高中数学 3.2.2函数模型的应用实例教案 新人教A版必修1

合集下载

高中数学3.2.2函数模型的应用实例第1课时教学设计新人教A版必修1-经典通用宝藏文档

高中数学3.2.2函数模型的应用实例第1课时教学设计新人教A版必修1-经典通用宝藏文档

函数模型的运用实例(第一课时)【教学设计】一、教学内容本课是普通高中课程标准实验教科书(人民教育出版社A版)数学1(必修),3.2.2 函数模型的运用实例的第一课时。

经过对例3,例4的教学让先生学习领会利用已知的函数模型解决成绩和建立确定的函数模型解决理论成绩,进而掌握建立数学模型解决理论成绩的普通步骤。

二、教学目标知识与技能目标:1.能根据图象和表格提供的有关信息和数据,发掘隐含条件,建立函数模型;2.领会分段函数模型的理论运用,规范分段函数的标准方式;3.掌握用待定系数法求解已知函数类型的函数模型;4.学会验证数学模型与理论情况能否吻合的方法及运用数学模型进行预测。

5.会利用建立的函数模型解决理论成绩,掌握求解函数运用题的普通步骤;6.培养先生浏览理解、分析成绩、数形结合、抽象概括、数据处理、数学建模等数学能力.过程与方法目标:1.经过实例分析,巩固练习,结合多媒体教学,培养先生读图的能力;2.经过实例使先生感受函数的广泛运用,领会建立函数模型解决理论成绩的普通过程;3.浸透数形结合、转化与化归等数学思想方法.情感、态度与价值观目标:1.经过切身感受数学建模的过程,让先生体验数学在理论生活中的运用,领会数学来源于生活又服务于生活,体验数学在解决理论成绩中的价值和作用,激发学习数学的兴味与动力,加强学好数学的认识。

2.培养先生的应意图识、创新认识和勇于探求、勤于考虑的精神,优化先生的理性思想和求真务虚的科学态度。

三、教材分析本课时共有2个例题,其中例3是根据图形信息建立确定的函数模型解决理论成绩;例4 是利用已知的确定的函数模型解决理论成绩,并验证求解出的数学模型与理论情况的吻合程度及用数学模型进行预测。

分别在汽车和人口成绩这两种不同运用情境中,引导学生自主建立函数模型来解决理论成绩.教学重点1.根据图形信息建立函数模型解决理论成绩.2.用待定系数法求解函数模型并运用.3.将理论成绩转化为数学成绩的过程。

人教A版数学必修1课件:3.2.2函数模型应用实例(2)

人教A版数学必修1课件:3.2.2函数模型应用实例(2)

y
O
x
你能总结一下用拟合函数解决应用性问题的 基本过程吗?
收集数据 画散点图
选择函数模型
求函数模型
No
检 验
Yes
用函数模型解 释实际问题
小结:
函数拟合与预测的步骤:
在中学阶段,在处理函数拟合与预测的问 题时,通常需要掌握以下步骤: ⑴ 能够根据原始数据、表格. 绘出散点图. ⑵ 通过考察散点图,画出“最贴近”的直线或 曲线. ⑶根据所学函数知识,求出拟合直线或拟合 曲线的函数关系式. ⑷利用函数关系式,根据条件对所给问题进 行预测和控制,为决策和管理提供依据.
100
15.0
110
17.5
120
20.9
130
26.9
140
31.1
150
38.9
160
47.3
ห้องสมุดไป่ตู้
170
55.1
⑴根据上表中各组对应的数据,能否从我们学过的函数
y ax b
y a ln x b
y a bx
中找到一种函数,使它比较近似地反映该地未成年男性 体重y关于身高x的函数关系,试写出这个函数的解析式, 并求a,b的值. ⑵若体重超过相同身高男性平均值的1.2倍为偏胖,低 于0.8倍为偏瘦,那么该地某校一男生身高 175 cm 体重78 kg,他的体重是否正常?
40 x 520 x 200 40( x 6.5) 1490
2 2
当x 6.5时,y有最大值
只需将销售单价定为11.5元,就可获得最大的利润。
例2. 以下是某地不同身高的未成年男性的体重平均值表
身高cm 体重kg
60
6.13

【成才之路】2014-2015学年高中数学 3.2.2 函数模型的应用实例课件 新人教A版必修1

【成才之路】2014-2015学年高中数学 3.2.2 函数模型的应用实例课件 新人教A版必修1

当该顾客购买茶杯 40 个时,采用优惠办法 (1) 应付款 y1 =
5×40+60=260元;采用优惠办法(2)应付款y2=4.6×40+73.6 =257.6元,由于y2<y1,因此应选择优惠办法(2).
2
2
二次函数模型问题与函数的图象
西部山区的某种特产由于运输原因,长期只能
在当地销售,当地政府对该项特产的销售投资收益为:每年投 1 入 x 万元,可获得利润 P=-160(x-40)2+100(万元).当地政 府拟在新的十年发展规划中加快发展此特产的销售,其规划方 案为: 在规划前后对该项目每年都投入 60 万元的销售投资, 在 未来 10 年的前 5 年中, 每年都从 60 万元中拨出 30 万元用于修 建一条公路,5 年修成,通车前该特产只能在当地销售;
●温故知新
旧知再现 1.常见的函数模型 kx k为常数,k≠0); (1)正比例函数模型:f(x)=____(
k (2)反比例函数模型:f(x)=____( x k为常数,k≠0);
(3)一次函数模型:f(x)=________( kx+b k,b为常数,k≠0); ax2+bx+c a , b , c 为常数, (4) 二次函数模型: f(x) = ____________(
(1)分别求出通话费y1、y2与通话时间x之间的函数关系式; (2)请帮助用户计算,在一个月内使用哪种卡便宜.
[分析]
由题目可获取以下主要信息: (1)通过图象给出函
数关系, (2) 函数模型为直线型, (3) 比较两种函数的增长差 异.解答本题可先用待定系数法求出解析式,然后再进行函数 值大小的比较.
1 又由题设 P=-160(x-40)2+100 知, 每年投入 30 万元时, 795 利润 P= 8 (万元). 前 5 年的利润和为 795 2 775 8 ×5-150= 8 (万元).

