UG__运动仿真教程
UG运动仿真 齿轮运动
让下图齿轮转起来!
1、进入运动仿真模块,新建运动仿真,动态。
2、定义连杆 。每个颜色部分为一个连杆。默认名称为L001\L002等。
定义三个连杆。
3、定义运动副 。定义三个旋转副,在定义第一个旋转副时定义驾驶员初速度为720.依次定义余下的两个旋转副。
4、定义齿轮 。定义两个齿轮,第一个黄色跟红色运动副,比率设为0.24。第二个红色跟蓝色运动副比率设为0.3
5、设置解算方案 。时间设为5,步数设为500.
6、求解 。
7、动画模拟 。
UG运动仿真教程
点击 Application/Motion 后 UG 界面将作一定的变化,系统将会自动的打开 UG/Motion 的主界面。该界面分为三个部分:运动仿真工具栏部分、运动场景导航窗口和绘图区,如图 9-2 所示。
图 9-2 UG/Motion 主界面
运动仿真工具栏部分主要是 UG/Motion 各项功能的快捷按钮,运动场景导航窗口部分主 要是显示当前操作下处于工作状态的各个运动场景的信息。运动仿真工具栏区又分为四个模 块:连杆特性和运动副模块、载荷模块、运动分析模块以及运动模型管理模块,如图 9-3 所 示。
9.1.1 打开运动仿真主界面
在进行运动仿真之前,先要打开 UG/Motion(运动仿真)的主界面。在 UG 的主界面中 选择菜单命令【Application】→【Motion】,如图 9-1 所示。
图 9-1 打开 UG/Motion 操作界面
选择该菜单命令后,系统将会自动打开 UG/Motion 的主界面,同时弹出运动仿真的工具 栏。
图 9-9 运动场景的重命名
2)运动场景的删除 选择快捷菜单中的 Delete 菜单项既可实现运动场景的删除。 3)运动场景的复制 选择快捷菜单中的 Clone 菜单项既可实现运动场景的复制,复制后的运动场景与原来的 运动场景的各个参数都相同,如图 9-10 所示,通过分别选择【scenario_1】→【Clone,scenario_2】 →【Clone,scenario_3】→【Clone】菜单项新建了三个与 scenario_1 各项参数都相同的运动 场景,分别默认为 scenario_2、scenario_3、scenario_4。
图 9-14 【几何模型尺寸编辑】对话框
在该对话框几何模型特征列表中选中某一特征后,其各种特征参数表达式将在特征参数 列表中相应的显示,而在特征参数列表中选中该特征的某一参数时,其表达式和值将会相应 的在下部显示,此时用户可以对该表达式的值进Байду номын сангаас编辑。在特征参数数值文本输入框中输入 新的特征参数后,按回车键,同时该对话框中的 Apply 按钮被激活,单击 Apply 既可完成该 操作,从而改变模型的几何外形。
UG运动仿真教程
UG运动仿真教程一、UG运动仿真的基本概念UG软件中的运动仿真功能包括创建几何体、定义运动约束、添加动力学参数等。
通过对运动过程中的力学、动力学以及动力学参数的计算和模拟,可以预测物体的运动轨迹、速度、加速度等运动特性。
二、UG运动仿真的基本步骤1.创建几何模型:在UG软件中,首先需要创建物体的几何模型。
可以通过绘制、拉伸等工具创建物体的几何形状,也可以导入外部模型。
2.设置运动约束:在创建几何模型后,需要为物体设定运动约束。
运动约束包括位置约束、角度约束等,用于定义物体的运动范围和限制。
3.添加动力学参数:在建立几何模型和设置运动约束后,需要为物体添加动力学参数。
动力学参数包括质量、惯性矩阵、摩擦系数等,用于计算物体在运动中的力学特性。
4.运动仿真计算:完成上述步骤后,可以进行运动仿真计算。
UG软件会根据设定的运动约束和动力学参数,计算物体的运动轨迹、速度、加速度等参数,并在三维环境中实时显示物体的运动过程。
5.优化设计:通过观察和分析运动仿真的结果,可以对产品设计进行优化。
根据物体的运动特性,可以调整运动约束、改变动力学参数等,以达到更好的设计效果。
三、UG运动仿真的应用领域1.机械设计与工艺优化:UG运动仿真可以模拟产品在工作状态下的运动过程,帮助工程师分析零件的运动轨迹、工作效率等,优化设计方案和工艺流程。
2.机器人运动规划与控制:UG运动仿真可以模拟机器人的运动行为,预测机器人的轨迹、速度、加速度等,优化机器人的运动规划和控制算法。
3.汽车碰撞分析与安全设计:UG运动仿真可以模拟车辆在碰撞过程中的变形、速度、受力情况等,帮助汽车制造商减少碰撞事故的危害,提高车辆的安全性能。
4.产品装配与拆卸分析:UG运动仿真可以模拟产品的装配和拆卸过程,分析零部件的运动变形情况,优化产品的装配性能和使用寿命。
四、UG运动仿真的优势1.省时省力:UG运动仿真可以通过计算和模拟代替实际运动过程的试错,减少设计和制造阶段的试验和调整时间和成本。
UG__运动仿真教程
UG__运动仿真教程运动仿真是一种模拟真实运动过程的技术,可以帮助人们更好地理解和预测物体的运动规律。
它在物理学、机械工程、计算机动画等领域有着广泛的应用。
本文将介绍运动仿真的基本原理和常用的仿真方法。
一、运动仿真的基本原理运动仿真是通过数学模型来描述和模拟物体的运动过程。
它基于牛顿运动定律和其他物理定律,对物体的运动状态进行建模,并通过计算机算法来模拟物体在特定环境下的运动。
运动仿真的基本原理包括两个方面:力学模型和数值计算。
1.力学模型:力学模型是对物体受力和运动状态的描述。
