苏科版数学七年级上册期末复习练习------作图1
苏科七年级数学第一学期期末考试试题
苏科七年级数学第一学期期末考试试题一、选择题1.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .2.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4 B .8 C .-8 D .±83.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 4.下列线段能构成三角形的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,6 5.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 6.下列运算正确的是( )A .()3253a b a b =B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 3 7.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC中AC 边上的高是( )A .CFB .BEC .AD D .CD8.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣89.计算12x a a a a ⋅⋅=,则x 等于( )A .10B .9C .8D .4 10.下列各式能用平方差公式计算的是()A .()()22a b b a +-B .()()11x x +--C .()()m n m n ---+D .()()33x y x y --+ 11.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0 12.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±二、填空题13.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.14.若a m =5,a n =3,则a m +n =_____________.15.等式01a =成立的条件是________.16.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.17.a m =2,b m =3,则(ab )m =______.18.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .919.一个n 边形的内角和为1080°,则n=________.20.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.21.因式分解:=______. 22.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a=__________ .23.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .24.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.三、解答题25.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-. 26.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.27.计算:(1)101223; (2)3258232a a a a a ; (3)223113x x x x x x .28.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.29.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.30.先化简,再求值:(x ﹣2y )(x +2y )﹣(x ﹣2y )2,其中x =3,y =﹣1.31.已知m 2,3na a ==,求①m n a +的值; ②3m-2n a 的值32.已知1502x x +-=,求值; (1)221x x +(2)1x x- 33.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:22|2|(1)(1)m m m --+--;34.平面内的两条直线有相交和平行两种位置关系.①如图a ,若//AB CD ,点P 在AB 、CD 外部,则BPD ∠、B 、D ∠之间有何数量关系?解:BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵POD BOD ∠+∠=______,在POD 中,由三角形内角和定理可得____________180POD ∠+∠+∠=︒, 故______BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠.②若//AB CD ,将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论; ③在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则BPD ∠、B 、D ∠、BQD ∠之间有何数量关系?请证明你的结论;35.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12,b =﹣2. 36.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.2.D解析:D【解析】试题分析:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.考点:完全平方式.3.D解析:D【详解】解:①∵∠1=∠2,∴AB∥CD,故本选项正确;②∵∠3=∠4,∴BC∥AD,故本选项错误;③∵∠A=∠CDE,∴AB∥CD,故本选项正确;④∵∠A+∠ADC=180°,∴AB∥CD,故本选项正确.故选D.4.B解析:B【解析】试题分析:A、2+2=4,不能构成三角形,故本选项错误;B、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C、1+2=3,不能构成三角形,故本选项错误;D、2+3<6,不能构成三角形,故本选项错误.故选B.考点:三角形三边关系.5.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;B、∠A=∠2不能判定任何直线平行,故本选项错误;C、∠C=∠3不能判定任何直线平行,故本选项错误;D、∵∠A=∠1,∴EB∥AC,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.C解析:C【分析】根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.【详解】解:A、(a2b)3=a6b3,故A错误;B、a6÷a2=a4,故B错误;C、5y3•3y2=15y5,故C正确;D、a和a2不是同类项,不能合并,故D错误;故选:C.【点睛】此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.7.B解析:B【解析】试题分析:根据图形,BE是△ABC中AC边上的高.故选B.考点:三角形的角平分线、中线和高.8.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C .【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 9.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a 2+x =a 12,∴2+x =12,∴x =10,故选:A .【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.10.C解析:C【分析】平方差公式是指:(a+b)(a-b)=22a b -,要能使用平方差公式,则两个单项式的符号必须一个相同,一个互为相反数.【详解】A. ()()22a b b a +-不能用平方差公式,不符合题意;B. ()()11x x +--不能用平方差公式,不符合题意;C. ()()m n m n ---+=(-m )2-n 2=m 2-n 2;符合题意;D. ()()33x y x y --+不能用平方差公式,不符合题意.故选C11.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键. 12.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题13.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.【详解】∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.15..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.解析:0a≠.【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a≠.故答案为:0a≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.16.115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=5解析:115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.17.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab)m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m=2,b m=3,所以(ab)m=a m•b m=2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.18.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.19.8【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】n-⋅︒计算即可求解.直接根据内角和公式()2180【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】n-⋅︒.主要考查了多边形的内角和公式.多边形内角和公式:()218020.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.21.2(x+3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18=2(x2-9)=2(x+3)(x-3).考点:因式分解.解析:2(x +3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3).考点:因式分解. 22.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.23.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BA D的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.24.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab 的值.【详解】解:∵(a+b )2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a 2+2ab +b 2=7,然后把a 2+b 2=5代入可计算出ab 的值.【详解】解:∵(a +b )2=7,∴a 2+2ab +b 2=7,∵a 2+b 2=5,∴5+2ab =7,∴ab =1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.三、解答题25.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y 即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++,将1x =-,2y =-代入,则原代数式的值为: 2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题.26.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=, 222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.27.(1)2-;(2)624a ;(3)252x x .【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则,单项式除单项式法则,合并同类项计算即可求出值;(3)原式利用单项式乘以多项式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;【详解】(1)101223 2132=-;(2)3258232a a a a a 66624a a a 624a ;(3)223113x x x x x x 323233332x x x x x x323233332x x x x x x 252x x .【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.28.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键.29.(1)见解析;(2)(2,6);(3)192【分析】(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1,从而得到△A 1B 1C 1; (2)利用A 点坐标画出直角坐标系,再写出A 1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A 1B 1C 1如下图;;(2)如上图建立平面直角坐标系,使得点A的坐标为(-4,3),由图可知:点A1的坐标为(2,6);(3)由(2)中的图可知:A(-4,3),B(5,-1),C(0,0),∴S△ABC=11119 (45)434512222 +⨯-⨯⨯-⨯⨯=.【点睛】本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.30.4xy﹣8y2,﹣20【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,最后代入求出即可.【详解】(x﹣2y)(x+2y)﹣(x﹣2y)2=x2﹣4y2﹣(x2﹣4xy+4y2)=x2﹣4y2﹣x2+4xy﹣4y2=4xy﹣8y2,当x=3,y=﹣1时,原式=4×3×(﹣1)﹣8×(﹣1)2=﹣20.【点睛】本题考查整式的化简求值,涉及平方差公式、完全平方公式、合并同类项等知识,熟练掌握整式的乘法运算法则和乘法公式的运用是解答的关键.31.①6;②8 9【解析】解:①②32.(1)174;(2)32±【分析】(1)利用完全平方公式(a +b)²=a ²+2ab +b ²解答;(2)利用(1)的结果和完全平方公式(a−b)²=a ²−2ab +b ²解答.【详解】解:(1)由题:152x x +=, 21254x x ⎛⎫∴+= ⎪⎝⎭即2212524x x ++=, 221174x x ∴+= (2)222111792244x x x x ⎛⎫-=+-=-= ⎪⎝⎭ 132x x ∴-=± 【点睛】此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.33.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】 解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.34.①见解析;②BPD B D ∠=∠+∠,证明见解析;③BPD B D BQD ∠=∠+∠+∠,证明见解析.【分析】①先根据平行线的性质可得B BOD ∠=∠,再根据平角的定义可得180POD BOD ∠+∠=︒,然后根据三角形的内角和定理可得180POD BPD D ∠+∠+∠=︒,最后根据等量代换即可得证;②如图(见解析),先根据平行线的性质可得B BQD ∠=∠,再根据三角形的外角性质可得BPD BQD D ∠=∠+∠,然后根据等量代换即可得;③如图(见解析),先根据三角形的外角性质可得BED B BQD ∠=∠+∠,BPD D BED ∠=∠+∠,再根据等量代换即可得.【详解】①BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵180POD BOD ∠+∠=︒,在POD 中,由三角形内角和定理可得180POD BPD D ∠+∠+∠=︒,故BOD BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠;②BPD B D ∠=∠+∠,证明如下:如图,延长BP ,交CD 于点Q ,∵//AB CD ,B BQD ∴∠=∠,由三角形的外角性质得:BPD BQD D ∠=∠+∠,BPD B D ∴∠=∠+∠;③BPD B D BQD ∠=∠+∠+∠,证明如下:如图,延长BP ,交CD 于点E ,由三角形的外角性质得:BED B BQD BPD D BED ∠=∠+∠⎧⎨∠=∠+∠⎩, 则BPD B D BQD ∠=∠+∠+∠.【点睛】本题考查了平行线的性质、三角形的内角和定理、三角形的外角性质等知识点,熟练掌握三角形的外角性质是解题关键.35.22442a ab b -+;13【分析】原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=4a 2﹣4ab+b 2﹣(a 2+2a+1﹣b 2)+a 2+2a+1=4a 2﹣4ab+b 2﹣a 2﹣2a ﹣1+b 2+a 2+2a+1=4a 2﹣4ab+2b 2,当a =12,b =﹣2时,原式=1+4+8=13. 【点睛】 此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.36.(1)m =﹣3,n =﹣5;(2)x 3+5x 2+8x +4=(x +1)(x +2)2.【解析】【分析】(1)根据x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),得出有关m ,n 的方程组求出即可; (2)由把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,进而将多项式分解得出答案.【详解】(1)在等式x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),中,分别令x =0,x =1,即可求出:m =﹣3,n =﹣5(2)把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,用上述方法可求得:a =4,b =4,所以x 3+5x 2+8x+4=(x+1)(x 2+4x+4),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.。
苏科版七年级上册数学期末复习:一元一次方程实际应用 专项练习题 2套(含答案)
苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题11.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5 B.2或10 C.2.5或3 D.32.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.3.超市正在热销某种商品,其标价为每件100元,若这种商品打7折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.100×0.7﹣x=15 B.100﹣x×0.7=15C.(100﹣x)×0.7=15 D.100﹣x=15×0.74.某电商销售某款羽绒服,标价为300元,若按标价的八折销售,仍可获利60元.设这款羽绒服的进价为x元,根据题意可列方程为()A.300×0.8﹣x=60 B.300﹣0.8x=60C.300×0.2﹣x=60 D.300﹣0.2x=605.我国古代有一问题:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果设快马x天可追上慢马,下面所列方程中正确的是()A.240x=150(x+12)B.150x=240(x+12)C.240x=150(x﹣12)D.150x=240(x﹣12)6.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②7.一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.()A.10 B.25 C.30 D.358.某人驾驶一小船航行在甲,乙码头之间,顺水航行需6h,逆水航行比顺水航行多用2h,若水流的速度是每小时2km,那么船在静水中的平均速度为每小时多少千米()A.14 B.15 C.16 D.179.学校把一些图书分给某班学生阅读,如果每人分4本,则剩余30本;如果每人分5本,则还缺15本.设这个班有学生x人,依据题意可列方程为()A.4x﹣30=5x+15 B.4x+30=5x﹣15C.4x﹣30=5x﹣15 D.4x+30=5x+1510.为进一步深化课堂教学改革,武侯区初中数学开展了分享学习课堂之“生讲生学”活动,某中学决定购买甲、乙两种礼品共30件,用于表彰在活动中表现优秀的学生.已知某商店甲乙两种礼品的标价分别为25元和15元,购买时恰逢该商店全场9折优惠活动,买完礼品共花费495元,问购买甲、乙礼品各多少件?设购买甲礼品x件,根据题意,可列方程为()A.25x+15(30﹣x)=495 B.[25x+15(30﹣x)]×0.9=495 C.[25x+15(30﹣x)]×9=495 D.[25x+15(30﹣x)]÷0.9=495 11.甲、乙两地相距180km,一列慢车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度也从甲地匀速驶往乙地,两车相继到达终点乙地,在此过程中,两车恰好相距10km的次数是()A.1 B.2 C.3 D.412.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x13.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A.200s B.205s C.210s D.215s14.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母正好配套,设有x名工人生产螺钉,其他工人生产螺母,则根据题意可列方程为()A.2000x=1200(22﹣x)B.2×1200x=2000(22﹣x)C.2×2000x=1200(22﹣x)D.1200x=2000(22﹣x)15.一项工程,甲队单独做需10天完成,乙队单独做需8天完成,甲乙两队的工作效率的最简整数比是()A.5:4 B.10:8 C.4:5 D.8:1016.随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.15017.中国总理李克强2020年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%18.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x元,则可列方程为()A.x+x+1964=x B.x+x+1964=xC.x+x+1964=x D.x+x+1964=3x19.