An Introduction to Mathematics 金融学数学基础知识

合集下载

数学方面的书籍

数学方面的书籍

数学方面的书籍
以下是一些数学方面的书籍推荐:
1. 《数学导论》(Introduction to Mathematics)- Alfred North Whitehead, Bertrand Russell
2. 《数学思维的文化史》(The Cultural History of Mathematical Thinking)- Luciano Canfora
3. 《历史中的数学》(Mathematics in Historical Context)- Jeff Suzuki
4. 《证明之书》(The Book of Proof)- Richard Hammack
5. 《微积分导论》(Introduction to Calculus)- James Stewart
6. 《线性代数和应用》(Linear Algebra and Its Applications)- David C. Lay
7. 《离散数学与应用》(Discrete Mathematics and Its Applications)- Kenneth H. Rosen
8. 《数理统计学导论》(Introduction to Mathematical Statistics)- Robert V. Hogg, Joseph W. McKean, Allen T. Craig
9. 《数学分析导引》(A Guide to Analysis)- W. T. Gowers
10. 《概率论与数理统计》(Probability Theory and Mathematical Statistics)- Marek Fisz
这些书籍涵盖了数学的不同领域,包括数论、代数、几何、微积分等,并且适合不同层次的读者,从初学者到专业人士都能从中受益。

《金融数学专业导论》教学大纲

《金融数学专业导论》教学大纲

《金融数学专业导论》教学大纲Introduction to Financial Mathematics课程编码:09A01010 学分:1.0 课程类别:专业基础必修课计划学时:16 其中讲课:16 实验或实践:0 上机:0适用专业:金融数学推荐教材:无参考书目:1.国家技术监督局,《中华人民共和国国家标准学科分类与代码表》,1993.2.教育部,《普通高等学校本科专业目录(2012年颁布)》,2012.3.国务院学位委员会,《授予博士、硕士学位和培养研究生的学科、专业目录》,2011.4.济南大学,《关于修订2014版本科专业培养方案的指导性意见》,2014.5.济南大学教务处,《济南大学本科专业人才培养方案》,2014.6.张红,《数学简史》,科学出版社,2007.7.李文铭,《数学史简明教程》,陕西师范大学出版社,2009.8.李心灿,《微积分的创立者及其先驱》,航空工业出版社,1994.9.历年研究生考试数学一(三)大纲课程的教学目的与任务本课程的教学目的是使学生在入学之初,就对本专业的人才培养目标与基本要求,本专业的课程设置、主干课程以及所涉及的研究领域、本专业的特点与学习方法等有一个初步认识,稳固专业思想,提高学习兴趣与动力,以正确的学习态度与学习方法进行专业学习。

课程的基本要求1、了解我国高等教育(包括本科教育与研究生教育)的学科领域与专业设置,了解数学、金融学科的研究方向及其内在联系。

2、对我校金融数学专业的人才培养方案,对人才培养的目标、基本要求、课程设置情况等有一个初步认识。

3、了解主干课程的研究内容与思想方法,对后续主干课程有初步认识,对数学的思维方式与学习方法及其在金融领域中的应用有所了解。

4、了解金融数学专业发展历程、目前的状况以及未来的发展前景。

各章节授课内容、教学方法及学时分配建议(含课内实验)第一章概论建议学时:4[教学目的与要求] 了解我国高等教育(包括本科教育与研究生教育)的学科领域与专业设置,重点了解人才培养方案的指导思想,培养目标、基本要求,金融数学专业基本情况。

数学介绍50字左右

数学介绍50字左右

数学介绍50字左右(中英文版)Title: An Introduction to MathematicsTitle: 数学简介Mathematics is the abstract science of numbers, magnitudes, and forms, which includes the study of numbers, geometry, algebra, and analysis.数学是一门抽象的科学,研究数字、量和形式,包括数字、几何、代数和分析的研究。

Mathematicians seek to understand the principles that govern these concepts and to use them to solve various problems in science, engineering, business, and other fields.数学家寻求理解这些概念的原则,并使用它们解决科学、工程、商业和其他领域的问题。

The field of mathematics has evolved over the centuries, with new theories and discoveries building upon the work of previous mathematicians.数学领域在几个世纪内不断发展,新的理论和发现建立在先前数学家的工作之上。

