Cascade Global Symmetry and Quark Mass Hierarchy
(完整版)原子核物理专业词汇中英文对照表
(完整版)原子核物理专业词汇中英文对照表原子核物理专业词汇中英文对照表absorption cross-section 吸收截面activity radioactivity 放射性活度activity 活度adiabatic approximation 浸渐近似allowed transition 容许跃迁angular correlation 角关联angular distribution 角分布angular-momentum conservation 角动量守恒anisotropy 各项异性度annihilation radiation 湮没辐射anomalous magnetic moment 反常极矩anti neutrino 反中微子antiparticle 反粒子artificial radioactivity 人工放射性atomic mass unit 原子质量单位atomic mass 原子质量atomic nucleus 原子核Auger electron 俄歇电子bag model 口袋模型baryon number 重子数baryon 重子binary fission 二分裂变binging energy 结合能black hole 黑洞bombarding particle 轰击粒子bottom quark 底夸克branching ration 分支比bremsstrahlung 轫致辐射cascade radiation 级联辐射cascade transition 级联跃迁centrifugal barrier 离心势垒chain reaction 链式反应characteristic X-ray 特征X射线Cherenkov counter 切连科夫计数器collective model 集体模型collective rotation 集体转动collective vibration 集体振动color charge 色荷complete fusion reaction 全熔合反应complex potential 复势compound-nucleus decay 复合核衰变compound-nucleus model 复合核模型compound nucleus 复合核Compton effect 康普顿效应Compton electron 康普顿电子Compton scattering 康普顿散射conservation law 守恒定律controlled thermonuclear fusion 受控热核聚变cosmic ray 宇宙射线Coulomb barrier 库仑势垒Coulomb energy 库伦能Coulomb excitation 库仑激发CPT theorem CPT定理critical angular momentum 临界角动量critical distance 临界距离critical mass 临界质量critical volume 临界体积damped oscillations 阻尼震荡damped vibration 阻尼震荡damped wave 阻尼波damper 减震器damping factor 衰减系数damping 衰减的damp proof 防潮的damp 湿气danger coefficient 危险系数danger dose 危险剂量danger range 危险距离danger signal 危险信号data acquisition and processing system 数据获得和处理系统data base 数据库data communication 数据通信data processing 数据处理data 数据dating 测定年代daughter atom 子体原子daughter element 子体元素daughter nuclear 子核daughter nucleus 子体核daughter nuclide 子体核素daughter 蜕变产物dd reaction dd反应deactivation 去活化dead band 不灵敏区dead time correction 死时间校正dead time 失灵时间deaerate 除气deaeration 除气deaerator 除气器空气分离器deaquation 脱水debris activity 碎片放射性debris 碎片de broglie equation 德布罗意方程de broglie frequency 德布罗意频率de broglie relation 德布罗意方程de broglie wavelength 德布罗意波长de broglie wave 德布罗意波debye radius 德拜半径debye temperature 德拜温度decade counter tube 十进计数管decade counting circuit 十进制计数电路decade counting tube 十进管decade scaler 十进位定标器decagram 十克decalescence 相变吸热decalescent point 金属突然吸热温度decarburization 脱碳decascaler 十进制定标器decatron 十进计数管decay chain 衰变链decay coefficient 衰变常数decay constant 衰变常数decay constant 衰变常量decay energy 衰变能decay factor 衰变常数decay fraction 衰变分支比decay heat removal system 衰变热去除系统decay heat 衰变热decay kinematics 衰变运动学decay out 完全衰变decay period 冷却周期decay power 衰减功率decay rate 衰变速度decay scheme 衰变纲图decay series 放射系decay storage 衰变贮存decay table 衰变表decay time 衰变时间decay 衰减decelerate 减速deceleration 减速decigram 分克decimeter wave 分米波decommissioning 退役decompose 分解decomposition temperature 分解温度decomposition 化学分解decontaminability 可去污性decontamination area 去污区decontamination factor 去污因子decontamination index 去污指数decontamination 净化decoupled band 分离带decoupling 去耦解开decrease 衰减decrement 减少率deep dose equivalent index 深部剂量当量指标deep inelastic reaction 深度非弹性反应deep irradiation 深部辐照deep therapy 深部疗de excitation 去激发de exemption 去免除defectoscope 探伤仪defect 缺陷definition 分辨deflecting coil 偏转线圈deflector 偏转装置deformation energy 变形能deformation of irradiated graphite 辐照过石墨变形deformation parameter 形变参量deformation 变形deformed nucleus 变形核deformed region 变形区域deform 变形degassing 脱气degas 除气degeneracy 简并degenerate configuration 退化位形degenerate gas 简并气体degenerate level 简并能级degenerate state 简并态degeneration 简并degradation of energy 能量散逸degradation 软化degraded spectrum 软化谱degree of acidity 酸度degree of burn up 燃耗度degree of purity 纯度dehumidify 减湿dehydrating agent 脱水剂dehydration 脱水deionization rate 消电离率deionization time 消电离时间deionization 消电离delay circuit 延迟电路delayed alpha particles 缓发粒子delayed neutron 缓发中子delayed proton 缓发质子deliquescence 潮解deliquescent 潮解的demagnetization 去磁denitration 脱硝density gradient instability 密度梯度不稳定性density of electrons 电子密度deoxidation 脱氧deoxidization 脱氧departure from nucleate boiling ratio 偏离泡核沸腾比departure from nucleate boiling 偏离泡核沸腾depleted fuel 贫化燃料deposit dose 地面沉降物剂量deposited activity 沉积的放射性deposition 沉积deposit 沉淀depression 减压depressurization accident 失压事故depressurizing system 降压系统desalinization 脱盐desalting 脱盐descendant 后代desorption 解吸detailed balance principle 细致平衡原理detection of radiation 辐射线的探测detonation 爆炸deuteride 氘化物deuterium alpha reaction 氘反应deuterium 重氢deuton 氘核deviation 偏差dew point 露点dextro rotatory 右旋的diagnostic radiology 诊断放射学diagnostics 诊断diagram 线图diamagnetism 反磁性diameter 直径diamond 稳定区;金刚石diaphragm 薄膜diatomic gas 双原子气体diatomic molecule 二原子分子dielectric 电介质differential control rod worth 控制棒微分价值differential cross section 微分截面diffraction