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元20.某球队参加了10场足球赛,共积17分,已知胜一场得3分,平一场得1分,负一场得0分,其中该队输了3场,则该队胜的场次为()A.4 B.5 C.6 D.7参考答案1.解:依题意,得:110t+90t=550﹣50或110t+90t=550+50,解得:t=2.5或t=3.故选:C.2.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.3.解:设该商品每件的进价为x元,依题意,得:100×0.7﹣x=15.故选:A.4.解:设这款羽绒服的进价为x元,依题意,得:300×0.8﹣x=60.故选:A.5.解:设快马x天可追上慢马,则慢马跑了(x+12)天,依题意,得:240x=150(x+12).故选:A.6.解:①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;②设经过x小时后两人相遇后又相距20km,依题意,得:4x+6x﹣20=60,∴②不可以用方程4x+6x+20=60来表述;③设乙出发后x小时两人相遇,依题意,得:4x+20+6x=80,∴③方程4x+6x+20=60来表述;④设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴④可以用方程4x+6x+20=60来表述.故选:B.7.解:设乙中途离开了x天,×40+(40﹣x)=1,解得,x=25即乙中途离开了25天,故选:B.8.解:设船在静水中的速度为x千米每小时,根据题意得:6(x+2)=(6+2)(x﹣2),解得:x=14,故选:A.9.解:设这个班有学生x人,由题意得:4x+30=5x﹣15,故选:B.10.解:设购买甲礼品x件,则购买乙种礼品(30﹣x)件,由题意,得[25x+15(30﹣x)]×0.9=495.故选:B.11.解:∵10÷40=(h),∴快车未出发,慢车出发小时时,两车相距10km;设快车出发x小时时,两车相距10km.快车未超过慢车时,40(x+)﹣10=60x,解得:x=;快车超过慢车10km时,40(x+)+10=60x,解得:x=;快车到达乙地后,40(x+)=180﹣10,解得:x=.∴两车恰好相距10km的次数是4.故选:D.12.解:设x人生产镜片,由题意得,90x=2×60(28﹣x).故选:C.13.解:设从排尾到排头需要t1秒,从排头到排尾需要t2秒,根据题意,得(4﹣2)t1=300,(4+2)t2=300,解得t1=150,t2=50,t1+t2=150+50=200(秒).答:此人往返一趟共需200秒,故选:A.14.解:∵有x名工人生产螺钉,∴有(22﹣x)名工人生产螺母.∵每天生产螺母的总数是生产螺钉总数的2倍,∴2×1200x=2000(22﹣x).故选:B.15.解:根据工作量=工作效率×工作时间,可得工作量一定时,工作效率和工作时间成反比,所以甲队和乙队的工作效率的比是甲乙的工时间的反比;因此甲队和乙队的工作效率的最简整数比是8:10=4:5.答:甲乙两队的工作效率的最简整数比是4:5.故选:C.16.解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.17.解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.18.解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.19.解:设该商品的原售价为x元,根据题意得:75%x+25=90%x﹣20,解得:x=300,则该商品的原售价为300元.故选:D.20.解:设该队胜了x场,由题意得:3x+(10﹣3﹣x)=17解得:x=5;故选:B.苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题2 1.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3402.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.53.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款()A.288元B.332元C.288元或316元D.332元或363元4.一列匀速前进的火车,从它进入600米的隧道到离开,共需30秒,又知在隧道顶部的一固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是()A.100米B.120米C.150米D.200米5.在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒6.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元7.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里8.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.89.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm211.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套.设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=45(100﹣x)B.16x=45(100﹣x)C.16x=2×45(100﹣x)D.16x=45(50﹣x)12.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A.8 B.7 C.6 D.513.小明买书需用34元钱,付款时恰好用了1元和5元的纸币共10张,设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+10(x﹣50)=34 B.x+5(10﹣x)=34C.x+5(x﹣10)=34 D.5x+(10﹣x)=3414.如图,在长为a厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于()A.厘米B.厘米C.厘米D.厘米15.某种商品因换季准备打折出售,若按定价的七五折出售将赔25元,若按定价的九折出售将赚20元,则这种商品的定价为()A.280元B.300元C.320元D.200元16.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.17.某个体户在一次买卖中同时卖出两件上衣,售价都是225元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他()A.赚30元B.赚15元C.亏30元D.不赚不亏18.小明在新亚百货大楼以8折(即标价的80%)的优惠价买了一双沃特牌运动鞋,节省了45元,那么小明买鞋子时应付给营业员()A.150元B.180元C.200元D.225元19.一船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm,则下列方程正确的是()A.(20+4)x+(20﹣4)x=15 B.20x+4x=5C.D.20.在矩形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x(cm),依题意可得方程()A.6+2x=14﹣3x B.6+2x=x+(14﹣3x)C.14﹣3x=6 D.6+2x=14﹣x参考答案1.解:设汽车离山谷x米,则汽车离山谷距离的2倍即2x,因为汽车的速度是72千米/时即20米/秒,则汽车前进的距离为:4×20米/秒,声音传播的距离为:4×340米/秒,根据等量关系列方程得:2x+4×20=4×340,故选:A.2.解:(1)当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,解得t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.故选:A.3.解:(1)若第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,则90%x=252,解得x=280两次所购物价值为80+280=360>300所以享受8折优惠,因此王波应付360×80%=288(元).(2)若第二次购物超过300元,设此时购物价值为y元,则80%y=252,解得y=315 两次所购物价值为80+315=395,因此王波应付395×80%=316(元)故选:C.4.解:设这火车的长为x米,则=,x=120.因此选择B.5.解:设需要的时间为x秒,110千米/小时=米/秒,100千米/小时=米/秒,根据轿车走的路程等于超越卡车的路程加上两车的车身长,得出:解得:x=5.76故选:C.6.解:设小慧同学不买卡直接购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.7.解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.8.解:根据题意得:200×﹣80=80×50%,解得:x=6.故选:B.9.解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.10.解:设围成的长方形的宽为x,则长为2x,根据题意得:2(x+2x)=12,解得:x=2,∴2x=4,∴围成长方形的面积为2×4=8(cm2).故选:C.11.解:设用x张制瓶身,则用(100﹣x)张制瓶底才能正好制成整套的饮料瓶,根据题意列方程得,2×16x=45(100﹣x),故选:A.12.解:(方法一)设甲计划完成此项工作的天数为x,根据题意得:x﹣(1+)=3,解得:x=7.(方法二)设甲计划完成此项工作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式方程的解,且符合题意.故选:B.13.解:设所用的1元纸币为x张,根据题意得:x+5(10﹣x)=34,故选:B.14.解:由题意可得,5x+2×4=a,解得,x=,故选:A.15.解:设这种商品的定价为x元,由题意,得0.75x+25=0.9x﹣20,解得:x=300.故选:B.16.解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选:C.17.解:设两件上衣的进价分别为a元,b元,根据题意得:(1+25%)a=225,(1﹣25%)b=225,解得:a=180,b=300,∴这次买卖中盈利的钱为225﹣180+225﹣300=﹣30(元),则这次买卖中他亏了30元.18.解:设运动鞋原价x元,由题意得:x﹣80%x=45,解得:x=225,225﹣45=180(元),故选:B.19.解:若设甲、乙两码头的距离为xkm,由题意得:+=5,故选:D.20.解:设AE为xcm,则AM为(14﹣3x)cm,根据题意得出:∵AN=MW,∴AN+6=x+MR,即6+2x=x+(14﹣3x)故选:B.。
苏科版七年级上册数学《期末检测试题》附答案解析
苏科版数学七年级上学期期末测试卷一、选择题(本大题共8小题,每小题3分,共24分)1.2-的相反数是()A. 2-B. 2C.12D.12-2. 如图是某个几何体的主视图、左视图、俯视图,该几何体是()A. 圆柱B. 球C. 圆锥D. 棱锥3.下列运算中,正确的是( )A. 3x+2y=5(x+y)B. x+x3=x4C. x2•x3=x6D. (x2)3=x 64.下列四个平面图形中,不能折叠成无盖长方体盒子的是( )A. B. C. . D. .5.下列叙述,其中不正确的是( )A. 过一点有且只有一条直线与已知直线平行B. 同角(或等角)的余角相等C. 两点确定一条直线D. 两点之间的所有连线中,线段最短6.如图,直线AB、CD相交于点O,且∠AOD+∠BOC=100°,则∠AOC( )A. 150°B. 130°C. 100°D. 90°7.如果关于x的方程3x+2k-5=0的解为x=-3,则k的值是( )A. 2B. -2C. 7D. -78.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏本20元,而按标价的8折出售将赚40元.为了保证不亏本,最少要打折( )A. 6B. 6.5C. 7D. 7.5二、填空题(本大题共有10小题,每小题2分,共20分)9.单项-2335x y的次数是___________.10.某天的最高气温为8℃,最低气温为-2℃,则这天的温差是__________℃.11.PM2.5是指每立方米大气中直径小于或等于0.000 0025米的颗粒粉尘,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,将0.000 0025米用科学记数法表示为___________米.12.如图,点C是线段AB的中点,点D是线段AC的中点,若CD=1,则AB=___________.13.如图,把一个长方体纸盒展成一个平面图形,需要剪开___________条棱. 14.一个角的补角比它的余角的4倍少30°,则这个角的度数为_______. 15.若单项式-x1-a y4与2x3y2b是同类项,则b a=___________. 16.若10m=5,10n=3,则102m+3n= .17.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为100千米/时,乙车的速度为80千米/时,___________小时后两车相距30千米.18.如图,一个长方体的表面展开图中四边形ABCD是正方形(正方形的四个角都是直角、四条边都相等),则根据图中数据可得原长方体的体积是______3cm.三、解答题(本大题共有10小题,共76分)19.计算:(1)-4-28-(-19)+(-24);(2)-14÷(2017-π)0-(-15)-2.20.计算:(1)5m-7n-8p+5n-9m-p;(2)x4•x5•(-x)7+5(x4)4-(x7)3÷x5.21.解方程:12(x-2)-13(4x-1)=4.22.(1)已知a+b=5,ab=-2,求代数式(6a-3b-2ab)-(a-8b-ab)的值;(2)已知2x-y-4=0,求9x•27y÷81y的值.23.根据要求完成下列题目:(1)图中有_____块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m个小正方体,最多要n个小正方体,则m+n的值为____.24.如图,点P是∠AOB的边OA上的一点,作∠AOB的平分线ON;(1)过点P画OB的平行线交ON于点M;(2)过点M画OB的垂线,垂足为H;(3)度量线段PO、PM与MH的长度,会发现:线段PO与PM的大小关系是;线段MH与PM的大小关系是.25.某班学生分两组参加某项活动,甲组有26人,乙组有32人,后来由于活动需要,从甲组抽调了部分学生去乙组,结果乙组人数是甲组人数的2倍还多1人.从甲组抽调了多少学生去乙组?26.如图,直线AB和CD交于点O,OE⊥AB,垂足为点O,OP平分∠EOD,∠AOD=144°.(1)求∠AOC与∠COE度数;(2)求∠BOP的度数.27.如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤20 a 剩余部分a+1.1 (1)某用户1月用水10立方米,共交水费26元,则a= 元/m3;(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费81.6元.请问该用户实际用水多少立方米?28.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BO C.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.2-的相反数是( )A. 2-B. 2C. 12D. 12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .2. 如图是某个几何体的主视图、左视图、俯视图,该几何体是( )A. 圆柱B. 球C. 圆锥D. 棱锥【答案】C【解析】 试题分析:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故选(C ). 考点:由三视图判断几何体.3.下列运算中,正确的是( )A. 3x +2y =5(x +y )B. x +x 3=x 4C. x 2•x 3=x 6D. (x 2)3=x 6 【答案】D【解析】试题分析:A .不是同类项不能合并,故A 错误;B .不是同类项不能合并,故B 错误;C .235·x x x =,故C 错误;D .()326x x =,故D 正确.故选D.4.下列四个平面图形中,不能折叠成无盖长方体盒子的是( )A. B. C. . D. .【答案】C【解析】【分析】根据长方体展开图的特征,图A、图B和图D都属于“1 4 1”结构,且对折后相对的面相同,都能折叠成无盖的长方体盒子;图C虽然也属于“1 4 1”结构,少一个侧面,一个侧面重复,不能折叠无盖的长方体盒子.【详解】选项A、B、D都能折叠成无盖的长方体盒子,选项C中,上下两底的长与侧面的边长不符,所以不能折叠成无盖的长方体盒子.故选C.【点睛】本题主要是考查长方体展开图的特征,长方体与正方体展开图的特征类似,都有11种情况,不同的是长方体的展开图还要看相对的面是否相同.5.下列叙述,其中不正确的是( )A. 过一点有且只有一条直线与已知直线平行B. 同角(或等角)的余角相等C. 两点确定一条直线D. 两点之间的所有连线中,线段最短【答案】A【解析】【分析】根据平行公理,余角的性质,直线的性质,线段的性质,可得答案.【详解】A、过直线外一点有且只有一条直线与已知直线平行,故A错误;C、两点确定一条直线,故C正确;B、同角(或等角)的余角相等,故B正确;D、两点之间的所有连线中,线段最短,故D正确;故选A.【点睛】本题考查平行线的判定定理以及平行线的性质.注意过直线外一点有且只有一条直线与已知直线平行.6.如图,直线AB、CD相交于点O,且∠AOD+∠BOC=100°,则∠AOC是( )A. 150°B. 130°C. 100°D. 90°【答案】B【解析】试题分析:两直线相交,对顶角相等,即∠AOD=∠BOC,已知∠AOD+∠BOC=100°,可求∠AOD=50°;又∠AOD 与∠AOC互为邻补角,即∠AOD+∠AOC=180°,将∠AOD的度数代入,可求∠AOC=130°.故选B.7.如果关于x的方程3x+2k-5=0的解为x=-3,则k的值是( )A. 2B. -2C. 7D. -7【答案】C【解析】【分析】把x=-3代入3x+2k-5=0得到关于k的方程,然后解方程即可.【详解】把x=-3代入3x+2k-5=0得,-9+2k-5=0,解得k=7.故选C【点睛】本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.8.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏本20元,而按标价的8折出售将赚40元.为了保证不亏本,最少要打折( )A. 6B. 6.5C. 7D. 7.5【答案】A【解析】【分析】设该服装的标价为x元,根据8折售价-5折售价=两次利润差即可得出关于x的一元一次方程,解之即可得出标价,再用售价的8折减利润后除以售价即可得出结论.【详解】设该服装的标价为x元,根据题意得:0.8x-0.5x=40-(-20),解得:x=200,(0.8×200-40)÷200=0.6,∴为保证不亏本,最多能打6折.故选:A.【点睛】本题考查了一元一次方程的应用,根据数量关系两次售价差等于利润差列出关于x的一元一次方程是解题的关键.二、填空题(本大题共有10小题,每小题2分,共20分)9.单项-2335x y的次数是___________.【答案】5【解析】【分析】单项式的次数就是所有的字母指数和.【详解】∵单项式-233x y5中字母x和y的指数分别是2和3,∴单项式-233x y5的次数是2+3=5,故答案为5.【点睛】本题考查单项式的次数的概念,关键熟记这些概念然后求解.10.某天的最高气温为8℃,最低气温为-2℃,则这天的温差是__________℃.【答案】10【解析】根据题意,得8-(-2)=10℃.11.PM2.5是指每立方米大气中直径小于或等于0.000 0025米的颗粒粉尘,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,将0.000 0025米用科学记数法表示为___________米.【答案】2.5×10-6【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0025米用科学记数法表示为2.5×10-6;故答案为2.5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,点C是线段AB的中点,点D是线段AC的中点,若CD=1,则AB=___________.【答案】4【解析】【分析】根据中点定义解答.【详解】∵点D是线段AC的中点,CD=1,∴AC=2CD=1×2=2,∵点C是线段AB的中点,∴AB=2AC=2×2=4.故答案为:4.【点睛】本题考查了两点之间的距离,熟悉中点定义是解题的关键.13.如图,把一个长方体纸盒展成一个平面图形,需要剪开___________条棱.【答案】7【解析】【分析】根据长方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【详解】∵长方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴至少要剪开12-5=7条棱,故答案为7.【点睛】此题主要考查了长方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.一个角的补角比它的余角的4倍少30°,则这个角的度数为_______.【答案】50o【解析】试题解析:设这个角为x,由题意得,180°-x=4(90°-x)-30°,解得x=50°,故这个角的度数是50°.15.若单项式-x 1-a y 4与2x 3y 2b 是同类项,则b a =___________. 【答案】14【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得a 、b 的值,再根据乘方的意义,可得答案.【详解】-x 1-a y 4与2x 3y 2b 是同类项,1-a=3,2b=4,a=-2,b=2, b a =2-2=14, 故答案为14. 【点睛】本题考查了同类项,相同的字母的指数也相同是解题关键,注意负数的偶次幂是正数. 16.若10m =5,10n =3,则102m+3n = .【答案】675.【解析】102m+3n =102m ⋅103n =(10m )2⋅(10n )3=52⋅33=675,故答案为675.点睛:此题考查了幂的乘方与积的乘方, 同底数幂的乘法. 首先根据同底数幂的乘法法则,可得102m+3n =102m ×103n ,然后根据幂的乘方的运算方法,可得102m ×103n =(10m )2×(10n )3,最后把10m =5,10n =2代入化简后的算式,求出102m+3n 的值是多少即可.17.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为100千米/时,乙车的速度为80千米/时,___________小时后两车相距30千米. 【答案】73或83【解析】【分析】 应该有两种情况,第一次应该还没相遇时相距30千米,第二次应该是相遇后交错离开相距30千米,根据路程=速度×时间,可列方程求解.【详解】设第一次相距30千米时,经过了x小时,由题意,得(100+80)x=450-30,解得x=73;设第二次相距30千米时,经过了y小时,由题意,得(100+80)y=450+30,解得y=83,故经过73小时或83小时相距30千米.故答案为:73或83【点睛】本题考查理解题意能力,关键知道相距30千米时有两次以及知道路程=速度×时间,以路程做为等量关系可列方程求解.18.