纳米材料的发展历程以及各国纳米技术的发展现状

合集下载

纳米材料的发展历程以及各国纳米技术的发展现状

纳米材料的发展历程以及各国纳米技术的发展现状

04
纳米材料的应用领域
电子信息领域
高性能电子器件
利用纳米材料优异的电学、光学和磁学性能,制造高速、低功耗、 高集成度的电子器件,如纳米晶体管、纳米存储器等。
柔性电子
纳米材料在柔性电子领域具有广泛应用,如可穿戴设备、柔性显示 器等,提高了设备的便携性和舒适性。
传感器
纳米材料的高灵敏度、高选择性和快速响应特性使其在传感器领域 具有广泛应用,如气体传感器、生物传感器等。
纳米材料的发展历程以及各国纳米 技术的发展现状
汇报人:XX
目 录
• 纳米材料概述 • 纳米材料的发展历程 • 各国纳米技术发展现状 • 纳米材料的应用领域 • 纳米技术的挑战与前景 • 结论与展望
01
纳米材料概述
定义与特点
定义
纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由该尺度范围的物质为基本结构单元所 构成的材料的总称。
中国在纳米技术领域的研究和发 展迅速崛起,成为世界上最重要 的纳米技术研究和应用国家之一 。
中国政府高度重视纳米技术的发 展,制定了多项政策和计划,推 动了纳米技术的快速发展和应用 。
中国在纳米材料、纳米器件、纳 米加工等领域取得了重要突破, 并成功应用于医疗、能源、环保 等领域。同时,中国还积极推动 纳米技术的产业化发展,建立了 多个国家级纳米技术产业基地。
智能化发展
借助人工智能、大数据等技 术手段,纳米技术将实现更 加精准、智能的应用,提高 生产效率和产品质量。
绿色化发展
纳米技术将在环境保护和可 持续发展领域发挥重要作用 ,推动绿色制造和循环经济 发展。
06
结论与展望
对纳米材料的总结
纳米材料具有独特的物理和 化学性质,这些性质使得它 们在许多领域具有广泛的应 用前景,如电子、生物医学

纳米技术的研究现状与发展趋势

纳米技术的研究现状与发展趋势

纳米技术的研究现状与发展趋势引言纳米技术是一门涉及材料、物理、化学和生物学等多学科的科学领域。

本文旨在探讨纳米技术的研究现状及其未来发展趋势。

研究现状目前,纳米技术在各个领域都有广泛应用。

在材料领域,纳米材料具有出色的力学性能和化学活性,因此在制造高性能材料方面具有巨大潜力。

在电子领域,纳米电子器件已经取得了重大突破,为下一代电子设备的发展提供了支持。

在医学领域,纳米技术已经成功应用于药物传递和生物成像等方面,为疾病治疗带来了新的希望。

发展趋势纳米技术的发展仍然具有巨大的潜力。

首先,纳米材料的研发将继续推动新材料和产品的创新。

其次,随着纳米电子器件的不断突破,下一代电子设备将更加小型化、高效能。

此外,纳米技术在环境保护和能源领域也将发挥重要作用,例如通过纳米材料的应用实现高效能的太阳能电池和污染物的治理。

结论纳米技术是一项具有前景广阔的学科,其研究和应用影响广泛。

我们相信,随着科学技术的不断进步,纳米技术将在未来取得更多突破,为社会进步和发展做出更大贡献。

参考文献(请勿引用无法证实的内容)- Suri, A., & Nishar, H. (2020). Nanotechnology: Recent Trendsand Future Prospects. Materials Today: Proceedings, 25, 2299-2302.- Li, Y., & Wang, X. (2018). Nanoparticle-based nanotechnologyfor cancer diagnosis and therapy. Journal of Materials Chemistry B,6(23), 3774-3792.- Wong, M. K., & Ding, Y. (2012). Nanotechnology for environmental remediation: materials and applications. Molecules, 17(6), 7258-7282.。

纳米技术的发展历程及现状

纳米技术的发展历程及现状

纳米技术的发展历程及现状纳米技术是20世纪90年代出现的一门新兴技术。

它是在0.10~100纳米(即十亿分之一米)尺度的空间内,研究电子、原子和分子运动规律和特性的崭新技术。

由于纳米技术将最终使人类能够按照自己的意愿操纵单个原子和分子,以实现对微观世界的有效控制,所以被认为是对21世纪一系列高新技术的产生和发展有极为重要影响的一门热点学科,被世界各国列为21世纪的关键技术之一,并投入大量的人力物力进行研究开发。

纳米技术的思想是1959年美国物理学家费曼(Feynman R.P.)提出。

到了70年代后半期,有人倡导发展纳米技术,但是当时多数主流科学家对此仍持怀疑态度。

在70年代中期到80年代后期,不少科学家相继在实验室制备得到纳米尺寸的材料,并发现这种材料具有不少奇妙特性。

1990年,当国际商用机器公司(IBM)的科学家运用扫描隧道显微镜将氙原子拼成了该公司商标\"IBM\",这是第一次公开证实在原子水平有可能以单个原子精确生产物质,纳米技术开始成为媒体关注的热点。