Some famous mathematicians include Pythagoras, Euclid, Archimedes, Isaac Newton, and Carl Friedrich Gauss, who have made significant contributions to the development of mathematics.一些著名的数学家包括毕达哥拉斯、欧几里得、阿基米德、艾萨克·牛顿和卡尔·弗里德里希·高斯,他们为数学的发展做出了重要贡献。

学数学英语作文

学数学英语作文

When it comes to learning mathematics,there are several key strategies and approaches that can be employed to enhance understanding and proficiency in this subject.Here are some steps and tips to consider when writing an essay on learning mathematics:1.Introduction to Mathematics:Begin your essay by introducing the importance of mathematics in our daily lives and its applications in various fields such as science, engineering,economics,and more.2.Importance of a Strong Foundation:Emphasize the significance of a solid foundation in basic arithmetic before moving on to more complex concepts.This includes understanding numbers,operations,and simple algebra.3.Developing ProblemSolving Skills:Discuss how learning mathematics is not just about memorizing formulas but also about developing analytical and problemsolving skills. Provide examples of how these skills can be applied in reallife situations.4.The Role of Practice:Highlight the importance of consistent practice in mastering mathematical concepts.Explain how practice helps in reinforcing learning and improving speed and accuracy in solving problems.5.Understanding the Conceptual Approach:Stress the importance of understanding the why behind mathematical operations rather than just the how.This conceptual understanding helps in retaining information and applying it to new problems.6.Utilizing Technology:Mention the role of technology in making the learning process more interactive and accessible.Discuss various tools such as online tutorials, educational apps,and software that can aid in learning mathematics.7.Overcoming Challenges:Address common challenges that students face while learning mathematics,such as fear of failure,lack of confidence,or difficulty in understanding abstract concepts.Offer suggestions on how to overcome these obstacles.8.The Importance of Patience and Perseverance:Explain that learning mathematics requires patience and perseverance.Its a subject that often involves trial and error,and its important to not get discouraged by initial difficulties.9.Seeking Help and Collaboration:Encourage students to seek help from teachers,peers, or tutors when they encounter difficulties.Discuss the benefits of collaborative learning and how it can enhance understanding.10.RealWorld Applications:Provide examples of how mathematical concepts are applied in various professions and everyday scenarios.This can help students see the relevance and practicality of what they are learning.11.Conclusion:Conclude your essay by summarizing the key points and reiterating the importance of a wellrounded approach to learning mathematics.Encourage a positive attitude towards the subject and the belief that anyone can improve their mathematical skills with the right mindset and effort.Remember to use clear and concise language,provide relevant examples,and maintain a logical flow of ideas throughout your essay.This will help your readers understand the complexities and beauty of mathematics,and inspire them to approach the subject with enthusiasm and curiosity.。

牛津通识读本数学英文版epub

牛津通识读本数学英文版epub

牛津通识读本数学英文版epubTitle: Oxford General Reading Mathematics English Version ePubIntroduction:The Oxford General Reading Mathematics English Version ePub is a comprehensive textbook that covers a wide range of mathematical topics. This book is designed for students who are interested in exploring the various branches of mathematics and improving their problem-solving skills.Chapter 1: Introduction to MathematicsIn the first chapter of the book, readers are introduced to the basic concepts of mathematics. The chapter covers topics such as numbers, operations, and basic mathematical functions. Readers will also learn about the history of mathematics and its importance in today’s world.Chapter 2: AlgebraThe second chapter focuses on algebra, one of the fundamental branches of mathematics. Readers will learn about equations, inequalities, polynomials, and functions. This chapter also covers topics such as linear algebra and matrix operations.Chapter 3: GeometryThe third chapter explores the world of geometry. Readers will learn about different types of shapes, angles, and geometric transformations. The chapter also covers topics such as trigonometry and coordinate geometry.Chapter 4: CalculusThe fourth chapter delves into calculus, a branch of mathematics that deals with rates of change and accumulation. Readers will learn about derivatives, integrals, and their applications in various fields such as physics, engineering, and economics.Chapter 5: Probability and StatisticsThe fifth chapter focuses on probability and statistics. Readers will learn about probability theory, random variables, and data analysis techniques. This chapter also covers topics such as hypothesis testing and regression analysis.Conclusion:Overall, the Oxford General Reading Mathematics English Version ePub is a valuable resource for students and mathematics enthusiasts. This book provides a solid foundation in various mathematical topics and helps readers develop theiranalytical and problem-solving skills. Whether you are a beginner or an advanced mathematician, this book is sure to enhance your understanding of the subject.。