spectrometer 衍射谱仪diffraction spectrum 衍射光谱diffraction 衍射diffuse 扩散diffusion stack 务马堆diffusion theory 扩散理论diffusion time 扩散时间diffusion 扩散dilution 稀释dipole 偶极子dirac equation 狄拉克方程direction 方向discharge 放电discrete 离散的disintegrate 蜕衰disintegration 蜕变dislocation 位错disorder 无序dispersion 分散displacement current 位移电流displace 位移;代替dissociation 离解dissolution 溶解distillation 蒸馏distortion 畸变divergence 发散domain 磁畴Dopper effect 多普勒效应dose albedo 剂量反照率dose build up factor 剂量积累因子dose equivalent 剂量当量dose rate 剂量率dose 剂量down quark 下夸克dry out 烧干duality 二重性duct 管dysprosium 镝endothermic reaction 吸能反应energy conservation 能量守恒even-even nucleus 偶偶核exchange force 交换力excited state 激发态exothermic reaction 放能反应exposure 照射量fatigue 疲劳feedback 反馈fermi age 费米年龄fermion 费米子fermium 镄fermi 费米Feynman diagram 费恩曼图field theory 场论fine structure 精细结构fissile 分裂的fissionable 分裂的fission barrier 裂变势垒fission fragment 裂变碎片fission product yield 裂变产额fission product 裂变产物flattening of neutron flux 中子通量展平fluorescent x rays 荧光x射线fluorine 氟flux 通量forbidden band 禁带force 力francium 钫free electron 自由电子free energy 自由能frenkel defect 弗兰克尔缺陷frictional force 摩擦力fuel assembly grid 燃料集合体栅格fuel assembly 核燃料组件fuel cell 燃料电池fuel depletion 燃料贫化fuel reprocessing 燃料后处理function 函数fusion 核聚变galaxy 星系Gamow-Teller interaction G-T相互作用gauge boson 规范波色子gauge field theory 规范场论Geiger-Mǖller counter 盖革-米勒计数器Geiger-Nuttal law 盖革-努塔尔定律geometrical cross-section 几何截面germanium detector 锗探测器giant resonance 巨共振gluon 胶子grid ionization chamber 屏栅电离室hadron 强子heavy ion 重离子helicity 螺旋性Higgs particle 希格斯粒子Hubble constant 哈勃常量Hubble law 哈勃定理incoming channel 入射道incoming particle 入射粒子independent-particle model 独立粒子模型induced fission 诱发裂变inelastic collision 非弹性碰撞inelastic scattering 非弹性散射inertial confinement 惯性约束internal conversion 内转换intrinsic electric quadrupole moment 内禀电四极矩intrinsic parity 內禀宇称island of isomerism 同核异能素岛island of stability 稳定岛isobaric spin,isospin 同位旋isobar 同量异位素isomer 同核异能素isospin analog state 同位旋相似态isospin multiplet 同位旋多重态isotone 同中异位素isotope 同位素j j coupling j j耦合joule heat 焦耳热jump function 阶跃函数junction particle detector 结型粒子探测器kerma rate 比释动能率kerma 柯玛kernel approximation method 核近似法kernel function 核函数kernel 核kerr cell 克尔盒kerr effect 克尔效应kevatron 千电子伏级加速器key measurement point 关键测量点k factor 增殖系数kinetic theory of gases 气体运动论kirchhoff's radiation law 基尔霍夫辐射定律klein gordon equation 克莱因戈登方程klein nishina formula 克莱因仁科公式knight shift 奈特移位knocking out 原子位移knock on atom 撞出原子knock on 撞击撞出krypton 氪k shell k 层Kurie plot 库里厄图labeled 示踪的labile 不稳定的lag 延迟laminar flow 层流lande g factor 朗德因子lanthanides 镧系lanthanum 镧laplace's operator 拉普拉斯算符laplacian 拉普拉斯算符larmor frequency 回旋频率laser cooling 激光冷却laser enrichment process 激光浓缩法laser isotope separation method 激光同位素分离法laser pulse 激光脉冲laser 激光latent energy 潜能lattice cell 栅元lattice constant 晶格常数lattice defect 点阵缺陷lattice energy 晶格能量lattice parameter 晶格常数lattice 格子laue photograph 劳厄照相lawrencium 铹Lawson criterion 劳森判据lead 铅lepton 轻子level 能级liberation 游离limit 极限liquid metal 液态金属liquid model 液体模型liquid phase 液相lithium 锂load 负荷lorentz force 洛伦兹力lorentz gas 洛伦兹气体lorentz invariance 洛伦兹不变性low activity waste 低放废物lower limit 下限lutetium 镥macroscopic cross section 宏观截面macroscopic state 宏观态magic number 幻数magnesium 镁magnetic dipole 磁偶极子magnetic field 磁场magnetic resonance 磁共振magnetism 磁manganese 锰many body forces 多体力many body problem 多体问题mass abundance 质量丰度mass energy conversion formula 质能换算公式mass excess 质量过剩mass range 质量射程mass spectrometer 质谱仪maximum 最大值maxwell boltzmann distribution 麦克斯韦分布函数mean collision time 平均碰撞时间mean field 平均场mean value 平均值mean 平均melting point 熔点membrane 薄膜memory 存储mendeleev's law 门捷列夫周期律mendelevium 钔mercury 汞meson exchange theory 介子交换理论meson field theory 介子场理论meson 介子meson 介子metamorphose 变形methane 甲烷methanol 甲醇methyl alcohol 甲醇migration 移动mobility 迁移率moderate 减速moderation 减速modulus of elasticity 弹性模数modulus of rigidity 刚性模数modulus of rupture 断裂模数modulus of torsion 扭转模数modulus 刚性模数moisture 湿气molar fraction 克分子分数molecular mass 分子质量molecular orbital 分子轨函数molten salt 熔盐molybdenum 钼monte carlo method 蒙特卡罗法neodymium 钕neon 氖neptunium 镎neutrino 中微子neutron flux 中子通量neutronics 中子物理学neutron 中子nickel 镍niobium 铌nitrogen 氮nobelium 锘nominal value 公称值nuclear fission 核裂变nuclear fission 核裂变nuclear force 核力nuclear fuel 核燃料nuclear spallation 核散裂nucleon 核子nucleus 核nuclide 核素nu factor 每次裂变后的中子产额ood-A nucleus 奇A核ood-ood nucleus 奇奇核optical model 光学模型orbital angular momentum 轨道角动量orbital electron capture 轨道电子俘获pair creation,pair production 对产生pairing correlation 对关联pairing energy 对能parent nucleus 母核parity 宇称partial-wave analysis 分波分析partial-wave cross-section 分波截面particle physics 粒子物理photoelectric effect 光电效应pick-up reaction 拾取反应polarization 