它包括质点模型、刚体模型和弹性模型等。
质点模型将物体简化为一个质点,假设物体的质量集中在一个点上;刚体模型将物体看作刚性物体,不考虑形变;弹性模型考虑物体的形变和弹性恢复。
2.数值计算:数值计算是运动仿真的核心部分,它通过数值方法来求解运动模型。
最常用的数值方法是欧拉法和改进的欧拉法。
欧拉法通过离散化时间和空间来模拟运动过程,但它的精度较低;改进的欧拉法通过对欧拉法的改进,提高了仿真的精度。
二、运动仿真的常用方法运动仿真的方法很多,根据具体应用的需求和物体的特点选择适合的方法。
下面介绍几种常用的方法:1. 刚体动力学仿真:刚体动力学仿真适用于刚性物体的运动模拟。
它通过对刚体的受力和运动状态进行建模,并使用牛顿运动定律来求解物体的运动。
常用的方法有欧拉法、改进的欧拉法和Verlet积分法等。
2.弹性体仿真:弹性体仿真适用于弹性物体的模拟,如弹簧和橡胶。
它通过考虑物体的形变和弹性恢复来模拟物体的运动。
常用的方法有有限元法和质点弹簧模型等。
3.粒子系统仿真:粒子系统仿真适用于模拟大量粒子的运动,如雨滴、火焰和爆炸等。
它通过对粒子的位置、速度和力进行计算来模拟粒子的运动。
常用的方法有欧拉法和改进的欧拉法等。
4.刚柔耦合仿真:刚柔耦合仿真是将刚体和弹性体结合起来进行仿真。
它能够模拟包含刚性和弹性物体的复杂运动,如人物的运动和生物的行为等。
UG运动仿真STEP函数式讲解(收藏)
UG运动仿真STEP函数式讲解(收藏)1.打开UG,导入stp文件,点击开始--运动仿真,进入运动仿真模块2.弹出运动导航器,右击kay,新建仿真3.弹出环境对话框,默认,点击确定4.创建摇臂为连杆01,如图,点击应用5.创建主轴箱为连杆02,如图,点击应用6.创建刀具钻头为连杆03,如图,点击应用7.创建工件及夹具为连杆04,如图,点击应用8.创建床体为固定连杆05,如图,点击确定9.创建连杆04为滑动副10.切换至驱动,平移方式为函数,函数数据类型为位移,点击函数管理器,新建函数11.选择插入运动函数中的STEP函数式,修改为如下函数式:STEP(x,0,0,3,STEP(x,3,200,9,STEP(x,9,-200,12,STEP(x,21.5,0 ,24,STEP(x,32,150,34,STEP(x,40,259.8,42,0))))))点击确定,确定,再确定。
12.创建连杆02为滑动副13.切换至驱动,平移方式为函数,函数数据类型为位移,点击函数管理器,新建函数,选择插入运动函数中的STEP函数式,修改为如下函数式:STEP(x,9,0,13,STEP(x,20.5,300.665,24,STEP(x,32,260.465,34, STEP(X,39,150.665,42,0))))点击确定,确定,再确定。
14.创建连杆03为柱面副,并咬合连杆0215.切换至驱动,旋转方式为恒定,定义初速度为600;平移方式为函数,函数数据类型为位移,点击函数管理器,新建函数16.选择插入运动函数中的STEP函数式,修改为如下函数式:STEP(x,12,0,16,STEP(X,16,260,20,STEP(X,24,0,28,STEP(X,2 8,260,32,STEP(X,34,0,37,STEP(X,37,260,40,0))))))点击确定,确定,再确定。
17.创建连杆01为旋转副,并咬合连杆02 18.切换至驱动,平移方式为函数,函数数据类型为位移,点击函数管理器,新建函数,选择插入运动函数中的STEP函数式,修改为如下函数式:STEP(x,12,0,16,STEP(X,16,260,20,STEP(X,24,0,28,STEP(X,2 8,260,32,STEP(X,34,0,37,STEP(X,37,260,40,0))))))点击确定,确定,再确定。
UG运动仿真分析(精品课件)
连杆
运动副
8
1. 连杆
连杆几何体
连杆几何体用于将屏称。
❖ 对机构作运动分析,
名
不必赋予质量和惯性矩等参数。
称
9
2. 运动副
运动副的作用:允许所需的运动和限制不要的运 动。
UG提供了12种运动副共分两大类:普通运动副 8种,它是独特的,于自身有关;特殊运动副4种, 是在两个普通类型的运动副之间定义了特殊关系的 运动副,允许两个不同类型的运动副一起工作完成 特定的功能。
5
Scenario 导航器 6
3. 机构分析的一般步骤
❖ 打开主模型文件。 ❖ 进入运动分析模块,创建一个Scenario模型
并设置机构分析环境。 ❖ 创建各机构对象(构件、运动副、标记等)。 ❖ 指定分析结果类型,对机构进行求解分析。 ❖ 输出分析结果。
7
创建运动分析对象
在运动分析中,连杆和运动副是组成 构件的最基本要素,两者都具备是机构 运动的必要条件。
❖ 固定副 在连杆间创建一个固定连接副,相当于以刚性连接两连杆,连杆间无相 对运动。
13
特殊运动副:
❖ 齿轮齿条副:滑动副和旋转副的结合 ❖ 齿轮副:两个转动副的结合 ❖ 线缆副:两个滑动副的结合 ❖ 点线接触副:4个自由度 ❖ 线线接触副: 4个自由度 ❖ 点面副:5个自由度
14
模型准备与运动分析
18
3. 封装 用来收集特定的、用户感 兴趣的对象信息的一组工具。 有三个功能: ➢ 测量 ➢ 跟踪 ➢ 干涉
19
❖ 测量
测量机构中目标对象的距离或角度,并建立安全区 域。
❖ 跟踪
用来生成每一分析步骤处目标对象的一个复制对象。
❖ 干涉
主要比较在机构运动过程中是否发生重叠现象。