金融数学实验报告英文

金融数学实验报告英文

金融数学实验报告英文Financial Mathematics Experiment ReportTitle: Analysis of the Impact of Interest Rate Changes on Investment ReturnsAbstract:This experiment aimed to investigate the influence of interest rate changes on investment returns using financial mathematics models. A portfolio consisting of different asset classes was established, and its performance was analyzed under various interest rate scenarios. The results showed that changes in interest rates had a significant impact on investment returns, with bond investments being more sensitive to interest rate fluctuations compared to other asset classes. The experiment demonstrated the importance of considering interest rate risk when making investment decisions.1. Introduction:Financial markets are highly sensitive to changes in interest rates, as they directly affect the cost of borrowing and the return on investments. Understanding the relationship between interest rates and investment returns is crucial for making informed financial decisions. Thisexperiment aimed to analyze the impact of interest rate changes on investment returns using mathematical models.2. Methodology:2.1 Portfolio Construction:A portfolio consisting of various asset classes was constructed, including stocks, bonds, and real estate. The weights of each asset class were determined based on their historical returns and risk characteristics.2.2 Interest Rate Scenarios:Different interest rate scenarios were analyzed, including a high-interest rate environment, low-interest rate environment, and a stable interest rate environment. The interest rate changes were simulated using financial modeling techniques.2.3 Financial Mathematics Models:Financial mathematics models were employed to estimate the investment returns under different interest rate scenarios. The models used included the Capital Asset Pricing Model (CAPM), theBlack-Scholes-Merton Model, and duration analysis for bond investments.3. Results:3.1 Impact of Interest Rate Changes:The experiment results showed that changes in interest rates had a significant impact on investment returns. In a high-interest rate environment, bond investments experienced decreased returns due to a higher discount rate. On the other hand, stocks and real estate investments were less affected by interest rate changes.3.2 Sensitivity Analysis:Sensitivity analysis was performed to assess the sensitivity of the portfolio to different interest rate scenarios. It was found that the portfolio was more sensitive to interest rate changes when the proportion of bond investments was higher.4. Discussion:The experiment results highlighted the importance of considering interest rate risk when making investment decisions. Bond investments were found to be more sensitive to interest rate fluctuations compared to stocks and real estate. Therefore, it is essential to diversify investments across different asset classes to mitigate the impact of interest rate changes on overall portfolio performance.5. Conclusion:This experiment demonstrated the significant impact of interest rate changes on investment returns. It emphasized the importance of understanding interest rate risk and diversifying investments across different asset classes. The findings of this experiment can help investors make more informed decisions to optimize their investment portfolios in different interest rate environments. Further research can focus on analyzing the impact of other economic factors on investment returns.。

金融数学简介

金融数学简介
计算矩阵: Golub and Van Loan, Matrix Computations, 1996
Kushner and Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, 1992. Kushner's Markov chain approximation method是控制论里最有用的算法
金融数学里面用的主要是随机控制,和粘性解(因为operator is often degenerate)
经典的随机控制书是
1.FLEMING and RISHEL, (1975) Deterministic and Stochastic Optimal Control.
ROGERS and TALAY, Numerical Methods in Financial Mathematics. 1997.论文集
Kloeden and Platen, Numerical Solution of Stochastic Differential Equations, 1997. 偏理论,实用性差一点
主要的研究内容和拟重点解决的问题包括:
(1)有价证券和证券组合的定价理论
发展有价证券(尤其是期货、期权等衍生工具)的定价理论。所用的数学方法主要是提出合适的随机微分方程或随机差分方程模型,形成相应的倒向方程。建立相应的非线性Feynman一Kac公式,由此导出非常一般的推广的Black一Scho1es定价公式。所得到的倒向方程将是高维非线性带约束的奇异方程。
粘性解的标准文献是
1. Crandall, Ishii and Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992),

金融数学入门(英文)

金融数学入门(英文)
• There are two main approaches: – Partial Differential Equations – Probability and Stochastic Processes
2
Short History of Financial Mathematics
• 1900: Bachelier uses Brownian motion as underlying process to derive option prices.
• Preliminary notions: Time value of money, financial securities, options.
• Arbitrage and risk–neutral valuation via a one–period, two–state toy model.
• Financial Mathematics has been established as a separate academic discipline only since the late eighties, with a number of dedicated journals.
3
Structure of this talk
• Thus an amount X at time T is the same as Xe−rT now.
• Discounting allows us to compare amounts of money at different times.
7
Returns
• The return on an investment S is defined by
• 1973: Black and Scholes publila.