极化度potential barrier 势垒prompt neutron 瞬发中子proportional chamber 正比室proton radioactivity 质子放射性proton 质子quark confinement 夸克禁闭quark-gluon plasma 夸克-胶子等离子体quark model 夸克模型quark 夸克radiation damage 辐射损伤radiation dose 辐射剂量radiation protection 辐射防护radiative capture 辐射俘获radioactive dating 放射性鉴年法radioactive equilibrium 放射性平衡radioactive nuclide 放射性核素radioactive series 放射系radioactivity 放射性range 射程reaction channel 反应道reaction cross-section 反应截面reaction energy 反映能reaction product 反应产物reaction yield 反应产额recoilless resonance absorption 无反冲共振吸收residual interaction 剩余相互作用residual nuclease 剩余核resolution 分辨率resolving time 分辨时间resonance cross-section 共振截面resonance energy 共振能量resonance state 共振态rotational energy level 转动能级saddle point 鞍点samarium poisoning 钐中毒samarium 钐scalar 标量scandium 钪scattering 散射scheme 图解Schrodinger equation 薛定谔方程scintillation detector 闪烁探测器scram control 快速停堆控制scram discharge volume 快速停堆排放量scram rod 安全棒selenium 硒self absorption coefficient 自吸收系数self absorption 自吸收self adjoint matrix 自共轭矩阵self adjoint operator 自共轭算子self adjoint 自轭的semiconductor 半导体sensitivity 灵敏度series 系;级数shell model 壳层模型shell structure 壳层结构shim rod 补偿棒shim 补偿shut off rod 安全棒silicon 硅simulation 模拟singularity 奇性slab reactor 平板反应堆slow down 减速slowing down area 慢化面积small angle scattering 小角散射sodium fluoride 氟化钠sodium 钠soft component of cosmic rays 字宙射线的软成分solar cosmic ray 太阳宇宙线solar neutrino 太阳中微子solar x ray 太阳x 射线solenoid 螺旋管solid angle 立体角solid phase 固相solid solution 固溶体soluble 可溶的solute 溶质source data 源数据source strength 源强度space group 空间群space lattice 空间点阵spacing 间距spallation 散裂special relativity 狭义相对论special report 专题报告special theory of relativity 狭义相对论specific activity 比放射性specific binding energy 比结合能specific burn up 比燃耗specific charge 比电荷specific concentration 比浓度specific 比的specimen 试样spectral line 光谱线spectral series 光谱线系spectrum 谱speed 速率spent nuclear material pool 烧过的核材料贮存池sphere 球spherical reactor 球形反应堆spherical wave 球面波spin angular momentum 自旋角动量spin dependent force 自旋相关力spin 自旋splitting of energy levels 能级分裂splitting ratio 分开比spontaneous decay 自发衰变spot 斑sputtering 飞溅square bracket 方括弧stable equilibrium 稳定平衡stainless steel 不锈钢standing wave 驻波stark effect 斯塔克效应statistical error 统计误差statistical fluctuation 统计涨落statistical mechanics 统计力学statistical straggling 统计涨落statistical uncertainty 统计不确定性statistical weight 统计重量statistical 统计的statistic analysis 统计分析statistics 统计学statistics 统计性质steam generator 蒸汽发生器steam void 汽穴steam 蒸汽stefan boltzmann ] constant 斯蒂芬玻尔兹曼常数stern gerlach experiment 斯登盖拉赫实验stochastic process 随机过程stoichiometry 化学计算法stokes'law 斯特克斯定律stopping power 阻止本领strangeness number 奇异数strangeness 奇异性strange particle 奇异粒子strange particle 奇异粒子strange quark 奇异夸克strength function 强度函数strontium 锶structure factor 结构因子subcritical assembly 亚临界装置subcritical 亚临界的subgroup 子群sublimation 升化subprogram 子程序subroutine 子程序subscript 下标subtraction 减法sulfur 硫superconductivity 超导性superconductor 超导体supercooled 过冷的superheated vapor 过热蒸汽superheated 过热的superlattice 超晶格superposition principle 迭加原理superposition 重叠supersaturation 过饱和superscript 上标surface tension 表面张力susceptibility 磁化率suspension colloid 悬浮胶体swelling 膨胀switch 开关symmetry 对称性synchrotron radiation 同步加速辐射synthesis 合成system of atomic units 原子单位制threshold energy 阈能time-of-flight 飞行时间top quark 顶夸克total cross section 总截面track detector 径迹探测器transfer reaction 转移反应transition probability 跃迁概率two-component neutrino theory 二分量中微子理论unclean separation energy 核子分离能unified model 综合模型unique forbidden transition 唯一性禁戒跃迁up quark 上夸克uranium series 铀系vector boson 矢量波色子vibration energy level 振动能级volume energy 体积能weak interaction 弱相互作用yrast line 转晕线yrast state 转晕态。
应用锎源实验结果预估空间轨道单粒子翻转率
HM628128 等型号静态存储器进行了单粒子翻转饱和截面测量。实验结果与串列加速器的重 离子单粒子效应实验结果一致,图 1、2 中 LET 为 43MeV.cm2/mg 的数据点是 252Cf 源单粒 子效应实验结果。说明对于 IDT 和 HM 系列的存储器,可以用 252Cf 源替代重离子加速器测 量单粒子翻转饱和截面。
1 引言
空间辐射环境中的带电粒子会导致航天器电子系统中的半导体器件发生单粒子效应,严 重影响航天器的可靠性和寿命。单粒子效应是航天器在空间轨道上发生的,但大量的研究试 验工作却是在地面进行的,尤其是航天器设计所需器件的抗单粒子效应能力的评估依据是地 面模拟试验结果。地面模拟试验主要是利用地面现有的各种辐射模拟源进行试验研究,测量 半导体器件的单粒子翻转(SEU)截面、单粒子闭锁(SEL)截面、单粒子烧毁(SEB)和 单粒子栅穿(SEGR)及其他单粒子效应的损伤阈值,评价半导体器件的抗单粒子效应能力。 对于单粒子翻转,就是测量单粒子翻转截面与质子能量或重离子线性能量转移值(LET)值 的关系曲线,结合空间轨道的辐射环境,预估空间轨道上半导体器件的单粒子翻转率,从而 判断该器件能否在某一空间轨道上正常工作。
6.65
1.30E-10
200.74
1.5
8.09
8.79E-11
105.37
5
7.6E-11
1.95 0.08
10
11.60 16.60
4.28E-11 2.09E-11
0 -51.17
15
21.60
1.23E-11
-71.26
20
26.60
8.13E-12
-81.00
2)以 252Cf 源单粒子翻转截面为阈值:选取不同的饱和截面,拟合得到的曲线如图 6 所示,单粒子翻转率 R 计算结果见表 4。饱和截面差一个量级,单粒子翻转率 R 相差近一个 量级。表 4 中的相对偏差是以饱和截面 2×10-8cm2/bit 的单粒子翻转率作为参考值计算得到的, 因为一般情况下饱和截面比阈值截面高 2~3 个量级。图 7 为以 252Cf 源实验结果为阈值,选 取相同饱和截面,不同拟合参数得到的曲线。表 5 为相应的拟合参数值和计算结果。相同阈 值,相同饱和截面,拟合参数选取不同,计算结果会有几倍的差异。表 5 中的相对偏差是以 第二组数据为参考值计算得到的,因为其拟合曲线的形状与以往实验结果更接近。根据表 5 中第一组拟合参数计算所得的单粒子翻转率最大。也就是说,应用该组数据,也即表 4 中的 拟合参数,来评价器件的抗单粒子翻转性能是偏严格的估计。