如图,一个长方体的表面展开图中四边形ABCD是正方形(正方形的四个角都是直角、四条边都相等),则根据图中数据可得原长方体的体积是______3cm.【答案】20【解析】【分析】利用正方形的性质以及图形中标注的长度得出AB=AE=5cm,进而得出长方体的长、宽、高进而得出答案.【详解】如图:,∵四边形ABCD是正方形,∴AB=AE=5cm,∴立方体的高为:(7-5)÷2=1(cm ), ∴EF=5-1=4(cm ),∴原长方体的体积是:5×4×1=20(cm 3). 故答案为20.【点睛】此题主要考查了几何体的展开图,利用已知图形得出各边长是解题关键.三、解答题(本大题共有10小题,共76分)19.计算:(1)-4-28-(-19)+(-24);(2)-14÷(2017-π)0-(-15)-2. 【答案】(1)-37;(2)-26.【解析】【分析】(1)先将减法转化为加法,再计算加法即可得;(2)直接利用幂的乘方、零指数幂的性质以及负指数幂的性质分别化简得出答案.【详解】(1)原式=-32+19-24=-56+19=-37;(2)原式=-1÷1-25=-1-25=-26.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.计算: (1)5m -7n -8p +5n -9m -p ;(2)x 4•x 5•(-x )7+5(x 4)4-(x 7)3÷x 5.【答案】(1)-4m-2n-9p ;(2)3x 16【解析】【分析】(1)先移项,再合并同类项;(2)原式利用幂的乘方、同底数幂的乘法和除法法则计算,再合并即可得到结果.【详解】(1)5m-7n-8p+5n-9m-p=5m-9m-7n+5n-8p-p=-4m-2n-9p ;(2)x 4•x 5•(-x )7+5(x 4)4-(x 7)3÷x 5=- x 4•x 5•x 7+5x 16-x 21÷x 5=- x 16 +5x 16-x 16=3x 16【点睛】此题考查了幂的乘方、同底数幂的乘法、除法法则计算以及合并同类项,熟练掌握整式运算的有关法则是解答此题的关键.21.解方程:12(x -2)-13(4x -1)=4.【答案】x=-285. 【解析】【分析】 方程两边都乘以6去分母后,去括号,移项合并,将x 系数化为1即可求出解.【详解】去分母得:3(x-2)-2(4x-1)=24,去括号得:3x-6-8x+2=24,移项合并得:-5x=28,解得:x=-285. 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x 系数化为1,求出解.22.(1)已知a +b =5,ab =-2,求代数式(6a -3b -2ab )-(a -8b -ab )的值;(2)已知2x -y -4=0,求9x •27y ÷81y 的值.【答案】(1)27;(2)81.【解析】【分析】(1)运用整式的加减运算顺序先去括号,再合并同类项,根据乘法的分配律将5a+5b 变形为5(a+b ),最后代入求值即可;(2)根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可得答案.【详解】(1)原式=6a-3b-2ab-a+8b+ab =5a+5b-ab=5(a+b )-ab ,当a+b=5,ab=-2时,原式=5×5-(-2)=27; (2)9x •27y ÷81y =32x •33y ÷34y =32x-y , 由2x-y-4=0,得2x-y=4,故原式=34=81.【点睛】本题考查了幂的乘方,同底数幂的乘法,整式的混合运算和求值的应用,用了整体代入思想. 23.根据要求完成下列题目:(1)图中有_____块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m 个小正方体,最多要n 个小正方体,则m+n 的值为____.【答案】(1)7;(2)画图见解析;(3)16【解析】【分析】(1)直接根据立体图形得出小正方体的个数;(2)主视图从左往右小正方形的个数为1,3,2;左视图从左往右小正方形的个数为3,1;俯视图从左往右小正方形的个数1,2,1;(3)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.【详解】(1)图中有7块小正方体;故答案为7;(2)如图所示:;(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要6个小立方块,最多要10个小立方块.则m+n=16故答案为16【点睛】此题主要考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.24.如图,点P是∠AOB的边OA上的一点,作∠AOB的平分线ON;(1)过点P画OB的平行线交ON于点M;(2)过点M画OB的垂线,垂足为H;(3)度量线段PO、PM与MH的长度,会发现:线段PO与PM的大小关系是;线段MH与PM的大小关系是.【答案】(1)画图见解析;(2)画图见解析;(3)=,<【解析】【分析】(1)过点O画∠AOB的平分线ON,过点P画OB的平行线交ON于点M即可;(2)过点M画∠MHO=90°即可;(3)利用点到直线的距离可以判断线段MH的长度是点M到OB的距离,测量可得线段长度.【详解】(1)作图如下:(2)作图如下;(3)经度量可得段PO=PM;MH<PM,故答案=,<【点睛】本题考查基本作图-作角平分线,平行线以及垂线,解题的关键是熟练掌握基本作图的方法,属于基础题.25.某班学生分两组参加某项活动,甲组有26人,乙组有32人,后来由于活动需要,从甲组抽调了部分学生去乙组,结果乙组的人数是甲组人数的2倍还多1人.从甲组抽调了多少学生去乙组?【答案】7个人【解析】试题分析:设从甲组抽调了x个学生去乙组,根据抽调后乙组的人数是甲组人数的2倍还多1人即可得出关于x的一元一次方程,解之即可得出结论.试题解析:设从甲组抽出x人到乙组,()+=-+x x322261,325221,+=-+x xx=-35332,x=321,7.x=答:从甲组抽调了7名学生去乙组26.如图,直线AB和CD交于点O,OE⊥AB,垂足为点O,OP平分∠EOD,∠AOD=144°.(1)求∠AOC与∠COE的度数;(2)求∠BOP的度数.【答案】(1)∠AOC=36°,∠COE=54°,(2)∠BOP=27°.【解析】【分析】(1)由邻补角定义,可求得得∠AOC度数,由垂直定义,可得∠AOE=∠BOE=90°,由余角定义可求得∠COE;(2)由邻补角定义可得∠DOE度数,由OO平分∠DOE,可得∠EOP度数,再由余角定义可求得∠BOP度数. 【详解】(1)∵∠AOC+∠AOD=180°,∠AOD=144°,∴∠AOC=180°-∠AO D=180°-144°=36°,∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠COE=∠AOE-∠AOC=90°-36°=54°,(2)∵∠COE+∠DOE=180°,∴∠DOE=180°-∠COE=180°-54°=126°,∵OO平分∠DOE,∴∠EOP=12∠DOE=12×126°=63°,∴∠BOP=∠BOE-∠EOP=90°-63°=27°.【点睛】本题考查了对顶角、邻补角以及垂线的性质,是基础知识要熟练掌握.27.如表为某市居民每月用水收费标准,(单位:元/m3).(1)某用户1月用水10立方米,共交水费26元,则a= 元/m3;(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费元;(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费81.6元.请问该用户实际用水多少立方米?【答案】(1)a=2.6;(2)需交水费70.5元;(3)该用户实际用水40立方米.【解析】【分析】(1)由单价=总价÷数量就可以得出结论;(2)设该用户2月份水费=0<x≤20的水费+x大于20部分的水费,列出算式计算即可求解;(3)设该用户实际用水m吨,由70%的水量的水费为81.6元=单价×数量建立方程求出其解即可.【详解】(1)a=26÷10=2.6(元/m3);(2)2.6×20+(2.6+1.1)×(25-20)=52+3.7×5=52+18.5=70.5(元).答:需交水费70.5元;(3)设该用户实际用水m立方米,由题意,得2.6×20+(2.6+1.1)×(70%m-20)=81.6,解得:m=40.故该用户实际用水40立方米.【点睛】本题考查了单价×数量=总价的数量关系的运用,列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时由单价×数量=总价的关系建立方程是关键.28.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BO C.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)①t=5秒;②是,见解析;(2)t=5秒;(3)t=23.3秒;见解析【解析】【分析】(1)①由∠POQ=90°,得∠AOQ+∠BOP=90°,由∠AOC=30°,得∠BOC=150°,由OP平分∠BOC,得∠BOP=75°,可得∠AOQ=15°,即可求得t值;②由∠POQ=90°,∠POC=75°,可得∠COQ =15°=∠AOQ,即OQ平分∠AOC;(2)根据图形和题意得出∠AOQ+∠BOP=90°,∠COQ=∠COP=45°,再根据转动速度从而得出答案;(3)分别根据转动速度关系和OC平分∠POB计算即可.【详解】(1)①∵∠POQ=90°,∠AOQ+∠BOP=90°,∵∠AOC=30°,∴∠BOC=180°-∠AOC =150°,∵OP平分∠BOC,∴∠BOP=12∠BOC =75°,∴∠AOQ=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠POQ=90°,∠POC=75°,∴∠COQ=∠POQ-∠POC=15°=∠AOQ,∴OQ平分∠AOC;(2)5秒时OC平分∠POQ,理由如下:∵∠AOQ+∠BOP=90°,∠COQ=∠COP,∵∠POQ=90°,∴∠COQ=∠COP=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AOQ为3t,∠AOC为30°+6t,∵∠AOC-∠AOQ=45°,可得:30°+6t-3t=45°,解得:t=5秒;(3)∵∠AOQ+∠BOP=90°,∠BOC=∠COP,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AOQ为3t,∠AOC为30°+6t,∴∠COP为12(90°-3t),∵∠BOP+∠AOQ=90°,可得:180°-(30°+6t)=12(90°-3t),解得:t=703秒.【点睛】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
期末考试全真模拟卷01(学生版)-2024-2025学年七年级数学上册真题汇编章节复习知识讲练(苏科
2024-2025学年苏科版数学七年级上册期末考试全真模拟卷01范围:第1-6章时间:120分钟满分:100分难度系数:0.67姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2022秋•京山市期中)已知m是6的相反数,n比m的相反数小2,则m﹣n=()A.4 B.8 C.﹣10 D.﹣22.(3分)(2018秋•舞钢市期末)在下列各数中:,(﹣4)2,﹣(﹣3),﹣52,﹣|﹣2|,(﹣1)2018,0,其中是负数的有()A.2个B.3个C.4个D.5个(2020秋•薛城区期中)如果多项式a2﹣7ab+b+kab﹣1合并同类项后不含ab项,那么k的值为()(3分)3.A.0 B.7 C.1 D.不能确定4.(3分)(2021秋•济南期中)在x2+2,,,,﹣5x,0,π中,单项式有()A.5个B.4个C.3个D.6个5.(3分)(2022秋•拱墅区期末)下列说法中,正确的是()A.两点之间直线最短B.如果∠α=53°38',那么∠α余角的度数为36.22°C.如果一个角的余角和补角都存在,那么这个角的余角比这个角的补角小D.相等的角是对顶角6.(3分)(2020秋•覃塘区期中)3≤m≤5,化简|m﹣5|+|2m﹣6|的结果是()A.m﹣1 B.1﹣m C.3m﹣11 D.11﹣3m7.(3分)(2019秋•克东县期末)若关于x的方程2x+a=3与x+2a=7的解相同,则a的值为()A.﹣B.C.﹣D.8.(3分)(2021秋•灌阳县期末)下列各角中,为锐角的是()A.平角B.周角C.直角D.周角9.(3分)某市出租车收费标准为:起步价6元,2km后每千米1.8元.某人坐出租车后付款27.6元,则此人乘车的路程为()A.10km B.12km C.13km D.14km10.(3分)(2018秋•江津区月考)下列第一到第四个图形分别由3根、9根、18根、30根等长的火柴棍首尾顺次相接组成,按此规律,组成第6个图形的火柴棍有()根.A.45 B.63 C.72 D.84评卷人得分二.填空题(共8小题,满分16分,每小题2分)11.(2分)在距离井口7cm处有一只蜗牛,已知蜗牛向上爬行记为正,向下滑落记为负,爬行的路程记为(单位:cm):﹣5,+8,﹣3,+4,+2,则蜗牛最后(填“能”或“不能”)爬到井口.12.(2分)(2022春•江宁区月考)一个长方形的长是 4.2×104cm,宽是3×104cm,此长方形的面积为.(用科学记数法表示)13.(2分)(2021秋•东台市月考)若﹣2x2m+7y3与3x3y2n﹣1是同类项,则m n的值为.14.(2分)(2020秋•兰州期末)数轴上与表示和7的两个点的距离相等的点所表示的数为.15.(2分)(2021秋•包头期末)已知x﹣2y=5,那么代数式8+3x﹣6y的值是.16.(2分)(2023春•大兴区期末)如图,已知AB∥CD∥EF,则∠1,∠2,∠3之间的数量关系是.17.(2分)(2023•长岭县一模)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?设共有x人买鸡,鸡价为y文钱,可列方程组为.18.(2分)(2022秋•淮滨县期末)如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.则3点40分时,时针与分针所成的角度为.评卷人得分三.解答题(共8小题,满分54分)19.(6分)(2022秋•二道区校级期末)计算下列各题:(1)(﹣24)×();(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.20.(6分)(2018秋•市中区月考)解下列方程.(1)x+2(x+1)=8+x;(2)=﹣1.21.(6分)(2020秋•海珠区校级期中)已知:A=3x2+mx﹣y+4,B=6x﹣3y+1﹣3nx2,当x≠0且y≠0时,若3A﹣B的值等于一个常数,求m,n的值,及这个常数.22.(6分)(2022秋•景德镇期中)(1)已知图1是由大小相同的小立方块搭成的几何体,请在图2的方格中分别画出从左面和从上面看到的该几何体的形状图(请依照从正面看的范例画图);(2)若要用大小相同的小立方块搭一个几何体,使得它从左面和从上面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体至少需要个小立方块.23.(8分)(2021秋•建平县期末)如图,OD,OE分别是∠AOB和∠BOC的平分线.(1)若∠AOB=40°,∠BOC=80°,求∠DOE的度数;(2)设∠AOB=x,∠BOC=y,求∠DOE的度数.(用含x,y的代数式表示)24.(6分)如图,点C是线段AB的中点,点D是线段BC上一点,点E是线段AD的中点,AD=12cm,CE =2cm,求线段AB的长.25.(8分)(2021秋•五常市月考)元宵节前夕,某超市从厂家购进了甲、乙两种发光道具,甲种道具每件进价比乙种道具每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?(2)若该超市从厂家购进了甲乙两种道具共50件,在销售时,甲种道具的每件售价为10元,乙种道具的每件售价为15元,要使得这50件道具所获利润为160元,应购进乙道具多少件?26.(8分)(2022秋•惠山区校级期末)如图,长方形纸板ABCD中,AD长为10米,AB长为a米.下面我们将探究用不同裁剪方法,将该纸板制作成长方体纸盒.(1)如图①所示,用EF把长方形ABCD分成2个长方形,将长方形ABFE折叠成纸盒的侧面,将长方形CDEF做纸盒的下底面,做成一个无盖的长方体纸盒.若a=2,请你求这个纸盒底面的周长.(2)如图②、③所示,用EF把长方形ABCD分成2个长方形,将长方形ABFE折叠成纸盒的侧面,将长方形CDEF沿GH剪成两部分,分别做纸盒的上、下底面,做成一个有盖的长方体纸盒.①若a=2,请分别求出图②、③两种不同方案的底面周长.②请你猜想图②、③两种不同方案所做纸盒的底面周长是否有可能相等?如果相等,请求出此时a的值.如果不相等,请说明理由.。
2022-2023学年苏科版七年级数学上册期末阶段复习综合训练题(附答案)
2022-2023学年苏科版七年级数学上册期末阶段复习综合训练题(附答案)一、选择题(共30分)1.﹣2的相反数是()A.2B.﹣2C.D.2.下面不是同类项的是()A.﹣3与B.﹣2a2b与a2b C.2m与2n D.﹣x2y2与3.已知|a|=5,b2=16且ab>0,则a﹣b的值为()A.1B.1或9C.﹣1或﹣9D.1或﹣14.用一副三角尺不能画出来的角的度数是()A.75°B.95°C.105°D.150°5.已知线段AB,在AB的延长线上取一点C,使AC=2AB,在AB的反向延长线上取一点D,使AD=2BC,若BD=6,则AC为()A.2B.4C.6D.86.已知当x=1时,2ax2+bx的值为3,则当x=﹣2时,ax2﹣bx的值为()A.﹣6B.6C.﹣3D.37.方程中﹣=1有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是x=﹣1,那么墨水盖住的数字是()A.B.1C.﹣D.08.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5B.6C.7D.89.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°10.有不足30个苹果分给若干个小朋友,若每个小朋友分3个,则剩2个苹果;若每个小朋友分4个,则有一个小朋友没分到苹果,且最后一个分到苹果的小朋友分得的苹果数不足3个.已知小朋友人数是偶数个,那么苹果的个数是()A.25B.26C.28D.29二、填空题(共24分)11.若x=﹣2是关于x的方程2x+5=a的解,则a的值为.12.33°48′=°.13.全民抗疫,齐心协力.截止到2020年底,我国累计治愈“新冠”患者人数约为88000人,将“88000”用科学记数法表示为.14.当x=时,代数式2x+1的值是x+2的值的3倍.15.若2m+n=3,则代数式6﹣m﹣0.5n的值为.16.若两个角互补,且度数之比为3:2,求较大角度数为.17.如果多项式2a2﹣6ab与﹣a2﹣2mab+b2的差不含ab项,则m的值为.18.有理数a、b、c在数轴上的位置如图所示,则化简|a﹣b|+2|a+c|﹣|b﹣2c|的结果是.三、解答题(共76分)19.计算(1)(﹣48)×(﹣);(2)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.20.解方程(1)x﹣2(x﹣4)=3(1﹣x);(2)1﹣=.21.先化简再求值:,其中x=▓,y=▓.黑色部分是小明不小心用墨水污染的条件,可是小亮却认为无需知道x、y的值,也能求出代数式的值.你同意小亮同学的说法吗?请说明理由.(1)我(填“同意”或“不同意”);(2)理由:22.如图是由8个棱长为1的小正方体搭成的几何体.(1)请分别画出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为(包括底面积);(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在(1)中所画的图形一致,则搭这样的几何体最少要个小正方体.23.如图,点C为线段AB的中点,点E为线段AB上的一点,点D为线段AE的中点.(1)若线段AB=m,CE=n,|m﹣20|+(n﹣5)2=0,求m,n的值;(2)在(1)的条件下,求线段DC的长.24.已知m、x、y满足:(1)|m+1|+(x﹣5)2=0;(2)﹣2ab y+1与4ab5是同类项.求代数式(2x2﹣3xy+y2)﹣m(x2﹣xy+y2)的值.25.已知:关于x的方程的解是x=2,若a=4,求b的值.26.列一元一次方程解应用题:某小组计划做一批“中国结”,如果每人做5个,那么可比计划多做9个;如果每人做4个,那么将比计划少15个.问:他们计划做多少个“中国结”?27.规定“△”是一种新的运算法则,满足:a△b=ab﹣3b.示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=﹣3.(1)求(﹣6)△2的值;(2)若(﹣3)△(x+1)=x△(﹣2),求x的值.28.如图,直线AB与CD相交于点O,OE⊥CD.(1)如果∠COB=130°,那么根据,可得∠AOD=°.(2)如果∠EOB=2∠AOC,求∠AOD的度数.29.如图,已知A、B是数轴上的两个点,点A表示的数为﹣5,点B表示的数为15,动点P从点A出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)AP=,点P表示的数(分别用含t的代数式表示);(2)点P运动多少秒时,P A=3PB?(3)若M为P A的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.参考答案一、选择题(共30分)1.解:﹣2的相反数是:﹣(﹣2)=2,故选:A.2.解:A.﹣3与是同类项,故此选项不符合题意;B.﹣2a2b与a2b,符合同类项定义,是同类项,故此选项不符合题意;C.2m与2n所含字母不同,不是同类项,故此选项符合题意;D.﹣x2y2与符合同类项定义,是同类项,故此选项不符合题意;故选:C.3.解:∵|a|=5,b2=16,∴a=±5,b=±4,∵ab>0,∴a=5,b=4或a=﹣5,b=﹣4,则a﹣b=1或﹣1,故选:D.4.解:一副三角尺中的角度有30°、60°、90°、45°、45°、90°,30°+45°=75°,45°+60°=105°,60°+90°=150°.故选:B.5.解:∵AC=2AB,∴点B是AC的中点,AC=2BC=2AB,∵AD=2BC,∴BD=3BC,∵BD=6,∴AB=BC=2,∴AC=2BC=4.故选:B.6.解:当x=1时,2ax2+bx=2a+b=3,当x=﹣2时,ax2﹣bx=4a+2b=2(2a+b)=2×3=6故选:B.7.解:墨水盖住的部分用a表示,把x=﹣1代入方程得:﹣=1,解得:a=1.故选:B.8.解:根据题意得:200×﹣80=80×50%,解得:x=6.故选:B.9.解:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=∠AOC=40°,∴∠DOM=∠AOM﹣∠AOD=40°﹣10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM=∠AOM+∠AOD=40°+10°=50°;故选:C.10.解:设小朋友的人数为x人,则苹果的个数为(3x+2)个,依题意,得:,解得:7<x<10.又∵x为偶数,∴x=8,∴3x+2=26.故选:B.二、填空题(共24分)11.解:将x=﹣2代入方程2x+5=a中得:﹣4+5=a,即a=1,故答案为:1.12.解:33°48′=33°+(48÷60)°=33°+0.8°=33.8°.故答案为:33.8°.13.解:88000=8.8×104,故答案为:8.8×104.14.解:由题意可得:2x+1=3(x+2),2x+1=3x+62x﹣3x=6﹣1﹣x=5x=﹣5,故答案为:﹣515.解:∵2m+n=3,∴6﹣m﹣0.5n=6﹣(m+0.5n)=6﹣(2m+n)=6﹣×3=6﹣1.5=4.5.故答案为:4.5.16.