1990年7月,在美国巴尔的摩召开的第一届国际纳米科技大会,标志着纳米科技的正式诞生。

纳米科技主要包括纳米生物学、纳米机械学、纳米电子学、纳米材料学以及原子、分子操纵和纳米制造等很多领域。

扫描隧道显微镜(STM)和原子力显微镜(AFM)在其中起着重要作用。

21世纪前20年,是发展纳米技术的关键时期。

由于纳米材料特殊的性能,将纳米科技和纳米材料应用到工业生产的各个领域都能带来产品性能上的改变,或在性能上有较大程度的提高。

利用纳米科技对传统工业,特别是重工业进行改造,将会带来新的机遇,其中存在很大的拓展空间,这已是国外大企业的技术秘密。

英特尔、IBM、SONY、夏普、东芝、丰田、三菱、日立、富士、NEC等具有国际影响的大型企业集团纷纷投入巨资开发自己的纳米技术,并到得了令世人瞩目的研究成果。

纳米技术在经历了从无到有的发展之后,已经初步形成了规模化的产业。

纳米材料的发展历史,现状及

纳米材料的发展历史,现状及

制备技术方面
物质的颗粒越小,其表面积越大。物质体系的表面能 越高,同时物质的颗粒越小,其原子(分子)的混乱度 越大,体系的熵值也越大,体系就越丌稳定。因此纳 米状态实际上是一种丌稳定的高能体系状态。它会自 发的由小颗粒的高能状态向大颗粒的低能状态转变, 这就是我们在纳米材料中常说的团聚。因此纳米材料 在制备和应用迆程中的一个较大的困难就是要防止纳 米材料的团聚。纳米颗粒一旦发生团聚,材料在纳米 尺度范围所表现出的优异性能就会丧失待尽。
希捷利用特殊碳基纳米材料作为硬盘
四 生物医用材料
可用磁性纳米微粒涂覆高分子材料,将其在体外不 蛋白质相结合,注入生物体内,用作药物载体,通 迆外加磁场的作用,纳米颗粒的磁性寻航将药物直 接送达病灶,达到定向治疗的目的,这样丌仅大大 减少了药物的副作用,而且大大减少了药物的用量。 这种纳米颗粒的磁性寻航材料又被称为生物寻弹。
将纳米Pt颗粒、Al2O3,、Fe2O3,等作为催化 剂,已在高分子高聚物氧化、还原和合成反应中 得到应用;纳米高铬酸铵是制造炸药的极佳催化 材料;纳米Ni粉可代替金属Pt用于许多催化领域; 纳米Pt、WC还是氢化反应的高效催化剂;在火 箭发射的固体燃料推迚剂中添加质量1%的纳米 铝粉和镍粉,可使固体燃料的燃烧增加一倍以上, 纳米镍粉代铂粉作为化学反应的催化剂价格比铂 粉低了3倍多,但催化效果却大10倍。纳米 SiO2:,TiO2:在光催化作用下能够快速降解 有机高分子化合物,为垃圾处理带来新的无二次 污染的好方法。纳米SiO2:,TiO2:在光催化 降解反应最有希望解决白色污染的问题。
另外在纳米催化材料中,纳米TiO2的光催化作用是 十分值得注意的,纳米TiO2是一种典型的半寻体光 催化剂,目前已知的应用有: 1. 2. 3. 4. 5. 催化马来酸酐发生聚合反应 催化降解甲基橙 催化降解十二烷基苯磺酸纳 催化降解水面石油 光催化分解氯仿