castep计算大分子
castep计算大分子CASTEP是一种基于密度泛函理论(DFT)的第一性原理计算软件,广泛用于材料科学领域。
对于大分子的计算,CASTEP也可以提供有效的解决方案。
下面我将从多个角度回答你关于CASTEP计算大分子的问题。
1. 大分子模型的建立:在CASTEP中,大分子模型的建立通常需要从分子结构文件开始。
你可以使用分子编辑器(如Avogadro、VMD等)或者化学绘图软件(如ChemDraw、Gaussian等)来创建或导入分子结构文件。
然后,你可以使用CASTEP的输入文件格式(.cell或.castep)来描述分子的几何结构、晶胞参数等。
2. 计算参数的选择:对于大分子的计算,一些关键的计算参数需要特别关注。
首先是选择合适的泛函和基组,常用的泛函包括LDA、GGA等,而基组可以选择从小到大的一系列基组进行测试。
此外,还需要设置合适的计算精度,如收敛准则、k点网格密度等。
这些参数的选择需要根据具体的研究目的和计算资源进行权衡。
3. 计算的并行性:对于大分子的计算,由于计算量较大,通常需要利用并行计算的能力来加速计算过程。
CASTEP支持多种并行计算方式,如共享内存并行(OpenMP)、分布式内存并行(MPI)等,可以根据计算资源的情况选择合适的并行方式进行计算。
4. 计算结果的分析:CASTEP计算完成后,你可以通过分析计算结果来获得关于大分子的各种物理和化学性质的信息。
例如,你可以获得分子的几何构型、电子结构、能带结构、密度分布等信息。
此外,你还可以计算和分析分子的振动谱、光谱性质等。
5. 计算结果的验证:对于大分子的计算,验证计算结果的正确性是非常重要的。
你可以通过与实验结果的比较来验证计算的准确性。
例如,可以比较计算得到的分子结构与实验测量的结构的差异,或者计算得到的能带结构与实验测量的光电子能谱的对比等。
总之,CASTEP是一个强大的计算工具,可以用于大分子的计算。
在进行大分子计算时,需要合理选择计算参数、充分利用并行计算能力,并对计算结果进行准确性验证。
物理专业 词汇C
capture reaction 俘获反应
carat 克拉
carbon 碳
carbon cycle 碳循环
carbon dioxide laser 二氧化碳激光器
carbon filament lamp 炭丝灯
carbon film resistor 碳薄膜电阻器
cat's eye diaphragm 猫眼光阑
cataclysmic variable 激变变星
catadioptric system 折反射光系统
catalog of celestial bodies 天体表
catalysis 催化
catalyst 催化剂
catalyzer 催化剂
centre of buyconcy 浮心
centre of fluorescence 茧光中心
centrifugal 离心的
centrifugal acceleration 离心加速度
centrifugal effect 离心效应
centrifugal field 离心力场
center of mass effect 质心效应
center of mass motion 质心运动
center of mass system 质心系
center of percussion 撞恍心
center of pressure 压力中心
center of rotation 转动中心
capillary viscosimeter 毛细管粘度计
capillary wave 表面张力波
capricornus 摩羯座
粒子探测绪论讲解
中国科大 汪晓莲
32
Tevatron Collider
Fermilab Tevatron Collider
是目前世界上在运行的最高能量的对撞机 质子,反质子束流加速到900 GeV ,有两 个相互作用对撞点 (CDF and DØ)
95年发现 Top夸克
2019/5/30
中国科大 汪晓莲
33
欧洲粒子物理研究中心
中国科大 汪晓莲
19
Basic Concepts: Energy
2019/5/30
中国科大 汪晓莲
20
Basic Concepts: Energy
2019/5/30
中国科大 汪晓莲
21
electron
(energy U)
U= 1 eV = 1.6x10-19J
(speed at positive plate 18 000 km/s)
世界上第一台对撞加速器
1960年意大利科学家陶歇克(B.Touschek)首次提出并在意大利的Frascati国家实验室
20建19/成5/3了0 直径约1米的AdA对撞机,验证了中国原科大理汪,晓从莲 此开辟了加速器发展的新纪元。
31
美国BNL 的3.3GeV Cosmotron
2019/5/30
2019/5/30
中国科大 汪晓莲
17
建立夸克模型的关键实验:电子轰击质子(1972)
质子并不是一个几何点。它有大小,其半径10-13cm,电荷就分布在这
样一个小空间范围
e
质子内部分布着大量的点电荷
定量分析表明,质子是由三个夸克组成
e
1974年——丁肇中,B. Richter 发现 J/ 粒子
多元宇宙算法流程
多元宇宙算法流程Quantum computing is a rapidly evolving field that holds great promise for solving complex problems in ways that traditional computers cannot. One intriguing concept within this area is the multiverse algorithm, which harnesses the idea of multiple universes existing simultaneously and processing information in parallel. This opens up new possibilities for tackling problems that are currently beyond the reach of classical computers.量子计算是一个快速发展的领域,它在解决传统计算机无法解决的复杂问题方面具有巨大潜力。
在这个领域中一个令人着迷的概念就是多元宇宙算法,它利用多个宇宙同时存在并并行处理信息的理念。
这为解决目前经典计算机无法解决的问题打开了新的可能性。
The multiverse algorithm is founded on the principles of quantum superposition and entanglement, allowing qubits to exist in multiple states simultaneously. This enables the algorithm to explore a vast array of possibilities in parallel, resulting in exponential speedups for certain types of problems. By tapping into the power of paralleluniverses, the multiverse algorithm has the potential to revolutionize how we approach complex computational challenges.多元宇宙算法建立在量子叠加和纠缠的原则之上,使量子比特能够同时存在于多种状态。
量子计算介绍
量子计算介绍量子计算是一种基于量子力学原理的计算模型,它利用量子比特(qubit)而不是经典比特(bit)来存储和处理信息。
量子计算的原理和应用有着潜在的重大影响,它被认为是计算机科学领域的一项革命性技术。
下面是关于量子计算的详细介绍:1. 量子比特(qubit):经典计算机中的最基本信息单元是比特(bit),它可以表示0或1两个状态。
量子比特(qubit)是量子计算的基本信息单元,与经典比特不同,它可以处于0、1两个状态的线性组合,即叠加态。
量子比特的主要特点是叠加态和纠缠态,这使得量子计算能够进行高效的并行计算。
2. 量子超导:量子计算机通常使用超导量子比特,这些比特在极低温度下运行,以保持其量子性质。
超导量子比特的常见类型包括超导量子比特(transmon qubit)、腔量子电动力学qubit 等。
3. 量子门和量子电路:量子门(quantum gate)是用于在量子计算中操作量子比特的基本单元。
通过将一系列量子门连接起来,可以构建量子电路,用于解决特定的计算问题。
4. 量子并行性:量子计算利用量子比特的叠加性质,可以在同一时间处理多个可能性,实现量子并行性。
这意味着对某些问题的计算速度可能远远超过经典计算机。
5. 量子纠缠:量子纠缠是一种奇特的现象,其中两个或多个量子比特之间存在特殊的关联。
通过纠缠,改变一个量子比特的状态会瞬间影响到与之纠缠的其他比特,即使它们之间的距离很远。
6. 量子算法:量子计算引入了一些经典计算机无法高效解决的问题的新算法,最著名的是Shor算法(用于因子分解)和Grover算法(用于搜索)。
7. 量子计算的应用:量子计算有着广泛的应用潜力,包括加密破解、药物设计、优化问题求解、材料科学、量子模拟等领域。
8. 挑战和发展:量子计算仍面临许多技术挑战,如量子误差校正、量子比特稳定性等。
当前,大型科技公司和研究机构正积极开展量子计算研究,争取在未来实现可扩展的量子计算机。
Globally networked risks and how to respond
BOX 1
Risk, systemic risk and hyper-risk
According to the standard ISO 31000 (2009; /iso/ catalogue_detail?csnumber543170), risk is defined as ‘‘effect of uncertainty on objectives’’. It is often quantified as the probability of occurrence of an (adverse) event, times its (negative) impact (damage), but it should be kept in mind that risks might also create positive impacts, such as opportunities for some stakeholders.