「UG运动仿真」完整教程:学习如何进行运动仿真分析,提升设计效率与产品品质
「UG运动仿真」完整教程:学习如何进行运动仿真分析,提升设计效率与产品品质UG Motion Simulation Complete Tutorial: Learning How to Conduct Motion Simulation Analysis to Improve Design Efficiency and Product QualityIntroduction:UG Motion Simulation is a powerful tool that can help engineers and designers to analyze and optimize the movement of mechanical systems, such as machines, vehicles, and robots. By simulating the motion of these systems, engineers can identify potential problems and make improvements before the physical prototype is built. This can greatly reduce the cost and time of product development, while improving the quality and reliability of the final product.In this tutorial, we will provide a step-by-step guide to using UG Motion Simulation. We will cover the following topics:1. Setting up the simulation environment2. Creating the motion model3. Defining the motion analysis parameters4. Running the simulation5. Analyzing the results6. Making improvements and optimizationsBy following this tutorial, you will learn how to use UG Motion Simulation to improve your design efficiency and product quality.1. Setting up the simulation environmentBefore we can begin the motion simulation, we need to set up the simulation environment. This involves creating a new simulation file and importing the necessary parts and assemblies.To create a new simulation file, go to the "File" menu and select "New". Then, select "Simulation" from the list of available templates. This will open a new simulation file.Next, we need to import the parts and assemblies that we want to simulate. To do this, go to the "File" menu and select "Import". Then, select the file format of the parts or assemblies that you want to import (such as STEP, IGES, or Parasolid). Once you have selected the file, follow the prompts to import it into the simulation file.2. Creating the motion modelOnce we have set up the simulation environment, we can begin creating the motion model. This involves defining the constraints and connections between the parts and assemblies, and specifying how they will move.To create the motion model, we need to use the "Assembly Constraints" toolbar. This toolbar contains a variety of tools for defining constraints, such as pins, hinges, and sliders.To define a