纳米技术的发展现状及未来趋势分析

纳米技术的发展现状及未来趋势分析

纳米技术的发展现状及未来趋势分析纳米技术是近年来备受瞩目的领域之一,其独特的性质和潜力为人类带来了创新的可能性。

本文将讨论纳米技术的发展现状以及未来的趋势,并探讨其在各个领域中的应用前景。

纳米技术指的是处理尺寸在纳米级别的物质和结构的科学与技术。

随着现代科学的发展,人们对纳米世界的探索取得了重大突破。

目前,纳米技术已经应用于物理、化学、生物学、材料学等众多领域。

在材料学中,纳米技术被用于制备高性能的纳米材料,例如纳米颗粒、纳米薄膜和纳米管材料,这些材料具有强大的力学、电学、光学和热学性能。

在电子学领域,纳米技术被用于制备微小的纳米电子元件,如纳米线、纳米管和纳米晶体管。

这些纳米电子元件具有出色的导电性能和尺寸可调性,为电子器件的制造提供了新的途径。

在生物学领域,纳米技术被广泛应用于生物传感、基因工程和药物递送等方面。

通过利用纳米材料的特殊性质,科学家们可以设计出高灵敏度的纳米生物传感器,用于检测微量的生物标志物,例如蛋白质和DNA。

此外,纳米技术还可以用于精确控制药物的递送,以提高药物的效力和减少副作用。

通过将药物封装在纳米粒子中,可以实现药物的靶向传递,减少对健康细胞的损害,提高治疗效果。

纳米技术对环境保护和能源领域的贡献也不可忽视。

纳米材料具有较高的反应活性和表面积,可以用于吸附和催化处理有害物质。

例如,纳米颗粒被广泛应用于水处理中,可以有效去除水中的重金属和有机污染物。

此外,纳米技术还可以用于提高太阳能电池和燃料电池的效率。

通过利用纳米结构的光学和电学性能,可以增强能源转换效率,促进可再生能源的发展。

未来纳米技术的发展还将面临一些挑战和机遇。

首先,纳米材料的安全性和环境影响需要得到充分的评估和研究。

虽然纳米技术给人类带来了巨大的好处,但同时也带来了一些潜在的风险,例如对生物体和环境的毒性。

因此,科学家们需要加强对纳米材料的安全性评估,并制定相关的规范和标准,以确保其可持续发展。

其次,纳米技术的商业化和产业化也面临一些难题。

简述纳米材料的发展历程

简述纳米材料的发展历程

简述纳米材料的发展历程纳米材料问世至今已有20多年的历史,大致已经完成了材料创新、性能开发阶段,现在正步人完善工艺和全面应用阶段。

“纳米复合聚氨酯合成革材料的功能化”和“纳米材料在真空绝热板材中的应用”2项合作项目取得较大进展。

具有负离子释放功能且释放量可达2000以上的聚氨酯合成革符合生态环保合成革战略升级方向,日前正待开展中试放大研究。

该产品的成功研发及进一步产业化将可辐射带动300多家同行企业的产品升级换代。

联盟制备出的纳米复合绝热芯材导热系数可控制为低达4.4mW/mK。

该产品已经在企业实现了中试生产,正在建设规模化生产线。

联盟将重点研究开发阻燃型高效真空绝热板及其在建筑外墙保温领域的应用研发和产业化,该技术的开发将进一步促进我国建筑节能环保技术水平的提升,带动安徽纳米材料产业进入高速发展期。

纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。

纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。

由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。

并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。

纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。

当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。

纳米材料的发展历史现状及

纳米材料的发展历史现状及

对未来的展望与建议
01
加强基础研究
为了推动纳米材料技术的进一步发展,需要加强基础研究,探索新的理
论和方法,提高纳米材料的设计与制备水平。
02 03
关注安全性与环境影响
随着纳米材料应用的不断扩大,其安全性与环境影响问题也日益突出。 未来需要加强这方面的研究,确保纳米材料的应用不会对人类健康和环 境造成负面影响。
应用
在航空航天、汽车、生物医学等领域有广泛应用,如制造高强度陶瓷和生物可降 解塑料等。
04
纳米材料的应用领域
能源领域
高效太阳能电池
利用纳米结构提高光电转换效率,降低成本。
燃料电池催化剂
纳米材料可以提供更大的表面积和更好的电 化学性能。
储能技术
纳米材料在电池和超级电容器中具有优异性 能。
医疗领域
安全与防护
纳米材料可用于提高防护装备的性能和安全性。
体育器材
利用纳米材料可以提高运动器材的性能和舒适度。
05
纳米材料的挑战与前景
技术挑战与解决方案
挑战
纳米材料制备、表征ຫໍສະໝຸດ 控制的 精确度和可重复性。解决方案
采用先进的合成技术,如化学气相 沉积、物理气相沉积和溶胶凝胶法 等,以提高纳米材料的可控制备。
早期研究与发展
1959年,理查德·费曼首次提出了利用原子和分子来构造物质的设想。
1984年,德国科学家格莱特利用气相法制备了碳纳米管,为纳米材料的研究开辟了 新的道路。
1990年代初,随着扫描隧道显微镜和原子力显微镜等纳米测量技术的发展,纳米材 料的研究进入了一个新的阶段。
关键里程碑与突破
1991年,日本科学家饭岛澄男发现了 一种名为碳纳米管的结构,其直径只 有几纳米,长度可以达到几十微米。

世界主要国家纳米技术、材料科学发展动向分析

世界主要国家纳米技术、材料科学发展动向分析

世界主要国家纳米技术、材料科学发展动向分析进入21世纪后,为实现社会可持续发展,应对降低环境负荷、采用节能省资源工艺、推进资源再生利用、服务医疗保健事业、建设安全舒适老龄社会等各种巨大的社会需求和挑战,科学技术的创新和进步肩负着艰巨的任务。

纳米技术、材料科学作为一个综合性战略性的科学技术领域可以直面上述众多的社会经济难题,出色地完成有关的使命。

今天,材料技术已经发展到进入纳米领域的组织控制技术,波及亚纳米尺度的高分辨能力电子显微镜,扫描型探针显微镜等的高精度计测、基于第一原理电子状态计算的物质结构和功能的预测、基于模拟或仿造的以解析技术为支柱的共同的基础科学技术。

纳米科技涉及诸多学科领域,包括物理学、化学、生物学、医学、材料科学、信息科学、能源科学、先进制造科学等,是高度交叉的综合性学科,它也体现了前沿科学和高技术的融合。

纳米材料科学技术的进步,使得各种要素技术可以组合应用(包括与其它知识、技术的组合创造新的知识和功能、与不同领域融合产生新的技术领域),形成新的物质结构、发现新的物质功能、开发新的应用材料。

纳米技术和材料领域的特殊性,使得它们的研究开发迅速推进,技术潮流澎湃向前,展现了广阔的应用前景。

世界主要国家都十分重视纳米技术、材料科学,纷纷制定国家计划,积极进行投资,大力推进研究开发。

美国美国是较早开始实施国家纳米技术计划的国家。

美国国家纳米技术计划始于2001年,迄今已投资270亿美元。

2018年以后,虽然其预算有减少的趋势,但对以纳米技术签名倡议为首的5个项目构成的计划组成范围已作了战略性预算分配。

根据摩尔定律,一直在推进高性能化的半导体也已触到微型化的界限,而在不依赖摩尔定律的情况下继续追求新的半导体高性能化的"电子复兴计划"则开始起动。

量子计算机研究开发迅速推进,追求量子技术整体发展的新的可能性的"国家量子计划"也开始实施。

这些都是美国政府政策支持的重点。

纳米技术及其发展现状

纳米技术及其发展现状

纳米技术及其开展现状随着生物、环境控制、医学、航空、航天、准确制导弹药、灵巧武器、先进情报传感器以及数据通讯等的不断开展,在构造装置微小型化方面不断提出更新、更高的要求。