nscacscs第四版第十四章内容
nscacscs第四版第十四章内容第四版第十四章内容:人工智能与未来社会人工智能(Artificial Intelligence,简称AI)是当今科技领域最炙手可热的话题之一。
在第四版的第十四章中,我们将深入探讨人工智能与未来社会的关系,以及其对我们生活的影响。
首先,我们需要明确人工智能的定义。
人工智能是一种模拟人类智能的技术,通过计算机系统实现对复杂问题的分析、判断和决策。
它可以模拟人类的思维过程,具备学习、推理、识别和理解等能力。
随着科技的不断进步,人工智能已经在各个领域得到广泛应用,包括医疗、金融、交通、教育等。
人工智能的发展对未来社会产生了深远的影响。
首先,人工智能的出现将改变我们的工作方式。
许多重复性、繁琐的工作将被机器人或自动化系统取代,从而提高工作效率和生产力。
然而,这也意味着一些传统的工作岗位可能会消失,需要我们不断学习和适应新的技能。
其次,人工智能的应用将改变我们的生活方式。
例如,智能家居系统可以通过语音识别和自动化控制,实现对家庭设备的智能管理。
智能助手可以帮助我们处理日常事务,提供个性化的服务。
虚拟现实技术可以让我们身临其境地体验各种场景。
这些技术的出现将极大地提升我们的生活质量和便利性。
然而,人工智能的发展也带来了一些挑战和问题。
首先,人工智能的普及可能导致一些道德和伦理问题的出现。
例如,自动驾驶汽车在遇到危险情况时如何做出决策,成为了一个备受争议的话题。
其次,人工智能的发展可能会导致一些就业岗位的消失,增加社会的不平等。
此外,人工智能的算法可能存在偏见和歧视,需要我们加强监管和规范。
为了应对这些挑战和问题,我们需要制定相应的政策和法规。
首先,我们需要加强对人工智能技术的监管,确保其安全和可靠性。
其次,我们需要加强对人工智能的研究和发展,培养更多的专业人才。
同时,我们也需要加强对人工智能的教育和普及,提高公众对人工智能的认知和理解。
总之,人工智能是未来社会发展的重要驱动力之一。
多组态自洽场量子计算
多组态自洽场量子计算全文共四篇示例,供读者参考第一篇示例:多组态自洽场量子计算是一种重要的计算方法,它结合了量子力学的原理和计算机技术,专门用于处理原子和分子的电子结构问题。
在化学领域和材料科学领域,多组态自洽场量子计算被广泛应用,为研究者提供了强大的工具,使他们能够预测分子的性质和反应过程。
多组态自洽场量子计算的基本原理是基于量子力学的薛定谔方程。
在分子和固体中,电子的运动受到原子核和其他电子的相互作用的影响。
为了描述这种复杂的相互作用,我们需要解薛定谔方程,以确定体系的基态波函数和能量。
而多组态自洽场方法正是通过迭代求解薛定谔方程,得到最优的体系能量和波函数。
在多组态自洽场计算中,我们通常将原子和分子的电子波函数表示为多个自旋轨道的线性组合。
每个自旋轨道都对应一个电子的动力学运动。
我们通过将这些自旋轨道的线性组合代入薛定谔方程,并利用变分法求解得到最优的自旋轨道系数,从而获得体系的基态波函数和能量。
在实际的计算中,我们需要进行多次迭代,直至体系的能量收敛为止。
这涉及到解一系列复杂的线性代数方程,对计算资源和算法性能提出了较高的要求。
而随着计算机技术的发展,我们现在能够使用高性能计算平台进行大规模的多组态自洽场计算,加快计算速度和提高计算精度。
多组态自洽场量子计算在化学和材料科学研究中具有重要的应用价值。
通过计算分子和材料的电子结构,我们可以了解它们的化学性质、光学性质和电子输运性质。
这为设计新型功能材料和优化化学反应过程提供了重要的指导。
第二篇示例:多组态自洽场量子计算是一种基于量子力学原理的计算方法,用于模拟多体量子系统的性质。
在原子、分子和凝聚态物理领域,多组态自洽场量子计算被广泛应用于研究不同材料的电子结构、性质和反应动力学等方面。
本文将对多组态自洽场量子计算的基本原理、发展历程以及在科学研究中的应用进行介绍和探讨。
1. 多体量子系统的描述和自洽场方法在量子力学中,描述多体量子系统的方法之一是采用多体波函数的形式,即由多个粒子的波函数构成的复合波函数。
薛定谔—麦克斯韦尔方程径向解的存在性和多重性(英文)
In 1887, the German physicist Erwin Schrödinger proposed a radial solution to the Maxwell-Schrödinger equation. This equation describes the behavior of an electron in an atom and is used to calculate its energy levels. The radial solution was found to be valid for all values of angular momentum quantum number l, which means that it can describe any type of atomic orbital.The existence and multiplicity of this radial solution has been studied extensively since then. It has been shown that there are infinitely many solutions for each value of l, with each one corresponding to a different energy level. Furthermore, these solutions can be divided into two categories: bound states and scattering states. Bound states have negative energies and correspond to electrons that are trapped within the atom; scattering states have positive energies and correspond to electrons that escape from the atom after being excited by external radiation or collisions with other particles.The existence and multiplicity of these solutions is important because they provide insight into how atoms interact with their environment through electromagnetic radiation or collisions with other particles. They also help us understand why certain elements form molecules when combined together, as well as why some elements remain stable while others decay over time due to radioactive processes such as alpha decay or beta decay.。
量子计算的基本元素
量子计算的基本元素
量子计算是一种利用量子力学原理实现计算的新型计算机。
量子计算的基本元素包括量子比特(qubit)、量子门(quantum gate)、量子纠缠(quantum entanglement)和量子算法(quantum algorithm)等。
首先,量子比特(qubit)是量子计算的基本存储单元,它与传统计算机中的比特(bit)类似,但是与比特不同的是,量子比特可以处于多个状态的叠加态(superposition),这意味着同一量子比特可以同时代表0和1两个状态。
另外,量子比特还具有量子纠缠的特性,即两个或多个量子比特之间可以建立一种纠缠关系,这种关系在量子计算中可以用来实现量子并行计算。
其次,量子门(quantum gate)是量子计算中的基本逻辑门,它用于实现量子比特的操作,包括量子比特的变换、旋转、翻转等。
常见的量子门包括Hadamard 门、CNOT门、相位门等,每个量子门都可以对一个或多个量子比特进行操作,从而实现量子计算的各种功能。
此外,量子纠缠(quantum entanglement)是量子计算中的一种重要的量子力学现象,它可以在两个或多个量子比特之间建立一种非常特殊的关联关系,这种关系可以实现量子比特之间的信息传输和量子并行计算,并被认为是量子计算的核心。
最后,量子算法(quantum algorithm)是量子计算中的一种特殊算法,它利用量子比特的特殊性质实现高效的计算。
其中,最著名的量子算法是Shor算法,它可以用量子计算机在多项式时间内解决质因数分解问题,这个问题是传统计算机无法有效解决的难题。
综上所述,量子比特、量子门、量子纠缠和量子算法是量子计算的基本元素,它们在量子计算中起到了至关重要的作用。
英美词汇发展
摘要半个世纪以来,随着美国政治,经济,文化的迅速发展,美国英语已取代了英国英语在世界范围内的主导地位。
同时,美国英语本身也有了空前巨大的发展变化。
美国英语的变化主要体现在词汇的发展变化上。
本文分为三个大方面,分别为各行各类新词的大量出现,旧词语义量的不断扩大以及美国英语词汇的拼写形式日趋简化。
本文旨在从语用学的角度对当代美国英语词汇的发展趋势进行分析,从而向读者展现当代美国英语词汇丰富的内涵。
关键词:美国英语;词汇;发展趋势AbstractFor half a century, with the development of American politics, economy and culture, American English has replaced the dominating position of British English in the world. Meanwhile, American English itself has huge changes, of which the most important one is the development of words.This essay aims to analyze the changes of words in American English, mainly from the following three perspectives:the emergence of new words, the enlargement of the meaning of old words, and the simplification of the spelling form of words.This essay analyzes the development tendency of modern American English words from Pragmatics’perspective, and then displays the rich connotations of modern American English words.Key words: American English; words; trend of development目录前言 (4)一文献回顾 (5)1.1多元意义 (5)1.2含糊意义 (5)1.3 新词 (6)二新词的创建 (7)2.1 科技新词 (7)2.2 关于信息及交流技术的新词 (7)2.3 关于环境的新词 (7)2.4 关于医学技术和生物技术的新词 (7)2.5 关于社会生活的新词 (8)2.6 教育、体育以及娱乐活动方面的新词 (8)2.7 关于家庭的新词汇 (9)三旧词词义的改变 (7)3.1 单个词语的扩展新义 (10)3.2 合成词 (10)3.3 转换 (11)3.4 类推 (11)四拼写方式的简化 (13)4.1 简写 (13)4.2 删改 (13)4.3 首字母缩略词 (13)4.4 混合词 (14)4.5 网络用语 (14)结论 (16)参考书目 (17)致谢 (18)ContentsPreface (1)I Literature Review...................................................................................................错误!未定义书签。
