专题39 离散型随机变量的分布列、均值与方差(解析版)

合集下载

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。

离散型随机变量的均值与方差

离散型随机变量的均值与方差

课堂互动讲练
(3)设技术革新后的三等品率为x, 则此时1件产品的平均利润为 Ex=6×0.7+2×(1-0.7-0.01-x)+ x+(-2)×0.01 =4.76-x(0≤x≤0.29),9分 依题意,Ex≥4.73, 即4.76-x≥4.73, 解得x≤0.03. 所以三等品率最多为3%. 12分
课堂互动讲练
(2)EY=E(2X+3)=2EX+3 =2×(-13)+3=73; DY=D(2X+3)=4DX=4×59=290. 【名师点评】 ξ是一个随机变 量,则η=f(ξ)一般仍是一个随机变 量,在求η的期望和方差时,要应用期 望和方差的性质.
课堂互动讲练
考点四 均值与方差的实际应用
利用期望和方差比较随机变量的 取值情况,一般是先比较期望,期望 不同时,即可比较出产品的优劣或技 术水平的高低,期望相同时,再比较 方差,由方差来决定产品或技术水平 的稳定情况.
课堂互动讲练
P(X≥7)=P(X≤3) =12×[1-P(3<X<7)], =12×(1-0.9544)=0.0228, ∵P(4<X<6)=0.6826, ∴P(5<X<6)=12P(4<X<6) =0.3413.
课堂互动讲练
考点二 求离散型随机变量的期记与方差
求离散型随机变量X的均值与方差 的步骤:
课堂互动讲练
(1)求q2的值; (2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投 篮得分超过3分与选择上述方式投篮 得分超过3分的概率的大小.
课堂互动讲练
【思路点拨】 首先由P(ξ=0)= 0.03计算出q2,从而可写出分布 列.本题便可求解.
【解】 (1)由题设知,“ξ=0”对 应的事件为“在三次投篮中没有一次投 中”,由对立事件和相互独立事件性质 可知