目前,纳米技术开展十分迅猛,它使人类在改造自然方面进入一个新的层次。

它将开发物质潜在的信息和构造能力,使单位体积物质存储和处理信息的能力实现质的飞跃,从而给国民经济和军事能力带来深远的影响。

纳米技术是指纳米级(<10纳米)的材料、设计、制造、测量和控制技术。

随着纳米技术的开展。

开创了纳米电子学、纳米材料学、纳米生物学、纳米机械学、纳米制造学、纳米显微学及纳米测量等等新的高技术群。

纳米技术是面向21世纪的一项重要技术,有着广阔的军民两用前景。

美国、日本及西欧等国家均投入了大量的人力、物力进展开发,并己在航空、航天、医疗及民用产品等方面得到了一定应用。

1微型机电系统( microelectron—mechanical systems,MEMS)10年前,人们意识到用半导体批量制造技术可以生产许多宏观机械系统的微米尺度的样机后,就在小型机械制造领域开场了新的研究,这导致了微型机电系统(MEMS)的出现,如微米尺度的各类传感器以及各种阀门等。

MEMS主要的民用领域是:医学、电于工业和航空、航天。

如用静电驱动的微型电机控制计算机及通讯系统。

在环境、医学应用中,微型传感器可以测量各种化学物质的流量、压力和浓度。

在军事主要有以下:有害化学战剂报警传感器、敌我识别、灵巧蒙皮、分布式战场传感器网络、微机器人电子失能系统、昆虫平台等应用。

2专用集成微型仪器( application specific integratedmicro-instrument,ASIM)微型工程包括具有毫米、微米、纳米尺度构造的传感器和动作器的设计、材料合成、微型机械加工、装配、总成和封装问题。

利用这项技术可以把传感器、动作器和数据处理采集装置集成在一块普通的基片上。

微型机电系统与微电子技术的综合集成,导致了专用集成微型仪器(ASIM)的出现。

纳米科技的现状与发展趋势

纳米科技的现状与发展趋势

纳米科技的现状与发展趋势随着科技的进步和人类对科学的深入研究,纳米科技越来越成为各个领域的热门话题。

纳米技术是一门跨学科的科学,它涉及物理学、化学、生物学、材料学等多个学科领域,其研究对象是尺寸在1-100纳米之间的物质,这些物质具有与传统材料不同的特性和性质。

纳米科技的广泛应用正在改变世界,使人们的生活更加便利和高效。

目前,纳米科技在许多领域都有应用,如医疗、新能源、环保、信息技术、材料学等。

近年来,纳米技术在医疗领域中的应用越来越广泛。

纳米技术在癌症治疗中的应用已经在一些国家得到广泛探讨和应用,纳米材料可以精确到达癌细胞,避免了药物对正常细胞的损伤。

此外,纳米传感器的出现,可以帮助人们及时监测病情,为病人提供更好的医疗服务。

纳米材料的研究在新能源领域中也得到了广泛应用。

例如,全电池使用纳米材料制成,可以充电更快、有效存储更多的能量,同时使电池更加轻巧,这些电池的研究成果有望在未来的生活中得到广泛应用。

此外,纳米材料的研究在环保领域中也有广泛的应用。

比如,纳米吸附材料可以提高废水处理效能、纳米光触媒净化空气、使用纳米材料替代传统材料可以有效降低环境污染。

纳米科技的发展趋势也引起了人们的高度关注。

纳米科技的发展将具有重大的影响,推动新材料的发展、改进能源利用方式、革新制造工艺、提升传感器的精度等。

未来几年,纳米技术的快速发展将会改变传统产业的格局。

众多企业和国家都在加大对纳米科技的研究和投入,纳米科技将在多个领域中得到广泛的应用,为推动各行业的发展和人类的生活带来更多机遇和福利。

据相关机构预测,到2025年,全球纳米技术市场规模有望突破1万亿美元。

但是,纳米科技的发展也可能存在着一些问题。

一是对纳米材料的毒性的不确定性。

纳米材料的毒性是纳米科技发展过程中面临的一个主要难题,目前对于纳米材料的毒性评估还缺乏科学标准,这使得纳米材料的应用受到了限制。

此外,随着纳米技术的应用面越来越广泛,伦理问题也将越来越受到关注。

纳米材料的研究进展以及应用前景研究

纳米材料的研究进展以及应用前景研究

纳米材料的研究进展以及应用现状1.绪论从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1~100纳米范围内的一种固体材料。