22705900_阿尔金北缘新太古代TTG片麻岩的成因及其构造意义
苏必利尔克拉通( , )、波罗的地盾( , , ; , ; , ;梅 Henry et al 2000
Samsonov al 2012a 2013b Zhao et al 2015 Zong et al 2013
et al ,2005)、西格林兰克拉通(Polat et al ,2008)、华北克 华林等,1997,1998;王忠梅等,2013;张建新等,2011;赵
Key words TTG gneiss Zircon SHRIMP UPb dating Petrogenesis North Altyn Tagh Tarim Craton
摘 要 塔里木克拉通前寒武纪构造演化,特别是早前寒武纪构造演化一直是地质学家讨论的焦点。本文通过对阿尔金 北缘新太古代TTG 片麻岩进行详细的野外调查、岩相学观察、地球化学分析以及锆石SHRIMP UPb 定年来揭示该岩石的成因 以及探讨塔里木克拉通早前寒武纪构造演化。锆石SHRIMP UPb 定年结果显示阿尔金北缘TTG 片麻岩的形成年龄为2740 ± 19Ma,而后经历了新太古代(2494 ± 53Ma)混合岩化作用和古元古代(1962 ± 78Ma)麻粒岩相变质作用。阿尔金北缘英云闪 长质片麻岩显示低的MgO 含量(1 33% ~ 3 )和 ( 08% Mg# 37 ~ 52),具有高Sr(469 × 10 -6 ~ 764 × 10 -6 )含量、低Y(4 72 × 10 -6 ~ 13 5 × 10 -6)和Yb(0 37 × 10 -6 ~ 0 99 × 10 -6)含量的特点,它们的Sr / Y 比值可达到41 ~ 99。岩石的这些特征与基性 下地壳部分熔融形成的TTG 相同。并且,该新太古代TTG 片麻岩还具有正的εNd(t)值(0 2 ~ 3 6)、高的Nd 同位素初始值 (0 509088 ~ 0 509260)和古太古代两阶段模式年龄(3 62 ~ 3 70Ga)。因此,阿尔金北缘新太古代TTG 片麻岩可能来源于基 性下地壳部分熔融,并且岩浆源区有石榴石、角闪石和金红石的残留。综合前人的研究成果,对比相邻区域TTG 的形成时代, 变质事件的记录以及太古宙地壳增生差异都指示阿尔金北缘和敦煌库鲁塔格地区可能来源于不同的大陆块体。 关键词 TTG 片麻岩;锆石SHRIMP UPb 定年;岩石成因;阿尔金北缘;塔里木克拉通 中图法分类号 ; P588 121 P597 3
Geometric Modeling
Geometric ModelingGeometric modeling is a fundamental concept in the field of computer graphics and design. It involves the creation and manipulation of digital representations of objects and environments using geometric shapes and mathematical equations. This process is essential for various applications, including animation, virtual reality, architectural design, and manufacturing. Geometric modeling plays a crucial role in bringing creative ideas to life and enabling the visualization of complex concepts. In this article, we will explore the significance of geometric modeling from multiple perspectives, including its technical aspects, creative potential, and real-world applications. From a technical standpoint, geometric modeling relies on mathematical principles to define and represent shapes, surfaces, and volumes in a digital environment. This involves the use of algorithms to generate and manipulate geometric data, enabling the creation of intricate and realistic 3D models. The precision and accuracy of geometric modeling are essential for engineering, scientific simulations, and industrial design. Engineers and designers utilize geometric modeling software to develop prototypes, analyze structural integrity, and simulate real-world scenarios. The ability to accurately model physical objects and phenomena in a virtual space is invaluable for testing and refining concepts before they are realized in the physical world. Beyond its technical applications, geometric modeling also offers immense creative potential. Artists and animators use geometric modeling tools to sculpt, texture, and animate characters and environments for films, video games, and virtual experiences. The ability to manipulate geometric primitives and sculpt organic forms empowers creatives to bring their imaginations to life in stunning detail. Geometric modeling software provides a canvas for artistic expression, enabling artists to explore new dimensions of creativity and visual storytelling. Whether it's crafting fantastical creatures or architecting futuristic cityscapes, geometric modeling serves as a medium for boundless creativity and artistic innovation. In the realm of real-world applications, geometric modeling has a profound impact on various industries and disciplines. In architecture and urban planning, geometric modeling software is used to design and visualize buildings, landscapes, and urban developments. This enables architects and urban designers toconceptualize and communicate their ideas effectively, leading to the creation of functional and aesthetically pleasing spaces. Furthermore, geometric modelingplays a critical role in medical imaging and scientific visualization, allowing researchers and practitioners to study complex anatomical structures and visualize scientific data in meaningful ways. The ability to create accurate and detailed representations of biological and physical phenomena contributes to advancementsin healthcare, research, and education. Moreover, geometric modeling is integral to the manufacturing process, where it is used for product design, prototyping,and production. By creating digital models of components and assemblies, engineers can assess the functionality and manufacturability of their designs, leading tothe development of high-quality and efficient products. Geometric modeling also facilitates the implementation of additive manufacturing technologies, such as 3D printing, by providing the digital blueprints for creating physical objects layer by layer. This convergence of digital modeling and manufacturing technologies is revolutionizing the production landscape and enabling rapid innovation across various industries. In conclusion, geometric modeling is a multifaceteddiscipline that intersects technology, creativity, and practicality. Its technical foundations in mathematics and algorithms underpin its applications in engineering, design, and scientific research. Simultaneously, it serves as a creative platform for artists and animators to realize their visions in virtual spaces. Moreover,its real-world applications extend to diverse fields such as architecture, medicine, and manufacturing, where it contributes to innovation and progress. The significance of geometric modeling lies in its ability to bridge the digital and physical worlds, facilitating the exploration, creation, and realization of ideas and concepts. As technology continues to advance, geometric modeling will undoubtedly play an increasingly pivotal role in shaping the future of design, visualization, and manufacturing.。