考点51 离散型随机变量的分布列、均值与方差解析

考点51  离散型随机变量的分布列、均值与方差解析

考点51 离散型随机变量的分布列、均值与方差【考纲要求】要会求与现实生活有密切联系的离散型随机变量的分布列,掌握两点分布与超几何分布列,并会应用.理解取有限个值的离散型随机变量的均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.【命题规律】离散型随机变量的期望与方差的应用,是高考的重要考点,不仅考查学生的理解能力与数学计算能力,而且不断创新问题情境,突出学生运用概率、期望与方差解决实际问题的能力,以解答题为主,中等难度.【典型高考试题变式】随机变量X 的分布列和数学期望例1.(2021年高考浙江卷15)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________. 【答案】(1)1;(2)89. 【分析】根据古典概型的概率公式即可列式求得,m n 的值,再根据随机变量ξ的分布列即可求出()E ξ. 【解析】2244224461(2)366m n m n m n C P C C C ξ++++++====⇒=,∴49m n ++=, ()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=, ∴2n =, 则1m n -=. 由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯==========, 155158()2106918399E ξ∴=⨯+⨯+⨯=+=,故答案为:1;89.【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布均值与方差公式可得A 正确.【变式1:改变条件】【2022河南·高三月考(理)】某专业资格考试包含甲、乙、丙3个科目,假设小张甲科目合格的概率为34,乙、丙科目合格的概率相等,且3个科目是否合格相互独立.设小张3科中合格的科目数为X ,若()3316P X ==,则()E X =______. 【答案】74【分析】设乙、丙科目合格的概率均为p ,则()2333416P X p ===,解方程可得p ,进而可得分布列及期望.【解析】乙、丙科目合格的概率相等,可设乙、丙科目合格的概率均为p ,则()2333416P X p ===,解得12p =,故()1130111224161P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1131131131111111224224224156P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+⨯-⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()1131131132111224722422416P X ⎛⎫⎛⎫⎛⎫==⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故分布列为:期望()157370123161616164E X =⨯+⨯+⨯+⨯=. 【变式2:改编条件和结论】【2022山东·肥城市教学研究中心模拟预测】某校数学兴趣小组,在研究随机变量的概率分布时,发现离散型随机变量的取值与其概率的函数关系为()()1010,1,2,,10kP X k C k m===⋅⋅⋅(m 为参数),则这个随机变量X 的数学期望()E X =___________. 【答案】5【分析】由离散型随机变量分布列性质概率和为1得到m ,利用期望计算公式得()()011010101010101102E X C C C =⨯⨯+⨯+⋅⋅⋅+⨯,再利用倒序相加可得答案. 【解析】由离散型随机变量分布列性质:012101010101011111C C C C m m m m+++⋅⋅⋅+=,得102m =, ∴()()011010101010101102E X C C C =⨯⨯+⨯+⋅⋅⋅+⨯,① ()1091010101010101(10910)2E X C C C C =⨯+⨯+⋅⋅⋅+⨯+⨯,② 由① +②得: ()01101010101012[(010)(19)(010)]2E X C C C =+⨯++⨯+⋅⋅⋅++⨯011010101010101011[10()]1021022C C C =⨯++⋅⋅⋅+=⨯⨯=, ∴()5E X =.例2.(2021新高考Ⅰ卷18)(12分)某学校组织“一带一路”知识竞赛,有,A B 两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由. 【答案】(1)见解析;(2)B 类.【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可. 【解析】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=,()()200.810.60.32P X ==-=,()1000.80.60.48P X ==⨯=.∴X 的分布列为(2)由(1)知,()00.2200.321000.4854.4E X=⨯+⨯+⨯=.若小明先回答B问题,记Y为小明的累计得分,则Y的所有可能取值为0,80,100.()010.60.4P Y==-=,()()800.610.80.12P Y==-=,()1000.80.60.48P X==⨯=.∴()00.4800.121000.4857.6E Y=⨯+⨯+⨯=,∵54.457.6<,∴小明应选择先回答B类问题.【名师点睛】求离散型随机变量概率分布列及数学期望是理科高考数学的必考题型.求离散型随机变量概率分布列问题时,首先要清楚离散型随机变量的所有可能取值,及随机变量取这些值时所对应的事件的概率,计算出概率值后即可列出离散型随机变量的概率分布列,最后按照数学期望的公式计算出数学期望.【变式1:改变条件】本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按l小时计算).有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付租车费用相同的概率,(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ.【解析】(1)所付费用相同即为0,2,4元.设付0元为1111 428P=⨯=,付2元为2111 248P=⨯=,付4元为3111 4416P=⨯=.则所付费用相同的概率为1231115 881616P P P P=++=++=.(6分)(2)设甲、乙所付费用之和为ξ,ξ可为0,2,4,6,8,()()()()()108111152442216111111544424241611113644241611184416P P P P P ξξξξξ====⨯+⨯===⨯+⨯+⨯===⨯+⨯===⨯=ξ的分布列为155317024688161616162E ξ=⨯+⨯+⨯+⨯+⨯=.【变式2:改编条件和结论】某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.(1)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A ,求事件A 的概率()P A ;(2)设X 为选出的4人中女生的人数,求随机变量X 的分布列和数学期望.【解析】(1)由已知,得()2222233348635C C C C P A C +==,所以事件A 的概率为635 (2)随机变量X 的所有可能取值为1,2,3,4.由已知得()()453481,2,3,4k kC C P X kk C -===.所以随机变量X 的分布列为:随机变量X 的数学期望()1331512341477142E X =⨯+⨯+⨯+⨯=. 【变式3:改编条件和结论】【2022广东茂名·高三月考】接种新冠疫苗,可以有效降低感染新冠肺炎的几率,某地区有A ,B ,C 三种新冠疫苗可供居民接种,假设在某个时间段该地区集中接种第一针疫苗,而且这三种疫苗的供应都很充足,为了节省时间和维持良好的接种秩序,接种点设置了号码机,号码机可以随机地产生A ,B ,C 三种号码(产生每个号码的可能性都相等),前去接种第一针疫苗的居民先从号码机上取一张号码,然后去接种与号码相对应的疫苗(例如:取到号码A ,就接种A 种疫苗,以此类推).若甲,乙,丙,丁四个人各自独立的去接种第一针新冠疫苗.(1)求这四个人中恰有一个人接种A 种疫苗的概率;(2)记甲,乙,丙,丁四个人中接种A 种疫苗的人数为X ,求随机变量X 的分布列和数学期望. 【答案】(1)3281;(2)分布列见解析;期望为43.【分析】(1)记四个人中恰有一个人接种A 疫苗的事件为M ,则()5141233P M C ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(2)1~4,3X B ⎛⎫⎪⎝⎭,然后算出答案即可.【解析】(1)记四个人中恰有一个人接种A 疫苗的事件为M ,则()51412323381P M C ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,∴四个人中恰有一个人接种A 疫苗的概率为3281. (2)由题意可知,X 的取值依次为0,1,2,3,4.且1~4,3X B ⎛⎫ ⎪⎝⎭,()()44120,1,2,3,433k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故随机变量X 的分布列为()43E X np ==.【数学思想】①数形结合思想.②函数方程思想.③转化与化归思想. 【温馨提示】①所谓随机变量,就是试验结果和实数之间的一个对应关系,这与函数概念本质上是相同的,只不过在函数概念中,函数f (x )的自变量是实数x ,而在随机变量的概念中,随机变量X 的自变量是试验结果.②分布列的结构为两行,第一行为随机变量X 所有可能的取值,第二行是对应于随机变量X 的值的事件发生的概率.在每一列中,上为“事件”,下为事件发生的概率,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.③正确理解独立重复试验与独立事件间的关系.【典例试题演练】 一、单选题1.(2022浙江·模拟预测)林老师等概率地从1~3中抽取一个数字,记为X ,叶老师等概率地从1~5中抽取一个数字,记为Y ,已知1215()215E XY p p p =+++,其中k p 是XY k =的概率,其中115k ≤≤,则E (XY )=( ) A .3 B .5 C .6 D .8【答案】C【分析】首先求出()E X 、()E Y ,再根据X 与Y 相互独立,即可得到()()()E XY E X E Y =⨯计算可得;【解析】解:依题意()()()11233P X P X P X ======,()()()()()1123455P Y P Y P Y P Y P Y ==========,∴()1111232333E X =⨯+⨯+⨯=,()1111112345355555E Y =⨯+⨯+⨯+⨯+⨯=,∵X 与Y 相互独立,∴()()()6E XY E X E Y =⨯=,故选C .2.(2022浙江·模拟预测)随机变量ξ满足分布列如下:则随着b 的增大( )A .()E ξ增大,()D ξ越来越大B .()E ξ增大,()D ξ先增大后减小C .()E ξ减小,()D ξ先减小后增大 D .()E ξ增大,()D ξ先减小后增大 【答案】B【分析】结合分布列的性质求出a 的值以及b 的范围,然后根据期望与方差的概念表示出期望与方差,结合函数的性质即可得出结论. 【解析】∵21a b a a b -+++=,∴14a =, 又∵10121014b b ⎧<-<⎪⎪⎨⎪<+<⎪⎩,解得1142b -<<,∴3()2224E a a b b ξ=++=+,随着b 的增大,()E ξ增大;222231115111()(2)()(2)(2)()442444416D b b b b b b b ξ=+-+-⨯+-+=-++,∵1142b -<<,∴()D ξ先增大后减小.故选B .3.(2022·全国·高三专题练习)已知随机变量~(,)X B n p ,()2E X =,2()3D X =,则(2)P X ≥=( ) A .2027B .23C .1627 D .1327【答案】A【分析】根据()2E X =,2()3D X =,可得,n p ,然后简单计算即可. 【解析】由题可知: ()2E X np ==,()2()13D X np p =-=,∴23,3n p == ∴23233321220(2)33327P X C C ⎛⎫⎛⎫≥=⋅⋅+⋅=⎪ ⎪⎝⎭⎝⎭,故选A . 4.(2022·全国·高三专题练习)某市有,,,A B C D 四个景点,一位游客来该市游览,已知该游客游览A 的概率为23,游览,B C 和D 的概率都是12,且该游客是否游览这四个景点相互独立.用随机变量X 表示该游客游览的景点的个数,则下列判断不正确的是( )A .游客至多游览一个景点的概率是1724B .3(2)8P X ==C .1(4)12P X == D .13()6E X =【答案】A【分析】利用相互独立事件的概率公式和互斥事件的概率和来判断A ;由题意得随机变量X 的可能取值,计算对应的概率值,求出数学期望,来判断BCD . 【解析】记该游客游览i 个景点为事件i A ,0,1i =, 则()0211111111322224P A ⎛⎫⎛⎫⎛⎫⎛⎫=----= ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,()321132121151113232224P A C ⎛⎫⎛⎫⎛⎫=-+-⋅⋅-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴游客至多游览一个景点的概率为()()0115124244P A P A +=+=,故A 错误; 随机变量X 的可能取值为0,1,2,3,4;()01(0)24P X P A ===,()15(1)24P X P A ===, 213211(2)1322P X C ⎛⎫==⨯⨯⨯- ⎪⎝⎭2232113113228C ⎛⎫⎛⎫⎛⎫+-⨯⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 正确;223211(3)1322P X C ⎛⎫⎛⎫==⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭33317122423C ⎛⎫⎛⎫+-⨯⨯=⎪ ⎪⎝⎭⎝⎭, 3211(4)3212P X ⎛⎫==⨯= ⎪⎝⎭,故C 正确;数学期望为:1597()012324242424E X =⨯+⨯+⨯+⨯2134246+⨯=,故D 正确,故选A . 5.(2022浙江·高三月考)已知随机变量X 的分布列如下表:其中0,0a b >>,则X 的方差()D X 取值范围是( ) A .15,44⎛⎫⎪⎝⎭B .15,44⎛⎤ ⎥⎝⎦C .1,14⎛⎤ ⎥⎝⎦D .1,14⎛⎫ ⎪⎝⎭【答案】D【分析】由分布列的性质与方差的计算公式,结合二次函数的性质即可求解【解析】由题意可知:12a b +=,()11()10122E X a b a a a b b =-⨯+⨯+⨯=-+=-++=, ()()()2221()1012D X b a b b b =+⨯+-⨯+-⨯()()()222112102122b b b b b b b ⎛⎫=++⨯-+-⨯+-+⨯ ⎪⎝⎭2215124b b b ⎛⎫=--+=-++ ⎪⎝⎭,设()21524g b b ⎛⎫=-++ ⎪⎝⎭,∵102b <<,()g b 在1,2⎛⎫-+∞ ⎪⎝⎭单调递减,()1101,24g g ⎛⎫== ⎪⎝⎭,∴1()14D X <<, ∴方差()D X 取值范围是1,14⎛⎫⎪⎝⎭,故选D .6.(2022河北邢台·高三月考)已知随机变量ξ服从正态分布N (3,4),若(21)(21)P c P c ξξ>+=<-,则c 的值为( )A .32B .2C .1D .12【答案】A【分析】利用正态分布的对称性求得c 的值.【解析】由正态分布的对称性知,(21)33(21)c c +-=--,得32c =.故选A . 7.(2022浙江·乐清市知临中学高三月考)已知袋中有4个红球,3个黄球,2个绿球.现从中任取2个球,记取到的红球的个数为ξ,则()E ξ=( ) A .518 B .59C .79D .89【答案】D【分析】根据题意,直接写出分布列,套公式求出数学期望. 【解析】ξ的所有可能取值:0,1,2.()252954509818C P C ξ⨯====⨯;()11452954101981821C C P C ξ⨯====⨯⨯; ()242943329818C P C ξ⨯====⨯.∴51038()012=1818189E ξ=⨯+⨯+⨯.故选D .8.(2022江苏省苏州中学园区校高三月考)已知*,,x y z N ∈,且10x y z ++=,记随机变量ξ为x ,y ,z 中的最大值,则()E ξ=( )A .103B .143C .5D .173【答案】D【分析】先求出方程的全部正整数解,即基本事件总数,ξ为x ,y ,z 中的最大值,则ξ可能的取值为4,5,6,7,8,然后分别求出对应的概率即可.【解析】根据隔板法,将10看做10个完全相同的小球排成一排,中间形成的9个空,放入两块隔板,可求得10x y z ++=正整数解有2936C =组,ξ可能的取值为4,5,6,7,8,不妨设{}max ,,x x y z =,则x ξ=,下分类讨论:8x =, (,,)(8,1,1)x y z =;7x =,(,,)(7,1,2),(7,2,1)x y z =;6x =, (,,)(6,1,3),(6,3,1),(6,2,2)x y z =;5x =, (,,)(5,1,4),(5,4,1),(5,2,3),(5,3,2)x y z =;4x =, (,,)(4,3,3),(4,4,2)x y z =.但根据,,x y z 的对称性,上述每一组解的结果数还要乘以3,于是则有: 31(8)3612P ξ===,61(7)366P ξ===,91(6)364P ξ===,121(5)363P ξ===,61(4)366P ξ===, 于是()1111117876541264363E ξ=⋅+⋅+⋅+⋅+⋅=,故选D . 二、填空题9.(2022浙江·慈溪中学高三期中)袋中装有大小相同的2个红球和1个黄球,小明无放回地连续摸取2次,每次从中摸取1个.记摸到红球的个数为ξ,则()1P ξ==______,()E ξ=______【答案】23 43【分析】分析可知随机变量ξ的可能取值有1、2,求出随机变量ξ在不同取值下的概率,进而可求得结果. 【解析】随机变量ξ的可能取值有1、2,则()1223213C P C ξ===,()2223123C P C ξ===,∴()21412333E ξ=⨯+⨯=.故答案为:23;43.10.(2022浙江省三门中学高三期中)已知A 袋内有大小相同的1个红球和3个白球,B 袋内有大小相同的1个红球和2个白球.现从A 、B 两个袋内各任取2个球,则恰好有1个红球的概率为___________.记取出的4个球中红球的个数为随机变量X ,则X 的数学期望为___________. 【答案】1276【分析】根据离散型随机变量分布列直接计算即可.【解析】恰好有1个红球的概率11221113321222224343C C C C C C 11121+=+C C C C 23232P ⋅⋅=⋅⨯⨯=, 取出的4个球中红球的个数X 的可能取值为:0,1,2,()22322243C C 10C C 6P X ==⨯=,()112P X ==,()111113122243C C C C 12=C C 3P X ==⋅,分布列如下表:期望()11170126236E X =⨯+⨯+⨯=,故答案为:12,76.11.(2022浙江·高三期中)将2名科学家和3名航天员从左到右排成一排合影留念,用ξ表示两名科学家之间的航天员人数,则()E ξ=_______,()D ξ=_______. 【答案】1 1【分析】根据题意可得ξ的所有可能取值为0,1,2,3,求出对应的概率,进而求出()E ξ和2()E ξ,根据()()()22D E E ξξξ=-计算即可.【解析】ξ的所有可能取值为0,1,2,3.()424255205A A p A ξ===;()123323553110C A A p A ξ===;()2222322255125C A A A p A ξ===;()2323551310A A p A ξ===.得()231101231510510E ξ=⨯+⨯+⨯+⨯=,∴()2231101492510510E ξ=⨯+⨯+⨯+⨯=,∴()()()221D E E ξξξ=-=.故答案为:1;1.12.(2022浙江·高三月考)一个袋中共有10个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79,则白球的个数为________,现采用有放回方式从袋中依次任意摸出3个球,记得到白球的个数为ξ,则()E ξ=__________. 【答案】532【分析】设白球的个数为y ,根据条件得出至少得到1个白球的概率2111021079y y yC C C C-+=,解出y ,由题设知ξ服从二项分布,即1(3,)2B ξ,由二项分布的期望公式()E np ξ=,即得解【解析】设白球的个数为y ,又从袋中任意摸出2个球,至少得到1个白球的概率是79,则2111021079y y yC C C C -+= ,即(1)(10)72945y y y y -+-=, 整理可得:21970(5)(12)0y y y y -+=--=, 解得5y =或12y =(舍去),采用有放回方式从袋中依次任意摸出3个球,从中任意摸一个球为白球的概率为51102= 即ξ服从二项分布1(3,)2B ξ,由二项分布的期望公式13()322E ξ=⨯=,故答案为:5,32. 13.(2022浙江·模拟预测)一质点从ABC 的顶点A 出发,每次随机沿一条边运动至另一个顶点时终止,则质点3次运动结束后恰好位于顶点A 的概率P =______,记质点 4次运动过程中经过顶点B (包括第4次运动结束)的次数是X ,则()E X =______.【答案】142316【分析】由质点3次运动,共有2228⨯⨯=种情况,列举质点3次运动结束后恰好位于顶点A 的情况,由古典概型概率求解; 易知记质点 4次运动过程中经过顶点B (包括第4次运动结束)的次数是X ,X 的所有可能取值为0,1,2,分别求得相应概率,列出分布列,再求期望.【解析】由题意可知:质点3次运动,共有2228⨯⨯=种情况,其中质点3次运动结束后恰好位于顶点A ,有A C B A →→→,A B C A →→→,2种情况,∴质点3次运动结束后恰好位于顶点A 的概率2184P ==;记质点 4次运动过程中经过顶点B (包括第4次运动结束)的次数是X ,X 的所有可能取值为0,1,2质点4次运动,共有222216⨯⨯⨯=种情况, 当X =0时,A C A C A →→→→,共有1种情况, 故()1016p X ==; 当X =1时,A B A C A →→→→, A B C A C →→→→, A C A B A →→→→, A C A B C →→→→,A C A CB →→→→,AC B A C →→→→, A C B C A →→→→,共有7种情况,故()7116p X ==故()1712116162p X ==--= ∴X 的分布列为:()171230121616216E X =⨯+⨯+⨯=. 故答案为:123;416.14.(2022浙江·高三开学考试)从装有除颜色外完全相同的m 个白球和4个黑球的布袋中随机摸取一球,有放回的摸取3次,记摸得白球个数为X ,若()1E X =,则m =___________,()2P X ==___________.【答案】2 29【分析】根据已知条件,可知X 服从二项分布,由二项分布的期望公式可求出m ,进而可得()2P X =. 【解析】解:由题意,~3,4m X B m ⎛⎫ ⎪+⎝⎭,∵()1E X =,∴314m m ⨯=+,解得2m =,∴()2231222339P X C ⎛⎫==⨯= ⎪⎝⎭. 故答案为:2,29.15.(2022浙江·高三开学考试)抛掷三枚质地均匀的硬币,则事件“恰好有两枚硬币正面朝上”的概率为___________,记正面朝上的硬币枚数为随机变量ξ,则ξ的数学期望是___________. 【答案】3832【分析】硬币每次正面朝上的概率都为12,结合二项分布的概念和性质即可得出结果. 【解析】由题意知,硬币每次正面朝上的概率都为12,ξ服从二项分布132B ξ⎛⎫ ⎪⎝⎭,,∴P (恰好有两枚硬币正面朝上)=223113C 228⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,13()322E ξ=⨯=.故答案为:①38,②32.16.(2022浙江金华·高三月考)一个布袋中装有6个大小质地相同的小球,颜色3白2黑1红,从中任意取出2球,记取到白球每个得1分,取到黑球每个得2分,取到红球每个得3分,设取出的2球得分总和为X .则()E X =______. 【答案】103【分析】分析可知随机变量X 的可能取值有2、3、4、5,计算出随机变量X 在不同取值下的概率,进而可求得()E X 的值.【解析】由题意可知,随机变量X 的可能取值有2、3、4、5,()2326125C P X C ===,()113226235C C P X C ===,()1232264415C C P X C +===,()12262515C P X C ===,因此,()12421023455515153E X =⨯+⨯+⨯+⨯=.故答案为:103.17.(2022浙江丽水·高三期中)一个袋子中有6个大小相同的球,其中2个黄球,4个红球.规定:取出一个黄球得2分,取出一个红球得1分.现随机从袋中有放回地取3次球(每次一个),记3次取球得分之和为随机变量X ,则()E X =________. 【答案】4【分析】分析可知随机变量X 的可能取值有3、4、5、6,计算出随机变量X 在不同取值下的概率,进而可求得()E X 的值.【解析】由题意可知,随机变量X 的可能取值有3、4、5、6,()3283327P X ⎛⎫=== ⎪⎝⎭,()2132144339P X C ⎛⎫==⋅= ⎪⎝⎭,()2231225339P X C ⎛⎫==⋅⋅= ⎪⎝⎭, ()3116327P X ⎛⎫===⎪⎝⎭,∴()842134564279927E X =⨯+⨯+⨯+⨯=.故答案为:4. 18.(2022浙江·模拟预测)有编号分别为1、2、3、4、5的5个红球和5个黑球,从中取出4个,设其中编号相同的球的对数为ξ,则()E ξ=____________. 【答案】23【分析】分析可知,ξ的可能取值有0、1、2,计算出随机变量ξ在不同取值下的概率,可求得随机变量ξ的数学期望值.【解析】分析可知,ξ的可能取值有0、1、2,则()44541028021C P C ξ⋅===,()122544102417C C P C ξ⋅===,()254101221C P C ξ===, 因此,()8412012217213E ξ=⨯+⨯+⨯=.故答案为:23. 19.(2022山东·安丘市普通教育教学研究室高三月考)随机变量X 的概率分布列如下:则a =___________. 【答案】64【分析】根据概率和为1列式求解即可.【解析】根据概率分布列的概率性质可知12666656646311111111C C C C C C a a a a a a a++++++=, ∴()1266660345666611C C C C C C C a ++++++=,即6121a⨯=,解得64a =. 故答案为:64.20.(2022江苏·高三月考)若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.【答案】3(答案不唯一)【分析】由二项分布的期望公式可得()*1N 3E X n =∈,写出一个符合条件n 的值即可.【解析】∵随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,∴()*1N 3E X n =∈,∴一个符合条件的3n =,故答案为:3(答案不唯一). 三、解答题:21.(2022广西桂林·模拟预测(理))已知火龙果的甜度一般在11~20度之间,现某火龙果种植基地对在新、旧施肥方法下种植的火龙果的甜度作对比,从新、旧施肥方法下种植的火龙果中各随机抽取了100个火龙果,根据水果甜度(单位:度)进行分组,若按[11,12),[12,13),[13,14),[14,15),[15,16),[16,17),[17,18),[18,19),[19,20]分组,旧施肥方法下的火龙果的甜度的频率分布直方图与新施肥方法下的火龙果的甜度的频数分布表如下所示,若规定甜度不低于15度为“超甜果”,其他为“非超甜果”.甜度 [11,12) [12,13) [13,14) [14,15) [15,16) [16,17) [17,18) [18,19) [19,20]新施肥方法下的火龙果的甜度的频数分布表(1)设两种施肥方法下的火龙果的甜度相互独立,记M 表示事件:“旧施肥方法下的火龙果的甜度低于15度,新施肥方法下的火龙果的甜度不低于15度”,以样本估计总体,求事件M 的概率.(2)根据上述样本数据,列出22⨯列联表,并判断是否有99.5%的把握认为是否为“超甜果”与施肥方法有关?(3)以样本估计总体,若从旧施肥方法下的100个火龙果中按“超甜果”与“非超甜果”的标准划分,采用分层抽样的方法抽取5个,再从这5个火龙果中随机抽取2个,设“超甜果”的个数为X ,求随机变量X 的分布列及数学期望. 附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)0.39;(2)列联表见解析;有99.5%的把握认为是否为“超甜果”与施肥方法有关;(3)分布列见解析;期望为45.【分析】(1)首先根据频率分布表,计算新,旧方法下的火龙果的甜度不低于15度的频率,再利用独立事件概率求()P M ;(2)由题意可得22⨯列联表,求计算2K ,再根据临界值,即可判断;(3)由题意可得随机变量X 的所有可能取值为0,1,2,再利用超几何概率分布,求分布列和数学期望.【解析】(1)记A 表示事件:“旧施肥方法下的火龙果的甜度低于15度”,B 表示事件:“新施肥方法下的火龙果的甜度不低于15度”,则有()()()()P M P AB P A P B ==.由频率分布直方图可知旧施肥方法下的火龙果的甜度低于15度的频率为(0.10.1520.2)10.6+⨯+⨯=. 由频数分布表可知新施肥方法下的火龙果的甜度不低于15度的频率为1614181250.65100++++=.故事件M 的概率为0.650.60.39⨯=. (2)依题意可得到列联表22200(60653540)95105100100K ⨯⨯-⨯=⨯⨯⨯500012.5317.879399=≈>, 故有99.5%的把握认为是否为“超甜果”与施肥方法有关.(3)旧施肥方法下的100个火龙果中,“非超甜果”为60个,“超甜果”为40个,按分层抽样的方法随机抽取5个,则抽取的“非超甜果”为3个,“超甜果”为2个,∴随机变量X 的所有可能取值为0,1,2,2032253(0)10C C P X C ===,1132253(1)5CC P X C ===,2225C 1(2)C 10P X ===, 随机变量X 的分布列为数学期望3314()012105105E X =⨯+⨯+⨯=. 22.(2022重庆市第七中学校高三期中)2020年8月,习近平总书记对制止餐饮浪费行为作出重要指示,要求进一步加强宣传教育,切实培养节约习惯,在全社会营造浪费可耻、节约光荣的氛围.为贯彻总书记指示,大庆市某学校食堂从学生中招募志愿者,协助食堂宣传节约粮食的相关活动.现已有高一63人,高二42人,高三21人报名参加志愿活动.根据活动安排,拟采用分层抽样的方法,从已报名的志愿者中抽取12名志愿者,参加为期20天的第一期志愿活动.(1)第一期志愿活动需从高一、高二、高三报名的学生中各抽取多少人?(2)现在要从第一期志愿者中的高二、高三学生中抽取4人去粘贴宣传标语,设这4人中含有高二学生X 人,求随机变量X 的分布列和期望;(3)食堂每天约有400人就餐,其中一组志愿者的任务是记录学生每天倒掉的剩菜剩饭的重量(单位:公斤),以10天为单位来衡量宣传节约粮食的效果.在一个周期内,这组志愿者记录的数据如下:前10天剩菜剩饭的重量为:24.125.224.523.623.424.223.821.523.521.2; 后10天剩菜剩饭的重量为:23.221.520.821.320.419.420.219.320.618.3, 借助统计知识,分析宣传节约粮食活动的效果.【答案】(1)高一抽取6人,高二抽取4人,高三抽取2人;(2)分布列见解析,数学期望为83;(3)宣传节约粮食活动的效果很好.【分析】(1)利用分层抽样成比例即可获解;(2)利用超几何分布列出分布列即可获解; (3)比较平均数即可.【解析】(1)报名的学生共有126人,抽取的比例为12212621=, ∴高一抽取263621⨯=人,高二抽取242421⨯=人,高三抽取221221⨯=人. (2)机变量X 的取值为2,3,4,22424662(2)155C C P X C ====,3142468(3)15C C P X C ===,4042461(4)15C C P X C ===. ∴随机变量X 的分布列为()=⨯+⨯+⨯=2818234515153E X (3)前24.1+25.2+24.5+23.6+23.4+24.2+23.8+21.5+23.5+21.2==23.510X ,后23.2+21.5+20.8+21.3+20.4+19.4+20.2+19.3+20.6+18.3==20.510X ,∴前10天的平均值为23.5,后10天的平均值为20.5,且20.523.5<,∴宣传节约粮食活动的效果很好.23.(2022湖南·益阳市箴言中学高三月考)为了增强学生的身体素质,我校已经将冬天长跑作为一项制度固定下来,每天大课间例行跑操.为了调查学生喜欢跑步是否与性别有关,高三年级特选取了200名学生进行了问卷调查,得到如下的22⨯列联表:已知在这200名学生中随机抽取1人抽到喜欢跑步的概率为0.6. (1)判断是否有90%的把握认为喜欢跑步与性别有关?(2)从上述不喜欢跑步的学生中用分层抽样的方法抽取8名学生,再在这8人中抽取3人调查其喜欢的运动,用X 表示3人中女生的人数,求X 的分布列及数学期望 参考公式及数据:()()()()22()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)无90%把握认为喜欢跑步与性别有关; (2)分布列答案见解析,数学期望:34.【分析】(1)由200×0.6=120以及表中数据即可完善列联表,计算观测值,再利用独立性检验的基本思想即可求解;(2)根据分层抽样的抽样比可得随机变量的取值可能为0,1,2,再根据古典概率公式,得到的分布列,再利用数学期望的计算公式即可求解.【解析】(1)解:由题可知,200名学生中抽1人喜欢跑步的概率为0.6,故喜欢跑步的人有20006120⨯=.(人),不喜欢跑步的人有20012080-=(人).∴80,60,40,20a b c d ====,22200(80204060)15872711208014060K ⨯⨯-⨯=≈<⨯⨯⨯..,故无90%把握认为喜欢跑步与性别有关. (2)解:按分层抽样,设女生x 名,男生y 名,8802060x y ==, ∴不喜欢跑步的学生中女生2名,男生6名,故X 0=、1、2.利用古典概型求概率,()()()30122162262633388851530,1,2142828C C C C C C P X P X P X C C C ======⋅===⋅⋅,可检验:51531++=,故X 的分布列: ∴()5153213012142828284E X =⨯+⨯+⨯==. 24.(2022河南省实验中学高三月考(理))为推动实施健康中国战略,树立国家大卫生、大健康概念,手机APP 也推出了多款健康运动软件,如“微信运动”.张先生的微信朋友圈内有600位好友参与了“微信运动”,他随机选取了40位微信好友(女20人,男20人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下: 5860852073266798732584303216745311754986087536450729048501022397637988917664215980男性好友走路的步数情况可分为五个类别:A (02000-步)(说明:“02000-”表示大于等于0,小于等于2000,下同),B (20015000-步),C (50018000-步),D (800110000-步),E (10001步及以上),且,,B D E 三种类别入数比例为1:3:4,将统计结果绘制如图所示的条形图.若某人一天的走路步数超过8000步被系统认定为“卫健型”,否则被系统认定为“进步型”.(1)若以张先生选取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计张先生的微信好友圈里参与“微信运动”的600名好友中,每天走路步数在5001~10000步的人数;(2)请根据选取的样本数据完成下面的22⨯列联表并据此判断能否有0095以上的把握认定“认定类型”与“性别”有关?(3)若按系统认定类型从选取的样本数据中在男性好友中按比例选取10人,从该10人中再任意选取3人,记选到“卫健型”的人数为x ;女性好友中按比例选取5人,从该5人中再任意选取2人,记选到“卫健型”的人数为y ,求事件“1x y ->”的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,()20P K k0.10 0.05 0.025 0.0100k2.7063.841 5.024 6.635【答案】(1)375人;(2)列联表答案见解析,没有95%以上的把握认为“认定类型”与“性别”有关;(3)101240. 【分析】(1)根据题意结合频率直方图,通过列方程进行求解即可; (2)根据题中所给的数据、公式和表格进行运算判断即可;(3)求出不等式1x y ->的解,结合独立事件、和事件的概率公式进行求解即可. 【解析】(1)在样本数据中,男性好友B 类别设为x 人,则由题意可知:133420x x x ++++=,可知2x =,故B 类别有2人,D 类别有6人,E 类别有8人,走路步数在5001~10000步的包括C 、D 类别两类别共计9人;女性好友走路步数在5001~10000步共有16人.用样本数据估计所有微信好友每日走路步数的概率分布,则:91660037540+⨯=人;。

