内切,一个交点;
(5)内含,无交点.
二.判断圆与圆位置关系的方法
例1
变式
【作业布置】
导学案课后练习与提高
4.2.2圆与圆的位置关系
课前预习学案
一.预习目标
回忆圆与圆的位置关系有几种及几何特征,初步了解用圆的方程判断圆的位置关系的方法.
二.预习内容
1.圆与圆的位置关系有哪几种呢?
2.如何判断圆与圆之间的位置关系呢?
三.提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
课内探究学案
一.学习目标
1.能根据给定圆的方程,判断圆与圆的位置关系.
2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想.
3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.
学习重点:能根据给定圆的方程,判断圆与圆的位置关系.
学习难点:用坐标法判断两圆的位置关系. 二.学习过程
探究:用圆的方程怎样判断圆与圆之间的位置关系?
例1.已知圆
C 1
:01322
2
=++++
y x y
x ,圆C 2:02342
2
=++++
y x y
x ,是
判断圆C 1
与圆C 2
的位置关系.
变式2
2
2
2
(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系.
三.反思总结
判断两圆的位置关系的方法:
四.当堂检测 1.圆
022
2
=-+
x y
x 和042
2
=++
y y
x 位置关系是( )
A .相离
B .外切
C .相交
D .内切
2.两圆01242
2
=++-+y x y x 和01442
2
=--++y x y x 的公切线有_____条. 3.求圆042
2
=-+y x 和012442
2
=-+-+y x y x 的公共弦的长.
参考答案:1.C 2.4 3.解:(法一)
联立方程组,消去二次项,得
y=x+2
将上式代入042
2
=-+y x 得,
022
=+x x .
解得x 1
=-2,x 2=0.于是有y 1=0,y 2
=2,所以两圆交点坐标是
A(-2,0),B(0,2).公共弦长22=AB .
(法二)
联立方程组,消去二次项,得
y=x+2
圆心到直线y=x+2的距离是
22
2
00=+-=
d
因为圆半径为2,所以公共弦长()
2222
22
2
=-=AB .
课后练习与提高
1.若直线0=++a y x 与圆a y x =+2
2
相切,则a 为( ) A.0或2
B.2 C.2 D.无解
2.两圆09462
2
=+-++y x y x 和0191262
2
=-+-+y x y x 的位置关系是( ) A.外切 B.内切 C.相交 D.外离
3.已知圆22
:()(2)4(0):30.C x a x a l x y l C -+-=>-+=及直线当直线被截得 的弦长为32时,则a =( )
A .2
B .22-
C .12-
D .12+
4.两圆09462
2
=+-++y x y x 和0191262
2
=-+--+y x y x 的公切线有___条 5.一圆过圆
022
2
=-+x y
x 和直线032=-+y x 的交点,且圆心在y 轴上,则这个圆
的方程是________________.
6.已知圆C 与圆022
2=-+x y x 相外切,并且与直线03=+y x 相切于点
)3,3(-Q ,求圆C 的方程.
参考答案:1.C 2.A 3.C 4.3 5.
0642
2
=-++
y y
x
6.解:设圆C 的圆心为),(b a ,由题意得
6
2 34004 231)1(333
2
2==⎩⎨
⎧-==⎩⎨⎧==⎪⎪⎩⎪⎪⎨
⎧++=+-=-+r r b a b a b a b a a b 或得
或解得
. 所以圆C 的方程为36)34(4)4(2
222=++=+-y x y x 或.。

相关文档
最新文档