对称性与对称破缺
与对称性破缺相关的一个结论是Goldstone 定理: 它是指在具有连续对称性破缺的相对论量子场论中 必然存在无质量的粒子-Goldstone玻色子。 在固体理论中,Goldstone玻色子是集团激发。 Goldstone定理当时是在Gell-Mann-Levy、周光 召1960年 提出 PCAC(轴矢量流部分守恒)后,对 赝标量 π 介子的特殊性质研究中, 于1961年提出的 一个重要定理
弱相互作用 的SU(2)_L 对称性自发破缺:
粒子物理弱电统一模型中,中间玻色子、夸克和轻子质量的 起源、夸克之间混合的起源;没有对称破缺,宇宙到处充满 了无质量的以光速运动的粒子。世界会变得很单调。
面临的挑战之一:
但模型预言的Higgs粒子还没有找到,对称破缺机制并没有得 到验证,成为粒子物理研究的重要方向。欧洲日内瓦建造 LHC对撞机的主要目的之一。
二、CP对称性和对称破缺
正反粒子和左右镜像 ♥ CP 对称性即:正粒子 反粒子 粒子 -反粒子、左右镜像反 演的对称性,它涉及到空 通过CP变换相互转换 间和物质的基本对称性 ♥ CP 对称性和破缺一直是 粒子物理学家探索自然 界基本规律的前沿领域
左手性 右手性
CP对称性和对称破缺
♥ 1957年,李政道-杨振宁发现中性 K0 介子衰变的弱相
t’Hooft
粒子物理学中的对称性
在粒子物理学中,可以说,对称性决定了相互作用 爱因斯坦的狭义相对论:由Poincare群结构所决定的 描述时间与空间对称性的理论。时间延缓与 长度收缩可以由对称性和四维不变量来理解 粒子物理标准模型:四种基本力由规范对称性决定 U(1) x SU(2) x SU(3) x SO(1,3) 确定了对称群与相互作用的强度以后, 力的所有的行为特征基本就确定了。 电磁相互作用:U(1)对称性决定的规范理论.U(1)对称 性可想象为一个在平面上转动的圆的对称性
专业物理英语词汇c
capture reaction 俘获反应
carat 克拉
carbon 碳
carbon cycle 碳循环
carbon dioxide laser 二氧化碳激光器
carbon filament lamp 炭丝灯
carbon film resistor 碳薄膜电阻器
center of percussion 撞恍心
center of pressure 压力中心
center of rotation 转动中心
center of similarity 相似中心
center of symmetry 对称中心
centered optical system 共轴光学系统
capillary electrometer 毛细管静电计
capillary phenomena 毛细现象
capillary phenomenon 毛细管现象
capillary pressure 毛细管压
capillary tube 毛细管
capillary viscometer 毛细管粘度计
calorimeter 热量计
calorimetric 量热颇
calorimetric measurement 量热
calorimetry 热量测定法
calory 卡
camac 计算机辅助测量和控制系统
camelopardalis 鹿豹座
camera 照相机
camera for electron diffraction 电子衍射照相机
causality 因果律
cause 原因
美丽的景色夸克作文英语
美丽的景色夸克作文英语Title: The Enchanting Beauty of Quarks。
In the vast tapestry of the cosmos, there exists arealm of subatomic particles where the very fabric ofreality dances in intricately woven patterns. Among these minuscule entities, there exists a class of particles known as quarks, which, despite their diminutive size, possess an awe-inspiring beauty that captivates the imagination of physicists and enthusiasts alike.Quarks, fundamental constituents of matter, exist in a state of perpetual motion within the atomic nucleus. Their interactions give rise to the rich diversity of particles that form the universe we inhabit. Yet, it is not merely their functional significance that renders quarks beautiful; it is their profound essence and the elegance with which they contribute to the cosmic symphony.At the heart of quark beauty lies their intrinsicproperties. Quarks possess electric charge, color charge, and mass, each contributing to their dynamic nature. These properties intertwine in a delicate balance, governed bythe fundamental forces of nature, to form the basis of all matter. From the simplest hydrogen atom to the most complex structures in the universe, quarks play an indispensablerole in shaping the cosmos.Furthermore, the interactions between quarks give riseto mesmerizing phenomena, such as confinement andasymptotic freedom. Confinement, a manifestation of the strong nuclear force, binds quarks together within the confines of protons and neutrons, creating a stable nucleus. On the other hand, asymptotic freedom describes theintriguing behavior of quarks at high energies, where they appear to move almost independently, revealing theintricate dynamics of the strong force.The beauty of quarks transcends their physicalproperties and extends into the realm of theoretical abstraction. In the framework of quantum chromodynamics (QCD), physicists unravel the intricate tapestry of quarkinteractions through elegant mathematical formalism. The symmetries and patterns that emerge from this theoretical framework elucidate the underlying unity of nature,offering glimpses into the profound beauty that permeates the cosmos.Moreover, quarks embody the essence of symmetry and harmony in the universe. In the symphony of particle physics, quarks dance in perfect accord, exchanging energy and information through the exchange of force carriers. This symphony, orchestrated by the fundamental forces of nature, unfolds in a mesmerizing display of coherence and unity, reflecting the underlying orderliness of the cosmos.In the pursuit of understanding quarks, physicists embark on a journey of discovery that transcends the boundaries of empirical observation. Through ingenious experiments and theoretical insights, they unravel the mysteries of quark confinement, explore the nature ofquark-gluon plasma, and probe the fundamental symmetries of the universe. Each revelation brings us closer to unraveling the enigma of quark beauty, unveiling theprofound mysteries that lie at the heart of existence.In conclusion, the beauty of quarks transcends the confines of empirical observation, manifesting in their intrinsic properties, dynamic interactions, and theoretical elegance. As we delve deeper into the fabric of reality, we uncover the profound mysteries that lie at the heart of quark beauty, offering glimpses into the underlying unity and harmony of the cosmos. In the intricate dance of subatomic particles, quarks emerge as celestial artisans, sculpting the very essence of existence with their ethereal beauty.。