解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.17.解:(2a2﹣6ab)﹣(﹣a2﹣2mab+b2)=2a2﹣6ab+a2+2mab﹣b2=3a2+(2m﹣6)ab﹣b2,∵多项式2a2﹣6ab与﹣a2﹣2mab+b2的差不含ab项,∴2m﹣6=0,解得:m=3,故答案为:3.18.解:由数轴可知c<a<0<b,且|a|<|b|<|c|,则a﹣b<0、a+c<0、b﹣2c>0,∴原式=b﹣a﹣2(a+c)﹣(b﹣2c)=b﹣a﹣2a﹣2c﹣b+2c=﹣3a,故答案为:﹣3a.三、解答题(共76分)19.解:(1)(﹣48)×(﹣)=(﹣48)×(﹣)﹣(﹣48)×+(﹣48)×=24+30+(﹣28)=26;(2)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3=﹣32÷4××6+(﹣8)=﹣8××6+(﹣8)=﹣72+(﹣8)=﹣80.20.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.21.解:(1)同意;(2)理由:原式=2021﹣6y3﹣4x+4x+6y3=2021,由于计算结果与其中x、y无关,所以小亮同学的说法正确,故答案为:同意.22.解:(1)如图所示:(2)1×1=1,这个组合几何体的表面积为6×8﹣8×2=32(平方单位).故这个组合几何体的表面积为32个平方单位.(3)1+1+3+2=7(个).故搭这样的几何体最多要7个小立方体.故答案为:32平方单位;7.23.解:(1)|m﹣20|+(n﹣5)2=0,∴m﹣20=0,n﹣5=0,∴m=20,n=5;(2)∵点C为线段AB的中点,AB=20,CE=5,∴AC=AB=10,∴AE=AC+CE=15,∵点D为线段AE的中点,∴DE=AE=7.5,∴CD=DE﹣CE=7.5﹣5=2.5.24.解:∵|m+1|+(x﹣5)2=0,∴m+1=0,x﹣5=0,解得m=﹣1,x=5,∵﹣2ab y+1与4ab5是同类项,∴y+1=5,解得y=4,∴(2x2﹣3xy+y2)﹣m(x2﹣xy+y2)=2x2﹣3xy+y2﹣mx2+mxy﹣my2=(2﹣m)x2+(﹣3+m)xy+(1﹣m)y2=3x2﹣4xy+2y2=3×52﹣4×(﹣1)×4+2×42=75+16+32=123.25.解:将x=2代入方程中得,,化简得:3a=4b,∵a=4,∴b=3.26.解:设小组成员共有x名,依题意有5x﹣9=4x+15,解得x=24.当x=24时,5x﹣9=111.答:他们计划做111个中国结.27.解:(1)(﹣6)△2=(﹣6)×2﹣3×2=﹣12﹣6=﹣18;(2)∵(﹣3)△(x+1)=x△(﹣2),∴﹣3(x+1)﹣3(x+1)=﹣2x﹣3×(﹣2),﹣3x﹣3﹣3x﹣3=﹣2x+6,﹣6x+2x=6+3+3,﹣4x=12,x=﹣3.28.解:(1)∵∠COB=130°,∴∠AOD=∠COB=130°;故答案为:对顶角相等,130.(2)设∠AOC=x,则∠EOB=2x.∵OE⊥CD,∴∠EOC=∠EOD=90°,∵∠AOC=∠BOD,且∠BOD+∠EOB=∠EOD=90°,∴x+2x=90°,∴x=30°,2x=60°,即∠EOB=60°,∴∠AOD=∠BOC=∠EOB+∠EOC=60°+90°=150°.故答案为:150°.29.解:(1)由题意,得:AP=5t,点P表示的数﹣5+5t,故答案为5t,﹣5+5t.(2)∵P A=3PB,(如图1,图2),∴5t=3(20﹣5t)或5t=3(5t﹣20),解得:t=3或6;(3)线段MN的长度不变,理由:∵M为P A的中点,N为PB的中点,∴PM=P A,PN=PB,①当点P在线段AB上时,MN=PB+P A=AB=10.②当点P在线段AB的延长线上时,MN=P A﹣PB=(P A﹣PB)=AB=10;故MN的长度不变.。
苏科版七年级上册数学初一期末复习作业
…… 初一数学期末复习作业1.下列方程中,解为2=x 的方程是 ( )A .323=-xB .1)1(24=--xC .x x 26=+-D .0121=+x 2.若代数式35)2(22++-y x m 的值与字母x 的取值无关,则m 的值是( )A .2B .-2C .-3D .03.如图,,,,,b CD a AB CD AD BC AC ==⊥⊥则AC 的取值范围 ( )A .大于bB .小于aC .大于b 且小于aD .无法确定4.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图 案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色地砖_____________块。
5.方程133221=--+x x 的解为 。
6.小华和小明每天坚持跑步,小明每秒跑6米,小华每秒跑4米,如果他们同时从相距200米的两地相向起跑,那么几秒后两人相遇?若设x 秒后两人相遇,可列方程 。
7.一个角的余角是它的补角的52,这个角的补角是 。
8.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为 道。
9.∠1和∠2互余,∠2和∠3互补,∠1=63°,∠3=________.10.已知轮船在逆水中前进的速度为m 千米/时,水流的速度为2千米/时,则这轮船在顺水中航行的速度是 千米/时11.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD 。
(1)图中∠AOF 的余角是 (把符合条件的角都填出来)。
(2)图中除直角相等外,还有相等的角,请写出三对: ① ;② ; ③ 。
(3)①如果∠AOD =140°.那么根据 ,可得∠BOC = 度。
②如果AOD EOF ∠=∠51,求∠EOF 的度数。
12.解方程: 17.012.04.01=--+x xb aC BD A O FE D CB A13.某一家服装厂接受一批校服订货任务,按计划天数进行生产,如果每天平均生产20套,就比订货任务少生产100套,如果每天平均生产23套,就可超过订货任务20套,问这批服装订货任务是多少套?原计划多少天完成?14.如图,OD 是∠AOB 的平分线,∠AOC =2∠BOC ,∠COD =∠0321'ο,求∠AOB 的度数.15.一个长方形,如图所示,恰好分成六个正方形,其中最大的正方形面积为196cm 2,求这个长方形的面积。
苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】
苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一)一、选择题1、下列结论:①两点确定一条直线;②直线AB 与直线BA 是同一条直线;③线段AB 与线段BA 是同一条线段;④射线OA 与射线AO 是同一条射线.其中正确的结论共有( )个.A .1B .2C .3D .42、根据下图,下列说法中不正确的是( ) A .图①中直线经过点B .图②中直线,相交于点l A a b AC .图③中点在线段上D .图④中射线与线段有公共点C AB CD AB 3、如图,是北偏东方向的一条射线,若射线 与射线垂直,则的方位角是()OA 30°OB OA OB A .北偏东 B .北偏西 C .西偏北 D .北偏西30°30°60︒60︒(3题) (7题) (8题)4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .95、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或 D .或3cm 5cm 3cm 7cm 5cm 7cm6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°9、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°(9题) (10题)10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB =40,则MN =_____.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.(13题) (14题) (16题) (17题)14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.17、如图,一副三角板按图示放置,已知∠AOC =65°,则∠AOB =______°.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠23、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠AOC=30°,∠BOC=90°,求∠DOE的度数”,小明在做题中发现:解决这个问题时∠AOC的度数不知道也可以求出∠DOE的度数.也就是说这个题目可以简化为:如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠BOC=90°,求∠DOE的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC=m°,则∠DOE= °;(变式拓展)小明继续探究:(3)已知直线AM、BN相交于点O,若OC是∠AOB外一条射线,且不与OM、ON重合,OD、OE分别平分∠AOB、∠AOC,当∠BOC=m°时,求∠DOE的度数(自己在备用图中画出示意图求解).答案一、选择题1、下列结论:①两点确定一条直线;②直线AB与直线BA是同一条直线;③线段AB与线段BA是同一条线段;④射线OA与射线AO是同一条射线.其中正确的结论共有()个.A.1B.2C.3D.4C【分析】根据直线、线段和射线以及直线的公理进行判断即可.解:①两点确定一条直线,正确;②直线AB与直线BA是同一条直线,正确;③线段AB与线段BA是同一条线段,正确;④射线OA与射线AO不是同一条射线,错误;故选C.2、根据下图,下列说法中不正确的是()l A a b AA.图①中直线经过点B.图②中直线,相交于点C AB CD ABC.图③中点在线段上D.图④中射线与线段有公共点C【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【详解】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.OA30°OB OA OB3、如图,是北偏东方向的一条射线,若射线与射线垂直,则的方位角是()A .北偏东B .北偏西C .西偏北D .北偏西30°30°60︒60︒D 【分析】根据垂直,可得∠AOB 的度数,根据角的和差,可得答案.【详解】解:∵射线OB 与射线OA 垂直,∴∠AOB =90°,∴∠1=90°-30°=60°,故射线OB 的方向角是北偏西60°,故选:D .4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .9A 【分析】由D 是线段AB 的中点可计算出AD 的长度,结合CD =2可求得AC =8,再由E 是线段AC 的中点可求得CE 的长度,最后根据DE =CD +CE 即可得出答案.【详解】解:∵D 是线段AB 的中点,AB =20,∴AD =AB =10,12又∵CD =2,∴AC =AD -CD =10-2=8,∵E 是线段AC 的中点,AC =8,∴CE =AC =4,∴DE =CD +CE =2+4=6.故选:A .125、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或D .或3cm 5cm 3cm 7cm 5cm 7cmC【分析】根据题意知,点在点左侧时,;点在点右侧时,,因为C B MN BM BN =-C B +MN BM BN =点是线段的中点,点是线段的中点,分别算出长度,代入计算即可.M AB N BC ,BM BN 【详解】解:因为点是直线上一点,所以需要分类讨论:C AB (1)点在点左侧时,作图如下:C B∵,,∴,,10cm AB =4cm BC =152BM AB cm ==122BN BC cm ==又∵,∴.MN BM BN =-=523MN cm -=(2)当点在点右侧时,作图如下:C B由(1)知,,,152BM AB cm ==122BN BC cm ==∵,∴,+MN BM BN =+=5+2=7cm MN BM BN =综上所述,的长度是或.故选:CMN 3cm 7cm 6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒B【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.【详解】解:点10分时,分针在指在2时位置处,时针指在4时过10分钟处,4 由于一大格是,10分钟转过的角度为,30°1030560⨯︒=︒因此4点10分时,分针与时针的夹角是.故选:.230565⨯︒+︒=︒B7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°D 【分析】根据角的和差关系求解即可.【详解】解:∵∠AOC =120°,∴∠BOC =∠AOC -∠AOB =30°,∴∠BOD =∠COD -∠BOC =60°.故选:D .8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°B 【分析】根据垂线的性质、角平分线的定义得出含∠AOD 的等式求解即可.【详解】解:∵OC ⊥OD ,∴∠COD =90°,∴∠AOC =∠COD +∠AOD =90°+∠AOD ,∵OD 平分∠AOB ,OE平分∠AOC ,∠BOE =15°,∴∠AOE =∠AOC =∠BOE +∠AOB =15°+2∠AOD ,12∴15°+2∠AOD =(90°+∠AOD ),∴∠AOD =20°,故选:B .129、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°D 【分析】根据折叠求出∠CFG =∠EFG =∠CFE ,根据∠BFE =3∠BFH ,∠BFH =20°,即可求出12∠GFH =∠GFE +∠HFE 的度数.【详解】解:∵将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,使点C 落在长方形内部点E 处,∴∠CFG =∠EFG =∠CFE ,12∵∠BFE =3∠BFH ,∠BFH =20°,∴∠BFE =60°,∴∠CFE =120°,∴∠GFE =60°,∵∠EFH =∠EFB ﹣∠BFH ,∴∠EFH ==40°,∴∠GFH =∠GFE +∠EFH =60°+40°=100°.故选:D .10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°C【分析】根据角平分线定义求出∠AOA 1=∠AOB=32°,同理即可求出答案.12∵∠AOB=64°,OA 1平分∠AOB ,∴∠AOA 1=∠AOB=32°,12∵OA 2平分∠AOA 1,∴∠AOA 2=∠AOA 1=16°,12同理∠AOA 3=8°,∠AOA 4=4°,故选:C .二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB ②④【分析】根据两点之间,线段最短的性质,对各个选项逐个分析,即可得到答案.【详解】①用两个钉子就可以把木条固定在墙上,可用两点可确定一条直线解释;②把弯曲的公路改直,就能缩短路程,可用两点之间,线段最短解释;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,可用两点可确定一条直线解释;④从地到地架设电线,总是尽可能沿着线段架设,可用两点之间,线段最短解释;故②④.A B AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB=40,则MN =_____.20【分析】由题意易得,进而可得,进而问题可11,22MC AC CN CB ==111222MN MC CN AC CB AB =+=+=求解.【详解】解:∵M 、N 分别为AC 、BC 的中点,∴,11,22MC AC CN CB ==∵AB =40,∴;11120222MN MC CN AC CB AB =+=+==故答案为20.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.40°【分析】运用对顶角的定义如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角、邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,叫做邻补角,求解即可.【详解】解:∵OE ⊥AB ,∴∠AOE =90°,∵∠COE =50°,∴∠AOC =90°﹣∠COE =90°﹣50°=40°,∴∠BOD =∠AOC =40°.故40°.14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.65°【详解】∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)2=65°.÷15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 2或8【分析】根据点C 在直线AB 上,可以从两种情况进行分析计算:当点C 在线段AB 上时和当点C 不在线段AB 上时,即可计算得到答案.【详解】解:当点C 在A 、B 之间时,如图1所示∵线段AB =6cm ,O 是AB 的中点,∴OA =AB =×6cm =3c m ,1212∴OC =CA ﹣OA =5cm ﹣3cm =2cm .当点C 在点A 的左边时,如图2所示,∵线段AB =6cm ,O 是AB 的中点,CA =5cm ,∴OA =AB =×6c m =3cm ,1212∴OC =CA +OA =5cm +3c m =8c m 故答案为2或8.16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.116°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.∠=︒,∠AOC=90°,∴∠BOC=64°,【详解】解:∵126∵∠2+∠BOC=180°,∴∠2=116°.故116°.17、如图,一副三角板按图示放置,已知∠AOC=65°,则∠AOB=______°.155【分析】根据图形中角之间的关系即可求得∠AOB的度数.【详解】解:∵∠BOC=90°,∴∠AOB=∠AOC+∠BOC=65°+90°=155°故155.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.【思路点拨】11点30分时,时针与分针的夹角为165°,分针每分钟转过6°,而时针每分钟转过0.5°,此问题可以转化为追及问题,当分针从与时针的夹角为165°减少到还有11°时所用的时间,以及超过时针11°时所用的时间,设未知数,列方程解答即可,同时注意分钟在时针前11°和在时针后11°两种情况.【解答过程】解:11点30分时,时针与分针的夹角为165°,由钟表时针、分针的旋转规律得,分针每分钟转过6°,而时针每分钟转过0.5°,设小丽从家出发用x 分钟到达图书馆,由题意得:(6°﹣0.5°)x =165°﹣11°或(6°﹣0.5°)x =165°+11°,解得:x =28或x =32,经检验,28分,32分钟均符合题意,故28或32.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠(1)画图见解析,(2)画图见解析【分析】(1)连接点D 与点D 向左平移一个单位,向下平移三个单位的点的直线即可;(2)过点D ,连接以D 为顶点边长为2的正方形对角线,和以D 为顶点边长为1和3的长方形对角线,两条对角线组成的角就是所求的角.【详解】解:(1)如图所示,DM 就是所求直线;(2)如图所示,就是所求角.EDF ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 2【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论.【详解】∵D 为线段AB 的中点,∴AD =AB =×12=6,1212∵AC =AB ,13∴AC =×12=4,13∴CD =AD -AC =6-4=2.21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);(1)80°;(2)360°-2α【分析】(1)根据OC ⊥OD ,∠DOE =140°可求出∠COE ,再根据射线OE 平分∠BOC .求出BOE ,最后根据平角的意义求出答案;(2)利用(1)的方法,用代数式表示角度即可.【详解】解:(1)∵OC ⊥OD ,∠DOE =140°,∴∠COE =∠DOE -∠COD =140°-90°=50°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =50°,∴∠AOC =180°-∠COE -∠BOE =180°-50°-50°=80°;(2)∵OC ⊥OD ,∠DOE =α,∴∠COE =∠DOE -∠COD =α-90°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =α-90°,∴∠AOC =180°-∠COE -∠BOE =180°-(α-90°)-(α-90°)=360°-2α,故360°-2α.22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠(1)3;(2);(3)12114AOB ∠=︒【分析】(1)根据∠COB=2∠AOC ,∠COB+∠AOC=∠AOB 可得∠AOB=3∠AOC ,(2)由OD 平分 ∠AOB ,∠COD=∠AOD-∠AOC 可得∠COD 与∠AOC 的关系.(3)由OD 平分∠AOB 得到∠AOD=∠AOB 又由∠AOD=∠AOC+∠COD ,可得∠COD 与∠AOB12的关系,从而求出∠AOB 的度数.【详解】解:(1)∵∠COB=2∠AOC , ∠COB+∠AOC=∠AOB∴∠AOB=∠AOC+2∠AOC=3∠AOC (2)∵∠COD=∠AOD-∠AOC= ∠AOB- ∠AOB= ∠AOB121316又∵∠AOB=3∠AOC ∴∠COD=∠AOB=×3∠AOC=∠AOC161612(3)∵OD 平分∠AOB ∴∠AOD=∠AOB 12又∵∠AOD=∠AOC+∠COD ∴∠AOB=∠AOB+19°1213∠AOB=19° ∠AOB=114° 故(1) 3;(2) ;(3) ∠AOB=114°161223、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.(1)①4;②3;(2),;(3)不变,.()2cm 05AB t t =≤≤()()202cm 510AB t t =-<≤5EC =【分析】(1)①根据即可得出结论;②先求出BD 的长,再根据C 是线段BD 的中点即可得到CD 2AB t =的长;(2)分类讨论即可;(3)直接根据中点定义即可得到结论;【详解】(1)①当时,(cm ),2t =224AB =⨯=②此时,(cm ),∵C 是线段BD 的中点,则;1046BD =-=3CD cm =(2)①∵B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动,∴当时,,∴;05t ≤≤2AB t =()2cm 05AB t t =≤≤②当时,,∴;510t <≤()10210202A B t t =--=-()()202cm 510AB t t =-<≤(3)不变;因为AB 的中点为E ,C 是BD 的中点,所以,,所以,.()1122EC AB BD AD =+=11052EC =⨯=24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC∠(2)设AOD x ∠=︒.∵AOD x ∠=︒,∴180180BOD AOD x ∠=︒-∠=︒-︒,BOC AOD x ∠=∠=︒.