人教a版必修1学案:3.2.2函数模型的应用实例(含答案)

人教a版必修1学案:3.2.2函数模型的应用实例(含答案)

3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。

高中数学第三章函数的应用第2节函数模型及其应用(1)教案新人教A版必修1

高中数学第三章函数的应用第2节函数模型及其应用(1)教案新人教A版必修1

第二节函数模型及其应用第一课时整体设计教学分析函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的.通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.三维目标1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.恰当运用函数的三种表示方法(解析式、表格、图象)并借助信息技术解决一些实际问题.3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.重点难点教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.教学难点:应用函数模型解决简单问题.课时安排2课时教学过程第1课时作者:林大华导入新课思路1.(事例导入)一张纸的厚度大约为0.01 cm,一块砖的厚度大约为10 cm,请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n=20时它们的厚度.你的直觉与结果一致吗?解:纸对折n次的厚度:f(n)=0.01·2n(cm),n块砖的厚度:g(n)=10n(cm),f(20)≈105 m,g(20)=2 m.也许同学们感到意外,通过对本节课的学习大家对这些问题会有更深的了解.思路2.(直接导入)请同学们回忆指数函数、对数函数以及幂函数的图象和性质,本节我们将通过实例比较它们的增长差异.推进新课新知探究提出问题①如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.②正方形的边长为x,面积为y,把y表示为x的函数.③某保护区有1单位面积的湿地,由于保护区的努力,使湿地面积每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.④分别用表格、图象表示上述函数.,⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦比较它们的增长差异.⑧另外还有哪种函数模型与对数函数相关.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年… ④列表画出函数图象.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图象讨论它们的单调性. ⑦让学生自己比较并体会.⑧其他与对数函数有关的函数模型. 讨论结果:①y =x .②y =x 2.③y =(1+5%)x.图1 图2 图3⑤它们分别属于:y =kx +b (直线型),y =ax 2+bx +c (a ≠0,抛物线型),y =ka x+b (指数型).⑥从表格和图象得出它们都为增函数.⑦在不同区间增长速度不同,随着x 的增大y =(1+5%)x的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y =log a x +b ,我们把它叫做对数型函数. 应用示例例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据.解:设第x 天所得回报是y 元,则方案一可以用函数y =40(x ∈N *)进行描述;方案二可以用函数y =10x (x ∈N *)进行描述;方案三可以用函数y =0.4×2x -1(x ∈N *)进行描述.三个模型中,第一个是常数函数,后两个都是递增函数模型.要对三个方案做出选择,就要对它的增长情况进行分析.我们先用计算机计算一下三种所得回报的增长情况.图4由表和图4可知,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但方案二与方案三的函数的增长情况很不相同.可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两方案增长得快得多,这种增长速度是方案一、方案二无法企及的.从每天所得回报看,在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.天,应选择方案二;投资11天(含11天)以上,则应选择方案三.针对上例可以思考下面问题:①选择哪种方案是依据一天的回报数还是累积回报数. ②课本把两种回报数都列表给出的意义何在? ③由此得出怎样的结论.答案:①选择哪种方案依据的是累积回报数. ②让我们体会每天回报数的增长变化.③上述例子只是一种假想情况,但从中我们可以体会到,不同的函数增长模型,其增长变化存在很大差异.图5根据图中两函数图象的交点所对应的横坐标为250,元时,由图象可知,y1所对应的自变量的值大于+50=200,∴x=375;在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1 000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1 000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图象,通过观察函数的图象,得到初步结论,再通过具体计算,确认结果.解:借助计算器或计算机作出函数y=0.25x,y=log7x+1,y=1.002x的图象(图6).图6观察函数的图象,在区间[10,1 000]上,模型y =0.25x ,y =1.002x的图象都有一部分在直线y =5的上方,只有模型y =log 7x +1的图象始终在y =5的下方,这说明只有按模型y =log 7x +1进行奖励时才符合公司的要求.下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万.对于模型y =0.25x ,它在区间[10,1 000]上递增,而且当x =20时,y =5,因此,当x >20时,y >5,所以该模型不符合要求;对于模型y =1.002x,由函数图象,并利用计算器,可知在区间(805,806)内有一个点x 0满足1.002x 0=5,由于它在区间[10,1 000]上递增,因此当x >x 0时,y >5,所以该模型也不符合要求;对于模型y =log 7x +1,它在区间[10,1 000]上递增,而且当x =1 000时,y =log 71 000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y =log 7x +1奖励时,奖金是否不超过利润的25%,即当x ∈[10,1 000]时,是否有y x=log 7x +1x≤0.25成立.令f (x )=log 7x +1-0.25x ,x ∈[10,1 000].利用计算器或计算机作出函数f (x )的图象(图7),由函数图象可知它是递减的,因此图7f (x )<f (10)≈-0.316 7<0,即log 7x +1<0.25x .所以当x ∈[10,1 000]时,log 7x +1x<0.25.说明按模型y =log 7x +1奖励,奖金不超过利润的25%. 变式训练市场营销人员对过去几年某商品的价格及销售数量的关系做数据分析发现有如下规律:该商品的价格每上涨x %(x >0),销售数量就减少kx %(其中k 为正实数).目前,该商品定价为a 元,统计其销售数量为b 个.(1)当k =12时,该商品的价格上涨多少,就能使销售的总金额达到最大?(2)在适当的涨价过程中,求使销售总金额不断增加....时k 的取值范围. 解:依题意,价格上涨x %后,销售总金额为y =a (1+x %)·b (1-kx %)=ab10 000[-kx 2+100(1-k )x +10 000].(1)取k =12,y =ab 10 000(-12x 2+50x +10 000),所以x =50,即商品价格上涨50%,y 最大为98ab .(2)因为y =ab10 000[-kx 2+100(1-k )x +10 000],此二次函数的开口向下,对称轴为x =501-kk,在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x 在{x |x >0}的一个子集内增大时,y 也增大.所以501-k k>0,解得0<k <1.点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k ,通过x 块玻璃以后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃以后,光线强度减弱到原来的13以下.(lg3≈0.477 1)解:(1)光线经过1块玻璃后强度为(1-10%)k =0.9k ;光线经过2块玻璃后强度为(1-10%)·0.9k =0.92k ;光线经过3块玻璃后强度为(1-10%)·0.92k =0.93k ;光线经过x 块玻璃后强度为0.9xk .∴y =0.9x k (x ∈N *).(2)由题意:0.9x k <k 3.∴0.9x<13.两边取对数,x lg0.9<lg 13.∵lg0.9<0,∴x >lg 13lg0.9.∵lg 13lg0.9=lg31-2lg3≈10.4,∴x min =11. ∴通过11块玻璃以后,光线强度减弱到原来的13以下.拓展提升某池塘中野生水葫芦的面积与时间的函数关系的图象(如图8所示).假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2、3 m 2、6 m 2所需的时间分别为t 1、t 2、t 3,则有t 1+t 2=t 3; ⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.哪些说法是正确的?图8解:①说法正确. ∵关系为指数函数,∴可设y =a x (a >0且a ≠1).∴由图知2=a 1. ∴a =2,即底数为2.②∵25=32>30,∴说法正确. ③∵指数函数增长速度越来越快, ∴说法不正确.④t1=1,t2=log23,t3=log26,∴说法正确.⑤∵指数函数增长速度越来越快,∴说法不正确.课堂小结活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.引导方法:从基本知识和基本技能两方面来总结.答案:(1)建立函数模型;(2)利用函数图象性质分析问题、解决问题.作业课本习题3.2A组1、2.设计感想本节设计由学生熟悉的素材入手,结果却出乎学生的意料,由此使学生产生浓厚的学习兴趣.课本中两个例题不仅让学生学会了函数模型的应用,而且体会到它们之间的差异;我们补充的例题与之相映生辉,其难度适中,是各地高考模拟经常选用的素材.其中拓展提升中的问题紧贴本节主题,很好地体现了指数函数的性质特点,是不可多得的素材.。