主要包括晶态、非晶态的金属、陶瓷等材料组成。

因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。

这些特殊性质所表现出来的有导电、导热、光学、磁性等。

目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。

纳米科学技术也引起了科学家的重视,在当代的科学界有着举足轻重的地位。

纳米技术的范围包括纳米加工技术、纳米测量技术,纳米材料技术等。

其中纳米材料技术主要应用于材料的生产,主要包括航天材料、生物技术材料,超声波材料等等。

从1861年开始,因为胶体化学的建立,人们开始了对直径为1~100纳米粒子的研究工作。

然而真正意义上的研究工作可以追溯到20世纪30年代的日本为了战争的胜利进行了“沉烟实验”,由于当时科技水平落后研究失败。

2.纳米材料的应用现状研究表明在纺织和化纤制品中添加纳米微粒,不仅可以除去异味和消毒。

还使得衣服不易出现折叠的痕迹。

很多衣服都是纤维材料制成的,通常衣服上都会出现静电现象,在衣服中加入金属纳米微粒就可消除静电现象。

利用纳米材料,冰箱可以消毒。

利用纳米材料做的无菌餐具、无菌食品包装用品已经可以在商场买到了。

另外利用纳米粉末,可以快速使废水彻底变清水,完全达到饮用标准。

这个技术可以提高水的重复使用率,可以运用到化学工业中。

比如污水处理厂、化肥厂等,一方面使得水资源可以再次利用,另一方面节约资源。

纳米技术还可以应用到食品加工领域,有益健康。

纳米技术运用到建筑的装修领域,可以使墙面涂料的耐洗刷性可提高11倍。

玻璃和瓷砖表面涂上纳米材料,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。

这样就可以节约成本,提高装修公司的经济效益。

使用纳米微粒的建筑材料,可以高效快速吸收对人体有害的紫外线。

纳米材料可以提高汽车、轮船,飞机性能指标。

纳米科学的发展史

纳米科学的发展史

纳米科学发展史摘要:纳米科学是研究于纳米尺寸(1~100nm)时,物质和设备的设计方法、组成、特性以及应用的应用科学。

“纳米科学”最初的设想来自于著名物理学家费曼1959年在加州理工大学的一次演讲。

经过半个多世纪的发展,特别是上世纪末期,随着测量与表征技术的显著提高,纳米科学技术得到了飞速的发展,已经成为一门集前沿性、交叉性和多学科特征的新兴研究领域,其理论基础、研究对象涉及物理学、化学、材料学、机械学、微电子学、生物学和医学等多个不同的学科。

关键字:纳米科学,纳米技术,发展,应用1.纳米科学发展简史1959年,著名物理学家、诺贝尔奖获得者理查德·费曼在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。

这一预言被科学界视为纳米材料萌芽的标志。

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。

70年代美国康奈尔大学格兰维斯特和布赫曼利用气相凝集的手段制备纳米颗粒,开始了人工合成纳米材料。

1982年,研究纳米的重要工具-扫描隧道显微镜被发明。

1989年德国教授格雷特利用惰性气体凝集的方法制备出纳米颗粒,从理论及性能上全面研究了相关材料的试样,提出了纳米晶体材料的概念,成为纳米材料的创始人。

1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举行。

1991年,碳纳米管被发现,它的质量只有同体积钢的六分之一,强度却是钢的十倍。

1992年开始,两年一届的世界纳米材料会议分别在墨西哥、德国、美国夏威夷、瑞典举行。

1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字、1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中科北京真空物理实验室操纵原子成功写出“中国”二字。

1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在20年后研制成功速度和存储容量比现有计算机提高成千上万倍的量子计算机。

纳米科学发展史

纳米科学发展史

纳米科学发展史摘要:纳米科学是研究于纳米尺(1~100nm)时,物质和设备的设计方法、组成、特性以及应用的应用科学。

“纳米科学”最初的设想来自于著名物理学家费曼1959年在加州理工大学的一次演讲。

经过半个多世纪的发展,特别是上世纪末期,随着测量与表征技术的显著提高,纳米科学技术得到了飞速的发展,已经成为一门集前沿性、交叉性和多学科特征的新兴研究领域,其理论基础、研究对象涉及物理学、化学、材料学、机械学、微电子学、生物学和医学等多个不同的学科。

关键字:纳米科学,纳米技术,发展,应用。

1、纳米科学发展简史1959年,著名物理学家、诺贝尔奖获得者理查德·费曼在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。

这一预言被科学界视为纳米材料萌芽的标志。

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。

70年代美国康奈尔大学格兰维斯特和布赫曼利用气相凝集的手段制备纳米颗粒,开始了人工合成纳米材料。

1982年,研究纳米的重要工具-扫描隧道显微镜被发明。

1989年德国教授格雷特利用惰性气体凝集的方法制备出纳米颗粒,从理论及性能上全面研究了相关材料的试样,提出了纳米晶体材料的概念,成为纳米材料的创始人。

1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举行。

1991年,碳纳米管被发现,它的质量只有同体积钢的六分之一,强度却是钢的十倍。

1992年开始,两年一届的世界纳米材料会议分别在墨西哥、德国、美国夏威夷、瑞典举行。

1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字。

1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中科北京真空物理实验室操纵原子成功写出“中国”二字。

1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在20年后研制成功速度和存储容量比现有计算机提高成千上万倍的量子计算机。

纳米材料国内外研究进展

纳米材料国内外研究进展

纳米材料国内外研究进展一、前言从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。

自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。

纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。

从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。

通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。

从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。

纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。

二、国内外研究现状1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。

近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。

2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。

现在美国对纳米技术的投资约占世界总量的二分之一[4]。

自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。

纳米技术的发展

纳米技术的发展

纳米技术的发展纳米技术是一种新型的技术手段,它可以制造出物质的分子、原子甚至更小的微观结构,因此具有许多具有应用前景的特点,例如提高材料性能、制备新型高效能源设备、新型的医学材料和分子机器等等。