constraint, select the appropriate tool from the toolbar and then select the parts or assemblies that you want to constrain. Follow the prompts to specify the type of constraint and its parameters.Once you have defined all of the necessary constraints, you can begin specifying the motion of the parts and assemblies. To do this, use the "Motion" toolbar. This toolbar contains tools for specifying the motion of parts and assemblies, such as rotating, translating, and oscillating.To specify the motion, select the appropriate tool from the toolbar and then select the parts or assemblies that you want to move. Follow the prompts to specify the type of motion and its parameters.3. Defining the motion analysis parametersOnce we have created the motion model, we need to define the motion analysis parameters. This involves specifying the duration of the simulation, the time step size, and the type of analysis that we want to perform.To define the motion analysis parameters, go to the "Motion Analysis" toolbar. This toolbar contains tools for specifying the analysis parameters, such as the simulation duration, thetime step size, and the type of analysis.To specify the analysis parameters, select the appropriate tool from the toolbar and follow the prompts to specify the parameters.4. Running the simulationOnce we have defined the motion analysis parameters, we can run the simulation. To do this, go to the "Motion Analysis" toolbar and select the "Run" tool. This will begin the simulation.During the simulation, you can monitor the progress of the simulation and view the motion of the parts and assemblies in real-time.5. Analyzing the resultsOnce the simulation is complete, we can analyze the results. This involves reviewing the motion data and identifying potential problems or areas for improvement.To analyze the results, go to the "Results"。
ug运动仿真
第一十四章数字样机的机构设计与运动仿真实例第一节 UG NX运动仿真基础知识1.进入UG NX运动仿真模块启动UG NX 8.0中文版软件系统,打开或创建1个装配部件(装配主模型),接着选择“起点”→“所有应用模块”→“运动仿真”菜单命令,即进入UG NX 8.0的运动仿真模块(见图14-1)。
注意,此时的运动仿真工具栏全部命令为浅灰色(即未激活,见图14-2上图)。
选择“工具”→“定制”菜单命令,在“定制”对话框的“工具条”选项卡中,选择“运动”和“运动分析”两个工具栏,并选择“文本在图标下面”,则全部命令(含次级命令)加亮(见图14-2下图)。
单击“关闭”按钮后,全部命令重新为浅灰色。
图14-1 进入运动仿真模块图14-2 “运动”和“运动分析”工具条2.何谓运动仿真模块运动仿真模块属于计算机辅助工程分析的1个应用软件,用于建立机构运动学和动力学仿真模型,分析机构运动规律和动力特性。