高中数学人教A版(2019) 必修第一册第3章《3.2.2函数的奇偶性》教案

高中数学人教A版(2019) 必修第一册第3章《3.2.2函数的奇偶性》教案

3.2.2函数的奇偶性教学设计一、教材分析“奇偶性”是人教版必修1中第三章第2节“函数的基本性质”的第2小节。

函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。

尝试画出和的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深入,又是为以后学习基本初等函数奠定了基础。

因此,本节课起着承上启下的重要作用。

二、学情分析从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。

同时,上节课学习了函数单调性,积累了研究函数的基本方法与初步经验。

三、教学目标【知识与技能】1.理解奇函数、偶函数的定义2.能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。

【过程与方法】通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。

【情感、态度与价值观】1.在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力;2.通过自主探索,体会数形结合的思想,感受数学的对称美。

四、教学重点和难点重点:函数奇偶性的定义以及用定义法判断函数奇偶性难点:函数奇偶性的应用五、教学方法:引导发现法为主,直观演示法、小组探究、类比法为辅。

六、教学手段:PPT课件。

七、教学过程(一)情境导入、观察图像设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。

(二)探究新知、形成概念探究一.观察下列两个函数和的图象,它们有什么共同特征吗?设计意图:从学生熟悉的和的图像入手,顺应了同学们的认知规律。

2.填函数对应值表,找出与有什么关系?0 1 2 3设计意图:从“形”过渡到“数”,为形成概念做好铺垫。

3.通过填表,你发现了什么?设计意图:通过填表,学生自己得出当自变量x取一对相反数时,相应的函数值相等一关系。

2024-2025学年高中数学第三章函数的概念与性质3.2.2奇偶性教案新人教A版必修第一册

2024-2025学年高中数学第三章函数的概念与性质3.2.2奇偶性教案新人教A版必修第一册
2024-2025学年高中数学 第三章 函数的概念与性质 3.2.2 奇偶性教案 新人教A版必修第一册
主备人
备课成员
课程基本信息
1. 课程名称:奇偶性教学
2. 教学年级和班级:高中一年级数学班
3. 授课时间:2024年11月15日
4. 教学时数:1课时(45分钟)
【教学目标】
1. 知识目标:理解奇偶性的概念,掌握判断函数奇偶性的方法。
- 偶函数:如果对于函数f(x)的定义域内的任意一个x,都有f(-x) = f(x),则称f(x)为偶函数。
- 非奇非偶函数:不满足奇函数和偶函数定义的函数。
4. 奇偶性的性质
- 奇函数的性质:奇函数的图像关于原点对称。
- 偶函数的性质:偶函数的图像关于y轴对称。
- 奇偶函数在定义域内的对称性。
5. 判断函数奇偶性的方法
- 直接法:根据奇偶函数的定义,直接判断函数是否满足f(-x) = -f(x)或f(-x) = f(x)。
- 图象法:通过观察函数图像的对称性来判断函数的奇偶性。
- 代数法:通过对函数进行代数变换,利用已知的奇偶函数的性质来判断。
6. 奇偶性的应用
- 利用奇偶性简化计算:在对称区间上,奇函数的积分为零,偶函数在对称轴两侧的积分相等。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的奇偶性内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的奇偶性内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
知识点梳理
1. 函数的基本概念
- 函数的定义:函数是一种特殊的关系,它将每个输入值(自变量)映射到唯一的输出值(因变量)。