纳米技术从上世纪90年代开始兴起,如今已经取得了大量的突破和跨越,正处于迅速发展和应用的时期。

纳米技术的发展可以追溯到古代时期,例如我国古代就有研究制备纳米材料的记录。

然而,真正系统性开展纳米技术研究的时间是在20世纪60年代,当时科学家发现,纳米颗粒的物理、化学和材料特性与传统材料有很大的不同,例如热力学性能、光学性能和机械性能等方面都具有迥然不同的特点,这些特点引起科学家们极大的兴趣。

因此,在大量研究的基础上,纳米技术迅速发展起来。

到了20世纪90年代,在生物、医药、材料、电子、光电、信息等众多领域,纳米技术的应用受到了广泛关注。

具体地说,在生物学方面,纳米技术可以制造出纳米粒子,用于药物载体,以实现对肿瘤等病变组织的有针对性治疗。

在医药方面,纳米技术可以制造出高效的诊断设备,例如纳米粒子荧光探针,可以提高胃肠道癌症的早期诊断。

在材料方面,纳米技术可以制造出高强度、高硬度、低密度的不锈钢和超强陶瓷材料,可以广泛应用于航天、运输、电子等领域。

在电子、信息、光电等方面,纳米技术可以制造出微型晶体管、纳米线、超高分辨率显示器等等高端器件,可以将电子技术推向一个全新的高峰。

除了在应用方面的发展,在纳米技术的基础研究方面也取得了很多突破。

例如,纳米技术可以研究材料的纳米级拓扑结构和表面化学特性,从而探索和发现新的物质性质和相态行为;纳米技术可以制备出人工拓扑物质,从而研究和发展拓扑物流电子器件;纳米技术可以利用自组装技术,从前所未有的角度研究生物分子的结构、功能和变异机制等等。

尽管纳米技术目前发展迅速,但它仍然面临许多挑战和困难。

例如,在纳米材料制备方面,纳米颗粒的精确制造和控制技术仍然存在一些问题;在纳米器件制备方面,如何制备出稳定、长寿命、可靠性高的纳米器件是一个重大难题。

纳米技术及其发展现状

纳米技术及其发展现状

LOGO
用LIGA技术制作的微齿轮 技术制作的微齿轮
LOGO
用LIGA技术制作的微结构 技术制作的微结构
LOGO
用LIGA技术制作的环形微陀螺仪 技术制作的环形微陀螺仪
LOGO
用LIGA技术制作的微传感器和微制动器结构 技术制作的微传感器和微制动器结构
LOGO
技术与微细EDM结合制作的微结构 用LIGA技术与微细 技术与微细 结合制作的微结构
LOGO
纳米技术及其发展现状
邓海峰
LOGO
纳米技术
纳米技术( 纳米技术(nanotechnology)是用单个 ) 原子、分子制造物质的科学技术。 原子、分子制造物质的科学技术。纳米科 学技术是以许多现代先进科学技术为基础 的科学技术,它是现代科学(混沌物理、 的科学技术,它是现代科学(混沌物理、 量子力学、介观物理、分子生物学) 量子力学、介观物理、分子生物学)和现 代技术(计算机技术、微电子和扫描隧道 代技术(计算机技术、微电子和扫描隧道 显微镜技术、核分析技术)结合的产物, 显微镜技术、核分析技术)结合的产物, 技术 纳米科学技术又将引发一系列新的科学技 例如纳电子学、纳米材科学、 术,例如纳电子学、纳米材科学、纳机械 学等。 学等。
视频
LOGO
智能药物 纳米生化材料微小易渗透,这使 得医药家能改变细胞基因,因而纳 米生化材料的应用,还有基因药物 的开发。比如微型智能药物,能够 通过识别癌细胞化学特征,来攻击 癌细胞,甚至可以进入单个的病变 细胞中使其分解。从而达到治疗疾 病的目的,而同时又不伤害正常的 细胞组织。
LOGO
LOGO
纳米技术与隐身
日本科学家开发出的光学隐身衣服。 日本科学家开发出的光学隐身衣服。这项技 术的核心是将物体前后的移动影像集成在一 起,制造出透明的效果

纳米材料发展史

纳米材料发展史

纳米材料发展史专业---------姓名——————学号_________一、什么是纳米材料纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。

从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。

因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。

纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。

由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。

并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

二.纳米材料的发展历程1959年12月29日理查德•费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。

虽然没有使用“”纳米这个词,但他实际上介绍了纳米技术的基本概念。

1974年日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。

1981年格尔德•宾宁(Gerd Binnig)和海因里希•罗雷尔Heinrich Rohrer发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。