∵OE CD ⊥,∴90EOC EOD ∠=∠=︒.又∵EOB DOB ∠=∠,∴90180x x ︒+︒=︒-︒,即45x =.∴904545AOE EOD AOD ∠=∠-∠=︒-︒=︒.(3)设∠AOE =α,且0°<α<90°由(1)可知,∠AOD =∠BOC =90°-α,∠BOE =180°-α,∴∠BOD =180°-∠AOD =180°-(90°-α)=90°+α,∵OF 平分∠BOD ,∴∠BOF =∠DOF =45°+2α,∴∠AOF =∠AOD +∠DOF =90°-α+45°+2α=135°-2α,∠EOF =∠AOF +∠AOE =135°+2α,∠COF =∠BOC +∠BOF =90°-α+45°+2α=135°-2α=∠AOF ,①当∠AOF +∠AOE =180°时,即135°-2α+α=180°,解得α=90°,不符合题意;②当∠EOF +∠AOE =180°时,即135°+2α+α=180°,解得α=30°,符合题意;③当∠BOD +∠AOE =180°时,即90°+α+α=180°,解得α=45°,符合题意;综上可知,当锐角30AOE ∠=︒时,互补角有2个,为EOB ∠、EOF ∠.当锐角45AOE ∠=︒时,互补角有3个,为EOB ∠、AOC ∠、DOB ∠.当锐角AOE ∠不等于45︒和30°时,互补角有1个,为EOB ∠.25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.【分析】(1)先根据直角计算的度数,再根据角平分线的定义计算的度数,最后利用平角DOE ∠AOD ∠的定义可得结论;(2)类似(1)的方法解答即可;(3)设,则,根据角平分线的定义表示,再利用互余的关系求BOD β∠=180AOD β∠=︒-BOE ∠的度数,可得结论.COE ∠(1)若,20COE ∠=︒,,90COD ∠=︒ 902070EOD ∴∠=︒-︒=︒平分,,OE AOD ∠2140AOD EOD ∴∠=∠=︒;18014040BOD ∴∠=︒-︒=︒(2)若,,COE α∠=90EOD α∴∠=-平分,,OE AOD ∠22(90)1802AOD EOD αα∴∠=∠=-=-;180(1802)2BOD αα∴∠=︒--=故;2α(3),理由是:2BOD COE ∠=∠设,则,BOD β∠=180AOD β∠=︒-平分,,OE AOD ∠118090222EOD AOD ββ︒-∴∠=∠==︒-,,即.90COD ∠=︒ 90(90)22COE ββ∴∠=︒-︒-=2BOD COE ∠=∠26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠AOC =30°,∠BOC =90°,求∠DOE 的度数”,小明在做题中发现:解决这个问题时∠AOC 的度数不知道也可以求出∠DOE 的度数.也就是说这个题目可以简化为:如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠BOC =90°,求∠DOE 的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC =m °,则∠DOE = °;(变式拓展)小明继续探究:(3)已知直线AM 、BN 相交于点O ,若OC 是∠AOB 外一条射线,且不与OM 、ON 重合,OD 、OE 分别平分∠AOB 、∠AOC ,当∠BOC =m °时,求∠DOE 的度数(自己在备用图中画出示意图求解).(1)45°;(2);(3)2m °2m °【分析】(1)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,推出∠DOE 即可;(2)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,用m °表示∠DOE 即可;(3)分三种情况讨论,第一种:OC 在AM 上,第二种:OC 在AM 下侧,∠MON 之间,第三种:OC 在∠AON 之间,即可得到∠DOE ,【详解】解:(1)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+90°,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+90°)﹣a °==45°;121212121902⨯︒(2)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=,故;121212122m °2m °(3)①当OC 在AM 上,即OC 在∠BOM 之间,设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=;121212122m °②当OC 在直线AM 下方,且OC 在∠MON 之间时,∠BOC =∠AOB +∠AOC =m °,∠DOE =∠AOE ﹣∠AOD =∠AOC +∠AOB =∠BOC =;1212122m °③当OC 在直线AM 下方,且OC 在∠AON 之间时,由②得,∠BOC =m °,∠DOE =∠AOC +∠AOB =12∠BOC =2m °;综上所述,∠DOE =2m °.1212。
【期末专项】苏科版七年级数学上册期末复习专题 两点之间线段最短和垂线段最短综合
两点之间线段最短和垂线段最短综合1.如图,生活中,有以下两个现象,对于这两个现象的解释,正确的是()A.两个现象均可用两点之间线段最短来解释B.现象1用垂线段最短来解释,现象2用经过两点有且只有一条直线来解释C.现象1用垂线段最短来解释,现象2用两点之间线段最短来解释D.现象1用经过两点有且只有一条直线来解释,现象2用垂线段最短来解释2.自习课上,老师出示这样一道题目:如图,AB是一条河流.要铺设管道将河水引到C、D两个用水点,现有两种铺设管道的方案.方案一:分别过点C、D画AB的垂线,垂足为E、F,沿CE、DF铺设管道;方案二:连接CD交AB于点P,沿PC、PD铺设管道.这两种铺设管道的方案哪一种更节省材料?为什么?总结学生的回答,有以下几种答案,你认为正确的答案是()A.方案一节省材料,理由是两点之间线段最短B.方案二节省材料,理由是两点之间线段最短C.方案一节省材料,理由是垂线段最短D.方案二节省材料,理由是两点确定一条直线3.下列三个日常现象:其中,可以用“垂线段最短”来解释的是_____ (填序号).4.如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:画法:如图,(1)连接AB;(2)过点A画线段AC 直线l于点C,所以线段AB和线段AC即为所求.请回答:工人师傅的画图依据是______.5.在数学课上,王老师提出如下问题:如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小李同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.王老师说:小李同学的方案是正确的.请回答:该方案最节省材料的依据是垂线段最短和______.6.如图,汽车站、高铁站分别位于A、B两点,直线a和b分别表示公路与铁路.(1)从汽车站到高铁站怎样走最近?画出图形,理由是.(2)从高铁站到公路怎样走最近?画出图形,理由是.7.如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.8.几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行探索【回顾】(1)如图①,A、B是公路l两侧的两个村庄.现要在公路l上修建一个垃圾站C,使它到A、B两村庄的路程之和最小,请在图中画出点C的位置,并说明理由【探索】(2)如图②,在B村庄附件有一个生态保护区,现要在公路l上修建一个垃圾站C,使它到A、B 两村庄的路程之和最小,从B村庄到公路不能穿过生态保护区,请在图中画出点C的位置(3)如图③,A、B是河两侧的两个村庄,现要在河上修建一座桥,使得桥与河岸垂直,且A村到B村的总路程最短,请在图中画出桥的位置(保留画图痕迹)9.在如图所示的方格中,每个小正方形的边长为1,点A、B、C、D在方格纸中小正方形的顶点上.(1)画线段AB;(2)画图并说理:①画出点C到线段AB的最短线路CE,理由是;②画出一点P,使AP DP CP EP+++最短,理由是.10.(1)如图,A、B是河l两侧的两个村庄.现要在河l上修建一个抽水站C,使它到A、B两村庄的距离的和最小,请在图中画出点C的位置,并保留作图痕迹.【探索】(2)如图,C、B两个村庄在一条笔直的马路的两端,村庄A在马路外,要在马路上建一个垃圾站O,使得AO+BO+CO最小,请在图中画出点O的位置.(3)如图,现有A、B、C、D四个村庄,如果要建一个垃圾站O,使得AO+BO+CO+DO最小,请在图中画出点O的位置.11.如图,A、B、C是平面内三点.(1)按要求作图:①作射线BC,过点B作直线l,使A、C两点在直线l两旁;②点P为直线l上任意一点,点Q为直线BC上任意一点,连结线段AP、PQ;(2)在(1)所作图形中,若点A到直线l的距离为2,点A到直线BC的距离为5,点A、B之间+的最小值为_______,依据是_______.的距离为8,点A、C之间的距离为6,则AP PQ12.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂,()1不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.()2另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由.13.如图,在直线MN的异侧有A、B两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN上取一点C,使线段AC最短.依据是______________.(2)在直线MN上取一点D,使线段AD+BD最短.依据是______________________.14.如图,直线l是某天然气公司的主输气管道,点A、B是在l异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设支管道,有以下两个方案:方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短,在图中画出点P的位置,依据是.方案二:取两个连接点M和N,使得点M到A小区铺设的支管道最短,使得点N到B小区铺设的管道最短,在图中画出M、N的位置,依据是.设方案一中铺设的支管道总长度为m,方案二中铺设的支管道总长度为n,则m与n的大小关系为:m n(填“>”、“=”或“<”).15.我国“十一五”规划其中一重要目标是,建设社会主义新农村,国家对农村公路建设投资近1000亿人民币.西部的某落后山村准备在A、B两个村庄间修一条公路,再从村庄B修一条公路到河n,如图所示,如何修路才能使公路最短?画出图形并说明理由.16.如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄.(1)设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,离村庄N最近,请你在AB 上分别画出P,Q两点的位置.(2)设汽车行驶到R点位置时,离村庄M与村庄N的距离和最短,请你在AB上分别画出R点的位置.17.如图,点A表示小明家,点B表示小明外婆家,若小明先去外婆家拿渔具,然后再去河边钓鱼,怎样走路最短,请画出行走路径,并说明理由.18.如图所示,火车站,码头分别位于A,B两点,直线a,b分别表示铁路与河流.(1)从火车站到码头怎样走最近?请画图并说明理由.(2)从码头到铁路怎样走最近?请画图并说明理由.答案与解析1.如图,生活中,有以下两个现象,对于这两个现象的解释,正确的是()A.两个现象均可用两点之间线段最短来解释B.现象1用垂线段最短来解释,现象2用经过两点有且只有一条直线来解释C.现象1用垂线段最短来解释,现象2用两点之间线段最短来解释D.现象1用经过两点有且只有一条直线来解释,现象2用垂线段最短来解释【答案】C【分析】直接利用线段的性质以及直线的性质分别分析得出答案.【详解】解:现象1:测量运动员的跳远成绩时,皮尺与起跳线保持垂直,可用“垂线段最短”来解释;现象2:把弯曲的河道改直,可以缩短航程可用“两点之间线段最短”来解释,故选:C.【点睛】此题主要考查了线段的性质,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.2.自习课上,老师出示这样一道题目:如图,AB是一条河流.要铺设管道将河水引到C、D两个用水点,现有两种铺设管道的方案.方案一:分别过点C、D画AB的垂线,垂足为E、F,沿CE、DF铺设管道;方案二:连接CD交AB于点P,沿PC、PD铺设管道.这两种铺设管道的方案哪一种更节省材料?为什么?总结学生的回答,有以下几种答案,你认为正确的答案是()A.方案一节省材料,理由是两点之间线段最短B.方案二节省材料,理由是两点之间线段最短C.方案一节省材料,理由是垂线段最短D.方案二节省材料,理由是两点确定一条直线【答案】C【分析】垂线段的性质:垂线段最短,根据垂线段的性质解答即可.【详解】解:∵CE⊥AB,根据垂线段的性质可知,CE<CP,同理,DF<DP,∴方案一更节省材料.故选:C.【点睛】本题考查了垂线段的性质,垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.3.下列三个日常现象:其中,可以用“垂线段最短”来解释的是_____ (填序号).【答案】①【分析】根据垂线的性质:垂线段最短即可得到结论.【详解】解:可以用“垂线段最短”来解释①,可以“两点之间线段最短” 来解释②,可以用“两点确定一条直线” 来解释③,故答案为:①.【点睛】本题考查了垂线段最短以及直线、线段的相关知识,熟练掌握垂线的性质是解题的关键.4.如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:画法:如图,(1)连接AB;(2)过点A画线段AC 直线l于点C,所以线段AB和线段AC即为所求.请回答:工人师傅的画图依据是______.【答案】两点之间,线段最短;垂线段最短【分析】根据两点之间线段最短以及垂线段最短即可判断.【详解】解:由于两点之间距离最短,故连接AB,由于垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,故答案为:两点之间,线段最短;垂线段最短.【点睛】本题考查作图−应用与设计作图,解题的关键是正确两点之间线段最短以及垂线段最短,本题属于基础题型.5.在数学课上,王老师提出如下问题:如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小李同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.王老师说:小李同学的方案是正确的.请回答:该方案最节省材料的依据是垂线段最短和______.【答案】两点之间线段最短【分析】根据两点之间线段最短即可得到答案.【详解】解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,故答案为:两点之间线段最短.【点睛】本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.三、解答题6.如图,汽车站、高铁站分别位于A、B两点,直线a和b分别表示公路与铁路.(1)从汽车站到高铁站怎样走最近?画出图形,理由是.(2)从高铁站到公路怎样走最近?画出图形,理由是.【答案】(1)连接AB,两点之间,线段最短;(2)过B作BC⊥a,垂线段最短.【分析】(1)连接AB,根据两点之间,线段最短;(2)过B作BC⊥a,根据垂线段最短.【详解】解:如图所示:(1)沿AB走,两点之间线段最短;(2)沿BC走,垂线段最短.【点睛】此题主要考查了应用与设计作图,关键是掌握线段的性质和垂线段的性质.7.如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.【答案】(1)见解析;(2)见解析.【分析】(1)利用两点之间距离线段最短,进而得出答案;(2)利用点到直线的距离垂线段最短,即可得出答案.【详解】解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,(2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.【点睛】本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.8.几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行探索【回顾】(1)如图①,A、B是公路l两侧的两个村庄.现要在公路l上修建一个垃圾站C,使它到A、B两村庄的路程之和最小,请在图中画出点C的位置,并说明理由【探索】(2)如图②,在B村庄附件有一个生态保护区,现要在公路l上修建一个垃圾站C,使它到A、B 两村庄的路程之和最小,从B村庄到公路不能穿过生态保护区,请在图中画出点C的位置(3)如图③,A、B是河两侧的两个村庄,现要在河上修建一座桥,使得桥与河岸垂直,且A村到B村的总路程最短,请在图中画出桥的位置(保留画图痕迹)【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)连接AB交直线l于点C,点C即为所求作.(2)根据两点之间线段最短解决问题.(3)作AA′//CD,且AA′=1,连接BA′得到点C,作线段CD⊥河岸即可.【详解】(1)如图,点C即为所求作.理由:两点之间,线段最短.(2)如图,点C即为所求作.(3)如图,线段CD可即为所求作.【点睛】本题考查作图−应用与设计作图,垂线段最短,两点之间线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.在如图所示的方格中,每个小正方形的边长为1,点A、B、C、D在方格纸中小正方形的顶点上.(1)画线段AB;(2)画图并说理:①画出点C到线段AB的最短线路CE,理由是;②画出一点P,使AP DP CP EP+++最短,理由是.【答案】(1)图见解析;(2)图见解析,点到直线的距离垂线段最短;(3)图见解析,两点之间线段最短.【分析】(1)根据题意画图即可;(2)①借助网格作CE⊥AB,根据点到直线距离垂线段最短可得符合条件的E点;+++=+.②连接AD和CE交于P点,根据两点之间线段最短可得AP DP CP EP AD CE【详解】(1)连接AB如下图所示;(2)①如图所示CE为最短路径,理由是点到直线的距离垂线段最短,故答案为:点到直线的距离垂线段最短;②如图所示P点为AP DP CP EP+++最短,理由是:两点之间线段最短,故答案为:两点之间线段最短.【点睛】本题考查两点之间的距离,垂线段最短和根据要求画线段.理解点到直线的距离垂线段最短和两点之间线段最短是解题关键.10.(1)如图,A、B是河l两侧的两个村庄.现要在河l上修建一个抽水站C,使它到A、B两村庄的距离的和最小,请在图中画出点C的位置,并保留作图痕迹.【探索】(2)如图,C、B两个村庄在一条笔直的马路的两端,村庄A在马路外,要在马路上建一个垃圾站O,使得AO+BO+CO最小,请在图中画出点O的位置.(3)如图,现有A、B、C、D四个村庄,如果要建一个垃圾站O,使得AO+BO+CO+DO最小,请在图中画出点O的位置.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短,连接AB,交l于点C即可;(2)根据BO+CO=BC为定长,故需保证AO最小即可,根据垂线段最短,过点A作AO⊥BC于O 即可;(3)根据两点之间线段最短,故连接AC、BD交于点O即可.【详解】解:(1)连接AB,交l于点C,此时AC+BC=AB,根据两点之间线段最短,AB即为AC+BC的最小值,如下图所示:点C即为所求;(2)∵点O在BC上∴BO+CO=BC∴AO+BO+CO=AO+BC,而BC为定长,∴当AO+BO+CO最小时,AO也最小过点A作AO⊥BC于O,根据垂线段最短,此时AO最小,AO+BO+CO也最小,如下图所示:点O 即为所求;(3)根据两点之间线段最短,若使AO+CO最小,连接AC,点O应在线段AC上;若使BO+DO 最小,连接BD,点O应在线段BD上,∴点O应为AC和BD的交点如下图所示:点O即为所求.【点睛】此题考查的是两点之间线段最短和垂线段最短的应用,掌握根据两点之间线段最短和垂线段最短,找出最值所需点是解决此题的关键.11.如图,A、B、C是平面内三点.(1)按要求作图:①作射线BC,过点B作直线l,使A、C两点在直线l两旁;②点P为直线l上任意一点,点Q为直线BC上任意一点,连结线段AP、PQ;(2)在(1)所作图形中,若点A到直线l的距离为2,点A到直线BC的距离为5,点A、B之间+的最小值为_______,依据是_______.的距离为8,点A、C之间的距离为6,则AP PQ【答案】(1)见解析;(2)5;两点之间,线段最短;垂线段最短.【分析】(1)根据直线、射线、线段的特点按要求作图即可;(2)根据两点之间,线段最短和点到直线的距离垂线段最短回答即可.【详解】(1)如图所示.+的最小值为点A到直线BC的距离,所以是5.(2)AP PQ依据是:两点之间,线段最短;垂线段最短.【点睛】本题考查直线、射线、线段以及两点之间,线段最短,点到直线的距离,解题关键是掌握直线、射线、线段的特点,牢记两点之间,线段最短,垂线段最短.12.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂,()1不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.()2另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由.【答案】(1)作图见解析;(2)垂线段最短.【分析】(1)线段AC和BD的交点即是水厂的位置.(2)过点H作直线EF的垂线段即可.【详解】解:()1连接AC和BD,线段AC和BD的交点H点就是水厂的位置.()2理由是:垂线段最短.【点睛】本题主要考查了两点之间线段最短和垂线段最短在生活中的应用,解题时要注意它们的综合应用.13.如图,在直线MN的异侧有A、B两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN上取一点C,使线段AC最短.依据是______________.(2)在直线MN上取一点D,使线段AD+BD最短.依据是______________________.【答案】垂线段最短两点之间,线段最短【分析】(1)过A作AC⊥MN,AC最短;(2)连接AB交MN于D,这时线段AD+BD最短.【详解】(1)过A作AC⊥MN,根据垂线段最短,故答案为垂线段最短;(2)连接AB交MN于D,根据是两点之间线段最短,故答案为两点之间线段最短.【点睛】本题主要考查了垂线段的性质和线段的性质,关键是掌握垂线段最短;两点之间线段最短.14.如图,直线l是某天然气公司的主输气管道,点A、B是在l异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设支管道,有以下两个方案:方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短,在图中画出点P的位置,依据是.方案二:取两个连接点M和N,使得点M到A小区铺设的支管道最短,使得点N到B小区铺设的管道最短,在图中画出M、N的位置,依据是.设方案一中铺设的支管道总长度为m,方案二中铺设的支管道总长度为n,则m与n的大小关系为:m n(填“>”、“=”或“<”).【答案】两点之间,线段最短;垂线段最短;>【分析】根据题目要求直接连接AB,以及分别过A,B向直线l作垂线即可,利用直角三角形中斜边大于直角边进而得出答案即可.【详解】解:方案一、连接AB交直线l于点P,依据是两点之间,线段最短;方案二、分别过A,B向直线l作垂线即可,如图,AM、BN即为所求,依据是垂线段最短;方案一中m=AP+PB,方案二中n=AM+BN,在Rt∆AMP与Rt∆BNP中,AM<AP,BN<BP,∴AM+BN<AP+BP,即m>n,故答案为:两点之间,线段最短;垂线段最短;>.【点睛】题目主要考查两点之间线段最短及垂线段最短,直角三角形斜边大于直角边等,理解题意,综合运用这些知识点是解题关键.15.我国“十一五”规划其中一重要目标是,建设社会主义新农村,国家对农村公路建设投资近1000亿人民币.西部的某落后山村准备在A、B两个村庄间修一条公路,再从村庄B修一条公路到河n,如图所示,如何修路才能使公路最短?画出图形并说明理由.【答案】见解析;两点之间线段最短;垂线段最短【分析】由两点之间线段最短;垂线段最短即可作出图形:连接AB;过点B作l的垂线段.【详解】解:如图所示:AB、BC为所求.作图理由:两点之间线段最短;垂线段最短.【点睛】此题考查了作图能力,掌握:两点之间线段最短、垂线段最短是解题的关键.16.如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄.(1)设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,离村庄N最近,请你在AB 上分别画出P,Q两点的位置.(2)设汽车行驶到R点位置时,离村庄M与村庄N的距离和最短,请你在AB上分别画出R点的位置.【答案】(1)见解析;(2)见解析【分析】(1)作MP⊥AB垂足为P,NQ⊥AB垂足为Q,点p、Q就是所求的点;(2)连接MN交直线AB于点R,点R就是所求.【详解】(1)作MP⊥AB垂足为P,NQ⊥AB垂足为Q,点p、Q就是所求的点.如图所示:(2)连接MN交AB于点R,点R就是所求的点.如图所示:.【点睛】本题考查了两点之间线段最短、垂线段最短,记住这两个性质是解题的关键.17.如图,点A表示小明家,点B表示小明外婆家,若小明先去外婆家拿渔具,然后再去河边钓鱼,怎样走路最短,请画出行走路径,并说明理由.【答案】见解析【分析】根据两点之间线段最短,点到直线的距离垂线段最短即可得到答案.【详解】解;如图所示:连接AB,是两点之间线段最短;作BC垂直于河岸,是垂线段最短.【点睛】本题主要考查了两点之间线段最短,点到直线的距离垂线段最短,解题的关键在于能够熟练掌握相关知识进行求解.18.如图所示,火车站,码头分别位于A,B两点,直线a,b分别表示铁路与河流.(1)从火车站到码头怎样走最近?请画图并说明理由.(2)从码头到铁路怎样走最近?请画图并说明理由.【答案】(1)沿线段AB走,见解析,两点之间,线段最短;(2)沿垂线段BD走,见解析,垂线段最短【分析】(1)根据两点之间线段最短解决问题即可.(2)根据垂线段最短解决问题即可.【详解】解:(1)如图,沿线段AB走,理由:两点之间,线段最短.(2)如图,沿垂线段BD走,理由:垂线段最短.【点睛】本题考查了“两点之间,线段最短”和“垂线段最短”两个知识,熟知两个知识点并正确作图是解题关键.。