UG NX运动仿真模块会自动仿真主模型的装配文件,并建立一系列不同的运动仿真,每个运动仿真都可以独立修改,而不影响装配主模型,一旦完成机构优化设计方案,即可直接更新装配主模型,以反映机构优化设计的结果。
3.创建新的运动仿真在运动导航器中选择装配主模型(如“QBYGJG”)后,右击→单击“新建仿真”按钮→弹出“环境”对话框→默认“分析类型”为“动力学”→默认“仿真名”为“motion_1”→单击“确定”按钮→弹出“机构运动副向导”对话框→单击“确定”按钮(见图14-3和图14-4)。
此时,“运动”工具栏上的大部分命令加亮。
如果运动副不合格,则会出现如图14-5所示的提示框。
单击“是”按钮,则会出现如图14-6所示的画面。
图14-3 新建运动仿真1“motion_1”图14-4 成功创建运动仿真实例图14-5 “主模型到仿真的配对条件/约束转换”提示框图14-6 未成功创建运动仿真的实例4.运动仿真模块支持的运动分析类型(解算方案)UG NX可以执行的运动分析类型,即解算方案如下。
UG__运动仿真教程
UG__运动仿真教程运动仿真是通过计算机模拟运动过程的技术,可以用于模拟各种类型的运动,如机器人运动、人体运动、车辆运动等。
本篇教程将介绍如何使用UG软件进行运动仿真。
本教程将分为以下几个部分:1.系统要求2.安装UG软件3.导入模型4.设置材质5.确定运动范围6.创建关节7.设定动画关键帧8.运动仿真设置9.运行仿真10.保存模拟结果一、系统要求运行UG软件需要较高的计算机配置,建议使用具备较高CPU和内存的电脑。
安装UG软件也需要一定的存储空间。
此外,也需要了解基础的三维建模知识。
二、安装UG软件UG软件是一款商业软件,需要购买正版授权后使用。
购买后,按照安装向导进行安装即可。
三、导入模型打开UG软件,选择导入功能,选择要进行运动仿真的模型文件,导入模型。
可以选择常见的三维模型格式,如STL、STEP等。
四、设置材质为了使模型在运动仿真中更加直观,可以对模型的材质进行设置。
UG 软件提供了丰富的材质选项,可以根据需要进行设置。
选定模型后,点击设定材质按钮,在属性栏中进行材质设置。
五、确定运动范围在进行运动仿真前,需要确定模型的运动范围。
可以通过拖拽模型或者输入数值的方式进行设定。
在导航栏中找到模型变换选项,进行平移、旋转、缩放等操作。
六、创建关节运动仿真的核心是设置关节。
UG软件提供了丰富的关节类型,如旋转关节、滑动关节、平面关节等。
根据模型的实际情况选择合适的关节类型,并创建关节。
选择关节工具,在模型上点击两个相邻的部件以创建关节。
七、设定动画关键帧在建立了关节后,需要设定动画关键帧。
动画关键帧是指模型在不同时间点的状态。
选择动画关键帧工具,在时间轴上设定关键帧,对模型进行调整。
八、运动仿真设置在设定了动画关键帧后,需要进行运动仿真的设置。
选择动画工具,在动画设置中设定仿真的时间范围、速度、步长等参数。
选择适当的参数可以提高仿真的效果。
九、运行仿真完成了运动仿真的设置后,即可进行运行仿真。
UG运动仿真- 运动分析
运动分析对原来的三维实体模型完成了连杆特性的设置,运动副的建立和外载荷的添加的前置处理后,就完成了运动模型的构建。
此时可以利用UG/Motion运动分析工具栏,对创建的运动模型进行运动仿真,如图9-65所示。
图9-65 运动分析工具栏UG/Motion模块嵌入了Mechanical Dynamics公司(MDI)的求解器ADAMS/Kinematics,在建立运动模型的同时UG/Motion已经为该求解器建立了初始数据或输入文件,只有运行UG/Motion的运动分析模块既可自动的将初始数据和输入文件输入到求解器中,从而得出运动模型运动后的各种数据,完成运动模型合理性的检查。
9.5.1 运动仿真过程的实现UG/Motion的运动分析模块可以设置运动分析的类型,并通过对运动分析过程的控制,可以直观的以动画的形式输出运动模型不同的运动状况,便于用户比较准确了解所设计的运动机构实现的运动形式。
1.设置运动仿真的参数1)运动分析类型的设定UG/Motion的运动分析类型有两类:静态分析和动力学分析。
点击功能菜单区运动分析模块中的运动(Animation)按钮,将弹出一个【运动分析选项】(Analysis Options)对话框,该对话框的第一个选择区域就要求用户选择运动分析的类型,各选项的功能如图9-66所示。
图9-66 【运动分析选项】对话框2)运动控制参数的设定在上述的运动分析选项(Analysis Options)对话框中,第二个区域即要求用户输入运动控制参数:运动时间和运动步骤。
整个运动模型运动的快慢就是由这两个参数决定的。
2.运动仿真过程的动画输出及控制1)运动仿真过程的控制设置完了运动分析的参数后,若选择的运动分析类型为静态分析点击OK键,将弹出一个【静态平衡】(Static Equilibrium)对话框,如图9-67所示。
图9-67 【静态平衡】对话框若选择的运动分析类型为动力学分析点击OK键,将弹出一个【运动过程】(Animation)对话框,对话框各选项的功能如图9-68所示。
UG运动仿真分析精品课件(一)
UG运动仿真分析精品课件(一)
近年来,随着计算机科技的快速发展,计算机辅助工程技术在工程领域得到了广泛的应用。
其中,UG运动仿真分析是一种重要的计算机辅助工程技术,它可以模拟现实中的运动和力学行为,为工程师提供重要的设计和优化方案。
而UG运动仿真分析精品课件则是一种快速有效的学习工具,可以帮助工程师掌握这一技术。