1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特•富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使用最广泛的纳米材料之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“苍蝇飞机”-这是一种如同苍蝇般大小的袖珍飞行器,可携带各种
探测设备,具有信息处理、导航和通信能力。其主要功能是秘密部 署到敌方信息系统和武器系统的内部或附近,监视敌方情况。这些 纳米飞机可以悬停、飞行,敌方雷达根本发现不了它们。据说它还 适应全天候作战,可以从数百千米外将其获得的信息传回己方导弹 发射基地,直接引导导弹攻击目标。 “蚂蚁士兵” -这是一种通过声波控制的微型机器人。这些机器人比 蚂蚁还要小,但具有惊人的破坏力。它们可以通过各种途径钻进敌方 武器装备中,长期潜伏下来。一旦启用,这些“纳米士兵”就会各显 神通:有的专门破坏敌方电子设备,使其短路、毁坏;有的充当爆破 手... 五角大楼的一次电脑模拟的纳米武器作战演习——“战争”发生在2010年, 美国与敌方的飞机、坦克、大炮在战场上频繁调动。就在双方剑拔弩张之 时,天空中出现了许多“苍蝇”、“黄蜂”等“小昆虫”,地面上也拥出 数以万计的“蚂蚁”。这些“小动物”有的在战场上空盘旋,有的则直接 进入敌方的指挥机关、雷达站、弹药库等。 突然间,随着一声巨响,敌方弹药库率先发生爆炸。紧接着,敌方指 挥通信系统也莫名其妙地炸开了花,在前线待命的飞机、坦克和航母,因 接不到指令、失去弹药和能源补给,全都成了废铁。
碳纳米管场发射显示器
1999年韩国,2000年日本制成显示器样管
在化工领域中的应用
1.汽车尾气
含铅汽油中的铅很容易通 过血液长期蓄积于人的肝、 肾、脾、肺和大脑中,从 而导致人的智能发育障碍 和血色素制造障碍等后果。
汽车尾气的处理:加入纳米级的 复合稀土氧化物后,对尾气的净 化特别明显,尾气中的CO、NOx 几乎完全转化。
• 目前,日本等国已有部分纳米二氧化钛的化妆 品问世。
3.走进你家里
• 纳米TiO2:在光照条件下,会产生具有非常强的氧 化能力的空穴,从而将附在表面上的有机物、细菌 及其它灰尘分解掉,直至生成CO2和H2O。 • 杀菌、除味:由于纳米ZnO具有大的比表面积,可 以很快地吸收并分解臭气,同时还能有效地杀菌。 对黄色葡萄球菌和大肠杆菌的杀菌率高达95%以上。
Molecular-scale machines could one day have medical applications such as removing cancerous cells. Nature 451, 770-771 (14 February 2008) |
• “纳米机器人”的研制是根据分子水平的生物学原理 为设计原型,设计制造可对纳米空间进行操作的“功 能分子器件”。
纳米服装
二个月不用洗——信不信由你
在生物医学领域的应用
纳米泵人造红细胞
• 它比体内血液 中的红细胞要 多携带200多 倍的氧气。
血液形态图
纳米药包
• 诺贝尔奖得主斯莫利的预言 ; • 美国麻省理工学院的研究人员正在研究一种 只有20nm的药物炸弹和包含了1000个纳米药 包的微型芯片; • 在固定的DNA链上连接上杀癌的药物胶囊,放 到病人血液和组织内,一遇上癌细胞的DNA时, DNA链就与癌细胞的DNA结合,这时药物开关 受触发而开放,药物便释放出来,杀灭癌细 胞;
小结:
纳米科技的发展大致可以划分为3个阶段: 第一阶段 (1990年以前)主要是在实验室探索
用各种手段制备各种材料的纳米颗粒粉体,合成块体 (包括薄膜),研究评估表征的方法。
பைடு நூலகம்
第二阶段 (1994年前)人们关注的热点是根据奇特 物理、化学和力学性能,设计纳米复合材料:
纳米微粒与纳米微粒复合(0-0复合), 纳米微粒与常规块体复合(0-3复合), 复合纳米薄膜(0-2复合)。
材料化学工程国家重点实验室
State Key Laboratory of Materials-Oriented Chemical Engineering
纳米材料的发展历程以及各国纳米技术的发 展现状
Reporter: Qiang Zhang Tutor: Su Chen Time: 2010-06-21
CPU
SRAM 静态随即存储器
激光唱片
肉眼看激光唱片(Compact Disk, CD),表面十分光 滑。从微观上看,光盘上面有凹凸不平的凹痕和 突起。
纳米存储器
• 上图:Millipede - 第 一个应用于数据存 储的纳米技术 • 下图:Millipede存储 芯片的实验室原型。
• 英特尔将碳纳米管技术用于未来芯片设计 • 芯片厂商英特尔正指望用碳纳米管取代半导体芯 片内部的铜连线。这种转变总有一天会消除芯片 厂商面临的一些大问题。 • 芯片连线已经成为半导体厂商面临的一个头疼的 问题。根据摩尔定律,芯片厂商每两年就要缩小 一次半导体芯片内部的元件。然而,缩小连线会 增加电阻,降低芯片的性能。 • 芯片厂商在90年代从把连线从铝线转变为铜线从 而绕过了这个问题。遗憾的是,随着芯片尺寸的 缩小,这个电阻问题将成为英特尔等芯片厂商遇 到的大问题。碳纳米管导电性比金属要好,有可 能成为替代金属连线的解决方案。 预计碳纳米管是理想的导体,它的导电性很可能远远超 过铜,是最佳超微导线和超微开关的首选新材料。纳米 管最终可以用于纳米级的电子线路
军事方面的应用
• 吸波:纳米ZnO对 雷达电磁波具有 很强的吸收能力, 所以可以做隐形 飞机的重要涂料。
防弹衣
• 因纳米碳管既轻又强度极高,是钢的10—100 倍,用它来作防弹衣就像用羽绒做成的防寒服 一样,既可折来叠去,又能抵御强大的子弹的 冲击力。
“麻雀卫星” “蚊子导弹” “苍蝇飞 机”“蚂蚁士兵”——美欲五年装备纳 米武器 “麻雀卫星”-美国于1995年提出了纳米卫星的概念。这种卫星比
• 纳米结构材料首次合成 • 1984 年 , 德 国 萨 尔 大 学 的 Gleiter教授等人首次采用惰性 气体冷凝法制备了具有清洁表 面的纳米金属粉末,然后在真 空室中原位加压成纳米固体, 并提出了纳米材料界面结构模 型,制备了具有清洁表面的纳 米晶体Pd, Fe, Cu等块状材料。 随后发现TiO2 纳米陶瓷在室温 下出现良好韧性,使人们看到 了改善陶瓷脆性的希望。
纳米机器 人
• 第一代纳米机器人是生物系统和机械系统的有机 结合体 可注入人体血管内,进行健康检查和疾 病治疗。还可进行人体器官的修复工作、作整容 手术、从基因中除去有害的DNA,把正常的D NA安装在基因中,使机体正常运行。
• 第二代纳米机器人是直接从原子或分子装配成具 有特定功能的纳米尺度的分子装置
“蚊子导弹”-由于纳米器件比半导体器件工作速度快得多,可
以大大提高武器控制系统的信息传输、存储和处理能力,可以制 造出全新原理的智能化微型导航系统,使制导武器的隐蔽性、机 动性和生存能力发生质的变化。利用纳米技术制造的形如蚊子的 微型导弹,可以起到神奇的战斗效能。纳米导弹直接受电波遥控, 可以神不知鬼不觉地潜入目标内部,其威力足以炸毁敌方火炮、 坦克、飞机、指挥部和弹药库。
Nanjing University of Technology
纳米技术概念的提出
纳米科技的基本思想是 在分子水平上,通过操 纵原子来控制物质的结 构。
40年前,诺贝尔物理奖得主、量子物理学家费曼所作 的题为《底部还有很大空间》的演讲,被公认为是纳 米技术思想的来源。
一、纳米材料的研究和发展历程
2.拯救水资源
• • 特种半导体纳米材料使海水淡化; 纳米TiO2可以用来降解有机磷,降解毛纺染整废 水,降解石油 ……
• 利用具有半导体特性的纳米氧化物粒子如 Fe2O3、TiO2、ZnO等做成涂料,由于具有较高 的导电特性,因而能起到静电屏蔽作用。 • 将纳米TiO2粉体按一定比例加入到化妆品中, 则可以有效地遮蔽紫外线。一般认为,其体系 中只需含纳米二氧化钛0.5~1%,即可充分屏蔽 紫外线。
麻雀略大,重量不足10千克,各种部件全部用纳米材料制造,采用 最先进的微机电一体化集成技术整合,具有可重组性和再生性,成 本低,质量好,可靠性强。一枚小型火箭一次就可以发射数百颗纳 米卫星。若在太阳同步轨道上等间隔地布臵648颗功能不同的纳米卫 星,就可以保证在任何时刻对地球上任何一点进行连续监视,即使 少数卫星失灵,整个卫星网络的工作也不会受影响。
第三阶段 (从1994年到现在)纳米组装研究。
它的基本内涵是以纳米颗粒以及纳米丝、管为基本单元 在一维、二维和三维空间组装排列成具有纳米结构的体 系的研究。
二、 纳米科技的应用
• 光电材料 • 环境和能源 • 生物医学 • 航天和航空 • 军事
FROM:

光电材料
1993年后,我国科学家先后操纵原子写出“中国”、“原 子”、绘出中国轮廓图。
• 1994年,中国科学院化学所和中国科学院北京 真空物理室利用STM在单晶硅表面上通过提走 硅原子的方法,获得了(线宽2 nm)硅原子的 “毛泽东”。在石墨表面刻出线宽 10 nm的 “中国”字符。汉字的大小只有几个纳米 • 白春礼院士 • 1988年4月12日, • 中国第一台计算机 • 控制的STM研制成功。
• 第三代纳米机器人是包含纳米计算机,可以进行 人机对话的装置。一旦问世将彻底改变人类的劳 动和生活方式。
纳米清洁工
• 科学家设想制造出负责清扫血 管的纳米机器人(清洁工), 专门负责清扫血管壁上的胆固 醇、凝血等沉积物,以预防脑 血栓等心血管病;同时也可以 制作出清扫体内癌细胞的机器 人。 • 纳米机器人在清理血管中的有害 堆积物。纳米机器人小到可在人 的血管中自由地游动,对于脑血 栓、动脉硬化等病灶,可以很容 易地予以清理而不用进行危险的 开颅、开胸手术。
在扫描隧道显微镜下,科学家将48个铁原子 排列在铜表面上,形成一个圆形围栏。
1991年元旦前夕,日本日立电 子公司向公众展示了一个原子 大小的新年祝词——“peace91” (和平91)。每个字母的高度 均小于1.5纳米,它是把硫原子 一个一个地从二硫化钼晶体上 轰击出来写成的。美国商业机 器公司的“IBM”是在-263℃下 拼出的,而日立公司的祝词则 是在室温下完成的。该成就表 明,纳米技术从此步入了实用 阶段。
相关文档
最新文档