离散型随机变量的分布列及均值、方差

离散型随机变量的分布列及均值、方差

(2)方差
n
称 D(X)=
(xi-E(X))2pi
i=1
为随机变量 X 的方差,它刻画了随机变量 X 与其均
值 E(X)的 平均偏离程度 ,并称其算术平方根 DX为随机变量 X 的 标准差 .
4.均值与方差的性质 (1)E(aX+b)= aE(X)+b . (2)D(aX+b)= a2D(X) .(a,b 为常数)
题型一 分布列的求法 例 1 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,
在推出的第二季名师云课中,数学学科共计推出 36 节云课,为了更好地将课程
内容呈现给学生,现对某一时段云课的点击量进行统计:
点击量 [0,1 000] (1 000,3 000] (3 000,+∞)
节数
3 5
题型二 均值与方差 例 2 某投资公司在 2019 年年初准备将 1 000 万元投资到“低碳”项目上,现有 两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利 30%,也 可能亏损 15%,且这两种情况发生的概率分别为79和29;
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利 50%,可能 损失 30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115. 针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
3.离散型随机变量的均值与方差 一般地,若离散型随机变量 X 的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn (1)均值 称 E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变量 X 的均值或 数学期望 .它 刻画了离散型随机变量取值的 平均水平 .
【思维升华】 离散型随机变量的均值与方差的常见类型及解题策略 (1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布 列,然后利用均值、方差公式直接求解. (2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的 方程(组),解方程(组)即可求出参数值. (3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题 作出判断.