中国高等科学技术中心
Working session5主持人:庄鹏飞清华大学
9:00-9:40
徐喆
德国Frankfurt大学
QCD plasmathermalization and collective flow
effects
9:40-10:20
萨本豪
中国原子能科学研究院
Relativistic nuclear collision in pQCD framework(2)
11:15-11:55
张卫宁
哈尔滨工业大学
HBT之谜与QGP颗粒源信号
11:55-14:00
--------------------Lunch--------------------
Working session7主持人:侯德富华中师范大学粒子所
14:00-14:40
黄焕中
美国加州大学洛山矶分校
Recent STAR results at QM08
Working session3主持人:王凡南京大学物理系
14:00-14:40
刘玉鑫
北京大学物理学院
Phase Transition of QCD and Strong Interaction Matter
14:40-15:20
张一
上海师范大学物理系
K/pi ratio as a hard probe in RHIC
10:35-11:15
李笑梅
中国原子能科学研究院
PHENIX activities in China
11:15-11:55
黄柄矗
中国科技大学近代物理系
J/-h correlation and J/from B decay
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The discovery of the top quark makes the fermion spectrum in the standard model complete. We are now puzzled by the pattern of the mass spectrum in the standard model (SM) (Fig.1), as we were thirty years ago by the spectrum of hadrons. However, history does not repeat itself without some varieties. Obviously, the masses of quarks and leptons are regulated by mass ratios (hierarchy), instead of mass differences in the case of hadrons. Dr. Tanaka has just reviewed some previous works in resolving this puzzle. I here would like to present an alternative approach which relates this puzzle to the structure of the Higgs sector, a sector yet completely in the dark. So far, no electroweak scalar (Higgs) has ever been found. However, the best limits are only set for the minimal standard model Higgs boson. For a more complicated spectrum of scalar particles (why are there not many scalars, while there are so many fermions ?), only one mass eigenstate, which is in the direction of the physical vacuum, has dimension three couplings with the weak gauge bosons; all the other Higgs particles, if they exist, are orthogonal to this single state and possess only dimension four couplings with gauge bosons, and therefore are more difficult to discover. The main feature of this approach is to use a natural global symmetry of the standard gauge-fermion interaction sector to protect the small matrix elements in the mass matrices of the quarks. The basic ideas behind this approach[1,2] are the following: 1. Approximate global symmetry which is non-abelian in order to be more restrictive. 2. Multi-Higgs doublets with different vacuum expectation values (VEVs) contribute to dif1
ferent mass terms. 3. The naturalness principle which is engaged to control the sizes of the coupling constants whose ratios are at the order of 100 . 4. Rich scalar spectrum with a bunch of pseudo-Nambu-Goldstone bosons (PNGB). Approximate global symmetries have been found in strong interactions. I-spin, chiral SU (3) × SU (3) and G-parity, to name just a few. These global symmetries are inexact. In the example of SU (3) × SU (3) chiral symmetry, it is a common belief that symmetry breaking comes from both the existence of a non-trivial QCD vacuum and the existence of the current quark masses. The former is called spontaneous symmetry breaking (SSB); and the latter, explicit symmetry breaking (ESB). A pattern was emerged from the relevant studies: While gauge symmetries are regarded as exact and dynamical symmetries, global symmetries are regarded as inexact and accidental. ESB of global symmetries are assumed ad hoc in the effective Lagrangain, although the ESB itself may be the effect of another SSB at a higher scale, as in the case of current masses of quarks in the chiral theory of light hadrons. The specific global symmetry we use is G = SU (3) × U (1), where 3 corresponds to three generations and the extra U (1) is an overall phase transition. Left-handed quarks are in a triplet (3), in addition to being in SU (2)L doublets. Right-handed quarks are in two antitriplets (3∗ ). The global U (1) quantum number is also assigned differently for the left and right handed fields. A Higgs triplet and a Higgs sextet, which are also weak doublets, are introduced to provide two different vacuum expectation values. These VEVs spontaneously break the G symmetry down to a U (1), because in the chosen parameter space the two VEVs are perpendicular to each other. It should be emphasized that the Yukawa sector does not respect exact global symmetry. There are terms with smaller symmetries. These terms partially break the global symmetry. Since the ESB terms introduced in the Yukawa sector are dimension-4 operators, induced symmetry breaking terms in the Higgs potential are divergent (Fig. 2). Therefore corresponding ESB must also be introduced in the Higgs sector in order to provide counter terms to these divergences. Typically, the mass matrices produced directly by the Yukawa sector through SSB are only the main texture. For example, the mass matrix for the up type quarks is 0 0 0 0 G1 v ′ MU = 0 . ′ 0 −G1 v G0 v 2
(1)
That for down type quarks is MD 0 0 0 0 G3 v ′ = 0 . ′ 0 −G3 v G2 v
(2)
Here v is the VEV of the sextet Higgs and v ′ is the VEV of the triplet Higgs. We assume v : v ′ ∼ 1 : 0.4. Gα with α = 0, 1, 2, 3 are the Yukawa coupling constants which share sequentially smaller symmetries. Approximately, the ratios of these couplings are G0 : G1 ∼ 5 , G1 : G2 ∼ 7 , G2 : G3 ∼ 2.5. (3)