苏科版七年级上册数学期末复习(五)
江苏阜宁GSJY 七年级数学(上)期末复习(五)——《走进图形世界》专题强化训练(附答案)一.选择题1.从上向下看图(1),应是如图(2)中所示的( )CDB A2.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的4个图案中,符合图示滚涂出的图案是( )3.将如图左边的图形折成一个立方体, 判断右边的四个立方体哪个是由左边的图形折成的.4.下面四个图形都是由相同的六个小正方形纸片组成,•小正方形上分别贴有北京2008年奥运会吉祥物五个福娃(贝贝、晶晶、欢欢、迎迎、妮妮)的卡通画和一颗星星,如果分别用“贝、晶、欢、迎、妮”五个字来表示五个福娃,那么折叠后围成如右图所示正方体的图形是()5.下图各图中,是正方体展开图的是()6.下图各图形中,不能..经过折叠围成正方体的是()A B C D7.一个正方形的表面展开图如图所示,每个面内都标注了字母,如果从正文体的右面看是面D、面C在后面,则正方体的上面是()A.面E B.面F 吧C.面A D.面B8. 如图,分别是由若干个完全相同的小正方体组成一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个9. )骰子是一种特别的数字立方体(如图),它符合规则,相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()10.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图①所示.在图②中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A.6 B.5 C.3 D.2二.填空题11.如图,观察图形填空:包围着体的是______;面与面相交的地方形成______; 线与线相交的地方是_______.12.笔尖在纸上快速滑动写出了一个又一个字,这说明了_________;车轮旋转时,看起来像一个整体的圆面,这说明了_________;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了_____________. 13.三棱锥有________个面,它们相交形成了________条棱, 这些棱相交形成了________个点.14.设计长方体形状的包装盒,要先绘制长方体的_______图,•再把它剪出并折剪成长方体.15.如图是正方体的平面展开图,每个面上标有汉字组成的三个词,分别是兰州人引以自豪的三个词(一本书,一条河,一碗面),•在正方体上与“读”字相对的面上的字是_______.16.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是________.17.美术课上,老师要求同学们将如图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是________.(填写序号)18. 一个几何体的三视图如图所示(其中标注的a、b、c为相应的边长),则这个几何体的体积是________.19.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为________.20.如图(1),一本书上放着一个粉笔盒,指出图(2)中的三个平面图形各是从哪个方向看图(1)所看到的.( )( )( )1()(2)三.解答题21. (1)画出下面实物的三视图.(2)如图,是由几个小立方体块所搭几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图.22.画出下列正方体和圆柱的三视图.23.图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得出的△A″B″C″,并求边A′B′在旋转过程扫过的图形面积.附:参考答案一.选择题1.【答案】D2.【答案】A3.【答案】(1)B;(2)B;(3)B4.【答案】C5.【答案】C6.【答案】B7.【解析】动手操作法可得正方体的上面是“A”.【答案】C8. 【解析】由俯视图结合主视图可得小正方体的个数可能是4个或5个. 【答案】C9. 【解析】将正方体的表面展开时,相对面在展开图中必相隔一行或一列正方形,由此可判断A 中相对两面的数字分别为:1与3,4与6,2与5;B 中相对两面的数字分别为:3与4,1与5,6与2;C 中相对两面的数字分别为:4与3,5与2,1与6;D 中相对两面的数字分别为:1与5,3与4,2与6.而相对两面的点数之和总是7的只有选项C. 【答案】C10. 【解析】第一次操作向上的是5,第二次是6,第三次是3,第四次是5……依此类推,三次一个循环,第10次变换后朝上一面的点数应为5,故选B. 【答案】B 二.填空题11. 【答案】面;线;点12. 【答案】点动成线;线动成面;面动成体 13. 【答案】4;6;4 14. 【答案】圆柱;圆锥;球 15.【答案】表面展开16. 【解析】由题意得圆锥底面半径为12,圆锥母线长为1,故S 侧=π×12×1=12π.【答案】12π17. 【解析】可动手操作易得出②. 【答案】②18. 【解析】由主视图可得这个几何体为长方体长、宽、高分别为a 、b 、c ,所以V 长方体=abc. 【答案】abc 19.,【答案】7 20. 【答案】从左面,从上向下,从正面. 三.解答题 21. 解:(1)(2)根据俯视图确定主视图有3列,左视图有2列,再根据数字确定每列方块的个数.22. 【解析】画立体图形的三视图时:①注意摆放的位置;②正视图和俯视图要长对正,正视图和左视图要高平齐,左视图和俯视图要宽相等.圆柱的正视图和左视图都是长方形,俯视图是圆. 【答案】正方体的三视图都是正方形,如下图:圆柱的三视图如下:23. 解:(1)如图中△A ′B ′C ′.(直接画出图形,不画辅助线不扣分)(2)如图中△A ″B ″C ″.(直接画出图形,不画辅助线不扣分)S =90π360×(22+42)=14π×20=5π(平方单位).初中数学试卷灿若寒星 制作。
【期末专项】苏科版七年级数学上册期末复习专题 与角平分线有关的动角问题
与角平分线有关的动角问题1.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使120BOC ∠=︒.将一直角三角板的直角顶点放在点O 处,一直角边OM 在射线OB 上,另一直角边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使边OM 在BOC ∠的内部,且恰好平分BOC ∠.问:此时直线ON 是否平分AOC ∠?请说明理由.(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,在旋转过程中,第n 秒时,直线ON 恰好平分AOC ∠,则n 的值为______(点接写结果)(3)若图1中的三角板绕点O 旋转至图3,使ON 在AOC ∠的内部时,AOM NOC ∠-∠的度数是多少? 2.如图1:已知OB ⊥OD ,OA ⊥OC ,∠COD =40°,若射线OA 绕O 点以每秒30°的速度顺时针旋转,射线OC 绕O 点每秒10°的速度逆时针旋转,两条射线同时旋转,当一条射线与射线OD 重合时,停止运动.(1)开始旋转前,∠AOB = .(2)若射线OB 也绕O 点以每秒20°的速度顺时针旋转,三条射线同时旋转,当一条射线与射线OD 重合时,停止运动.当三条射线中其中一条射线是另外两条射线夹角的角平分线时,求旋转的时间.(3)【实际应用】从今天上午6时整开始到上午7时整结束的运动过程中,经过多少分钟时针与分针所形成的钝角等于120°(直接写出所有可能结果).3.已知直线AB 和CD 交于点O ,∠AOC =α,∠BOE =90°,OF 平分∠AOD .(1)当α=30°时,则∠EOC =_________°;∠FOD =_________°.(2)当α=60°时,射线OE ′从OE 开始以12°/秒的速度绕点O 逆时针转动,同时射线OF ′从OF 开始以8°/秒的速度绕点O 顺时针转动,当射线OE ′转动一周时射线OF ′也停止转动,求经过多少秒射线OE ′与射线OF ′第一次重合?(3)在(2)的条件下,射线OE ′在转动一周的过程中,当∠E ′OF ′=90°时,请直接写出射线OE ′转动的时间为_________秒.4.若A 、O 、B 三点共线,40BOC ∠=︒,将一个三角板的直角顶点放在点O 处(注:90DOE ∠=︒,30EDO ∠=︒).(1)如图1,使三角板的长直角边OD 在射线OB 上,则COE ∠=____________°;(2)将图1中的三角板DOE 绕点O 以每秒2°的速度按逆时针方向旋转到图2位置,此时14COD AOE ∠=∠,求运动时间t 的值; (3)将图2中的三角板DOE 再绕点O 以每秒5°的速度按顺时针转方向旋转一周,经过t 秒后,直线OC 恰好平分DOE ∠,求t 的值.5.【阅读理解】射线OC 是∠AOB 内部的一条射线,若∠AOC =12∠BOC ,则称射线OC 是射线OA 在∠AOB 内的一条“友好线”.如图1,若∠AOB =75°,∠AOC =25°,则∠AOC =12∠BOC ,所以射线OC 是射线OA 在∠AOB 内的一条“友好线”.【解决问题】(1)在图1中,若作∠BOC 的平分线OD ,则射线OD (填“是”或“不是”)射线OB 在∠AOB 内的一条“友好线”;(2)如图2,∠AOB 的度数为n ,射线OM 是射线OB 在∠AOB 内的一条“友好线”,ON 平分∠AOB ,则∠MON 的度数为 (用含n 的代数式表示);(3)如图3,射线OB 先从与射线OA 重合的位置出发,绕点O 以每秒1°的速度逆时针旋转;10秒后射线OC 也从与射线OA 重合的位置出发,绕点O 以每秒5°的速度逆时针旋转,当射线OC 与射线OA 的延长线重合时,运动停止.问:当射线OC 运动时间为多少秒时,射线OA ,OB ,OC 中恰好有一条射线是余下两条射线中某条射线在余下两条射线所组成的角内的一条“友好线”?6.如图1,直线m 与直线n 相交于点O ,A 、B 两点同时从点O 出发,点A 以每秒x 个单位长度沿直线n 向左运动,点B 以每秒y 个单位长度沿直线m 向上运动.(1)若运动1s 时,点B 比点A 多运动1个单位;运动2s 时,点B 与点A 运动的路程和为6个单位,则x =_________,y =_________.(2)如图2,当直线m 与直线n 垂直时,设BAO ∠和ABO ∠的角平分线相交于点P .在点A 、B 在运动的过程中,APB ∠的大小是否会发生变化?若不发生变化,请求出其值(写出主要过程);若发生变化,请说明理由.(3)如图3,将(2)中的直线n 不动,直线m 绕点O 按顺时针方向旋转()090αα<<,其他条件不变. (i )用含有α的式子表示APB ∠的度数_________.(ii )如果再分别作ABO 的两个外角BAC ∠,ABD ∠的角平分线相交于点Q ,并延长BP 、QA 交于点M .则下列结论正确的是_________(填序号).①APB ∠与Q ∠互补;②M Q ∠-∠为定值;③APB M ∠-∠为定值;④Q ∠与M ∠互余.7.【阅读理解】射线OC 是∠AOB 内部的一条射线,若∠COA =12∠BOC ,则称射线OC 是射线OA 在∠AOB 内的一条“友好线”.如图1,∠AOB =60°,∠AOC =20°,则∠AOC =12∠BOC ,所以射线OC 是射线OA 在∠AOB 内的一条“友好线”.【解决问题】(1)在图1中,若作∠BOC 的平分线OD ,则射线OD 射线OB 在∠AOB 内的一条“友好线”;(填“是”或“不是”)(2)如图2,∠AOB 的度数为n ,射线OM 是射线OB 在∠AOB 内的一条“友好线”,ON 平分∠AOB ,则∠MON 的度数为 ;(用含n 的代数式表示)(3)如图3,射线OB 从与射线OA 重合的位置出发,绕点O 以每秒3°的速度逆时针旋转;同时,射线OC 从与射线OA 的反向延长线重合的位置出发,绕点O 以每秒5°的速度顺时针旋转,当射线OC 与射线OA 重合时,运动停止.问:当运动时间为多少秒时,射线OA 、OB 、OC 中恰好有一条射线是余下两条射线中某条射线在余下两条射线所组成的角内的一条“友好线”?8.如图①,直线AB 、CD 相交于点O ,射线OE CD ⊥,垂足为点O ,过点O 作射线OF 使130BOF ∠=︒.(1)将图①中的直线CD 绕点O 逆时针旋转至图②,OE 在BOF ∠的内部,当OE 平分BOF ∠时,OC 是否平分AOF ∠,请说明理由;(2)将图①中的直线CD 绕点O 逆时针旋转至图③,OD 在的内部,探究AOE ∠与DOF ∠之间的数量关系,并说明理由;(3)若20BOE ∠=︒,将图①中的直线CD 绕点O 按每秒5°的速度逆时针旋转度α度(0180α︒<<︒),设旋转的时间为t 秒,当AOC ∠与EOF ∠互余时,求t 的值.9.[阅读]材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l 平分这个角.材料2:如图2中,三角板OAB 绕点O 顺时针旋转60°到三角板OCD 的位置,这时,三角板的边OA 、OB 绕点O 顺时针旋转60°到OC 、OD 的位置;如图3中,三角板OAB 绕点 O 逆时针旋转90°到三角板OCD 的位置,这时,三角板的边OA 、OB 绕点O 逆时针旋转90°到OC 、OD 的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A 、C 重合).现在将三角板OCD 固定不动,从起始位置(图4)开始,将三角板OAB 绕点O 顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB 转动的时间为t 秒.①当三角板OAB 转动到图5的位置时,它的一边OA 平分∠COD ,求t 的值;②当三角板OAB 的一边OB 所在直线平分∠COD 时,t = 秒;(直接写出结果)(2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A 、O 、C 在一条直线上).在三角板OAB 绕点O 以每秒5°的速度顺时针匀速转动的同时,三角板OCD 绕点O 以每秒3°的速度逆时针匀速转动,当三角板OAB 转动一周时停止转动,此时三角板 OCD 也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB 转动的时间为t 秒.当三角板OAB 的一边OB 所在直线平分∠COD 时,t = 秒.(直接写出结果)10.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”.如图为一量角器的平面示意图,O 为量角器的中心.作射线OA ,OB ,OC ,并将其所对应的量角器外圈刻度分别记为a ︒,b ︒,m ︒.(1)若射线OA ,OB ,OC 为“共生三线”,且OC 为AOB ∠的角平分线.①如图1,0a =,80b =,则m =______;②当40a =,150b =时,请在图2中作出射线OA ,OB ,OC ,并直接写出m 的值;③根据①②的经验,得m =______(用含a ,b 的代数式表示).(2)如图3,0a =,60b m ==.在0︒刻度线所在直线上方区域内,将OA ,OB ,OC 按逆时针方向绕点O 同时旋转,旋转速度分别为每秒12︒,6︒,8︒,若旋转t 秒后得到的射线OA ',OB ',OC '为“共生三线”,求t 的值.11.已知射线OC 在AOB ∠的内部,射线OE 平分AOC ∠,射线OF 平分COB ∠.(1)如图1,若120,32AOB AOC ∠=︒∠=︒,则EOF ∠=__________度;(2)若,AOB AOC αβ∠=∠=,①如图2,若射线OC 在AOB ∠的内部绕点O 旋转,求EOF ∠的度数;②若射线OC 在AOB ∠的外部绕点O 旋转(旋转中AOC ∠、BOC ∠均是指小于180°的角),其余条件不变,请借助图3探究EOF ∠的大小,直接写出EOF ∠的度数.12.已知:AOD 160∠=︒,OB 、OM 、ON ,是AOD ∠ 内的射线.(1)如图 1,若 OM 平分 AOB ∠, ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠ 内旋转时,MON ∠= 度.(2)OC 也是AOD ∠内的射线,如图2,若BOC 20∠=︒ ,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOC ∠内旋转时,求MON ∠的大小.(3)在(2)的条件下,当射线OB 从边OA 开始绕O 点以每秒2︒的速度逆时针旋转t 秒,如图3,若AOM DON 23∠∠=::,求t 的值.答案与解析1.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使120BOC ∠=︒.将一直角三角板的直角顶点放在点O 处,一直角边OM 在射线OB 上,另一直角边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使边OM 在BOC ∠的内部,且恰好平分BOC ∠.问:此时直线ON 是否平分AOC ∠?请说明理由.(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,在旋转过程中,第n 秒时,直线ON 恰好平分AOC ∠,则n 的值为______(点接写结果)(3)若图1中的三角板绕点O 旋转至图3,使ON 在AOC ∠的内部时,AOM NOC ∠-∠的度数是多少? 【答案】(1)平分,理由见解析(2)10或40(3)30°【分析】(1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC =120°可得∠AOC =60°,则∠BON =30°,即旋转60°或240°时ON 平分∠AOC ,据此求解;(3)因为∠MON =90°,∠AOC =60°,所以∠AOM =90°﹣∠AON 、∠NOC =60°﹣∠AON ,然后作差即可.(1)解:(1)直线ON 平分∠AOC .理由:设ON 的反向延长线为OD ,∵OM 平分∠BOC ,∴∠MOC =∠MOB ,又∵OM ⊥ON ,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON(对顶角相等),∴∠COD=∠AOD,∴OD平分∠AOC,即直线ON平分∠AOC;(2),解:由(1)得,∠BOM=60°时,直线ON恰好平分AOC即旋转60°时,ON平分∠AOC,再旋转180°即旋转240°时,ON平分∠AOC,由题意得,6n=60°或6n=240°,∴n=10或40;故答案为:10或40;(3)解:∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.【点睛】本题考查了角平分线的定义,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.2.如图1:已知OB⊥OD,OA⊥OC,∠COD=40°,若射线OA绕O点以每秒30°的速度顺时针旋转,射线OC绕O点每秒10°的速度逆时针旋转,两条射线同时旋转,当一条射线与射线OD重合时,停止运动.(1)开始旋转前,∠AOB=.(2)若射线OB也绕O点以每秒20°的速度顺时针旋转,三条射线同时旋转,当一条射线与射线OD 重合时,停止运动.当三条射线中其中一条射线是另外两条射线夹角的角平分线时,求旋转的时间.(3)【实际应用】从今天上午6时整开始到上午7时整结束的运动过程中,经过多少分钟时针与分针所形成的钝角等于120°(直接写出所有可能结果).∠∠=AOB∴∠=AOD3.已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.4.若A 、O 、B 三点共线,40BOC ∠=︒,将一个三角板的直角顶点放在点O 处(注:90DOE ∠=︒,30EDO ∠=︒).(1)如图1,使三角板的长直角边OD 在射线OB 上,则COE ∠=____________°;(2)将图1中的三角板DOE 绕点O 以每秒2°的速度按逆时针方向旋转到图2位置,此时14COD AOE ∠=∠,求运动时间t 的值; (3)将图2中的三角板DOE 再绕点O 以每秒5°的速度按顺时针转方向旋转一周,经过t 秒后,直线OC 恰好平分DOE ∠,求t 的值.5.【阅读理解】∠BOC,则称射线OC是射线OA在∠AOB内的射线OC是∠AOB内部的一条射线,若∠AOC=12∠BOC,所以射线OC是射线一条“友好线”.如图1,若∠AOB=75°,∠AOC=25°,则∠AOC=12OA在∠AOB内的一条“友好线”.【解决问题】(1)在图1中,若作∠BOC的平分线OD,则射线OD(填“是”或“不是”)射线OB在∠AOB 内的一条“友好线”;(2)如图2,∠AOB的度数为n,射线OM是射线OB在∠AOB内的一条“友好线”,ON平分∠AOB,则∠MON的度数为(用含n的代数式表示);(3)如图3,射线OB先从与射线OA重合的位置出发,绕点O以每秒1°的速度逆时针旋转;10秒后射线OC也从与射线OA重合的位置出发,绕点O以每秒5°的速度逆时针旋转,当射线OC与射线OA的延长线重合时,运动停止.问:当射线OC运动时间为多少秒时,射线OA,OB,OC中恰好有一条射线是余下两条射线中某条射线在余下两条射线所组成的角内的一条“友好线”?当射线111⑤如图,∠16.如图1,直线m与直线n相交于点O,A、B两点同时从点O出发,点A以每秒x个单位长度沿直线n向左运动,点B以每秒y个单位长度沿直线m向上运动.(1)若运动1s 时,点B 比点A 多运动1个单位;运动2s 时,点B 与点A 运动的路程和为6个单位,则x =_________,y =_________.