离散型随机变量的均值、方差和正态分布

离散型随机变量的均值、方差和正态分布

10.9 离散型随机变量的均值、方差和正态分布[知识梳理]1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)D (X )=∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2D(X )(a ,b为常数).3.两点分布与二项分布的均值、方差4.正态曲线(1)正态曲线的定义 函数φμ,σ(x )=12π·σe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线(μ是正态分布的期望,σ是正态分布的标准差).(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.5.正态分布(1)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x (即x=a ,x =b ,正态曲线及x 轴围成的曲边梯形的面积),则称随机变量X 服从正态分布,记作X ~N (μ,σ2).(2)正态分布的三个常用数据 ①P (μ-σ<X <μ+σ)=0.6826; ②P (μ-2σ<X <μ+2σ)=0.9544; ③P (μ-3σ<X <μ+3σ)=0.9974.[诊断自测] 1.概念思辨(1)随机变量不可以是负数,随机变量所对应的概率可以是负数,随机变量的均值不可以是负数.( )(2)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(选修A2-3P 68T 1)已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A.73 B .4 C .-1 D .1 答案 A解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.故选A. (2)(选修A2-3P 75A 组T 1)正态分布密度函数为 φμ,σ(x )=18πe -x 28,x ∈(-∞,+∞),则总体的平均数和标准差分别为()A .0和8B .0和4C .0和2D .0和 2答案 C解析 根据已知条件可知μ=0,σ=2,故选C.3.小题热身(1)(2015·山东高考)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 答案 B解析 P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,则P (3<ξ<6)=12×(95.44%-68.26%)=13.59%.故选B.(2)(2018·张掖检测)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75 答案 B解析 设涂0个面的小正方体有x 个,涂1个面的小正方体有y 个,涂2个面的小正方体有z 个,涂3个面的小正方体有w 个,则有0·x +1·y +2·z +3·w =25×6=150,所以E (X )=0·x 125+1·y 125+2·z125+3·w 125=150125=65.故选B.题型1 与二项分布有关的期望与方差典例(2017·山西太原模拟)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种,方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a 、b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖?解 (1)按方案a 抽奖一次,获得奖金的概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次. 此时中奖次数服从二项分布B ⎝ ⎛⎭⎪⎫3,110.设所得奖金为w 1元,则E (w 1)=3×110×30=9. 即顾客A 所奖资金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 1⎝⎛⎭⎪⎫2,110,由方案b 中奖的次数服从二项分布B 2⎝⎛⎭⎪⎫1,310,设所得奖金为w 2元,则E (w 2)=2×110×30+1×310×15=10.5. 若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 3⎝⎛⎭⎪⎫2,310.设所得奖金为w3元,则E(w3)=2×310×15=9.结合(1)可知,E(w1)=E(w3)<E(w2).所以顾客A应该按方案a抽奖两次,按方案b抽奖一次.方法技巧与二项分布有关的期望、方差的求法1.求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B(n,p),则用公式E(ξ)=np,D(ξ)=np(1-p)求解,可大大减少计算量.2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).冲关针对训练(2014·辽宁高考)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216.分布列为因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72.题型2 离散型随机变量的均值与方差角度1 求离散型随机变量的均值与方差典例(2016·山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×( 14×23×34×23+34×13×34×23 )=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×( 34×13×14×13+14×23×14×13 )=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×( 34×23×34×13+34×23×14×23 )=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 角度2 均值与方差的应用问题典例(2016·全国卷Ⅰ)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16、17、18、19、20、21、22,P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n =19.方法技巧1.求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ可能的全部值.(2)求ξ取每个值的概率.(3)写出ξ的分布列.(4)由均值的定义求E(ξ).(5)由方差的定义求D(ξ).2.由均值与方差情况求参数问题的求解思路先根据题设条件将均值、方差用待求参数表示,再由已知均值与方差构建关于参数的方程(组),然后求解.3.利用均值、方差进行决策的方法:均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两个随机变量均值相同或相差不大,则可通过分析两个变量的方差来研究随机变量的离散程度或者稳定程度,方差越小,则偏离均值的平均程度越小,进而进行决策.提醒:均值E(X)由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值的取值的平均水平.冲关针对训练(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)=2+1690=0.2,P(X=300)=3690=0.4,P(X=500)=25+7+490=0.4.因此X的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×0.4+(1200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.题型3正态分布典例(2015·湖南高考)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为() (附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544) A.2386 B.2718 C.3413 D.4772答案 C解析由曲线C为正态分布N(0,1)的密度曲线可知题图中阴影部分的面积为P(0<X≤1)=12×0.6826=0.3413,又题图中正方形面积为1,故它们的比值为0.3413,故落入阴影部分的点的个数的估计值为0.3413×10000=3413.故选C.[条件探究]若将本典例中条件“曲线C为正态分布N(0,1)的密度曲线”变为“曲线C为正态分布N(-1,1)的密度曲线”,则结果如何?解对于正态分布N(-1,1),可知μ=-1,σ=1,正态曲线关于直线x=-1对称,故题图中阴影部分的面积为12×[P(-3<X≤1)-P(-2<X≤0)]=12×[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12×(0.9544-0.6826)=0.1359,所以点落入题图中阴影部分的概率P=0.13591=0.1359,投入10000个点,落入阴影部分的个数约为10000×0.1359=1359.方法技巧正态分布下两类常见的概率计算1.利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,曲线与x轴之间的面积为1.2.利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.冲关针对训练(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z≤μ+σ)=0.6826,P(μ-2σ<Z≤μ+2σ)=0.9544.解(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X ~B (100,0.6826),所以E (X )=100×0.6826=68.26.1.(2017·浙江高考)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2) 答案 A解析 ∵E (ξ1)=0×(1-p 1)+1×p 1=p 1, 同理,E (ξ2)=p 2,又0<p 1<p 2, ∴E (ξ1)<E (ξ2).D (ξ1)=(0-p 1)2(1-p 1)+(1-p 1)2·p 1=p 1-p 21,同理,D (ξ2)=p 2-p 22.D (ξ1)-D (ξ2)=p 1-p 2-(p 21-p 22)=(p 1-p 2)(1-p 1-p 2).∵0<p 1<p 2<12,∴1-p 1-p 2>0, ∴(p 1-p 2)(1-p 1-p 2)<0. ∴D (ξ1)<D (ξ2).故选A.2.(2015·湖北高考)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t ) 答案 C解析 由题图可知μ1<0<μ2,σ1<σ2,∴P (Y ≥μ2)<P (Y ≥μ1),故A 错误;P (X ≤σ2)>P (X ≤σ1),故B 错误;当t 为任意正数时,由题图可知P (X ≤t )≥P (Y ≤t ),而P (X ≤t )=1-P (X ≥t ),P (Y ≤t )=1-P (Y ≥t ),∴P (X ≥t )≤P (Y ≥t ),故C 正确,D 错误.故选C.3.(2018·安徽模拟)某小区有1000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .46 答案 B解析 P (ξ>320)=12×[1-P (280<ξ≤320)] =12×(1-95.44%)=0.0228, 0.0228×1000=22.8≈23,∴用电量在320度以上的户数约为23.故选B.4.(2017·全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.答案 1.96解析由题意得X~B(100,0.02),∴D(X)=100×0.02×(1-0.02)=1.96.[重点保分 两级优选练]A 级一、选择题1.已知ξ的分布列为则在下列式中:①E (ξ)=-13;②D (ξ)=2327;③P (ξ=0)=13.正确的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 E (ξ)=(-1)×12+1×16=-13,故①正确.D (ξ)=⎝⎛⎭⎪⎫-1+132×12+⎝⎛⎭⎪⎫0+132×13+⎝⎛⎭⎪⎫1+132×16=59,故②不正确.由分布列知③正确.故选C.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·广东茂名模拟)若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12 C.12 D .1 答案 C解析 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a = -2(舍去)或a =1,所以E (X )=12.故选C.4.(2017·青岛质检)设随机变量ξ服从正态分布N (1,σ2),则函数f (x )=x 2+2x +ξ不存在零点的概率为( )A.12B.23C.34D.45 答案 A解析 函数f (x )=x 2+2x +ξ不存在零点的条件是 Δ=22-4×1×ξ<0,解得ξ>1.又ξ~N (1,σ2),所以P (ξ>1)=12,即所求事件的概率为12.故选A.5.(2018·山东聊城重点中学联考)已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套 答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.6.(2018·皖南十校联考)在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )A .1500B .1700C .4500D .8000 答案 A解析 因为学生的数学成绩X ~N (98,100),所以P (X ≥108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12(1-0.6826)=0.1587,故该学生的数学成绩大约排在全市第0.1587×9450≈1500名,故选A.7.(2017·银川一中一模)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,(a ,b ,c ∈(0,1)),已知他投篮得分的数学期望是2,则2a +13b 的最小值为( )A.323B.283C.143D.163 答案 D解析 由数学期望的定义可知3a +2b =2,所以2a +13b =12(3a +2b )·⎝ ⎛⎭⎪⎫2a +13b =12( 6+23+4b a +a b )≥12⎝ ⎛⎭⎪⎫6+23+4=163,当且仅当4b a =a b 即a =12,b =14时取得等号.故选D.8.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113 答案 C 解析 由已知得⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29,解得⎩⎪⎨⎪⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2. 又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.故选C.9.(2018·广州调研)已知随机变量x 服从正态分布N (μ,σ2),且P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-σ<x ≤μ+σ)=0.6826,若μ=4,σ=1,则P (5<x <6)等于( )A .0.1358B .0.1359C .0.2716D .0.2718 答案 B解析 由题知x ~N (4,1),作出相应的正态曲线,如图,依题意P (2<x ≤6)=0.9544,P (3<x ≤5)=0.6826,即曲边梯形ABCD 的面积为0.9544,曲边梯形EFGH 的面积为0.6826,其中A ,E ,F ,B 的横坐标分别是2,3,5,6,由曲线关于直线x =4对称,可知曲边梯形FBCG 的面积为0.9544-0.68262=0.1359,即P (5<x <6)=0.1359,故选B.10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫712,1D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 根据题意,学生一次发球成功的概率为p ,即P (X =1)=p ,发球二次的概率P (X =2)=p (1-p ),发球三次的概率P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.故选B. 二、填空题11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=______.答案 53解析 ∵P (X =0)=13×(1-p )2=112,∴p =12. 则P (X =1)=23×12×12+13×12×12×2=412=13, P (X =2)=23×12×12×2+13×12×12=512, P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可能看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16.∴成绩不低于120分的学生约为600×16=100人.13.(2018·沧州七校联考)2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.答案 180解析 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴.又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35.而P (ξ≥8)=0.5,所以P (ξ>9)=0.15.故耗油量大于9升的汽车大约有1200×0.15 =180辆.14.(2017·安徽蚌埠模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E (ξ)-E (η)=________元.答案 3解析 ξ的分布列为E (ξ)=15×(5+6+7+8+9)=7(元). η的分布列为E (η)=2×25+4×310+6×15+8×110=4(元), ∴E (ξ)-E (η)=7-4=3(元).故答案为3.B 级三、解答题15.(2018·湖北八校第二次联考)某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x、y的值,并补全频率分布直方图;(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.解(1)由题意知,[25,30)内的频率为0.01×5=0.05,故x=100×0.05=5.因[30,35)内的频率为1-(0.05+0.35+0.3+0.1)=1-0.8=0.2,故y=100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图略.(2)∵年龄从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴抽取的20人中,年龄在[35,40)内的人数为7.X可取0,1,2,P(X=0)=C213C220=78190,P(X=1)=C113C17C220=91190,P(X=2)=C27C220=21 190,故X的分布列为故E(X)=91190×1+21190×2=133190.16.新生儿Apgar 评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分, 评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;(2)用这16名新生儿的Apgar 评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X 表示抽到评分不低于9分的新生儿数,求X 的分布列及数学期望.解 (1)设A i 表示所抽取的3名新生儿中有i 名的评分不低于9分, “至多有1名新生儿的评分不低于9分”记为事件A ,则由表格中数据可知P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(2)由表格数据知,从本年度新生儿中任选1名,评分不低于9分的概率为416=14,由题意知随机变量X 的所有可能取值为0,1,2,3,且P (X =0)=⎝ ⎛⎭⎪⎫343=2764;P (X =1)=C 13⎝ ⎛⎭⎪⎫141⎝ ⎛⎭⎪⎫342=2764; P (X =2)=C 23⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫341=964;P (X =3)=C 33⎝ ⎛⎭⎪⎫143=164. 所以X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=0.75⎝ ⎛⎭⎪⎫或E (X )=3×14=0.75.17.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的数学期望和方差.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710. (2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.故X 的数学期望为E (X )=3×15=35,方差为D (X )=3×15×45=1225.18.(2018·江淮十校联考)某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N (120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.(1)试估算该校高三年级数学的平均成绩;(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X ,求X 的期望.附:若X ~N (μ,σ2),则P (μ-3σ<X <μ+3σ)=0.9974. 解 (1)由频率分布直方图可知[125,135)的频率为 1-10×(0.01+0.024+0.03+0.016+0.008)=0.12, 该校高三年级数学的平均成绩为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112(分). (2)由于1310000=0.0013,由正态分布得P (120-3×5<X <120+3×5)=0.9974,故P (X ≥135)=1-0.99742=0.0013,即0.0013×10000=13, 所以前13名的成绩全部在135分以上,由频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0.08=4人,而在[125,145)的学生有50×(0.12+0.08)=10人,所以X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 26C 14C 310=12,P (X =2)=C 16C 24C 310=310,P (X =3)=C 34C 310=130,X 的分布列为数学期望值为E (X )=0×16+1×12+2×310+3×130=1.2.。