人教A版必修一3.2.2函数模型的应用实例

人教A版必修一3.2.2函数模型的应用实例

类型一:难题,需要55的接受能力以及13 min时间,老师能否及时在学生一直达到 所需接受能力的状态下讲授完这个难题?. 思路点拨:利用所给函数关系式解决有关问题
规律方法:本题是常数函数、一次函数、二次函数混合在一起的分段函数,自变量的取值 不同函数解析式可能不一样,这一点要特别注意.另外,函数的最值也是通过先求每一段 的最值,然后再作比较而求得. 变式训练1-1:某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件.为 了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产 量y与月份数x的关系,模拟函数可以选用二次函数或指数型函数,已知4月份该产品的产 量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
思路点拨:解答本题可首先根据表中数据作出散点图,然后通过观 察图象判断问题所适用的函数模型.
这样,我们得到一个函数模型:y=2.2+1.8x.作出函数图象如图(乙),可以发现,这 个函数模型与已知数据的拟合程度较好,这说明它能较好地反映积雪深度与灌溉面积的关 系. (3)由y=2.2+1.8×25,求得y=47.2,即当积雪深度为25 cm时,可以灌溉土地47.2公顷. 规律方法:对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题 ,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题. 函数拟合与预测的一般步骤是:
类型二:自建函数模型解应用题 【例2】 某市原来民用电价为0.52元/kW·h.换装分时电表后,峰时段(早上八点到晚上 九点)的电价为0.55元/kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元 /kW·h.对于一个平均每月用电量为200 kW·h的家庭,要使节省的电费不少于原来电费的 10%,则这个家庭每月在峰时段的平均用电量至多为多少kW·h?

2014年高中数学(入门答疑+思维启迪+状元随笔)3.2.2函数模型的应用实例同步课堂讲义课件 新人教A版必修1

2014年高中数学(入门答疑+思维启迪+状元随笔)3.2.2函数模型的应用实例同步课堂讲义课件 新人教A版必修1

解析: 若以 y= ax 为模拟函数, 将(10,4), (40,18) a· 10n= 4 分别代入函数解析式,得 ,解得 n 40 = 18 a·
n≈1.085 ,故 y=0.329x1.085,由此函数解析式计 a≈0.329
n
算车速分别为 90 km/h,100 km/h 时,停车距离分 别约为 43.406 m,48.663 m, 与实际情况相差较大.
3.2.2 函数模型的应用实例
某商场销售一批名牌衬衫,平均每天可售出20件, 每件盈利40元,为了扩大销售,增加盈利,尽快减 少库存,商场决定采取适当降价措施.经调查发现, 如果每件衬衫每降价1元,商场平均每天多售出2 件.于是商场经理决定每件衬衫降价15元. [问题] 经理的决定,正确吗? [提示] 设降价x元,利润为y元,则由题意可知: y=(20+2x)(40-x)=-2x2+60x+800. ∴当x=15时,ymax=1 250元, 即经理的决定是正确的.
若以 y=ax2+bx+ c 为模拟函数,将(10,4),(40,18), (60,34)分别代入函数解析式,得 a · 102+ b· 10+ c=4 a · 402+ b· 40+ c=18 , 602+ b· 60+ c=34 a ·
a= 1 150 解得 2 b= 15
分段函数模型
通过研究学生的学习行为,专家发现,学生注意力 随着老师讲课时间的变化而变化, 设 f(t)表示学生注 意力随时间 t(分钟)的变化规律(f(t)越大,表明学生
注 意 力 越 集 中 ) , 经 过 实 验 分 析 得 知 f ( t) =
-t2+24t+100, 0<t≤10, 240, 10<t<20, -7t+380, 20≤t≤45.

高中数学3.2.2函数模型的应用实例教学设计新人教A版必修1

高中数学3.2.2函数模型的应用实例教学设计新人教A版必修1

《函数模型的应用实例(二)》教学设计一、教学内容分析:本节课选自人民教育出版社A版的普通高中课程标准实验教科书·数学必修1中3.2.2函数模型的应用实例(第二课时).函数基本模型的应用是本章的重点内容之一,函数模型本身就来源于现实,并用于解决实际问题.本节课的内容是在《几类不同增长的函数模型》和《函数模型的应用实例(一)》内容之后,对于纯数学知识的几类函数及其性质和给定的函数模型应用有了一定的学习,本节课是对以上两节内容的延续与拓展,研究没有给定函数模型或没有确定性函数模型的实际问题进行建模和应用.这节课的内容继续通过一些实例来感受函数模型的建立和应用,逐步体会实际问题中构建函数模型的过程,本节课的函数模型的应用实例主要包括建立确定性函数模型解决问题及选择或建立拟合函数模型解决问题.例5所给的问题的特点是表中数学的变化是有特定规律的,运用表中的数据规律建立数学模型,注意变化范围和检验结果的合理性,同时使用这种有规律的简单数据实例提供了建立数学模型的方法.例6与例5有所区别,表中数据的变化规律特点不是和明显,需要自己根据对数据的理解选择模型,这反映一个较为完整的建立函数模型解决问题的过程,让学生逐步感受和明确这一点.整节课要求学生分析数据,比较各个函数模型的优劣,选择接近实际的函数模型,并应用函数模型解决实际问题.强化读图、读表能力;优化学生思维,提高学生探究和解决问题的能力;强化学生数学应用意识,感受数学的实用性;锻炼学生的吃苦精神,提高学生的团队合作能力.二、教学目标:知识与技能:1.会分析所给出数据,画出散点图.2.会利用选择或建立的函数模型.3.会运用函数模型解决实际问题.过程与方法:1.通过对给出的数据的分析,抽象出相应的确定性函数模型,并验证函数模型的合理性.2.通过收集到的数据作出散点图,并通过观察图像判断问题所适用的函数模型,在合理选择部分数据或计算机的拟合功能得出具体的满意的函数解析式,并应用模型解决实际问题.情感、态度和价值观:1.经历建立函数模型解决实际问题的过程,领悟数学源自生活,服务生活,体会数学的应用价值.2.培养学生的应用意识、创新意识和探索精神,优化学生的理性思维和求真务实的科学态度.3.提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度.三、学生学情分析:1.已掌握了一些基本初等函数的相关知识,有相应的数学基础知识储备.2.在前面的学习中,初步体会了利用给定函数模型解决实际问题的经历,为本节课积累解决问题的经验.3.学生从文字语言向图像语言和符号语言转化较弱;应用意识和应用能力不强;抽象概括和局部处理能力薄弱.四、教学重点、难点重点:根据收集的数据作出散点图,并通过观察图像选择问题所适用的函数模型,利用演算或计算机数据建立具体的函数解析式.难点:怎样合理分析数据选择函数模型和建立具体的函数解析式.五、教学策略分析:基于新课程标准倡导以学生为主体进行探究性学习,教师应成为学生学习的引导者、组织者和合作者的教学理念和最近发展区理论,结合本节课的教学目标,采用如下教学方法:1.问题教学法.在例1的教学中,提出如何能更为直观的发现函数模型,引导学生思考,发现选择函数模型的重要方法,即散点图图像,从而让学生有收获,有成就感.在例2的解决过程中,提出一系列的问题串,学会对问题的剖析,直达问题的核心.使学生的学习过程成为在教师引导下的“再创造”过程,并使学生从中体会学习的兴趣.这样可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃,同时培养了学生自主学习,动手探究的能力.2.分组讨论法.在例2的教学中,遇到难以选择模型时,通过小组讨论,拓展思维,加强合作,解决问题;在获得函数模型后和课堂总结中,组织小组讨论,相互交流成果,扩大成果影响力.这样不仅能够培养学生对数学知识的探索精神和团队协作精神,更能让学生体验成功的乐趣,培养其学习的主动性.3.多媒体辅助教学法:在教学过程中,采用多媒体教学工具,通过动态演示有利于引起学生的学习兴趣,激发学生的学习热情,增大信息的容量,使内容充实、形象、直观,提高教学效率和教学质量。