金融数学书籍

金融数学书籍

金融数学书籍金融数学是应用数学与金融学的交叉领域,通过数学方法分析和解决金融问题。

金融数学的发展对于金融市场的稳定和金融产品的创新具有重要意义。

以下是一些相关的金融数学书籍及其内容的参考:1.《金融数学模型与衍生品定价》(Financial Mathematics: Models and Derivatives Pricing)书中介绍了金融市场中常用的数学模型和定价方法。

内容包括离散时间金融模型、Black-Scholes-Merton模型、期权定价与对冲策略、固定收益证券定价等等。

读者可以通过学习这本书来了解金融数学模型在金融市场中的应用。

2.《数学金融学导论》(Introduction to Mathematical Finance)这本书是金融数学领域的经典教材。

书中涵盖了金融市场的基本知识、金融衍生品的定价以及风险管理等内容。

读者可以通过学习这本书来了解金融数学的基本概念和方法。

3.《金融工程学》(Financial Engineering)本书是金融工程学领域的重要参考书之一。

内容包括金融市场的特征与模型、金融衍生品、资产定价等方面。

通过学习这本书,读者可以了解金融工程学的基本理论和实践。

4.《金融数学》(Mathematical Finance)这本书是金融数学领域的入门教材之一。

内容包括金融市场模型、离散时间金融模型、连续时间金融模型、金融衍生品定价等方面。

通过学习这本书,读者可以理解金融数学的基本理论和方法,并能够运用这些方法解决金融问题。

5.《计量金融学导论》(An Introduction to Econometric Finance)本书介绍了计量金融学的基本概念和方法。

内容包括金融时间序列分析、风险管理、资产定价等方面。

通过学习这本书,读者可以了解计量金融学的基本概念和方法,并且能够运用这些方法进行金融数据的分析和预测。

以上是一些金融数学相关的参考书籍及其内容的简要介绍。

金融专业所学高等数学教材

金融专业所学高等数学教材

金融专业所学高等数学教材高等数学,作为金融专业的一门重要课程,是培养学生数学思维和分析问题能力的基础。

本文将介绍金融专业所学高等数学教材的主要内容,包括微积分、线性代数和概率论等方面。

一、微积分微积分是高等数学的基础,也是金融专业所必修的一门课程。

微积分包括微分学和积分学两个部分。

微分学主要介绍函数的极限、导数和微分等概念。

通过学习微分法则和求导法则,可以求解函数的最值、切线、曲线的凹凸性等问题。

在金融领域中,微分学可以应用于金融市场的波动性分析、衍生品定价模型的推导等方面。

积分学主要介绍不定积分和定积分的概念与性质。

通过学习定积分的计算方法,可以求解曲线下面的面积、求解定积分的应用问题等。

在金融领域中,积分学可以应用于金融市场的波动范围估计、期权风险度量等方面。

二、线性代数线性代数是研究向量空间和线性变换的数学分支,也是金融专业所学的一门重要课程。

线性代数主要包括向量、矩阵和线性方程组等内容。

通过学习线性代数,可以深入理解金融模型中的变量和参数之间的关系,并进行对应的计算和推导。

在金融领域中,线性代数可以应用于资产组合的优化、风险管理模型的构建等方面。

三、概率论概率论是研究随机事件及其规律性的数学分支,也是金融专业所必修的一门课程。

概率论主要包括基本概念、随机变量和概率分布等内容。

通过学习概率论,可以深入理解金融市场中的不确定性和风险,并进行相应的概率分布模型和建模分析。

在金融领域中,概率论可以应用于金融衍生品的定价、风险度量和风险管理等方面。

总结:金融专业所学高等数学教材的内容主要包括微积分、线性代数和概率论等方面。

学习高等数学可以培养学生的数学思维和分析问题的能力,并应用于金融领域的相关理论和实践问题。

通过掌握高等数学的知识,金融专业的学生可以更好地理解和应用金融模型,提高金融决策的准确性和效率。

耗时多年写出的逻辑学书籍

耗时多年写出的逻辑学书籍

耗时多年写出的逻辑学书籍
以下是一些耗时多年写出的逻辑学书籍的例子:
1. 《数理逻辑及其哲学基础》(Logic, Mathematics, and Philosophy: Vintage Enthusiasms)- 作者:George Boolos
这本书是美国逻辑学家 George Boolos 耗费多年心血写成的一
本经典逻辑学著作,涵盖了数理逻辑的基础知识,以及与哲学相关的一些逻辑问题。