高考数学一轮总复习课件:离散型随机变量的分布列、均值与方差

高考数学一轮总复习课件:离散型随机变量的分布列、均值与方差

超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次
CMkCN-Mn-k
品,则P(X=k)=________C_N_n __,k=0,1,2,…,m,其中m
=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列:
X
0
P
CM0CN-Mn-0 CNn
为超几何分布列.
1

m
CM1CN-Mn-1 CNn

CMmCN-Mn-m CNn
如果随机变量X的分布列具有上表的形式,那么称随机变量
X服从超几何分布,记作X~H(N,M,n).
1.判断下列说法是否正确(打“√”或“×”). (1)抛掷均匀硬币一次,出现正面的次数是随机变量. (2)在离散型随机变量的分布列中,随机变量取各个值的概 率之和可以小于1. (3)离散型随机变量的各个可能值表示的事件是彼此互斥 的.
思考题2 (1)(2021·吉林省汪清县高三月考)已知随机变 量ξ的分布列如下表,则x=____12____.
ξ01 2
P x2 x
1 4
【解析】
由随机变量概率分布列的性质可知:x2+x+
1 4
=1,且0≤x≤1,解得x=12.
(2)(2021·青铜峡市高三期末)设随机变量ξ的概率分布列如下
表,则P(|ξ-3|=1)=( A )
3.设ξ是一个离散型随机变量,则下列不一定能成为ξ的概
率分布列的一组数是( C )
A.0,0,0,1,0
B.0.1,0.2,0.3,0.4
C.p,1-p(p为实数)
D.1×1 2,2×1 3,…,(n-11)·n,1n(n∈N*,n≥2)
解析
显然A、B满足分布列的两个性质;对于D,有