UG运动仿真分析精品课件主要包括以下几个部分:
1. UG基础知识介绍。
这一部分主要介绍UG软件的基本结构和功能,并详细介绍UG中的运动仿真分析功能。
2. 运动仿真分析的建模过程。
这一部分主要介绍UG中运动仿真分析的建模流程,包括建立装配体、建模运动和约束关系等。
3. 运动仿真分析的参数设置。
这一部分主要介绍如何设置运动仿真分析的各种参数,包括动力学模拟参数、接触参数、碰撞参数等。
4. 运动仿真分析的结果分析。
这一部分主要介绍如何分析运动仿真分析的结果,包括动画模拟、运动状态曲线、接触压力曲线等。
5. 实例分析。
这一部分主要通过实例分析的方式,展示如何运用UG 运动仿真分析解决实际工程问题。
通过UG运动仿真分析精品课件的学习,工程师可以掌握运动仿真分析的基本知识和技能,并能够在实际工程中应用运动仿真分析技术,优化设计方案、提高产品质量、降低生产成本。
总之,UG运动仿真分析精品课件是一种非常有价值的学习工具,它可
以帮助工程师快速掌握运动仿真分析技术,提高工作效率和工作质量,因此被广泛应用于工程领域。
UG--运动仿真教程
3)圆柱副(Cylindrical)
实现了一个部件绕另一个部件(或机架)的相对转动
4)螺纹副(Screw)
实现了一个部件绕另一个部件(或机架)作相对的螺旋运动
5)万向接头(Universal)
万向接头实现了两个部件之间可以绕互相垂直的两根轴作相对的转动
6)球面副(Spherical)
3.运动副的驱动力
运动副的驱动力是给运动副设置的初始的外在驱动,是该连杆运动的原动力。在该选项 的下拉菜单中列出了UG/Motion给用户提供的五种驱动力的类型 (①没有;②恒定 的;③谐波;④一般方程;⑤关节仿真)
§9.4 机构载荷
UG/Motion给用户提供了9种机构载荷,涵盖了大部分实际工程状 态中机构的受力形式
8.1.1 打开运动仿真主界面
菜单命令: 【开始】→【运动仿真】
环境设置
运பைடு நூலகம்学分析:分析仿真机构的运动并决定机构在 约束状态下的位移、速度、加速度和反作用力的 值的范围
运动学求解需注意以下几点: ➢软件根据求解时输入的时间与步长的值对模型做动画仿真 ➢外部的载荷与内部的力影响反作用力但不影响运动 ➢连杆和运动付假定都是刚性的 ➢自由度为0
对运动过程控制 的功能主要是由 运动控制选项来 实现的
运动仿真动画文件输出:
在运动场景导航窗口中选中一个场景,单击鼠标右键之后将会弹 出一个右键快捷菜单,在该菜单中选择菜单项Export,将会显示 UG/Motion给用户提供的几种动画输出的格式
重力作用下运动
施加弹簧阻尼下的运动
伪连杆例子:
球铰连接实现一个部件绕另一个部件(或机架)作相对各个自由度的运动
7)平面连接(Planar)
ug运动仿真
4.1 NX运动仿真概述本节将简要对UG NX 的运动仿真界面和运动仿真工具进行基本的介绍,通过本节的学习,读者可以初步地认识UG NX 的运动仿真功能。
41.1 进入运动仿真模块由于运动仿真需要通过主模块来创建,因此需要先打开主模板,才能进一步进行运动仿真。
下面将介绍进入运动仿真模块的步骤。
打开主模版文件,也可以是包含了装配信息的文件。
(1)单击应用模块中的“运动”按钮。
即可进入运动仿真界面。
(2)在资源导航器中选择“运动导航器”,右键单击根目录按钮,在弹出的快捷菜单中选择“新建仿真”命令,将弹出“环境”对话框,设置好参数后,单击“确定按钮,即可进入新的运动仿真建立,如图4-1所示。
图4-1 “环境”对话框4.1.2 运动仿真界面运动仿真界面与建模界面样式大体上相似,但其工具与命令则有了较大的变化,如图4-2所示。
图4-2 运动仿真界面菜单栏:包含9个菜单命令,如文件、主页、结果、曲线、分析等。
工具栏:由基本环境工具栏、运动工具栏、动画控制工具栏组成,提供操作所需要的命令的快捷按钮。
运动导航器:通过树形结构显示各个数据,可以进行新建、克隆、删除运动仿真等命令。
4.1.3 运动仿真工具栏运动仿真工具栏包含了进行运动仿真时所需要的大部分命令,如连杆、运动副、齿轮副等,如图4-3所示。
有时运动工具栏也可以根据需要拆分成几个小的工具栏。
图4-3 “运动仿真”工具栏下面将对几种常用命令进行介绍。
连杆:通过连杆命令可以将部件定义为连杆,在运动仿真时部件将作为连杆进行分析模拟,如图4-4所示。
运动副:运动副可以将连杆连接起来,并通过定义不同的运动副的类型使连杆能够进行相应的动作,如图4-5所示。
图4-4 “连杆”对话框图4-5 “运动副”对话框传动副:传动副的作用是改变机构扭矩、转速等。
其中有齿轮副、齿轮齿条副和线缆副3种类型。
约束:通过约束命令可以指定两个对象之间的关系,其中点在曲线上、线在线上和点在曲面上3种类型,如图4-6所示。
UG运动仿真教程
UG运动仿真教程1.打开UG软件,选择“模拟”菜单下的“运动仿真”选项。
2.在“新模拟”对话框中,选择要仿真的物体和运动轨迹。
可以通过选择已经建模的零部件或创建新的零部件来定义要仿真的物体。
运动轨迹可以通过参数化建模或输入运动方程来定义。
4.选择仿真的参数和计算方法。
可以选择仿真的时间范围、时间步长、初始条件等。
计算方法可以是动态分析、静态分析或优化计算,根据需要选择。
5.单击“仿真”按钮,开始运行仿真。
可以观察物体的运动轨迹、速度、加速度等参数的变化情况。
同时还可以生成报告,分析仿真结果。