《学练考》2019高中数学必修1(人教A版)课件:3.2.2 函数模型的应用实例

《学练考》2019高中数学必修1(人教A版)课件:3.2.2 函数模型的应用实例

2.拟合函数模型的应用题的解题步骤 (1)作图:根据已知数据,画出散点图. (2)选择函数模型:一般是根据散点图的特征,联想哪些 函数具有类似的图像特征, 找几个比较接近的函数模型尝试. (3)求出函数模型:求出(2)中找到的几个函数模型的解析 式. (4)检验:将(3)中求出的几个函数模型进行比较、验证, 得出最合适的函数模型.
3.2.2 │ 预习探究
[思考] 数据拟合时,得到的函数为什么要进行检验?
解:因为根据已给的数据,作出散点图,根据散点 图选择我们比较熟悉的、最简单的函数进行拟合, 但用得到的函数进行拟合时,可能误差较大或不切 合客观实际,故要进行检验,若误差较大或不切合 实际,则要改选其他函数模型.
3.2.2 │ 备课素材 备课素材
3.2.2 │ 预习探究 预习探究
• 知识点一 函数模型应用的两个方面 • (1)利用已知函数模型解决问题; • (2)建立恰当的函数模型,并利用所得函数模 型解释有关现象,对某些发展趋势进行预 测.
3.2.2 │ 预习探究
• 知识点二 应用函数模型解决问题的基本过 程 • 用函数模型解应用题的四个步骤 • (1)审题——弄清题意,分清条件和结论,理 顺数量关系,初步选择模型; • (2)建模——将自然语言转化为数学语言,将 文字语言转化为符号语言,利用数学知识, 建立相应的数学模型; • (3)求模——求解数学模型,得出数学模型; • (4)还原——将数学结论还原为实际问题.
3.2.2 │ 考点类析 考点类析
考点一 图表信息迁移题 例1 基础夯实型
图 323 (1)如图 323 中折线是某电信局规定打长途电话所需要付的电话 费 y(元)与通话时间 t(分钟)之间的函数关系图,根据图像填空:通话 2 3.6 元;通话 5 分钟,需付电话费________ 6 分钟,需付电话费________ 元; 如果 t≥3 分钟,电话费 y(元)与通话时间 t(分钟)之间的函数关系式是 y=1.2t(t≥3) ___________________________________________________________ .

人教A版高中数学必修一

人教A版高中数学必修一
思考5:若体重超过相同身高男性体重的1.2 倍为偏胖,低于0.8倍为偏瘦,那么这个地 区一名身高为175cm, 体重为78kg的在校男 生的体重是否正常?
思考6:你能总结一下用拟合函数解决应用性 问题的基本过程吗?
收集数据
画散点图
选择函数模型
求函数模型
No 检 验
Yes 用函数模型解
释实际问题
思考3:用马尔萨斯人口增长模型,我国在 1950~1959年பைடு நூலகம்间的人口增长模型是什么?
思考4:怎样检验该模型与我国实际人口数据 是否相符?
思考5:据此人口增长模型,大约在哪一年我 国的人口达到13亿?
知识探究(一):函数最值问题 问题:某桶装水经营部每天的房租、人
员工资等固定成本为200元,每桶水的进价是 5元,销售单价与日均销售量的关系如表所示:
年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数 55196 56300 57482 58796 60266 61456 62828 64563 65994 67207
思考1:我国1951年的人口增长率约为多少?
思考2:如果以各年人口增长率的平均值作为 我国这一时期的人口增长率(精确到0.0001) 那么1951~1959年期间我国人口的年平均增 长率是多少?
身高 120 130 140 150 160 170 体重 20.92 26.86 31.11 38.85 47.25 55.05
身高 60 70 80 90 100 110 体重 6.13 7.90 9.99 12.15 15.02 17.50
身高 120 130 140 150 160 170 体重 20.92 26.86 31.11 38.85 47.25 55.05