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。

2022届高考数学(理)一轮总复习检测:第十章 第九节 离散型随机变量的均值与方差 Word版含解析

2022届高考数学(理)一轮总复习检测:第十章 第九节 离散型随机变量的均值与方差 Word版含解析

第九节 离散型随机变量的均值与方差1.离散型随机变量的均值与方差若离散型随机变量X 的分布列为P(ξ=x i )=p i ,i =1,2,…,n(1)均值:称E(X)=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.(2)方差:称D(X)= i =1n(x i -E(X))2p i 为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E(aX +b)=aE(X)+b .(2)D(aX +b)=a 2D(X)(a ,b 为常数). 3.两点分布与二项分布的均值、方差均值 方差 变量X 听从两点分布E(X)=p D(X)=p(1-p) X ~B(n ,p)E(X)=npD(X)=np(1-p )1.(质疑夯基)推断下列结论的正误.(正确的打“√”,错误的打“×”) (1)期望是算术平均数概念的推广,与概率无关.( ) (2)随机变量的均值是常数,样本的平均值是随机变量.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小.( )(4)在篮球竞赛中,罚球命中1次得1分,不中得0分,假如某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.( )答案:(1)× (2)√ (3)√ (4)×2.已知X 的分布列为( )X-1 0 1 P121316设Y =2X +3,则E(Y)的值为( ) A.73B .4C .-1D .1 解析:E(X)=-12+16=-13,E(Y)=E(2X +3)=2E(X)+3=-23+3=73.答案:A3.已知某一随机变量X 的分布列如下,且E(X)=6.3,则a 的值为( )X 4 a 9 P0.50.1bA.5 B .6 C .7 D .8解析:由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E(X)=4×0.5+a·0.1+9×0.4=6.3.∴a =7. 答案:C4.(2021·广东卷)已知随机变量X 听从二项分布B(n ,p).若E(X)=30,D(X)=20,则p =________.解析:由于XB(n ,p),且E(X)=30,D(X)=20,所以⎩⎨⎧np =30,np (1-p )=20.解之得p =13.答案:135.(2022·河北唐山调研)某学校要从5名男生和2名女生中选出2人作为社区志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则随机变量ξ的数学期望E(ξ)=________(结果用最简分数表示).解析:随机变量ξ只能取0,1,2三个数,由于P(ξ=0)=C 25C 27=1021,P (ξ=1)=C 15C 12C 27=1021,P (ξ=2)=C 22C 27=121.故E(ξ)=1×1021+2×121=47.答案:47三条性质1.E(ax +b)=aE(x)+b ,D(ax +b)=a 2D(x)(a ,b 为常数). 2.若X 听从两点分布,则E(X)=p ,D(X)=p(1-p).3.若X 听从二项分布,即X ~B(n ,p),则E(X)=np ,D(X)=np(1-p).三种方法1.已知随机变量的分布列求它的均值、方差,按定义求解.2.已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b 的均值、方差,可直接用ξ的均值、方差的性质求解.3.假如所给随机变量是听从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解.A 级 基础巩固 一、选择题1.(2022·茂名其次次模拟)若离散型随机变量X 的分布列为( )X 0 1 Pa2a 22则X 的数学期望E(X)=( ) A .2 B .2或12C.12D .1 解析:由分布列的性质,a 2+a 22=1,∴a =1.故E(X)=12×0+12×1=12.答案:C2.(2022·陕西卷)设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y 1=x i +a(a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( )A .1+a ,4B .1+a ,4+aC .1,4D .1,4+a解析:∴E(y)=E(X)+a =1+a ,D(y)=D(x)=4. 答案:A3.已知随机变量X 听从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1解析:由二项分布X ~B(n ,p)及E(X)=np ,D(X)=np·(1-p)得2.4=np ,且1.44=np(1-p),解之得n =6,p =0.4.答案:B4.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设X 为取得红球的次数,则X 的方差D(X)的值为( )A.125B.2425 C.85 D.265解析:由于是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为35,连续摸4次(做4次试验),X 为取得红球(成功)的次数,则X ~B ⎝ ⎛⎭⎪⎫4,35, ∴D(X)=4×35×⎝ ⎛⎭⎪⎫1-35=2425答案:B5.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X 表示取出的球的最大号码,则X 的数学期望E(X)的值是( )A .4B .4.5C .4.75D .5解析:由题意知,X 可以取3,4,5,P(X =3)=1C 35=110,P(X =4)=C 23C 35=310,P(X =5)=C 24C 35=610=35,所以E(X)=3×110+4×310+5×35=4.5. 答案:B二、填空题6.已知X 的分布列为设Y =2X +1,则Y 的数学期望E(Y)的值是________. 解析:由分布列的性质,a =1-12-16=13,∴E(X)=-1×12+0×16+1×13=-16,因此E(Y)=E(2X +1)=2E(X)+1=23.答案:237.(2022·青岛模拟)设X 为随机变量,X ~B ⎝ ⎛⎭⎪⎫n ,13,若随机变量X 的数学期望E(X)=2,则P(X =2)等于________.解析:由X ~B ⎝⎛⎭⎪⎫n ,13,E(X)=2,得 np =13n =2,∴n =6,则P(X =2)=C 26⎝ ⎛⎭⎪⎫132⎝⎛⎭⎪⎫1-134=80243. 答案:80243.8.(2022·浙江卷)随机变量ξ的取值为0,1,2.若P(ξ=0)=15,E (ξ)=1,则D(ξ)=________.解析:设P(ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D(ξ)=15+35×0+15×1=25.答案:25三、解答题9.依据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率;(2)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的数学期望.解:(1)设“购买甲种保险”为大事A ,“购买乙种保险”为大事B ,“该地车主至少购买甲、乙两种保险中的一种”为大事C.由已知条件P(A)=0.5,P(BA)=0.3, 又C =A +BA ,且A 与BA 互斥, ∴P(C)=P(A)+P(BA)=0.5+0.3=0.8.因此该地车主至少购买甲、乙两种保险中的一种的概率为0.8. (2)设“该地车主甲、乙两种保险均不购买”为大事D ,则D =C , ∴P(D)=1-P(C)=1-0.8=0.2, 由于X ~B(100,0,2),所以X 的数学期望E(X)=100×0.2=20.10.一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数) 解:(1)设“所取3张卡片上的数字完全相同”为大事A. 则大事A 发生时,则3张卡片的数字均是2或均是1.由古典概型,P(A)=C 34+C 33C 39=584.(2)随机变量X 的全部可能取值为1,2,3,则P(X =1)=C 24C 15+C 34C 39=1742,P(X =3)=C 17C 22C 39=112, P(X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384,或P(X =2)=1-P(X =1)-P(X =3)=1-1742-112=4384.故X 的分布列为从而E(X)=1×1742+2×4384+3×112=4728. B 级 力量提升1.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X ,已知E(X)=3,则D(X)=( )A.85B.65C.45D.25解析:由题意,X ~B ⎝ ⎛⎭⎪⎪⎫5,3m +3. 又E(X)=5×3m +3=3,∴m =2.则X ~B ⎝ ⎛⎭⎪⎫5,35,故D(X)=5×35×⎝ ⎛⎭⎪⎫1-35=65.答案:B2.(2022·青岛调研)某项玩耍活动的嘉奖分成一、二、三等奖且相应获奖概率是以a 1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该玩耍获得资金的数学期望为________元.解析:由概率分布性质a 1+2a 1+4a 1=1, ∴a 1=17,从而2a 1=27,4a 1=47.因此获得资金ξ的分布列为∴E (ξ)=700×17+560×27+420×47=500(元).答案:5003.(2022·郑州质检)某学校为了丰富同学的业余生活,以班级为单位组织同学开展古诗词背诵竞赛,随机抽取题目,背诵正确加10分,背诵错误减10分,只有“正确”和“错误”两种结果,其中某班级的背诵正确的概率为p =23,背诵错误的概率为q =13,现记“该班级完成n 首背诵后总得分为S n ”.(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的分布列及数学期望.解:(1)当S 6=20时,即背诵6首后,正确4首,错误2首.若第一首和其次首正确,则其余4首可任意背诵对2首.第一首正确,其次首背诵错误,则第三首背诵正确,其余3首可任意背诵对2首.故所求的概率P =⎝ ⎛⎭⎪⎫232·C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132+23·13×23·C 23·⎝ ⎛⎭⎪⎫232×13=1681.(2)由于ξ=|S 5|的取值为10,30,50. 所以P(ξ=10)=C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫133=4081;P (ξ=30)=C 45⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫134=3081;P (ξ=50)=C 55⎝⎛⎭⎪⎫235+C 05⎝ ⎛⎭⎪⎫135=1181.所以ξ的分布列为所以E(ξ)=10×4081+30×3081+50×1181=1 85081.概率与统计中的高考热点题型1.概率与统计是高考中相对独立的一个内容,处理问题的方式、方法体现了较高的思维含量.该类问题以应用题为载体,留意考查同学的应用意识及阅读理解力量、分类争辩与化归转化力量.2.概率问题的核心是概率计算.其中大事的互斥、对立、独立是概率计算的核心,排列组合是进行概率计算的工具,统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征,但近两年全国课标卷突出回归分析的考查.3.离散型随机变量的分布列及其期望的考查是历年高考的重点,难度多为中低档类题目,特殊是与统计内容渗透,背景新颖,充分体现了概率与统计的工具性和交汇性.热点1统计与统计案例以实际生活中的事例为背景,通过对相关数据的统计分析、抽象概括,作出估量,推断.常与抽样方法、茎叶图、频率分布直方图、概率等学问交汇考查,考查同学数据处理力量.某同学对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人.饮食以蔬菜为主;饮食指数高于70的人,饮食为肉类为主.)(1)依据茎叶图,挂念这位同学说明其亲属30人的饮食习惯;(2)依据以上数据完成下列2×2的列联表:主食蔬菜主食肉类总计50岁以下50岁以上总计(3)在犯错误的概率不超过1%的前提下,你能否认为其亲属的饮食习惯与年龄有关,并说明理由.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(K 2≥k 0) 0.250.150.100.05 0.025 0.010 0.0050.001k 01.3232.072 2.7063.841 5.024 6.635 7.87910.828解:(1)由茎叶图知,50岁以下的12人中饮食指数低于70的有4人,饮食指数高于70的有8人.50岁以上的18人中,饮食指数低于70的有16人,高于70的只有2人. 在其30位亲属中,50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主.(2)列2×2的列联表如下:主食蔬菜主食肉类总计50岁以下481250岁以上 16 2 18 合计201030(3)由(2)知,由于K 2=30×(8-128)212×18×20×10=10>6.635.又P(K 2≥6.635)=0.010.∴在犯错误的概率不超过1%的前提下,认为其亲属的饮食习惯与年龄有关.1.将茎叶图与独立性检验交汇,背景新颖,求解的关键是理解茎叶图供应的数据特征.2.(1)本题求解中常见的错误:①不理解茎叶图反映的数据信息;②对独立性检验思想理解不深刻,作出错误判定.(2)要留意进行独立性检验时,首先提出的假设是两者无关,所以下结论应留意,避开错下结论.【变式训练】 柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的生疏,对于雾霾天气的争辩也渐渐活跃起来,某争辩机构对春节燃放烟花爆竹的天数x 与雾霾天数y 进行统计分析,得出下表数据:x4 5 7 8 y2356(1)请画出上表数据的散点图;(2)请依据上表供应的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)试依据(2)求出的线性回归方程,猜测燃放烟花爆竹的天数为9的雾霾天数.故线性回归方程为y^=b^x+a^=x-2.(3)由回归直线方程可以猜测,燃放烟花爆竹的天数为9的雾霾天数为7.热点2常见概率模型的概率几何概型、古典概型、相互独立大事与互斥大事的概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立大事,互斥大事常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,精确判定概率模型,恰当选择概率公式.现有4个人去参与某消遣活动,该活动有甲、乙两个玩耍可供参与者选择.为增加趣味性,商定:每个人通过掷一枚质地均匀的骰子打算自己去参与哪个玩耍,掷出点数为1或2的人去参与甲玩耍,掷出点数大于2的人去参与乙玩耍.(1)求这4个人中恰有2人去参与甲玩耍的概率;(2)求这4个人中去参与甲玩耍的人数大于去参与乙玩耍的人数的概率;(3)用X,Y分别表示这4个人中去参与甲、乙玩耍的人数,记ξ=|X-Y|,求随机变量ξ的分布列.解:依题意,这4个人中,每个人去参与甲玩耍的概率为13,去参与乙玩耍的概率为23.设“这4个人中恰有i人去参与甲玩耍”为大事A i(i=0,1,2,3,4).则P(A i)=C i4⎝⎛⎭⎪⎫13i⎝⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参与甲玩耍的概率P(A2)=C24⎝⎛⎭⎪⎫132⎝⎛⎭⎪⎫232=827.(2)设“这4个人中去参与甲玩耍的人数大于去参与乙玩耍的人数”为大事B,则B=A3+A4,且A3与A4互斥,∴P(B)=P(A3+A4)=P(A3)+P(A4)=C34⎝⎛⎭⎪⎫133·23+C44⎝⎛⎭⎪⎫134=19.(3)依题设,ξ的全部可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P(ξ=0)=P(A 2)=827,P (ξ=2)=P(A 1+A 3)=P(A 1)+P(A 3)=C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P(A 0+A 4)=P(A 0)+P(A 4)=C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781. 所以ξ的分布列是ξ 0 2 4 P827408117811.本题4个人中参与甲玩耍的人数听从二项分布,由独立重复试验,4人中恰有i 人参与甲玩耍的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i ,这是本题求解的关键.2.解题中常见的错误是不能分清大事间的关系,选错概率模型,特殊是在第(3)问中,不能把ξ=0,2,4的大事转化为相应的互斥大事A i 的概率和.【变式训练】 (2021·北京卷节选)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a.假设全部病人的康复时间相互独立.从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)假如a =25,求甲的康复时间比乙的康复时间长的概率. 解:设大事A i 为“甲是A 组的第i 个人”, 大事B i 为“乙是B 组的第i 个人”,i =1,2,…,7. 由题意可知P(A i )=P(B i )=17,i =1,2, (7)(1)由题意知,大事“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”记为大事A ,且A =A 5∪A 6∪A 7.由互斥大事的概率公式,则 P(A)=P(A 5)+P(A 6)+P(A 7)=37.(2)设大事C 为“甲的康复时间比乙的康复时间长”.由题意知C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6,因此P(C)=P(A 4B 1)+P(A 5B 1)+P(A 6B 1)+P(A 7B 1)+P(A 5B 2)+P(A 6B 2)+P(A 7B 2)+P(A 7B 3)+P(A 6B 6)+P(A 7B 6)=10P(A 4B 1)=10P(A 4)P(B 1)=1049.热点3 离散型随机变量的分布列、均值与方差(满分现场)离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题,属于中档题.复习中应强化应用题目的理解与把握,弄清随机变量的全部取值是正确列随机变量分布列和求均值与方差的关键,对概型的确定与转化是解题的基础,精确 计算是解题的核心,在备考中强化解答题的规范性训练.(经典母题)(本小题满分12分)(2022·河北各校联考)甲乙两人进行围棋竞赛,商定先连胜两局者直接赢得竞赛,若赛完5局仍未消灭连胜,则判定获胜局数多者赢得竞赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局竞赛结果相互独立.(1)求甲在4局以内(含4局)赢得竞赛的概率;(2)记X 为竞赛决出胜败时的总局数,求X 的分布列和均值(数学期望). 规范解答:用A 表示“甲在4局以内(含4局)赢得竞赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,P(A k )=23,P(B k )=13,k =1,2,3,4,5.(1)P(A)=P(A 1A 2)+P(B 1A 2A 3)+P(A 1B 2A 3A 4)=P(A 1)P(A 2)+P(B 1)P(A 2)P(A 3)+P(A 1)P(B 2)P(A 3)P(A 4)=⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫232=5681. 5分 (2)X 的可能取值为2,3,4,5,6分 P(X =2)=P(A 1A 2)+P(B 1B 2) =P(A 1)P(A 2)+P(B 1)P(B 2)=⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫132=59, 7分P(X =3)=P(B 1A 2A 3)+P(A 1B 2B 3) =P(B 1)P(A 2)P(A 3)+P(A 1)P(B 2)P(B 3)=⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫132=29, 8分P(X =4)=P(A 1B 2A 3A 4)+P(B 1A 2B 3B 4)=P(A 1)P(B 2)P(A 3)P(A 4)+P(B 1)P(A 2)P(B 3)P(B 4)=⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫132=1081, 10分P(X =5)=1-P(X =2)-P(X =3)-P(X =4)=881.故X 的分布列为X 2 3 4 5 P59291081881 11分E(X)=2×59+3×29+4×1081+5×881=2248112分【满分规章】 规章1 得步骤分:是得分点的步骤,有则给分,无则没分,步步为“赢”,求得满分如第(1)问,引进字母表示大事,或用文字斜述正确,得2分;把大事拆分成A =A 1A 2+B 1A 2A 3+A 1B 2A 3A 4,就得2分,计算概率值正确,得1分.第(2)问求出X 的四个值的概率,每对一个得1分;列出随机变量X 的分布列得1分.规章2 得关键分:解题过程的关键点,有则给分,无则没分如第(1)问,写出大事“甲在4局以内(含4局)赢得竞赛”分解为“甲在第1,2局连胜”“甲在第1局输,第2,3局连胜”“甲在第1局胜,第2局输,第3,4局连胜”,正确得2分.第(2)问,求四个概率时,结果错误,即使计算过程有步骤也不得分.规章3得计算分:解题过程中计算精确,是得满分的根本保证如第(1)问、第(2)问中概率值的计算要正确,否则不得分,分布列中计算四个概率的和是否为1,若和不为1,就有概率值消灭错误了不得分.【构建模板】求离散型随机变量的均值和方差问题的一般步骤第一步:确定随机变量的全部可能值.其次步:求第一个可能值所对应的概率.第三步:列出离散型随机变量的分布列.第四步:求均值和方差.第五步:反思回顾.查看关键点、易错点和答题规范.1.(1)求解的关键在于理解“甲在4局以内”赢得竞赛的含义,进而将大事转化为“三个互斥大事”的概率和.(2)第(2)问中利用对立大事求P(X=5)的概率,简化了求解过程.2.求解离散型随机变量的分布列与期望,关键要过好“三关”:一是“推断关”,即依题意推断随机变量的全部可能的取值;二是“求概率关”,即利用两个计数原理、排列与组合内容,以及古典概率的概率公式求随机变量取各个值时的概率;三是“应用定义关”,即列出随机变量的分布列,并利用随机变量的数学期望的定义进行计算.【变式训练】某网站用“10分制”调查一社区人们的治安满足度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的治安满足度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).(1)若治安满足度不低于9.5分,则称该人的治安满足度为“极平安”.求从这16人中随机选取3人,至多有1人是“极平安”的概率;(2)以这16人的样本数据来估量整个社区的总体数据,若从该社区(人数很多)中任选3人,记X表示抽到“极平安”的人数,求X的分布列、数学期望与方差.解:(1)设A i表示所取3人中有i个人是“极平安”,至多有1人是“极平安”记为大事A,则A=A0+A1,且i=0,1,2,3.所以P(A)=P(A0)+P(A1)=C312C316+C212C14C316=121140.(2)由茎叶图可知,16人中任取1人是“极平安”的概率P=416=14,依题意,X~B(3,14),则P(x=k)=Ck3(14)k(34)3-k,k=0,1,2,3.所以P(X=0)=(34)3=2764,P(X=1)=C13·14·(34)2=2764,P(X=2)=C23·(14)2×34=964,P(X=3)=(14)3=164.X的分布列为:X 0 1 2 3 P27642764964164E(X)=0×2764+1×2764+2×964+3×164=34.或E(X)=np =34.D(X)=np(1-p)=3×14×(1-14)=916.热点4 概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确生疏和使用这些图表是解决问题的关键,复习时要在这些图表上下功夫,把这些统计图表的含义弄清楚,在此基础上把握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.2021年10月18日至27日,第一届全国青年运动会在福州进行,某服务部需从高校生中招收志愿者,被招收的志愿者需参与笔试和面试,把参与笔试的40名高校生的成果分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成果在第3,4,5组的人数;(2)现打算在笔试成果较高的第3,4,5组中用分层抽样抽取6人进行面试. ①已知甲和乙的成果均在第3组,求甲或乙进入面试的概率;②若从这6名同学中随机抽取2名同学接受考官D 的面试,设第4组中有X名同学被考官D 面试,求X 的分布列和数学期望.解:(1)由频率分布直方图知,第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组、第4组、第5组中分别抽取3人,2人,1人. ①设“甲或乙进入其次轮面试”为大事A ,则 P(A)=1-C 310C 312=511,所以甲或乙进入其次轮面试的概率为511.②X 的全部可能取值为0,1,2,P(X =0)=C 24C 26=25,P(X =1)=C 12C 14C 26=815,P(X =2)=C 22C 26=115.所以X 的分布列为X 0 1 2 P25815115E(X)=0×25+1×815+2×115=1015=23.本题将传统的频率分布直方图背景赐予新生的数学期望,立意新颖、构思奇妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题X 听从超几何分布,利用其概率公式代入计算.【变式训练】 (2022·郑州质检)某市训练局为了了解高三同学体育达标状况,对全市高三同学进行了体能测试,经分析,全市同学体能测试成果X 听从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X ≥95)=0.1,现从该市高三同学中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成果在区间[80,85),[85,95),[95,100]各有一位同学的概率;(2)记抽到的三位同学该次体能测试成果在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望.解:(1)由X ~N(80,σ2),知P(x ≤80)=12.又P(x<75)=0.3,P(X ≥95)=0.1,则P(80≤x<85)=P(75≤x ≤80)=P(x ≤80)-P(x<75)=0.2. P(85≤x<95)=P(x>85)-P(x ≥95)=P(x<75)-P(x ≥95)=0.2. 故所求大事的概率P =0.2×0.2×0.1·A 33=0.024. (2)P(75≤X ≤85)=1-2P(X<75)=0.4, 所以ξ听从二项分布B(3,0.4), P (ξ=0)=0.63=0.216,P (ξ=1)=C 13·0.4×0.62=0.432, P (ξ=2)=C 23·0.42×0.6=0.288,P (ξ=3)=0.43=0.064, 所以随机变量ξ的分布列为ξ 0 1 2 3 P0.2160.4320.2880.064E(ξ)=3×0.4=1.2.1.(2022·佛山质检)贵广高速铁路从贵阳北终至广州南站.其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站.记者对广东省内的6个车站随机抽取3个进行车站服务满足度调查.(1)求抽取的车站中含有佛山市内车站(包括三水南站和佛山西站)的概率;(2)设抽取的车站中含有肇庆市内车站(包括怀集站、广宁站、肇庆东站)个数为X ,求X 的分布列及其均值.解:(1)设“抽取的车站中含有佛山市内车站”为大事A ,则P(A)=C 22C 14+C 12C 24C 36=45. (2)X 的可能取值为0,1,2,3.P(X =0)=C 03C 33C 36=120,P(X =1)=C 13C 23C 36=920,P(X =2)=C 23C 13C 36=920,P(X =3)=C 33C 03C 36=120,所以X 的分布列为X 的数学期望E(X)=0×120+1×920+2×920+3×120=32.2.(2021·陕西卷)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的分布列与数学期望E(T);(2)刘教授驾车从老校区动身,前往新校区做一个50分钟的讲座,结束后马上返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T 的频率分布为以频率估量概率得T 的分布列为从而E(T)=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设大事A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以大事A 对应于“刘教授在路途中的时间不超过70分钟”.法一 P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91. 法二 P(A -)=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A -)=0.91.3.某高校校庆,各届校友纷至沓来,某班共来了n 位校友(n>8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为ξ,求ξ的分布列. 解:设选出2人为“最佳组合”记为大事A ,则大事A 发生的概率P(A)=C 1n -6C 16C 2n =12(n -6)n (n -1).依题意12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,∴9≤n ≤16,故n 的最大值为16.(2)由题意,ξ的可能取值为0,1,2,且ξ听从超几何分布,则P(ξ=k)=C k 6C 2-k 6C 212(k =0,1,2),∴P (ξ=0)=P(ξ=2)=C 06C 26C 212=522,P (ξ=1)=C 16C 16C 212=611.ξ 0 1 2 P522611522∴E (ξ)=0×522+1×611+2×522=1.4.(2022·石家庄模拟)4月23日是“世界读书日”,某中学在此期间开展了一系列读书训练活动.为了解本校同学课外阅读状况,学校随机抽取了100名同学对其课外阅读时间进行调查.下面是依据调查结果绘制的同学日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的同学称为“读书迷”,低于60分钟的同学称为“非读书迷”.(1)依据已知条件完成下面2×2列联表,并据此推断是否有99%的把握认为“读书迷”与性别有关?非读书迷读书迷 总计 男 15 女 45 总计(2)将频率视为概率.现在从该校大量同学中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X 的分布列,期望E(X)和方差D(X).附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d.P(K 2≥k 0) 0.100 0.050 0.025 0.010 0.001k 02.7063.841 5.024 6.63510.828解:(1)完成2×2列联表如下:非读书迷 读书迷 总计 男 40 15 55 女 20 25 45 总计6040100K 2=100×(40×25-15×20)260×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校同学中任意抽取1名同学恰为“读书迷”的概率p =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P(X =i)=C i 3(25)i (35)3-i (i =0,1,2,3).X 的分布列为X 0 1 2 3 P2712554125361258125均值E(X)=np =3×25=65.方差D(X)=np(1-p)=3×25×(1-25)=1825.5.(2022·课标全国Ⅰ卷)某公司方案购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,假如备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:(1)由柱状图及以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16;P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2; P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为X16171819202122P 0.040.160.240.240.20.080.04(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.6.为备战2022年奥运会,甲、乙两位射击选手进行了强化训练.现分别从他们的强化训练期间的若干次平均成果中随机抽取8次,记录如下:甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.(1)画出甲、乙两位选手成果的茎叶图;(2)现要从中选派一人参与奥运会封闭集训,从统计学角度,你认为派哪位选手参与合理?简洁说明理由;(3)若将频率视为概率,对选手乙在今后的三次竞赛成果进行猜测,记这三次成果中不低于8.5分的次数为X,求X的分布列及均值E(X)、方差D(X).解:(1)甲、乙两位选手成果的茎叶图如图:(2)由于x-甲=x-乙=8.5,又s2甲=0.27,s2乙=0.405,得s2甲<s2乙,所以选派甲合适.(3)依题意得,乙不低于8.5分的频率为12,X的可能取值为0,1,2,3.则X~B⎝⎛⎭⎪⎫3,12,∴P(X=k)=C k3⎝⎛⎭⎪⎫12k⎝⎛⎭⎪⎫1-123-k=C k3⎝⎛⎭⎪⎫123,k=0,1,2,3.所以X的分布列为X 0 1 2 3P18383818∴E(X)=np=3×12=32,D(X)=np(1-p)=3×12×⎝⎛⎭⎪⎫1-12=34.。