(2)如图2,当直线m 与直线n 垂直时,设BAO ∠和ABO ∠的角平分线相交于点P .在点A 、B 在运动的过程中,APB ∠的大小是否会发生变化?若不发生变化,请求出其值(写出主要过程);若发生变化,请说明理由.(3)如图3,将(2)中的直线n 不动,直线m 绕点O 按顺时针方向旋转()090αα<<,其他条件不变. (i )用含有α的式子表示APB ∠的度数_________.(ii )如果再分别作ABO 的两个外角BAC ∠,ABD ∠的角平分线相交于点Q ,并延长BP 、QA 交于点M .则下列结论正确的是_________(填序号).①APB ∠与Q ∠互补;②M Q ∠-∠为定值;③APB M ∠-∠为定值;④Q ∠与M ∠互余.7.【阅读理解】∠BOC,则称射线OC是射线OA在∠AOB内的射线OC是∠AOB内部的一条射线,若∠COA=12∠BOC,所以射线OC是射线一条“友好线”.如图1,∠AOB=60°,∠AOC=20°,则∠AOC=12OA在∠AOB内的一条“友好线”.【解决问题】(1)在图1中,若作∠BOC的平分线OD,则射线OD射线OB在∠AOB内的一条“友好线”;(填“是”或“不是”)(2)如图2,∠AOB的度数为n,射线OM是射线OB在∠AOB内的一条“友好线”,ON平分∠AOB,则∠MON的度数为;(用含n的代数式表示)(3)如图3,射线OB从与射线OA重合的位置出发,绕点O以每秒3°的速度逆时针旋转;同时,射线OC从与射线OA的反向延长线重合的位置出发,绕点O以每秒5°的速度顺时针旋转,当射线OC与射线OA重合时,运动停止.问:当运动时间为多少秒时,射线OA、OB、OC中恰好有一条射线是余下两条射线中某条射线在余下两条射线所组成的角内的一条“友好线”?8.如图①,直线AB 、CD 相交于点O ,射线OE CD ⊥,垂足为点O ,过点O 作射线OF 使130BOF ∠=︒.(1)将图①中的直线CD 绕点O 逆时针旋转至图②,OE 在BOF ∠的内部,当OE 平分BOF ∠时,OC 是否平分AOF ∠,请说明理由;(2)将图①中的直线CD 绕点O 逆时针旋转至图③,OD 在的内部,探究AOE ∠与DOF ∠之间的数量关系,并说明理由;(3)若20BOE ∠=︒,将图①中的直线CD 绕点O 按每秒5°的速度逆时针旋转度α度(0180α︒<<︒),设旋转的时间为t 秒,当AOC ∠与EOF ∠互余时,求t 的值.【答案】(1)OC 平分AOF ∠,理由见解析;(2)40AOE DOF ∠=∠+︒,理由见解析;(3)17t =或35t =时,AOC ∠与EOF ∠互余.【分析】(1)根据平分线的定义可得65FOE BOE ∠=∠=︒,根据OE CD ⊥,可得25FOC ∠=︒,从而得到25AOC ∠=︒,所以可得结论;(2)设DOF ∠为β︒,根据130BOF ∠=︒可得50AOD β∠=︒-︒,根据OE CD ⊥可得40AOE β∠=+︒,从而得到AOE ∠与DOF ∠之间的数量关系;(3)根据题意可知150EOF ∠=︒,因为OE CD ⊥,所以可得70BOC ∠=︒,可求出110AOC ∠=︒,根据“直线CD 绕点O 按每秒5°的速度逆时针旋转”可得出1105(022)AOC t t ∠=︒-<≤,()51102236AOC t t ∠=-︒<<,1505(030)EOF t t ∠=︒-<≤,()51503036EOF t t ∠=-︒<<,然后分情况进行讨论:①022t <≤时,90AOC EOF ∠+∠=︒②2230t <≤时,90AOC EOF ∠+∠=︒③3036t <<时,90AOC EOF ∠+∠=︒,从而得出结果.【详解】解:(1)OC 平分AOF ∠,理由如下:∵130BOF ∠=︒且OE 平分BOF ∠ ∴65FOE BOE ∠=∠=︒ ∵OE CD ⊥ ∴90EOC ∠=︒∴906525FOC ∠=︒-︒=︒∴1801801302525AOC BOF FOC ∠=︒-∠-∠=︒-︒-︒=︒ ∴AOC FOC ∠=∠ 即OC 平分AOF ∠(2)40AOE DOF ∠=∠+︒,理由如下:设DOF ∠为β︒,则180********AOD BOF DOF ββ∠=︒-∠-∠=︒-︒-︒=︒-︒ ∵OE CD ⊥ ∴90EOD ∠=︒∴9040AOE AOD β∠=︒-∠=+︒ 即40AOE DOF ∠=∠+︒(3)∵20BOE ∠=︒且130BOF ∠=︒ ∴150EOF ∠=︒ 又∵OE CD ⊥ ∴70BOC ∠=︒ ∴110AOC ∠=︒∵直线CD 绕点O 按每秒5°的速度逆时针旋转 ∴①022t <≤时,1105,1505AOC t EOF t ∠=︒-∠=︒- 若AOC ∠与EOF ∠互余,则1105150590t t -+-= 解得17t =②2230t <≤时,5110,1505AOC t EOF t ∠=-︒∠=︒- 若AOC ∠与EOF ∠互余,则5110150590t t -+-= 此时无解③3036t <<时,5110,5150AOC t EOF t ∠=-︒∠=-︒ 若AOC ∠与EOF ∠互余,则5110515090t t -+-= 解得35t =综上所述,17t =或35t =时,AOC ∠与EOF ∠互余.【点睛】本题考查了角的计算,角平分线有关的计算,余角相关计算.关键是认真审题并仔细观察图形,找到各个量之间的关系. 9.[阅读]材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l 平分这个角.材料2:如图2中,三角板OAB 绕点O 顺时针旋转60°到三角板OCD 的位置,这时,三角板的边OA 、OB 绕点O 顺时针旋转60°到OC 、OD 的位置;如图3中,三角板OAB 绕点 O 逆时针旋转90°到三角板OCD 的位置,这时,三角板的边OA 、OB 绕点O 逆时针旋转90°到OC 、OD 的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A 、C 重合).现在将三角板OCD 固定不动,从起始位置(图4)开始,将三角板OAB 绕点O 顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB 转动的时间为t 秒.①当三角板OAB 转动到图5的位置时,它的一边OA 平分∠COD ,求t 的值; ②当三角板OAB 的一边OB 所在直线平分∠COD 时,t = 秒;(直接写出结果)(2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A、O、C在一条直线上).在三角板OAB绕点O以每秒5°的速度顺时针匀速转动的同时,三角板OCD绕点O以每秒3°的速度逆时针匀速转动,当三角板OAB转动一周时停止转动,此时三角板OCD也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t秒.当三角板OAB的一边OB所在直线平分∠COD时,t=秒.(直接写出结果)【答案】(1)①t的值是6;②60;(2)15或37.5.【分析】(1)①可知∠DOC=60°,根据平分和三角板OAB转动的速度可得t的值;②根据角平分先和三角板OAB转动的速度可得t的值;(2)分线段OB平分∠DOC和直线OB平分∠DOC两种情况,分情况讨论即可.【详解】解:(1)①由三角板可知∠DOC=60°,∵三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°,∴t秒后,∠AOC=5t.当OA平分∠DOC时,∠AOC=30°,∴5t=30°,解得t=6.答:t的值是6.②∵OB平分∠DOC时,∴∠BOC=30°,∠AOC=90°﹣30°=60°,∴5t=360°﹣60°=300°,解得t=60.故答案为:60.(2)设三角板OAB和三角板OCD旋转后分别为三角板OA′B′和三角板OC′D′,①线段OB平分∠DOC时,如图:∠AOA′=5t,∠COC′=3t,∵∠B′OC′=30°,∴∠A′OC′=60°,∴5t+3t+60°=180°,解得t=15;②直线OB平分∠DOC时,如图:∠AOA′=5t,∠COC′=3t,∠AOA′=90°∵∠B′OC′=30°,∴∠A′OC′=90°+30°=120°,∴5t+3t﹣120°=180°,解得t=37.5;故答案为:15或37.5.【点睛】本题考查旋转和折叠,角度的计算,掌握角平分线并会分类讨论是解题关键.10.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”.如图为一量角器的平面示意图,O 为量角器的中心.作射线OA ,OB ,OC ,并将其所对应的量角器外圈刻度分别记为a ︒,b ︒,m ︒.(1)若射线OA ,OB ,OC 为“共生三线”,且OC 为AOB ∠的角平分线. ①如图1,0a =,80b =,则m =______;②当40a =,150b =时,请在图2中作出射线OA ,OB ,OC ,并直接写出m 的值; ③根据①②的经验,得m =______(用含a ,b 的代数式表示).(2)如图3,0a =,60b m ==.在0︒刻度线所在直线上方区域内,将OA ,OB ,OC 按逆时针方向绕点O 同时旋转,旋转速度分别为每秒12︒,6︒,8︒,若旋转t 秒后得到的射线OA ',OB ',OC '为“共生三线”,求t 的值.11.已知射线OC 在AOB ∠的内部,射线OE 平分AOC ∠,射线OF 平分COB ∠.(1)如图1,若120,32AOB AOC ∠=︒∠=︒,则EOF ∠=__________度;(2)若,AOB AOC αβ∠=∠=,①如图2,若射线OC 在AOB ∠的内部绕点O 旋转,求EOF ∠的度数;②若射线OC 在AOB ∠的外部绕点O 旋转(旋转中AOC ∠、BOC ∠均是指小于180°的角),其余条件不变,请借助图3探究EOF ∠的大小,直接写出EOF ∠的度数.12.已知:AOD 160∠=︒,OB 、OM 、ON ,是AOD ∠ 内的射线.(1)如图 1,若 OM 平分 AOB ∠, ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠ 内旋转时,MON ∠= 度.(2)OC 也是AOD ∠内的射线,如图2,若BOC 20∠=︒ ,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOC ∠内旋转时,求MON ∠的大小.(3)在(2)的条件下,当射线OB 从边OA 开始绕O 点以每秒2︒的速度逆时针旋转t 秒,如图3,若AOM DON 23∠∠=::,求t 的值.。
苏科版数学七年级上册期末复习练习-------作图 2
初一数学期末专项复习-------作图2班级 姓名 1. 画一条线段等于已知线段a. 线段a:2. 利用尺规作图发画出111B O A AOB ∠=∠AO B3. 如图,在平面内有A 、B 、C 三点(1)画直线AC 、线段BC 、射线BA ; C (2)取线段BC 的中点D ,连接AD ;(3)延长线段CB 到E ,使EB=CB ,并连接AE ; B (4)过点A 画AF//BC ,过点B 画BG 垂直AC ,垂足为G.4.(1)将下列图形A 向右平移6格得到图形B.(2)图形A 绕O 点顺时针旋转900,得到图形C.5.(1)在如图所示的方格纸(方格的单位长为1)中, 经过线段AB 外一点C ,不用量角器与三角尺仅用直尺,过点C 画线段AB 的垂线EF 和平行线GH . (2)判断EF 、GH 的位置关系是 .(3)连接AC 和BC ,则三角形ABC 的面积是 个面积单位.(A)OPBO A 6.按下列要求画图,并解答问题:(1)如图,在△ABC中,取BC边的中点D,过点D画射线AD;(2)分别过点B,C画BE⊥AD于点E,CF⊥AD于点F;(3)通过度量猜想BE和CF的数量关系是,位置关系是.7.如图,点P是AOB的边OB上的一点.(1)过点P画OA的平行线MN;(2)过点P画OB的垂线,交OA于点C ;(3)过点P画OA的垂线,垂足为H;(4)线段OH的长度表示点O到的距离;表示点C到直线OB的距离;PC、PH、OC这三条线段大小关系是.(用“<”号连接)8.在桌面上,有6个完全相同的小正方体堆成的一个几何体A,如图所示.(1)请画出这个几何体A的三视图.(2)若将此几何体A的表面喷上红漆(和桌面接触的一面不喷),则三个面上是红色的小正方体有个。
若正方体的棱长是1厘米,则露在外面的红色面积(和桌面接触的一面不喷)是.9.在如图所示的方格纸上有两条线段AB、CD,(1)一只虫子在点D处,如果它想爬到线段AB上,你认为沿着哪条路线爬路程最近,请在图上画出来.(2)把线段AB怎样平移,才能使点A与点C重合?(3)把线段AB绕A点怎样旋转,才能使AB∥CD?(4)把线段AB绕A点怎样旋转,才能使AB⊥CD?BCA正面左视图俯视图10. 我们要学会用数学的眼光看世界——丰富多彩的图形世界。
(完整版)苏教版七年级上册数学期末复习题型训练及试卷含答案最新版
(完整版)苏教版七年级上册数学期末复习题型训练及试卷含答案最新版(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)苏教版七年级上册数学期末复习题型训练及试卷含答案最新版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)苏教版七年级上册数学期末复习题型训练及试卷含答案最新版(word版可编辑修改)的全部内容。
+名学生,其中男生人数占.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。
据测试,拧不紧的水龙毫升。
小明同学在洗手后B20x30将某种电器打折销售,如果按标价的六折出售52元,问:,最多能打几折?38元 84元(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。
若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由。
14。
我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样。
(1)这列队伍一共有多少名战士?(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?15.2011年扬州某学校组织七年级(1)班学生于清明节上午七时乘客车沿淮江高速公路前往距离扬州140千米的淮安楚州“爱国主义教育基地"周恩来纪念馆参观学习,车速是每小时60千米。
苏科版七年级上册数学期末复习(六)
江苏阜宁GSJY 七年级数学(上)期末复习(六) ——《平面图形的认识(1)》专题强化训练(附答案)一.选择题1. 如图,下面的语句中不正确...的是()A .直线OA 和直线AB 是同一条直线 B .射线OA 和射线OB 是同一条射线C .射线OA 和射线AB 是同一条射线D .线段AB 和线段BA 是同一条线段2. 某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1 000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A .A 点处B .线段AB 的中点处C .线段AB 上,距A 点1 0003米处 D .线段AB 上,距A 点400米处3.下列语句准确规范的是( )A.直线a 、b 相交于一点mB.延长直线ABC.反向延长射线AO(O 是端点)D.延长线段AB 到C,使BC=AB 4.下列四个图中的线段(或直线、射线)能相交的是( )1()CDBA2()CD BA3()C D BA4()CDBAA.(1)B.(2)C.(3)D.(4) 5.如果点C 在AB 上,下列表达式①AC=12AB;②AB=2BC;③AC=BC;④AC+BC=AB 中, 能表示C 是AB 中点的有( )A.1个B.2个C.3个D.4个6.如上图,从A 到B 有3条路径,最短的路径是③,理由是( )③①②ABDABCAA1B O BA1BOCA BOCDA 1BODA.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短 7.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4个8.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是(9.图中,小于平角的角有( )A.5个B.6个C.7个D.8个 10.下列说法错误的是( )A.角的大小与角的边画出部分的长短没有关系;B.角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D.若∠A+∠B>∠C,那么∠A 一定大于∠C 。
2009-2010学年苏科版七年级数学上册期末复习天天练(1)快乐假期(十三)共17个练习卷
ABD ECO初一数学《快乐假期》(十三) 平面图形的认识(一)(1)一、精心选一选⒈下列说法不正确的是( )A .同一平面内不相交的两条直线叫做平行线B .经过两点只能画一条直线C .过一点有且只有一条直线与已知直线垂直D .一条直线上只有两个点 2.如图,点A 、O 、B 在一条直线上,OE 平分∠BOD , OC 平分∠AOD ,则互补的角有 ( ) A .1对 B .2对 C .3对 D .5对3.在下列语句中,表述正确的是( ) A .延长直线AB B .延长射线OC C .画直线AB =AC D .延长线段AB4.在下列说法中,错误的是( )A .过一点可以画无数条直线B .过已知三点可以画一条直线C .两点之间,线段最短D .两点确定一条直线 5. 如图,115︒∠=,90AOC ︒∠=,点B 、O 、D 在同一直线上,则2∠的度数为( )A .75︒B .15︒C .105︒D .165︒ 6.对于直线AB ,线段CD ,射线EF ,在下列各图中能相交的是( )7.下面4个命题中正确的是( )A .相等的两个角是对顶角B .和等于90 º的两个角互为余角C .如果∠1+∠2+∠3 =180º,那么∠1,∠2,∠3互为补角D .一个角的补角一定大于这个角8.在墙壁上固定一根横放的木条,则至少需要( )枚钉子 A.l B.2 C.3 D.随便多少枚9.已知:如图,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角10.下列说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的余角,那么它们相等;④锐角和钝角互补. 其中,正确的说法有( )A .1个B .2个C .3个D .4个ABCDO12ABCD EF 21 OA CBD11.如图,点C 为线段AB 的中点,点D 为线段AC 的中点.已知AB =8,则BD = ( ). A . 2 B . 4 C . 6 D .812.如右图,在下列说法中错误的是( ) A .射线OA 的方向是正西方向 B .射线OB 的方向是东北方向C .射线OC 的方向是南偏东60°D .射线OD 的方向是南偏西55°13.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是( ) A.两点之间线段最短; B.两点确定一条直线; C.线段可以大小比较; D.线段有两个端点 二、细心填一填1.不在同一直线上的四点最多能确定 条直线。
苏科版七年级上数学期末复习压轴题---角的旋转(难题)训练
七上期末复习压轴题---角的旋转(难题)训练一、计算题1.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120∘.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O以每秒6∘的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_____(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM−∠NOC的度数.2.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120∘.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O以每秒6∘的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_____(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM−∠NOC的度数.3.如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角,3∠AOC=∠BOD,求∠COD的度数;(2)在(1)中∠COD绕着点O顺时针旋转(OD与OB重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)在图1中,∠AOD=90°,∠AOC=30°,线段OC、OD绕着点O顺时针旋转,速度分别为每秒20°和每秒10°(当.OD..重合时旋转都停止........),OM、ON分别平..与.OB分∠BOC、∠BOD,多少秒时∠COM=∠BON(直接写出答案,不必写出过程).二、解答题4.如图1,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°(1)求∠COB的度数(2)经过点O作射线OD,使得∠AOC=4∠AOD,求∠BOD的度数(3)如图2,在∠AOB的内部作∠EOF,OM、ON分别为∠AOE和∠BOF的平分线,当∠EOF绕点O在∠AOB的内部转动时,请写出∠AOB、∠EOF、∠MON之间的数量关系,并说明理由。
苏科新版七年级上册数学期末复习试卷(有答案)