2. 《形式逻辑导论》(An Introduction to Formal Logic)- 作者:Peter Smith
Peter Smith 是一位著名的逻辑学家和哲学家,他耗费大量时间写成的《形式逻辑导论》是一本广泛使用的入门级逻辑学教科书,涵盖了形式逻辑的基本原理和技巧。

3. 《哲学逻辑学导论》(An Introduction to Philosophical Logic)- 作者:Anthony Flew
这本书是英国哲学家 Anthony Flew 耗时多年写成的一本关于
哲学逻辑学的导论性著作,涵盖了逻辑学与哲学的交叉领域的重要概念和问题。

4. 《逻辑学与计算机科学导论》(Introduction to Logic and Computer Science)- 作者:Dov M. Gabbay, John Woods
这本书是耗时多年编写的一本关于逻辑学与计算机科学之间关系的导论性著作,作者 Dov M. Gabbay 和 John Woods 在其中
探讨了逻辑在计算机科学中的应用和相关原理。

这些是一些耗时多年写出的逻辑学书籍的例子,它们提供了丰富的知识和深入的分析,是逻辑学领域的重要参考资料。

金融随机数学基础

金融随机数学基础

金融随机数学基础
金融中的随机数学基础是指在金融领域中应用的随机过程、概率论和统计学等数学原理。

以下是一些金融中常见的随机数学基础:
1. 随机过程:
- 随机过程在金融中被广泛应用,如布朗运动(Brownian motion)、随机漫步(random walk)等模型用于描述资产价格的变动过程。

2. 概率论:
- 概率论是金融中的基础,用于描述随机现象的概率分布、期望值、方差等,如正态分布、泊松分布等。

3. 随机变量:
- 随机变量用于描述金融中涉及的不确定性,如股票价格、汇率波动等可以被视为随机变量。

4. 蒙特卡洛模拟:
- 蒙特卡洛模拟是金融中常用的技术,通过随机数生成来模拟复杂的金融问题,如期权定价、风险管理等。

5. 统计学:
- 统计学在金融中用于数据分析、风险评估等,如统计推断、回归分析、时间序列分析等方法。

6. 随机过程中的随机微分方程:
- 随机微分方程在金融数学中有重要应用,如布莱
克-舒尔斯期权定价模型中的随机微分方程。

这些数学基础在金融领域中起着至关重要的作用,帮助金融从业者理解和分析市场的不确定性、风险和波动性。

熟练掌握金融中的随机数学基础对于进行定价、风险管理和决策制定是至关重要的。

英本数学专业

英本数学专业

英本数学专业(中英文版)Task Title: Mathematics Major in the UKTask Title: 英国数学专业As an English-trained mathematics major, I have gained a solid foundation in mathematical concepts and theories.The British education system emphasizes a comprehensive understanding of mathematics, combining both pure and applied aspects.This has allowed me to develop a strong logical and analytical thinking ability, which is essential for solving complex mathematical problems.作为一名英国数学专业的毕业生,我已经打下了坚实的数学概念和理论基础。

英国教育体系强调对数学的全面理解,结合纯数学和应用数学两个方面。

这使我发展出了强大的逻辑和分析思维能力,这对于解决复杂的数学问题是至关重要的。

During my time at university, I have had the opportunity to study a wide range of mathematics subjects, including calculus, linear algebra, probability, and statistics.These subjects have not only expanded my knowledge in the field of mathematics but also equipped me with the skills to apply mathematical theories to real-world problems.在大学期间,我有机会学习一系列的数学课程,包括微积分、线性代数、概率论和统计学。

《数学与应用数学专业导论》课程教学大纲

《数学与应用数学专业导论》课程教学大纲

《数学与应用数学专业导论》教学大纲一、课程地位与课程目标(一)课程地位本课程是数学与应用数学专业的专业必修课,是本专业的先导性课程。

通过学习本课程使学生了解数学与应用数学专业的专业背景、人才培养定位、课程设置、毕业生能力和素质要求及毕业去向,从而使学生树立牢固的专业思想,明确的学习目标和努力方向。