离散型随机变量的均值与方差

离散型随机变量的均值与方差

[方法锦囊]
P 0.1 0.2 0.16 0.54
(1)求离散型随机变量的 均值与方差关键是确定
Y 的数学期望为 E(Y)=55×0.1+65×0.2+75×0.16+
随机变量的所有可能 值,写出随机变量的分
85×0.54=76.4.
布列,正确运用均值、
由以上的计算结果可以看出,E(X)<E(Y),即购进 17 枝玫瑰花时的平均利润大于购进 16 枝时的平均利 润.故花店一天应购进 17 枝玫瑰花.
方差公式进行计算. (2)要注意观察随机变量 的概率分布特征,若属 二项分布的,可用二项
分布的均值与方差公式
计算,则更为简单.
考向一离散型随机变量的均值和方差
【训练 1】 A、B 两个代表队进行乒乓球对抗赛,每队三名
队员,A 队队员是 A1、A2、A3,B 队队员是 B1、B2、B3,按 以往多次比赛的统计,对阵队员之间的胜负概率如下:
P(X=3)=23×25×25=785,
P(X=2)=23×25×35+13×25×25+23×35×25=2758,
[审题视点]
(1)根 据 日 需求 量 分 类 求 出 函 数 解析 式 . (2) ①根据当天的需求量, 写出相应的利润,列 出分布列,求出数学 期望和方差,②比较 两种情况的数学期望 或方差即可.
【例 2】►设随机变量 X 具有分布 P(X=k)=15,k= 1,2,3,4,5,求 E(X+2)2,D(2X-1), DX-1. 解 ∵E(X)=1×15+2×15+3×15+4×15+5×15=155=3. E(X2)=1×15+22×15+32×15+42×15+52×15=11. D(X)=(1-3)2×15+(2-3)2×15+(3-3)2×15+(4-3)2×15 +(5-3)2×15=15(4+1+0+1+4)=2. ∴ E(X + 2)2 = E(X2 + 4X + 4) = E(X2) + 4E(X) + 4 = 11 + 12+4=27. D(2X-1)=4D(X)=8, DX-1= DX= 2.

离散型随机变量的均值与方差

离散型随机变量的均值与方差

(1)求离散型随机变量的 均值与方差关键是确定 随机变量的所有可能 值,写出随机变量的分 布列,正确运用均值、 方差公式进行计算. (2)要注意观察随机变量 的概率分布特征,若属 二项分布的,可用二项 分布的均值与方差公式 计算,则更为简单.
求 出 函 数 解析 式 . (2) ①根据当天的需求量, 答案二:花店一天应购进 17 枝玫瑰花.理由如下: 写出相应的利润,列 若花店一天购进 17 枝玫瑰花, Y 表示当天的利润(单位: 出 分 布 列 , 求 出 数 学 期望和方差,②比较 元),那么 Y 的分布列为 两种情况的数学期望 或方差即可. Y 55 65 75 85 [方法锦囊] (1)求离散型随机变量的 P 0.1 0.2 0.16 0.54
(1) 根 据 日 需求 量 分 类 求 出 函 数 解析 式 . (2) ①根据当天的需求量, 写出相应的利润,列 出分布列,求出数学 期望和方差,②比较 两种情况的数学期望 或方差即可.
[审题视点]
[方法锦囊]
(1)求离散型随机变量的 均值与方差关键是确定 随机变量的所有可能 值,写出随机变量的分 布列,正确运用均值、 方差公式进行计算. (2)要注意观察随机变量 的概率分布特征,若属 二项分布的,可用二项 分布的均值与方差公式 计算,则更为简单.
Y 的数学期望为 E(Y)=55×0.1+65×0.2+75×0.16+ 85×0.54=76.4. 由以上的计算结果可以看出, E(X)<E(Y),即购进 17 枝玫瑰花时的平均利润大于购进 16 枝时的平均利 润.故花店一天应购进 17 枝玫瑰花.
均值与方差关键是确定 随机变量的所有可能 值,写出随机变量的分 布列,正确运用均值、 方差公式进行计算. (2)要注意观察随机变量 的概率分布特征,若属 二项分布的,可用二项 分布的均值与方差公式 计算,则更为简单.

高中数学离散型随机变量的分布列、均值与方差

高中数学离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一

2020新课标高考艺术生数学复习:离散型随机变量的分布列及均值与方差含解析

2020新课标高考艺术生数学复习:离散型随机变量的分布列及均值与方差含解析
(1)理解ξ的意义、写出ξ可能取的全部值;
(2)求ξ取每个值的概率;
(3)写出ξ的分布列;
(4)由均值的定义求E(ξ);
(5)由方差的定义求D(ξ).
[跟踪训练]
随着网络营销和电子商务的兴起、人们的购物方式更具多样化。某调查机构随机抽取10名购物者进行采访、5名男性购物者中有3名倾向于选择网购、2名倾向于选择实体店、5名女性购物者中有2名倾向于选择网购、3名倾向于选择实体店.
(1)若从10名购物者中随机抽取2名、其中男、女各一名、求至少1名倾向于选择实体店的概率;
(2)若从这10名购物者中随机抽取3名、设X表示抽到倾向于选择网购的男性购物者的人数、求X的分布列和数学期望.
解:(1)设“随机抽取2名、其中男、女各一名、至少1名倾向于选择实体店”为事件A、则 表示事件“随机抽取2名、其中男、女各一名、都倾向于选择网购”、
[思考辨析]
判断下列说法是否正确、正确的在它后面的括号里打“√”、错误的打“×”.
(1)随机试验所有可能的结果是明确的、并且不止一个.( )
(2)离散型随机变量的所有取值有时无法一一列出.( )
(3)随机变量的均值是常数、样本的平均值是随机变量、它不确定.( )
(4)如果随机变量X的分布列由下表给出:
2020新课标高考艺术生数学复习:离散型随机变量的分布列及均值与方差含解析
编 辑:__________________
时 间:__________________
第6节 离散型随机变量的分布列及均值与方差
最新考纲
核心素养
考情聚焦
1.理解取有限个值的离散型随机变量及其分布列的概念、了解分布列对于刻画随机现象的重要性.
(ⅱ)设事件B为“抽取的3人中、睡眠充足的员工有1人、睡眠不足的员工有2人”;事件C为“抽取的3人中、睡眠充足的员工有2人、睡眠不足的员工有1人”、则A=B∪C、且B与C互斥、由(ⅰ)知、P(B)=P(X=2)、P(C)=P(X=1).故P(A)=P(B∪C)=P(X=2)+P(X=1)= + = .