2016-2017学年人教A版高一数学必修一书本讲解课件:第三章 3.2 3.2.2 函数模型的应用

2016-2017学年人教A版高一数学必修一书本讲解课件:第三章 3.2 3.2.2 函数模型的应用
第十五页,编辑于星期五:十五点 三十六分。
将 c=1.01×105 代入 0.90×105=ce1 000k 中得 0.90×105=1.01×105e1 000k, ∴k=1 0100×ln01..9001.由计算器算得 k=-1.15×10-4, ∴y=1.01×105×e-1.15×10-4x. 将 x=600 代入上述函数关系式得 y=1.01×105×e-1.15×10-4×600, 由计算器算得 y=0.943×105 Pa. 答:600 m 高空的大气压强约为 0.943×105 Pa.
的产量为________. 解析:∵y=a·0.5x+b,且当 x=1 时,y=1,当 x=2 时 y=1.5,则有:
1=a×0.5+b, 1.5=a×0.52+b,
解得ab= =- 2,2,
∴y=-2×0.5x+2,
当 x=3 时,
y=-2×0.125+2=1.75(万件). 答案:1.75 万件
[解析] (1)P(x)=R(x)-C(x)=(3 000x-20x2)-(500x+4 000)=-20x2+2 500x
-4 000.(1≤x≤100,x∈N).
M1(x)=P(x+1)-P(x)=2 480-40x,(1≤x≤100,x∈N)
(2)∵P(x)=-20(x-1225)2+74 125
解析:设今年绿地面积为 a,则有 ay=(1+10%)x·a, ∴y=1.1x,故选 D. 答案:D
第六页,编辑于星期五:十五点 三十六分。
3.已知某工厂生产某种产品的月产量 y 与月份 x 满足关系 y=a·(0.5)x+b,现已
知该厂今年 1 月、2 月生产该产品分别为 1 万件、1.5 万件.则此厂 3 月份该产品
第二十页,编辑于星期五:十五点 三十六分。

高中数学第三章函数的应用3.2.2.1一次函数、二次函数、幂函数模型的应用举例课件新人教A版必修1

高中数学第三章函数的应用3.2.2.1一次函数、二次函数、幂函数模型的应用举例课件新人教A版必修1
系式. (2)若总运费不超过9000元,问共有几种调运方案?
(3)求出总运费最低的调运方案及最低的费用.
【解析】由甲、乙两地调运至A,B两地的机器台数及费
用列表如下:
调出地 调至地 台数 每台运 费 运费合 计 甲地 乙地
A地 10-x 400
B地 12-(10-x) 800
A地 x 300
B地 6-x 500 500·(6-x)
所以甲厂应该选取6千克/小时的生产速度,最大利润为
457500元.
【补偿训练】某工厂在甲、乙两地的两个分厂各生产
某种机器12台和6台,现销售给A地10台,B地8台.已知从 甲地调运1台至A地、B地的运费分别为400元和800元,
从乙地调运1台至A地、B地的运费分别为300元和500元.
(1)设从乙地调运x台至A地,求总运费y关于x的函数关
①当x=20×60=1200,即x>500时,
应付y=30+0.15×(1200-500)=135(元). ②90元已超过30元,所以上网时间超过500分钟,由
30+0.15(x-500)=90可得,上网时间为900分钟.
③令60=30+0.15(x-500),解得x=700.
故当一个月经常上网(一个月使用量超过700分钟)时选 择电脑上网,而当短时间上网(一个月使用量不超过700
x的取值范围. (2)要使生产900千克该产品获得的利润最大,问:甲厂
应该选取何种生产速度?并求最大利润.
【解析】(1)根据题意200 (5x 1 3 ) ≥3000⇒5x-14- 3
x x
≥0, 又1≤x≤10,可解得3≤x≤10.
3 900 (2)设利润为y元,则y= ·100 (5x 1 ) =9× x x 1 1 2 61 4 10 [3( ) ] ,故x=6时,ymax=457500. x 6 12

高中数学人教A版必修1课件:3.2.2函数模型的应用实例

高中数学人教A版必修1课件:3.2.2函数模型的应用实例

设甲项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
(1)写出 y 关于 x 的函数表达式;
(2)求总利润 y 的最大值.
分析:(1)总利润=投资甲项目利润+投资乙项目利润=M+N;(2)
转化为求(1)中函数的最大值.
-12-
3.2.2
题型一
函数模型的应用实例
题型二
题型三
M 目标导航
-3-
3.2.2
函数模型的应用实例
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
名师点拨巧记函数建模过程:
收集数据,画图提出假设;
依托图表,理顺数量关系;
抓住关键,建立函数模型;
精确计算,求解数学问题;
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
题型四
【变式训练 2】 大西洋鲑鱼每年都要逆流而上,游回产地产卵.
记鲑鱼的游速为 v(单位:m/s),鲑鱼的耗氧量的单位数为 Q,研究中发

现 v 与 log3
成正比, 且当Q=900 时,v=1.
100
(1)求出 v 关于 Q 的函数解析式;
米)的关系式为 p=1 000·
7
100

3 000
, 则海拔6 000 米处的大气压强为
百帕.
解析:当 h=6 000 米时,p=1 000·
7
100
6 000
3 000
= 4.9(百帕).
答案:4.9

推荐-高中数学人教A版必修1课件3.2.2函数模型的应用实例

推荐-高中数学人教A版必修1课件3.2.2函数模型的应用实例

当 x>400 时,f(x)=60 000-100x 是减函数.
f(x)<60 000-100×400<25 000(元).
∴当 x=300 时,f(x)的最大值为 25 000 元.
故每月生产 300 台仪器时,利润最大,最大利润为 25 000 元.
探究一
探究二
探究三
思维辨 析
合作学习
反思感悟应用一次函数与二次函数的有关知识,可解决生产、生 活实际中的最大(小)值的问题.解答时需遵循的基本步骤是:(1)反 复阅读理解,认真审清题意;(2)依据数量关系,建立数学模型;(3)利 用数学方法,求解数学问题;(4)检验所得结果,译成实际答案.
合作学习
探究一
探究二
探究三
思维辨 析
解(1)已知仪器的月产量为 x 台,则总成本为 20 000+100x,
从而
f(x)=
-
1 2
������
2
+
300������-20
000,0

������

400,
60 000-100������,������ > 400.
(2)当 0≤x≤400 时,
f(x)=-12(x-300)2+25 000, ∴当 x=300 时,f(x)有最大值 25 000 元;
y=a+bx(a,b 为常数,b≠0).
取其中的两组数据(10.4,21.1),(24.0,45.8),
代入
y=a+bx,得
21.1 45.8
= =
������ ������
+ +
10.4������, 24.0������,