6.根据仿真结果进行设计优化。
根据仿真结果,可以对产品的材料、结构等进行优化,以满足设计要求。
1.运动分析:通过仿真分析物体在运动过程中的行为,包括位置、速度、加速度等参数的变化。
可以观察和分析物体的运动规律,为设计提供参考。
2.碰撞检测:可以检测物体在运动过程中是否会产生碰撞,帮助设计工程师避免设计上的问题。
可以通过设置碰撞检测参数和约束条件来进行检测。
3.摩擦分析:可以分析物体在运动过程中的摩擦情况,包括静摩擦和动摩擦。
通过调整摩擦系数和约束条件,可以模拟不同的摩擦情况。
4.优化计算:通过设置不同的设计参数和优化目标,可以对产品进行优化计算,以满足设计要求。
可以根据优化结果进行设计调整,提高产品性能。
5.可视化显示:可以通过3D可视化界面显示仿真结果,包括物体的运动轨迹、速度、加速度等参数。
可以通过调整显示参数和视角,观察物体在不同情况下的运动状态。
UG运动仿真是UG软件中常用的功能之一,可以帮助设计工程师进行产品设计和优化。
通过运动仿真,可以分析物体的运动规律、检测碰撞、分析摩擦等问题,并进行优化计算。
希望本文对您了解UG运动仿真的基本使用方法和常用功能有所帮助。
基于UG的运动仿真及高级仿真
《基于UG的运动仿真及高级仿真》项目一:机构运动仿真项目要求:熟悉UG机构运动仿真模块的内容,掌握运动仿真的一般流程和方法,并根据分析输出结果对机构进行优化。
任务一:熟悉掌握运动仿真基础知识运动分析模块(Scenario for motion)是UG/CAE模块中的主要部分,用于建立运动机构模型,分析其运动规律。
通过UG/Modeling的功能建立一个三维实体模型,利用UG/Motion的功能给三维实体模型的各个部件赋予一定的运动学特性,再在各个部件之间设立一定的连接关系既可建立一个运动仿真模型。
UG/Motion模块可以进行机构的干涉分析,跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作用力、反作用力和力矩等。
运动分析模块的分析结果可以指导修改零件的结构设计(加长或缩短构件的力臂长度、修改凸轮型线,调整齿轮比等)或调整零件的材料(减轻或加重或增加硬度等)。
设计的更改可以反映在装配主模型的复制品分析方案中,再重新分析,一旦确定优化的设计方案,设计更改就可反映在装配主模型中。
一、运动方案创建步骤1.创建连杆(Links);2.创建两个连杆间的运动副(Joints)3.定义运动驱动(Motion Driver)无运动驱动(none):构件只受重力作用运动函数:用数学函数定义运动方式恒定驱动:恒定的速度和加速度简谐运动驱动:振幅、频率和相位角关节运动驱动:步长和步数二、创建连杆创建连杆对话框将显示连杆默认的名字,格式为L001、L002 (00)质量属性选项:质量特性可以用来计算结构中的反作用力。
当结构中的连杆没有质量特性时,不能进行动力学分析和反作用力的静力学分析。
根据连杆中的实体,可以按默认设置自动计算质量特性,在大多数情况下,这些默认计算值可以生成精确的运动分析结果。
但在某些特殊情况下,用户必须人工输入这些质量特性。
固定连杆:人工输入质量属性,需要指定质量、惯性矩、初始移动速度和初始转动速度。
UG运动仿真教程
h0
(time t0 t1 t0
)2
g(h1
h0
)
h1(time t1)
Step(time,2,1,3,step(time,4,0,5,-3));
Step(time,2,1,3,3)+step(time,4,0,5,-3) 注意为什么不写成
Step(time,2,1,3,3)+step(time,4,3,5,0) Step函数可以控制模型的运动时间段。
UG运动仿真教程
青华工作室
一、UG动画的分类
1、利用装配序列实现动画: 坦克-飞机-变形金刚 虎钳
2、利用参数化实现动画: 振动的铜棒 水面涟漪
3、利用运动仿真模块实现动画: 莲花盛开 蜜蜂采蜜 变形金刚 万能夹具
二、UG运动仿真的步骤
1、模型的准备
运动仿真的模型对象:点、线、面、体,装配及非装配 的三维模型均可。
(Step(x,x0-0.001,0,x0,1)+Step(x,x1-0.001,0,x0,-1))*f(x)+ Step(x,x1,h1,x2,h1)+ (Step(x,x1-0.001,0,x1,1)+Step(x,x2-0.001,0,x2,-1))*g(x)
多项式函数与余弦函数
2、运动分析
分析各杆件之间的运动关系
3、定义刚性的连杆 4、添加运动副和运动驱动(难点) 5、解算及后处理
三、step函数
格式:STEP (x, x0, h0, x1, h1)
参数说明:
x ―自变量,可以是time或time的任一函数
x0 ―自变量的STEP函数开始值,可以是常数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万向接头实现了两个部件之间可以绕互相垂直的两根轴作相对的转动
6)球面副(Spherical)
球铰连接实现一个部件绕另一个部件(或机架)作相对各个自由度的运动
7)平面连接(Planar)
平面连接可以实现两个部件之间以平面相接触,互相约束
2020/1/27
2020/1/27
2.Selection Steps
该选项给用户提供了建立一个运动副的操作步骤。共包含四个步骤,其中可根据用户的 要求省去几项,通过完成各个步骤,可以引导用户完成运动副参数的设置。(①第 一个连杆 ;②运动副在第一个连杆上的位置和方向;③第二个连杆 ;④运动副在第 二个连杆上的位置和方向)