常见的离散型随机变量的分布列、均值与方差(学生)

常见的离散型随机变量的分布列、均值与方差(学生)

常见的离散型随机变量的分布列、均值与方差【知识要点】一、离散型随机变量及其分布列 1、随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。

长用希腊字母ηξ,来表示。

若ξ是随机变量,b a +=ξη,其中b a ,是常数,则η也是随机变量。

2、离散型随机变量如果对于随机变量可能取的值,可以一一列出,这样的随机变量叫做离散型随机变量。

3、离散型随机变量的分布列(1)若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,⋅⋅⋅⋅⋅⋅21,X 取每一个值)21(n i x i ,,,⋅⋅⋅=的概率i i p x X P ==)(,以表格的形式表示如下:此表称为离散型随机变量X 的分布列,简称X 的分布列。

有时为了表达简单,也用等式i i p xX P ==)(,n i ,,,⋅⋅⋅=21,表示X 的分布列。

(2)性质:①n i p i ,,,,⋅⋅⋅=≥210;②11=∑=ni i p ;③在某个范围内取值的概率等于这个范围内每个随机变量值的概率的总和。

4、常见离散型随机变量 (1)两点分布若随机变量X 的分布列是则这样的分布列称为两点分布列。

如果随机变量X 的分布列为两点分布列,就称X 服从两点分布(也称伯努利分布),而称)1(==x P p 为成功概率。

其EX=p ,DX=p(1-p). (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为m k C C C X P nNkn MN k M ,,,,,⋅⋅⋅=⋅==--210)k (,其中}min{n M m ,=,且*∈≤≤N N M n N M N n 、、,,,称分布列为超几何分布列。

如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。

记作:1)1()(---•==N nN N M N nM DX N nM EX n M N H X ,,其,,—。

离散型随机变量的分布列、均值与方差-高考数学复习

离散型随机变量的分布列、均值与方差-高考数学复习

高考一轮总复习 • 数学
返回导航
4
4
[解析] 根据均值 E(X)= xipi,方差 D(X)= [xi-E(X)]2·pi,标准
i=1
i=1
差最大即方差最大,由各选项对应的方差如下表 选项 均值 E(X) 方差 D(X)
A
2.5
0.65
B
2.5
1.85
C
2.5
1.05
D
2.5
1.45
由此可知选项 B 对应样本的标准差最大,故选 B.
3.均值与方差的性质 (1)E(aX+b)=_a_E_(_X_)_+__b___. (2)D(aX+b)=_a_2_D_(_X_)___. (3)D(X)=E(X2)-(E(X))2.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
归纳拓展 1.若X是随机变量,则Y=aX+b(a,b是常数)也是随机变量. 2.随机变量X所取的值分别对应的事件是两两互斥的. 3.随机变量的均值是常数,样本的平均数是随机变量,它不确 定. 4.随机变量的方差和标准差都反映了随机变量取值偏离均值的平 均程度,方差或标准差越小,则偏离变量的平均程度越小.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
知识点二 离散型随机变量的分布列及性质
1.一般地,若离散型随机变量X可能取的不同值为x1,x2,…, xi,…,xn,称X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi为X的 分布列,可用表格表示为:
X
x1
x2
若离散型随机变量 X 的分布列为 P(X=xi)=pi,i=1,2,…,n. n
1.均值:称 E(X)=__x_1_p_1+__x_2_p_2_+__…__+__x_ip_i+__…__+__x_n_p_n_=__i∑=_1_x_ip_i__为随

离散型随机变量的分布列、期望与方差

离散型随机变量的分布列、期望与方差

=2.752.
学例2 (2008·广东卷)随机抽取某厂的某种
产品200件,经质检,其中有一等品126件、 二等品50件、三等品20件、次品4件.已知生 产1件一、二、三等品获得的利润分别为6万 元、2万元、1万元,而1件次品亏损2万元.设 1件产品的利润为ξ(单位:万元).
(1)求ξ的分布列;
(2)求1件产品的平均利润(即ξ的数学期望);
ξ
0
1

M
P
C C 0 n0 M NM
C C 1 n1 M NM
CNn
CNn

C C m nm M NM
CNn
为⑦超几何分布列.如果随机变量ξ的分布列为超
几何分布列,则称随机变量ξ服从超几何分布.
3.离散型随机变量的分布列的性质 ⑧ Pi≥0,P1+P2+…+Pi+…=1 (i=1,2,3,…) . 4.离散型随机变量的均值 若离散型随机变量ξ的分布列为:
是随机变量的特征数,期望反映了随 机变量的平均取值,方差与标准差都 反映了随机变量取值的稳定与波动、 集中与离散的程度.在进行决策时,一 般先根据期望值的大小来决定,当期 望值相同或相差不大时,再去利用方 差决策.
备选题
某工厂每月生产某种产品三件,经检测发 现,工厂生产该产品的合格率为45.已知生产 一件合格品能盈利25万元,生产一件次品将 亏损10万元.假设该产品任何两件之间合格与 否相互之间没有影响.
设随机变量ξ表示在取得合格品以前
已取出的不合格品数,则ξ=0,1,2,3,
可得P(ξ=0)=
9 12
,
P(ξ=1)=
3× 9
12 11
=
9 44
,

离散型随机变量的均值和方差

离散型随机变量的均值和方差

a( x1 p1 x2 p2 xn pn ) b( p1 p2 pn )
aE b
即 E(a b) aE b
离散型随机变量的均值的理解
(1) 均 值 是 算 术 平 均 值 概 念 的 推 广 , 是 概 率 意 义 下 的 平 均.
(2)E(X)是一个实数,是由X的概率分布唯一确定的,它 描述X取值的平均状态.
8.两封信随机投入A、B、C三个空邮箱,则A邮箱的信
2
件数ξ的数数学期望Eξ=_____3___.
若ξ~B(n,p),则Eξ= np
ξ01
…k
…n
P Cn0p0qn Cn1p1qn-1 … Cnkpkqn-k … Cnnpnq0
证明:∵P(ξ=k)= Cnkpkqn-k
(∵ k Cnk =n Cn-1k-1)
第二课时:随机变量取值的方差和标准差
前面,我们认识了数学期望. 数学期望: 一般地,若离散型随机变量 ξ 的概率分布 列为
ξ x1 x2 … xk … xn P p1 p2 … pk … pn
则称 E x1 p1 x2 p2 … xk pk … xn pn 为 ξ 的数 学期望,简称期望.数学期望是离散型随机变量的一个特征 数,它反映了离散型随机变量取值的平均水平,表示了随机 变量在随机实验中取值的平均值,所以又常称为随机变量的 平均数、均值.但有时两个随机变量只用这一个特征量是无 法区别他们的。还需要对随机变量取值的稳定与波动、集中 与离散的程度进行刻画.
探究
已知甲、乙两名射手在同一条件下射击,所得环数1、 2的分布列如下:
x1 8 9 10 P 0.2 0.6 0.2
x2 8 9 10 P 0.4 0.2 0.4
试比较两名射手的射击水平.如果其他对手的射击成 绩都在8环左右,应派哪一名选手参赛?如果其他对手的 射击成绩都在9环左右,应派哪一名选手参赛?

高考数学一轮复习离散型随机变量的分布列、均值与方差

高考数学一轮复习离散型随机变量的分布列、均值与方差
6
2
6
9
6
1
6
)
a
(2)随机变量X的概率分布列规律为P(X=n)=
n n+1
1
5
其中a为常数,则P( <X< )的值为(
)
2
2
2
3
4
5
A.
B.
C.
D.
3
4
5
6
(n=1,2,3,4),
答案:D
解析:根据题意,由于P(X=n)=
a
n n+1
,那么可知,(n=1,2,3,4)时,则可
a
a
a
a
得概率和为1,即 + + + =1.
(4)若X1,X2相互独立,则E(X1X2)=E(X1)·E(X2).
夯实双基
1.思考辨析(正确的打“√”,错误的打“×”)
(1)测量全校所有同学的身高,在170 cm~175 cm之间的人数是离散
型随机变量.( √ )
(2)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ )
(3)离散型随机变量分布列中,随机变量取各个值的概率之和可以小
4.(易错)袋中有3个白球,5个黑球,从中任取2个,可以作为随机
变量的是(
)
A.至少取到1个白球 B.至多取到1个白球
C.取到白球的个数
D.取到的球的个数
答案:C
解析:选项A,B是随机事件; 选项D是定值2;选项C可能的取值为0,1,2,
可以用随机变量表示.
5.(易错)已知离散型随机变量X的分布列为:
4
2
3
5
(1)求居民甲能进入下一轮的概率;
(2)用ξ表示居民甲初赛结束时答题的个数,求ξ的分布列.

离散型随机变量的均值与方差(4类必考点)(北师大版2019选择性必修第一册)(解析版)

离散型随机变量的均值与方差(4类必考点)(北师大版2019选择性必修第一册)(解析版)

专题6.3 离散型随机变量的均值与方差【基础知识梳理】 (1)【考点1:求离散型随机变量的均值】 (1)【考点2:均值的性质】 (7)【考点3:求离散型随机变量的方差】 (11)【考点4:方差的性质】 (16)【基础知识梳理】1.离散型随机变量的均值与方差若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)称E(X)=x1p1+x2p2i i n n量取值的平均水平.(2)称D(X)=(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根D(X)为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b;(2)D(aX+b)=a2D(X)(a,b为常数).[方法技巧]求离散型随机变量的均值与方差的步骤(1)找出随机变量X的所有可能取值x i(i=1,2,3,…,n);(2)求出各取值的概率P(X=x i)=p i;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)利用公式求均值或方差.【考点1:求离散型随机变量的均值】【知识点:求离散型随机变量的均值】1.(2023·河南平顶山·校联考模拟预测)甲、乙两人进行围棋比赛,两人共比赛两局,每局比赛甲赢的概率为0.6,两人平局的概率为0.1,设每局的胜方得3分,负方得−1分,若该局为平局,则两人各得2分.(1)求甲、乙各赢一局的概率;(2)记两局结束后甲的最后得分为X,求X的数学期望.【答案】(1)0.36(2)3.4【分析】(1)由题可知比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局.据此可得答案;(2)依次写出对局情况及相应概率,后可计算期望.【详解】(1)依题意可得每局比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局,故甲、乙各赢一局的概P=2×0.6×0.3=0.36.(2)若甲赢两局,得分6分,P(X=6)=0.62=0.36;若甲一赢一平,得分5分,P(X=5)=2×0.6×0.1=0.12;若甲平两局,得分4分,P(X=4)=0.12=0.01;若甲一赢一输,得分2分,P(X=2)=2×0.6×0.3=0.36;若甲一平一输,得分1分,P(X=1)=2×0.3×0.1=0.06;若甲输两局,得分−2,P(X=−2)=0.32=0.09.故E(X)=6×0.36+5×0.12+4×0.01+2×0.36+1×0.06−2×0.09=3.42.(2023·四川·校联考一模)甲袋中装有大小相同的红球2个,白球2个:乙袋中装有与甲袋中相同大小的红球3个,白球4个.先从甲袋中取出1个球投入乙袋中,然后从乙袋中取出3个小球.(1)求从乙袋中取出的3个小球中仅有1个红球的概率;(2)记从乙袋中取出的3个小球中白球个数为随机变量ξ,求ξ的分布列和数学期望.【答案】(1)2756.(2)分布列见解析,数学期望E(ξ)=189112【分析】(1)分“从甲袋中取出1红球投入乙袋”和“从甲袋中取出1白球投入乙袋” 两个类型,利用组合数和古典概型公式。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 计数原理、概率与统计
专题39 离散型随机变量的分布列、均值与方差
考点1 离散型随机变量的分布列、均值
1. 【2020年高考浙江卷16】一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ== ;()E ξ= . 【答案】
13
;1 【解析】0ξ=表示第一次拿到的是红球,设为事件A ,或第一次是绿球,第二次是红球,设为事件B ,则
()()()11104433
P P A P B ξ==+=
+=⨯; 1ξ=表示拿出红球时已经拿出了一个黄球,即第一次拿到黄球,第二次拿到红球,概率211
436
P ⨯=
=⨯,或是前两次拿到的是一个黄球一个是绿球,211124326P ⨯⨯=⨯
=⨯⨯,∴()111
1663
P ξ==+= ;
2ξ=,表示拿到红球时已经拿出了两个黄球,即前两次黄球,第三次红球,2111
43212
P ⨯⨯==⨯⨯,说是第四
次拿到红球,321143214P ⨯⨯==⨯⨯⨯,∴()111
21243P ξ==+=,
()1110121333E ξ=⨯+⨯+⨯=,故答案为:1
3
;1.
2. 【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
8.602≈.
【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.
【解析】(1)根据产值增长率频数分布表得,
所调查的100个企业中产值增长率不低于40%的企业频率为147
0.21100
+=. 产值负增长的企业频率为
2
0.02100
=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1
(0.1020.10240.30530.50140.707)0.30100
y =
-⨯+⨯+⨯+⨯+⨯=, ()52
2
11100i i
i s n y y ==-∑ 22222
1(0.40)2(0.20)240530.20140.407100⎡⎤=
-⨯+-⨯+⨯+⨯+⨯⎣
⎦ =0.0296,
0.020.17s ==≈,
所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.
考点2 与离散型随机变量的分布列、均值相结合的综合问题
1. 【2020年高考全国Ⅲ卷文数3】设一组样本数据12,,,n x x x 的方差为0.01,则数据
1210,10,,10n x x x 的方差为
( )
A .0.01
B .0.1
C .1
D .10 【答案】C
【解析】因为数据(1,2,,)i ax b i n +=,的方差是数据(1,2,,)i x i n =,的方差的2a 倍,
所以所求数据方差为2100.01=1⨯,故选:C .。

相关文档
最新文档