高中数学 3.2.2函数模型的应用实例教案 新人教A版必修1

高中数学 3.2.2函数模型的应用实例教案 新人教A版必修1

高中数学 3.2.2函数模型的应用实例教案新人教A版必修1生多阅读,多思考,由易到难逐层引导提问,理解问题的本质从而得出结论。

教学目标:知识与技能能够利用给定的函数模型或建立确定性函数模型解决实际问题.过程与方法感受运用函数概念建立模型的过程和方法,对给定的函数模型进行简单的分析评价.情感、态度、价值观体会数学在实际问题中的应用价值.教学重点、难点:重点利用给定的函数模型或建立确定性函数模型解决实际问题.难点利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.设计思想一、创设情境现实生活中有些实际问题所涉及的数学模型是确定的,但需要我们利用问题中的数据及其蕴含的关系建立数学模型,对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度,并对给定的数学模型进行适当的分析和评价. 设计意图 教师介绍现实生活中函数应用的典型题型,提出研究内容与研究方法引出问题. 二、组织探究例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示.1) 求图中阴影部分的面积,关说明所求面积的实际含义;2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为2019km ,试建立汽车行驶这段路程时汽车里程表读数s 与时间t 的函数解析式,并作出相应的图象.012345102030405060708090让学生主动参与,认真观察分析所给图象,独立v(km思考后,讨论,教师可以作以下引导首先引导学生写出速度v关于时间t的函数解析式其次引导学生写出汽车行驶路程y关于时间t的函数关系式,并作图象再次探索:1)将图中的阴影部分隐去,得到的图象什么意义?2)图中每一个矩形的面积的意义是什么?3)汽车的行驶里程与里程表读数之间有什么关系?它们关于时间的函数图象又有何关系?设计意图学会将实际问题转化为数学问题.学会用函数模型(分段函数)刻画实际问题.培养学生的读图能力,让学生理解图象是函数对应关系的一种重要表现形式例2.人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:其中t表示经过的时间,y表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:(单位:万人)年份19501951195219531954人数551965630574825879660266年份19551956195719581959人数61456628286456365994672071)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?认真阅读题目,教师指出本例的题型是利用给定的数学模型(指数函数模型rt e yy)解决实际问题的一类问题,引导学生认识到确定具体函数模型的关键是确定两个参数y与r.学生独立思考后,教师作以下提问1)本例中所涉及的数量有哪些?2)描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?3)根据表中数据如何确定函数模型?4)对于所确定的函数模型怎样进行检验,根据检验结果对函数模型又应作出如何评价?5)如何根据所确定函数模型具体预测我国某个时期的人口数,实质是何种计算方法?学生根据教师引导,完成数学模型的确定,借助计算器,利用所确定的函数模型对我国的人口增长情况进行适当的预测教师在验证问题中的数据与所确定的数学模型是否吻合时,可引导学生利用计算器或计算机作出所确定函数的图象,并由表中数据作出散点图,通过比较来确定函数模型与人口数据的吻合程度.设计意图通过本例让学生认识到表格也是函数对应关系的一种表现形式.培养学生得阅读能力,分析能力三、探索研究引导学生分析例题,进行总结归纳利用给定函数模型或建立确定函数解决实际问题的方法:1)根据题意选用恰当的函数模型来描述所涉及的数量之间的关系;2)利用待定系数法,确定具体函数模型;3)对所确定的函数模型进行适当的评价;4)根据实际问题对模型进行适当的修正.设计意图渗透数学思想方法,培养学生读图、分析已知数据、概括、总结等诸多方面的能力。

高中数学 第三章 §3.2.2函数模型的应用实例课件 新人教A版必修1

高中数学 第三章 §3.2.2函数模型的应用实例课件 新人教A版必修1
所以,火车运行总路程 S 与匀速行驶时间 t 之间的关系是 S=13+120t(0≤t≤151). 2 h 内火车行驶的路程 S=13+120×161=233 (km).
第五页,共22页。
小结 在实际问题中,有很多问题的两变量之间的关系是一次 函数模型,其增长特点是直线上升(自变量的系数大于 0)或直 线下降(自变量的系数小于 0),构建一次函数模型,利用一次 函数模型,利用一次函数的图象与单调性求解.
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/万人 55 196 56 300 57 482 58 796 60 266 61 456 62 828 64 563 65 994 67 207
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增
第十一页,共22页。
跟踪训练 2 某游乐场每天的盈利额 y 元 与售出的门票数 x 张之间的关系如图所示, 试问盈利额为 750 元时,当天售出的门票 数为多少? 解 根据题意,每天的盈利额 y 元与售出的门 票数 x 张之间的函数关系是:y=31..7255xx+0≤1 0x0≤0440000<x≤600 . ①当 0≤x≤400 时,由 3.75x=750,得 x=200. ②当 400<x≤600 时,由 1.25x+1 000=750,得 x=- 200(舍去). 综合①和②,盈利额为 750 元时,当天售出的门票数为 200 张. 答 当天售出的门票数为 200 张时盈利额为 750 元.
第十七页,共22页。
当 y=10 时,解得 t≈231. 所以,1881 年世界人口约为 10 年的 2 倍.
(2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长 情况.

人教A版高中数学必修一课件:函数的应用

人教A版高中数学必修一课件:函数的应用

(2)若体重超过相同身高男性体重平均值的1.2 倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名 身高175cm,体重为78kg的在校男生的体重是否 正常?
人教A版高中数学必修一课件:3.2.2 函数的 应用(共 16张PP T)
人教A版高中数学必修一课件:3.2.2 函数的 应用(共 16张PP T)
其中t表示经过的时间, y表0 示t=0是的人口数, r表示人口的年平均增长率。
年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/ 万人
55196 56300 57482 58796 60266 61456 62828 64563 65994 67207
3.2.2 函数的应用举例
2019 10 31
一.教学目标:
1.运用所学的数学知识,通过实际问 题的解决,了解 数学模型方法和解决实际问题的基本步骤.
2.使学生学会建立恰当的函数模型,并利用所得函数 模型解释有关现象或对有关发展趋势进行预测.
二.教学重难点:
重点:常用函数模型的建立.
难点:弄清自变量与函数。列出函数关系式(即目标 函数)并正确 地求解。
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率 (精确到0.0001)用马尔萨斯人口增长模型建立我国在这一时期的具 体人口增长模型,并检验所的模型与实际是否相符? (2)如果按上表的增长趋势,大约在那一年我国的人口达到13亿?
人教A版高中数学必修一课件:3.2.2 函数的 应用(共 16张PP T)
数学结果
3.解决应用性问题的关键是: 读题——懂题——建立数学关系式。
常见的数学模型:
1. (一次函数模型) 2. (二次函数模型)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§3.2.2函数模型的应用实例(一)
教材分析
本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》的第三章的3.2.2函数模型的应用实例
函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。