3.运动副的驱动力 运动副的驱动力是给运动副设置的初始的外在驱动,是该连杆运动的原动力。在该选项
9.3.4 运动副的建立
UG/Motion 中各种运动 副(Joint)的建立方 法都是类似的,下面以 铰链连接中的合页连接 (Revolute)为例介绍 运动副建立的整个过程
2020/1/27
需要说明的几点:
1.Snap Links
选种这个单选项后,用户所设置的运动副为两个连杆之间的连接,则在该对话框中要求 设置运动副在各个连杆上的相关参数;空置该单选项时,用户所设置的运动副为连 杆与假象的机架间的连接,只需设置运动副在这个连杆上的参数既可。
2020/1/27
2020/1/27
8.2.1 连杆特性的建立
点击运动仿真工具栏区的连杆特性和运动副 模块中的图标 (Link),系统将会打开【 连杆特性创建】对话框。
同一对象不能属于两个连杆
2020/1/27
8.2.2 连杆特性参数的编辑
对各项参数 的编辑与连 杆建立时的 参数设置操 作完全相同
2020/1/27
2020/1/27
1)旋转副 (Revolute)
可以实现两个相连件绕同一轴作相对的转动
2)滑动副(Slider)
滑块连接是两个相连件互相接触并保持着相对的滑动
3)圆柱副(Cylindrical)
实现了一个部件绕另一个部件(或机架)的相对转动
4)螺纹副(Screw)
实现了一个部件绕另一个部件(或机架)作相对的螺旋运动
利用UG/Modeling的功能建立了一个三维实体模型后,并不能直 接将各个部件按一定的连接关系连接起来,必需给各个部件赋予 一定的运动学特性,即让其成为一个可以与别的有着相同的特性 的部件之间相连接的连杆构件(Link)。
同时,为了组成一个能运动的机构,必需把两个相邻构件(包括 机架、原动件、从动件)以一定方式联接起来,这种联接必需是 可动连接,而不能是无相对运动的固接(如焊接或铆接),凡是 使两个构件接触而又保持某些相对运动的可动连接即称为运动副 。在UG/Motion中两个部件被赋予了连杆特性后,就可以用运动 副(Joint)相联接,组成运动机构。
2020/1/27
运动仿真功能的实现步骤为: 1.建立一个运动分析场景; 2.进行运动模型的构建,包括设置每个零件的连杆特性 3.添加运动副和运动驱动(难点) ; 3.进行运动参数的设置,提交运动仿真模型数据,同时进行运动
仿真动画的输出和运动过程的控制; 4.运动分析结果的数据输出和表格、变化曲线输出,人为的进行
8.2.3 运动副 在UG/Motion中给用户提供了多种类型 运动副
2020/1/27
创建运动副
1.选择运动付要约束的第一个连杆(action link),并推断 其原点和方位。 2.选择运动付要约束的第二个连杆(base link),并推断 其原点和方位。 3.没有装配好的连杆之间可以“咬合”
2020/1/27
UG/Motion的功能: 1、可以对运动机构进行大量的装配分析工作、运动合理性
分析工作,诸如干涉检查、轨迹包络等,得到大量运动 机构的运动参数。 2、通过对这个运动仿真模型进行运动学或动力学运动分析 就可以验证该运动机构设计的合理性,并且可以利用图 形输出各个部件的位移、坐标、加速度、速度和力的变 化情况,对运动机构进行优化。
第8章 运动仿真
§8.1 运动仿真的工作界面 §8.2 连杆特性和运动副 §8.4 机构载荷 §8.5 运动分析
§8.1 运动仿真的工作界面
运动仿真是UG/CAE(Computer Aided Engineering)模 块中的主要部分,它能对任何二维或三维机构进行复杂的运 动学分析、动力分析和设计仿真。通过UG/Modeling的功能 建立一个三维实体模型,利用UG/Motion的功能给三维实体 模型的各个部件赋予一定的运动学特性,再在各个部件之间 设立一定的连接关系既可建立一个运动仿真模型。
机构运动特性的分析。
2020/1/27
8.1.1 打开运动仿真主界面
菜单命令: 【开始】→【运动仿真】
2020/1/27
环境设置
运动学分析:分析仿真机构的运动并决定机构在 约束状态下的位移、速度、加速度和反作用力的 值的范围
运动学求解需注意以下几点: 软件根据求解时输入的时间与步长的值对模型做动画仿真 外部的载荷与内部的力影响反作用力但不影响运动 连杆和运动付假定都是刚性的 自由度为0
的下拉菜单中列出了UG/Motion给用户提供的五种驱动力的类型 (①没有;②恒定 的;③谐波;④一般方程;⑤关节仿真)
2020/1/27
§9.4 机构载荷
UG/Motion给用户提供了9种机构载荷,涵盖了大部分实际工程状 态中机构的受力形式
2020/1/27
§9.5 运动分析
对原来的三维实体模型完成了连杆特性的设置,运动副的建立和外 载荷的添加的前置处理后,就完成了运动模型的构建。此时可以利 用UG/Motion运动分析工具栏,对创建的运动模型进行运动仿真
注意:运动学分析时,对有自由度或有初始力的机构结算器不进行求解,这 类机构需要做动力学分析
2020/1/27
环境设置
动态分析:如果模型有一个或多个自由度,必须 做动力学分析,在动力学仿真中,可以在求解方 案对话框中选择静力平衡选项。静力平衡分析将 模型移动到一个平衡的状态。
2020/1/27
§8.2 连杆特性和运动副