2020-2021学年苏科新版七年级上册数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.﹣(﹣6)等于()A.﹣6B.6C.D.±62.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()A.B.C.D.4.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④5.已知代数式x a﹣b y2与xy2a+b是同类项,则a与b的值分别是()A.a=0,b=1B.a=2,b=1C.a=1,b=0D.a=0,b=2 6.如图是一个正方体的展开图,则“数”字的对面的字是()A.核B.心C.素D.养7.如图,把一个直角三角尺的直角顶点放在直尺的一边上,则∠1与∠2之间关系一定成立的是()A.∠1=2∠2B.∠1+∠2=180°C.∠1=∠2D.∠1+∠2=90°8.将连续的奇数1,3,5,7,9,…排成如图所示的数表,平移十字方框,方框内的5个数字之和可能是()A.405B.545C.2012D.2015二.填空题(共10小题,满分30分,每小题3分)9.单项式的系数为,次数为.10.为了测量古塔的外墙底角∠AOB的度数,王明设计了如下方案:作AO、BO的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是.11.若方程6x+3=0与关于y的方程3y+m=15的解互为相反数,则m=.12.如图所示,点O为直线AB上一点,∠AOC=∠DOE=90°,那么图中互为余角的对数有对.13.一个直棱柱有15条棱,则这个直棱柱是棱柱.14.下列三个现象:①用两个钉子就可以把一根木条固定在墙上;②从A地到B地架设电线,只要尽可能沿着线段AB架设,就能节省材料;③植树时,只要定出两棵树的位置,就能使同一行树在一条直线上.其中可用“两点确定一条直线”来解释的现象有(填序号)15.已知|3m﹣12|+=0,则2m﹣n=.16.若2m+n=3,则代数式6﹣2m﹣n的值为.17.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.18.一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到条折痕.三.解答题(共7小题,满分66分)19.计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.20.解方程:﹣=1.21.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为.22.先化简,再求值:﹣xy,其中x=3,y=﹣.23.如图,点P是∠AOB的边OB上的一点,点M是∠AOB内部的一点,按下述要求画图,并回答问题:(1)过点M画OA的平行线MN;(2)过点P画OB的垂线PC,交OA于点C;(3)点C到直线OB的距离是线段的长度.24.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)25.如图1,直线MN与直线AB,CD分别交于点E,F,∠BEM与∠DFN互为补角(1)请判断直线AB与CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线EP与FP交于点P,延长EP与CD交于点G,过点G作GH∥FP交MN于点H,求∠EGH的度数;(3)在(2)的条件下,连接PH,点K是GH上一点,连接PK,使∠PHK=∠HPK,作∠EPK的平分线PQ交MN于点Q,请画出图形,并直接写出∠HPQ的度数.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:﹣(﹣6)=6.故选:B.2.解:∵530060是6位数,∴10的指数应是5,故选:B.3.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选:D.4.解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选:C.5.解:由同类项的定义,得,解得.故选:C.6.解:这是一个正方体的平面展开图,共有六个面,其中“数”字的对面的字是养.故选:D.7.解:∵直尺对边互相平行,∴∠3=∠1,∵∠3+∠2=180°﹣90°=90°,∴∠1+∠2=90°.故选:D.8.解:设方框中间的数为x,则方框中的5个数字之和:x+(x﹣10)+(x+10)+(x﹣2)(x+2)=5x,平移十字方框时,方框中间的数x只能在第2或3或4列.A、405÷5=81,在第一列,故本选项不符合题意;B、545÷5=109,在第五列,故本选项不符合题意;C、2012÷5=402.4,数表中都是奇数,故本选项不符合题意;D、2015÷5=403,在第二列,故本选项符合题意;故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:单项式的系数为:﹣,次数为:4.故答案为:﹣,4.10.解:作AO、BO的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是对顶角相等,故答案为:对顶角相等.11.解:方程6x+3=0,解得:x=﹣,把y=代入3y+m=15得:+m=15,解得:m=,故答案为:12.解:∵∠AOC=∠DOE=90°,∴∠AOD+∠COD=90°,∠AOD+∠BOE=90°,∠COD+∠COE=90°,∠COE+∠BOE =90°.∴互余角的对数共有4对.故答案为4.13.解:一个直棱柱有15条棱,则它是直五棱柱.故答案为:五.14.解:①用两个钉子就可以把一根木条固定在墙上,可用“两点确定一条直线”来解释;②从A地到B地架设电线,只要尽可能沿着线段AB架设,就能节省材料,可用“两点之间线段最短”来解释;③植树时,只要定出两棵树的位置,就能使同一行树在一条直线上,可用“两点确定一条直线”来解释;其中可用“两点确定一条直线”来解释的现象有①③.故答案为:①③.15.解:∵|3m﹣12|+=0,∴|3m﹣12|=0,(+1)2=0,∴m=4,n=﹣2,∴2m﹣n=8﹣(﹣2)=10,故答案为10.16.解:∵2m+n=3,∴6﹣2m﹣n=6﹣(2m+n)=6﹣3=3,故答案为:3.17.解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.18.解:由图可知,第1次对折,把纸分成2部分,1条折痕,第2次对折,把纸分成4部分,3条折痕,第3次对折,把纸分成8部分,7条折痕,第4次对折,把纸分成16部分,15条折痕,…,依此类推,第n次对折,把纸分成2n部分,2n﹣1条折痕.当n=5时,25﹣1=31,故答案为:31.三.解答题(共7小题,满分66分)19.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.20.解:去分母,得:5(x+3)﹣2(x﹣1)=10,去括号,得:5x+15﹣2x+2=10,移项,得:5x﹣2x=10﹣15﹣2,合并同类项,得:3x=﹣7,系数化为1,得:x=﹣.21.解:(1)如图所示:;(2)该几何体的表面积为:34.22.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.23.解:(1)如图所示:(2)如图所示:(3)点C到直线OB的距离是线段PC的长度;故答案为:PC.24.解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8×20)×80%=288(元);乙商场所需费用为5×40+(20﹣5×2)×8=280(元),∵288>280,∴选择乙商场购买更合算.25.(1)解:(1)如图1中,∵∠1与∠2互补,∴∠1+∠2=180°,∵∠1+∠BEF=180°,∴∠BEF=∠2,∴AB∥CD;(2)如图2中,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°,∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,∵PF∥GH,∴∠EGH=∠EPF=90°.(3)如图所示:∵∠PKG是△PNK的外角,∠PHK=∠HPK,∴∠PKG=2∠KPN,∵∠EPK是△PGK的外角,∴∠EPK=∠PGK+∠PKG=90°+2∠KPN,∵PQ平分∠EPK,∴∠QPK=∠EPK=(90°+2∠KPN)=45°+∠KPN,∴∠HPQ=∠KPQ﹣∠KPN=45°+∠KPN﹣∠KPN=45°,∴∠HPQ=45°.。
苏科版七年级数学上册期末复习压轴题数轴上的动点(难题)训练
七上期末复习压轴题---数轴上的动点(难题)训练一、计算题1.如图,M是线段AB上一点,且AB=16cm,C、D两点分别从M、B同时出发,C点以1cm/s的速度向点A运动,D点以3cm/s的速度向点M运动,当一点到达终点时,另一点也停止运动.(1)当AM=6cm,点C、D运动了2s时,求这时AC与MD的数量关系;(2)若AM=6cm,请你求出点C、D运动了多少s时,点C、D的距离等于4cm;(3)若点C、D运动时,总有MD=3AC,求AM的长.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P追上点Q时,点P所表示的数是多少?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;二、解答题3.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=______cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.4.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4cm,b=6cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.5.如图,数轴上线段AB长为4个单位,线段CD长为6个单位,点A在数轴上表示的数是−12,点D在数轴上表示的数是22.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________;(2)若数轴上点P与A、B两点的距离和为5,求点P在数轴上表示的数;(3)若线段AB以6个单位/秒的速度向右匀速运动,同时线段CD以2个单位/秒的速度向左匀速运动,当运动到BC长为8个单位时,直接写出点B在数轴上表示的数.6.如图,在数轴上点A、B、C、D对应的数分别是a,b,c,d其中a,b满足|a+1|+(b−2)2=0.(1)求A,B两点之间的距离;BC,且满足c+d=0,求数d.(2)数轴上点A的左侧的点C,使AC=23(3)现在A、B两处分别放置一个小球,C、D两处分别放置一块挡板,已知小球以某一速度撞向另一静止小球时,这个小球停留在被撞小区的位置,被撞小球则以同样的速度向前运动,小球撞到左右挡板后以相同的速度反向运动,现A球以每秒1个单位长度的速度向右匀速运动,设运动的时间为t(秒);①t为何值时B球第二次撞向右侧挡板;②在这段时间内,A、B两小球的距离为4时,请直接写出此时处于运动状态下的小球所在位置表示的点的数值.7.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a−b|,若a>b,则可简化为AB=a−b,线段AB的中点表示的数a+b.【问题情境】如图,数轴上点A表示的数为−2,点B表示的数为8,点P 2从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)①A、B两点间的距离AB=______;线段AB的中点表示的数为______;②用含t的代数式表示:t秒后,点P表示的数为______;点Q表示的数为______;(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.8.如图1,已知点M是线段AB上一点,点C在线段AM上,点D在线段BM上,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(Ⅰ)若AB=10 cm,当点C、D运动了2 s时,求AC+MD的值;(Ⅱ)若点C、D运动时,总有MD=3AC,则AM=____AB;(Ⅲ)如图2,若AM=14AB,点N是直线AB上一点,且AN−BN=MN,求MNAB的值.9.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=______cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.10.图,数轴上线段AB=2,CD=4,点A在数轴上表示的数是−10,点C在数轴上表示的数是16,若线段AB以6个单位/秒的速度向右匀速运动,同时线段CD以2个单位/秒的速度向左匀速运动。
苏科版七年级上册数学期末复习提分专练:数轴综合
苏科版七年级上册数学期末复习提分专练:数轴综合1.如图所示,在数轴上点A,B,C表示的数分别为﹣2,0,6.点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)AB=,BC=,AC=;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.①设运动时间为t,请用含有t的算式分别表示出AB,BC,AC;②在①的条件下,请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由;若不变,请求其值.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如数轴上数x与5两点之间的距离等于|x﹣5|,(2)如果表示数a和﹣2的两点之间的距离是3,那么a=;若数轴上表示数a 的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.3.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a、c满足|a+3|+(c﹣5)2=0.(1)a=,b=,c=.(2)若将数轴折叠,使得点A与点C重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)请问:3BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.4.一辆货车从百货大楼出发负责送货,向东走了5千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了9.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C 表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.6升,那么这辆货车此次送货共耗油多少升?5.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C 表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?6.数轴上两点A、B对应的数分别是a、b.(1)若a、b满足(a+4)2+|b﹣7|=0,求a、b的值及线段AB的长.(2)若点A表示数﹣4,点B表示数31,P和Q分别从A和B同时相向而行,P的速度为8个单位长度/秒,Q速度为1个单位长度/秒,当P到达点B立即返回后第二次与Q相遇,求出相遇点在数轴上表示的数.(3)若P、Q两点分别同时从点A、B向正方向运动,点P的速度为x个单位长度/秒,点Q的速度为b个单位长度/秒,若P对应数为m,Q对应数为n,请问当x=4时,a、b 取何值,才使得P、Q两点对应的数始终满足.7.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且PA+PB+PC=7时,求x 的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q 的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.8.已知,A,B在数轴上对应的数分别用a,b表示,且|a﹣20|+(b+10)2=0,数轴上动点P对应的数用x表示.(1)在数轴上标出A、B的位置,并直接写出A、B之间的距离;(2)写出|x﹣a|+|x﹣b|的最小值;(3)已知点C在点B的右侧且|BC|=9,当数轴上有点P满足PB=2PC时,①求P点对应的数x的值;②数轴上另一动点Q从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长第四次向右移动7个单位长度,….点Q能移动到与①中的点P重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合.9.已知b是最小的正整数,且a,b,c满足(c﹣5)2+|a+b|=0.(1)填空:a=,b=,c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,点P为数轴上一动点,其对应的数为x,点P在1到2之间运动时(即1≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x﹣5|(请写出化简过程);.(3)在(1),(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒m(m<5)个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.若BC﹣AB的值保持不变,求m的值.10.已知b是最小的正整数,且a,c满足:|a+2|+(c﹣7)2=0(1)直接写出a,b,c的值:a=,b=,c=;(2)数a,b,c分别表示数轴上的A、B、C三点;点P为数轴上的一个动点,其对应的数为x,点P在0与3之间运动(即0<P<3),化简:|x﹣1|﹣|x+2|+|x﹣7|;(3)在(1)(2)的条件下,设点B、C之间的距离表示为BC,点A、B之间的距离表示为AB,点A、B、C三点同时在数轴上运动,点A以每秒1个单位长度的速度向左运动,点B、C分别以每秒3个单位长度的速度和每秒4个单位长度的速度向右运动,设运动时间为t秒,请问3BC﹣2AB的值是否随时间t的变化而改变?若变化,说明理由,若不变,求其值.参考答案1.解:(1)AB=|﹣2﹣0|=2,BC=|0﹣6|=6,AC=|﹣2﹣6|=8,故答案为:2,6,8.(2)①移动t秒后,点A所表示的数为(﹣2﹣t),点B所表示的数为2t,点C所表示的数为(6+5t),因此,AB=2t﹣(﹣2﹣t)=3t+2,BC=(6+5t)﹣2t=3t+6,AC=6+5t﹣(﹣2﹣t)=6t+8,②BC﹣AB=3t+6﹣(3t+2)=4,答:BC﹣AB的值不会随着运动时间t的变化而变化,其值为4.2.解:(1)观察数轴可得:数轴上表示4和1的两点之间的距离是3;数轴上表示﹣3和2两点之间的距离是5;故答案为:3;5;(2)如果表示数a和﹣2的两点之间的距离是3,那么|a﹣(﹣2)|=3∴|a+2|=3∴a+2=3或a+2=﹣3∴a=1或a=﹣5;故答案为:1或﹣5;∵|a+4|+|a﹣2|表示数a与﹣4的距离与a和2的距离之和;若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值等于2和﹣4之间的距离,等于6∴|a+4|+|a﹣2|的值为6;(3)|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和∴当a=1时,该式的值最小,最小值为6+0+3=9.∴当a=1时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是9.3.解:(1)∵b是最大的负整数,且a、c满足|a+3|+(c﹣5)2=0,∴b=﹣1,a+3=0,c﹣5=0,∴a=﹣3,c=5.故答案为:﹣3;﹣1;5.(2)a+c﹣b=﹣3+5﹣(﹣1)=3.故答案为:3.(3)t秒钟过后,点A表示的数为﹣t﹣3,点B表示的数为2t﹣1,点C表示的数为3t+5,∴AB=(2t﹣1)﹣(﹣t﹣3)=3t+2,BC=(3t+5)﹣(2t﹣1)=t+6.故答案为:3t+2,t+6.(4)∵AB=3t+2,BC=t+6,∴3BC﹣AB=3(t+6)﹣(3t+2)=3t+18﹣3t﹣2=16.∴3BC﹣AB的值为定值16.4.解:(1)如图所示:(2)小明家与小刚家相距:5﹣(﹣3)=8(千米);答:小明家与小刚家相距8千米;(3)这辆货车此次送货共耗油:(5+1.5+9.5+3)×0.6=11.4(升).答:这辆货车此次送货共耗油11.4升.5.解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.6.解:(1)∵(a+4)2+|b﹣7|=0,∴a+4=0,b﹣7=0,∴a=﹣4,b=7,∴AB=|﹣4﹣7|=11;(2)设出发t秒后,P与Q第二次相遇,根据题意得,8t﹣t=AB,即8t﹣t=31﹣(﹣4),解得,t=5,∴第二次相遇点在数轴上表示的数为:31﹣5=26;(3)设运动时间为t秒,由题意得,m=a+4t,n=b+bt,∵数m、n始终满足,∴数m、n始终满足﹣=1,即2a﹣b+(8﹣b)t=6对于任意的t值都成立,∴,解得,.7.解:(1)∵a是最大的负整数,∴a=﹣1;∵|a+b|+(c﹣5)2=0,|a+b|≥0,(c﹣5)2≥0,∴a+b=0,c﹣5=0,∴b=﹣a=﹣(﹣1)=1,c=5.故答案为:﹣1,1,5;(2)∵PA+PB+PC=7,∴|x+1|+|x﹣1|+|x﹣5|=7,①当点P在线段AB上,即当﹣1≤x<1时,x+1+1﹣x+5﹣x=7,解得:x=0;②当点P在线段BC上,即当1≤x≤5时,x+1+x﹣1+5﹣x=7,解得:x=2.综上所述,x的值是0或2.(3)设运动时间为t,①当P、Q第一次相遇时,有:3t+t=5﹣(﹣1),解得:t=1.5,此时,相遇点在数轴上对应的数为5﹣1.5=3.5;②当P到达C点返回追上Q时,有:3t﹣t=5﹣(﹣1)解得:t=3,此时,相遇点在数轴上对应的数为5﹣3=2.∴在此运动过程中P,Q的相遇点在数轴上对应的数是3.5或2.8.解:(1)|a﹣20|+(b+10)2=0,解得:a=20,b=﹣10;∴AB=20﹣(﹣10)=30;(2)|x﹣a|+|x﹣b|=|x﹣20|+|x+10|,当x位于点A与点B之间时,即,﹣10≤x≤20时,|x﹣20|+|x+10|的值最小,最小值为AB=30,答:|x﹣20|+|x+10|的最小值为30;(3)①点C在点B的右侧且|BC|=9,因此点C所表示的数为﹣1,设点P表示的数为x,|x+10|=2|x+1|,解得x=8或x=﹣4;②点Q每次移动对应在数轴上的数,第1次:﹣1,第3次:﹣3,第5次:﹣5,……第2次:2,第4次:4,第6次:6,……因此点Q能移动到与①中的点P重合的位置,与8重合时,移动第8次,不可能与﹣4重合,答:点Q能移动到与①中的点P重合的位置,移动的次数为8次.9.解:(1)∵(c﹣5)2+|a+b|=0,∴c﹣5=0,a+b=0,b是最小的正整数,∴a=﹣1,b=1,c=5;故答案为:﹣1;1;5;(2)|x+1|﹣|x﹣1|+2|x﹣5|=(x+1)﹣(x﹣1)+2(5﹣x)=x+1﹣x+1+10﹣2x=﹣2x+12,故答案为﹣2x+12;(3)根据题意得,BC=(5+5t)﹣(1+mt)=4+5t﹣mt,AB=(1+mt)﹣(﹣1﹣t)=2+mt+t,∴BC﹣AB=(4+5t﹣mt)﹣(2+mt+t)=2+4t﹣2mt=2+(4﹣2m)t,若BC﹣AB的值保持不变,则4﹣2m=0,∴m=2.10.解:(1)依题意得,b=1,c﹣7=0,a+2=0解得a=﹣2,c=7;故答案为:﹣2,1,7;(2)点P在0与3之间运动(即0<x<3),因此,当0<x≤1时,x﹣1<0,x﹣7<0,x+2>0,原式=1﹣x﹣2﹣x+7﹣x=﹣3x+6;当1<x<3时,x﹣1>0,x﹣7<0,x+2>0,原式=x﹣1﹣x﹣2+7﹣x=﹣x+4;(3)变化.理由如下:t秒时,点A对应的数为﹣2﹣t,点B对应的数为3t+1,点C对应的数为4t+7.∴BC=(4t+7)﹣(3t+1)=t+6,AB=(3t+1)﹣(﹣2﹣t)=4t+3,∴3BC﹣2AB=3(t+6)﹣2(4t+3)=12﹣5t,即3BC﹣2AB的随着时间t的变化而改变.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
初一数学期末专项复习-------作图1 姓名
1.画一个角等于已知角: 作∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB (不写作法,保留作图痕迹)。
2. 如图,A 、B 、C 、D 四点不在同一直线上,读句画图. (1)过点A 和点C 画直线AC ;
(2)画射线CD ; (3)连结AB,BC ;
(4)延长BC ,交线段DA 的反向延长线于E.
3.(1)画出三角形关于MN 翻折后的图形。
(2)在图中方格纸上,将图形向右平移3格,再向下平移4格。
(3)将以下方格图图3.2-2中阴影图形围绕点O ,按顺时针方向依次旋转90°,180°, 270°,看看会得到什么图形?
A
B
O _ D
_ C
_ B
_ A
2
4.如图,在方格纸中有一个格点三角形ABC (顶点在小正方形的顶点上).
(1)过点B 画AC 的平行线l ;
(2)过点C 画AB 的垂线m ,垂足为点D.
5.如图,点P 是AOB 的边OB 上的一点,
(1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H
(3)线段PH 的长度是点P 到 的距离, 是点C 到直线OB 的距离. (4)线段PC 、PH 、OC 这三条线段大小关系是 .
6.(1) 在下面的方格纸中,以线段AB 为一边,画一个正方形;
A B C A
P
A
B
O
3
(2)如果图中小方格的面积为1平方厘米., 你知道(1)中画出的正方形的面积是多大吗? 解释你的计算方法.
7.如图,点P Q 、分别是AOB ∠的边OA OB 、上的点.
(1)过点P Q 、分别画OB OA 、的平行线,两直线相交于点M ;
(2)过点P 画OB 的垂线,垂足为H ,过点P 画OA 的垂线交OB 于点G ;
(3)线段PH 与PG 的大小关系是PH PG ;(用“<”或“=”或“>”填空) (4)量一量AOB ∠和PMQ ∠,AOB ∠与PMQ ∠的大小关系是AOB ∠ PMQ ∠.
8.下图是由几个小正方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方块的个数,①请画出这个几何体的主视图和左视图;
②在不改变俯视图、主视图、左视图的情况下,最多能添加_________个小方块.
主视图 左视图
4
1
2
2
3
4。