本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价
学情分析
学生在学习本节内容之前已经学习了几类不同增长的函数模型,学会了任何选择适当的函数模型分析和解决实际问题,对函数模型增长变化有了较深刻的认识。

这为建立函数模型解决实际问题提供了支持。

但学生对于从实际应用问题获取信息转化为数学问题的能力较薄弱,给建立函数模型带来了一定的难度。

因此在教学中应该给学生多阅读,多思考,由易到难逐层引导提问,理解问题的本质从而得出结论。

教学目标:
知识与技能能够利用给定的函数模型或建立确定性函数模型解决实际问题.
过程与方法感受运用函数概念建立模型的过程和方法,对给定的函数模型进行简单的分析评价.
情感、态度、价值观体会数学在实际问题中的应用价值.
教学重点、难点:
重点利用给定的函数模型或建立确定性函数模型解决实际问题.
难点利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.
设计思想
一、创设情境
现实生活中有些实际问题所涉及的数学模型是确定的,但需要我们利用问题中的数据及其蕴含的关系建立数学模型,对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度,并对给定的数学模型进行适当的分析和评价.
设计意图
教师介绍现实生活中函数应用的典型题型,提出研究内容与研究方法引出问题.
二、组织探究
例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示.
1)求图中阴影部分的面积,关说明所求面积的实际含义;
2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s与时间t的函数解析式,并作出相应的图象.
012345
让学生主动参与,认真观察分析所给图象,独立思考后,讨论,教师可以作以下引导 首先引导学生写出速度v 关于时间t 的函数解析式
其次引导学生写出汽车行驶路程y 关于时间t 的函数关系式,并作图象
再次探索:
1)将图中的阴影部分隐去,得到的图象什么意义?
2)图中每一个矩形的面积的意义是什么?
3)汽车的行驶里程与里程表读数之间有什么关系?它们关于时间的函数图象又有何关系? 设计意图
学会将实际问题转化为数学问题.学会用函数模型(分段函数)刻画实际问题.培养学生的读图能力,让学生理解图象是函数对应关系的一种重要表现形式
例2.人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:
rt e y y 0=
其中t 表示经过的时间,0y 表示t =0时的人口数,r 表示人口的年平均增长率.
下表是1950~1959年我国的人口数据资料:
(单位:万人)
1956 1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;
2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?
认真阅读题目,教师指出本例的题型是利用给定的数学模型(指数函数模型rt e y y 0=)解决实际问题的一类问题,引导学生认识到确定具体函数模型的关键是确定两个参数0y 与r .
学生独立思考后,教师作以下提问
1) 本例中所涉及的数量有哪些?
h )
2) 描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?
3) 根据表中数据如何确定函数模型?
4) 对于所确定的函数模型怎样进行检验,根据检验结果对函数模型又应作出如何评价? 5)如何根据所确定函数模型具体预测我国某个时期的人口数,实质是何种计算方法? 学生根据教师引导,完成数学模型的确定,借助计算器,利用所确定的函数模型对我国的人口增长情况进行适当的预测
教师在验证问题中的数据与所确定的数学模型是否吻合时,可引导学生利用计算器或计算机作出所确定函数的图象,并由表中数据作出散点图,通过比较来确定函数模型与人口数据的吻合程度.
设计意图
通过本例让学生认识到表格也是函数对应关系的一种表现形式.培养学生得阅读能力,分析能力
三、探索研究
引导学生分析例题,进行总结归纳
利用给定函数模型或建立确定函数解决实际问题的方法:
1)根据题意选用恰当的函数模型来描述所涉及的数量之间的关系;
2)利用待定系数法,确定具体函数模型;
3)对所确定的函数模型进行适当的评价;
4)根据实际问题对模型进行适当的修正.
设计意图
渗透数学思想方法,培养学生读图、分析已知数据、概括、总结等诸多方面的能力。

揭示数学通常的发现过程,给学生“数学创造”的体验
四、巩固与反思 课堂练习:
教材P 123练习1、2题;
教师学生相互交流以巩固本节课得学习
设计意图
利用课堂了练习巩固所学内容数学思想数学方法,以求达到教学目标.本环节以个别指导为主,体现面对全体学生得课改理念.
学生、归纳、小结、教师评价:
以同桌之间一人小结一人倾听得方式对本节课得内容进行自主小结,教师归纳强调
用已知的函数模型刻画实际问题时,由于实际问题的条件与得出已知模型的条件会有所不同,因此往往需要对模型进行修正.
设计意图
关注学生学习得主动性,培养学生表达交流得数学能力.自主小结得形式将课堂还给学生,既是对一节课得简单梳理回顾,也是对所学内容得再次巩固.
五、课后作业
教材P 127
习题32(A 组)第6~9题;
1.家用冰箱使用的氟化物的释放破坏了大气上层的臭氧层.臭氧含量Q 呈指数函数型变化,满足关系式t e Q Q 0025.00-=,其中0Q 是臭氧的初始量,t 是所经过的时间.
1)随时间的增加,臭氧的含量是增加还是减少?
2)多少年后将会有一半的臭氧消失?
2.各有关部门了解你所生活的城市的人口总数,假设人口年自然增长率为1.2%,试解答下面的问题:
1)写出人口总数(万人)与年份的函数关系式;
2)计算10年后该城市人口总数(精确到0.1万人);
3)计算大约多少年以后该城市人口将达到现在的1.5倍;
4)如果要使20年后该城市的人口总数不超过现在的1.2倍,年人口增长率应该控制在多少?
设计意图
1为巩固作业,2为课外拓展作业,培养学生应用,再创造能力.体会函数模型应用的广泛性及其应用价值.
教学流程
知识结构。

相关文档
最新文档