(二)课程目标1. 使学生了解本专业的专业背景、人才培养定位、课程设置、毕业生能力和素质要求及毕业去向。

2. 使学生树立牢固的专业思想、明确的学习目标和努力方向。

二、课程目标达成的途径与方法课堂教学、专业调研、课堂讨论、课程论文。

三、课程目标与相关毕业要求的对应关系四、课程主要内容与基本要求第一章数学学科发展历史和现状了解数学学科的学科性质和特点,了解学科发展历史和现状,了解本专业的师资状况和办学条件。

第二章培养目标与课程设置了解本专业的培养目标、课程设置情况,了解必修课和选修课,了解专业方向课,了解各课程在专业培养方案中的地位,能够制订选课方案和学习计划。

第三章人工智能算法及应用初步了解神经网络和深度学习的基本内容与方法,了解神经网络和深度学习的主要应用领域。

第四章数据挖掘理论与技术初步了解数据挖掘的思想和基本理论,了解重要的数据挖掘方法。

第五章金融风险和金融数学初步了解期货证券投资等金融活动的数量特征,了解组合投资中的风险与收益关系,了解常用的统计数据和基本统计分析方法。

第六章软件开发理论展望初步了解常用的程序设计语言,了解软件开发的一般流程,了解大学期间学习的软件,了解程序设计竞赛的举办时间和参加条件。

五、课程学时安排(一)推荐教材:无(二)主要参考书:[1] 数学文化,顾沛,北京:高等教育出版社,2017,第二版.[2]人工神经网络教程,韩力群,北京:邮电大学出版社,2006.。

数学专业学那些课程

数学专业学那些课程

数学专业学那些课程数学与应用数学专业主要课程简介(一)供外系学生修读的课程高等数学A(Higher Mathematics)课程类别:专业必修总学时:160-180总学分:10考核方式:闭卷课程编号:Z1101111高等数学A(一),学时:80-90学分:5考核方式:闭卷课程编号:Z1101112高等数学A(二),学时:80-90学分:5考核方式:闭卷课程目的:通过本课程的学习,使计算机科学与应用、物理学、应用电子、教育技术专业的相关专业的学生熟练掌握高等数学的基础理论,能运用各种基本理论解决实际工作中的专业问题。

课程内容:本课程分二学期讲授,第一学期主要讲授:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用。

第二学期主要讲授:空间解析几何与向量代数、多元函数微分法及其应用、重积分、曲线积与曲面积分、无穷级数、微分方程等。

教材:同济大学数学教研室.《高等数学》(上、下册),第六版.北京:高等教育出版社,2002年.高等数学B(Higher Mathematics)课程类别:专业必修学时:142-147学分:8考核方式:闭卷课程编号:Z1101113高等数学B(一),学时:75学分:4考核方式:闭卷课程编号:Z1101114高等数学B(二),学时:72学分:4考核方式:闭卷课程目的:通过本课程的学习,使理工类相关专业专科学生全面掌握高等数学的基础理论,能利用微积分的理论解决实际问题。

课程内容:本课程分二学期讲授,第一学期主要讲授,函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分。

第二学期主要讲授无穷级数、空间解析几何、多元函数微分法及其应用、定积分及其应用、曲线积分与曲面积分、常微分方程等。

教材:陈誌敏.《高等数学》(上、下册),上海:复旦大学出版社,第二版,2005年.课程编号:Z1101115高等数学C(Higher Mathematics)课程类别:专业必修总学时:90总学分:5考核方式:闭卷课程目的:通过本课程的学习,使化学、生物、农、林等相关专业学生掌握高等数学的基础知识,运用基本理论解决一些实际问题。

学习金融的入门书籍有哪些

学习金融的入门书籍有哪些

学习金融的入门书籍有哪些?
学习金融的入门书籍有很多选择,以下是一些常见的金融入门书籍:
1. 《金融学》(Fundamentals of Corporate Finance)-罗斯,西耶夫特,乌斯特市场经济向导
- 这本教科书是金融学领域广泛使用的经典教材,介绍了公司金融和投资决策的基本原理和概念。

2. 《证券分析》(Security Analysis)-本杰明·格雷厄姆、大卫·杜德利
- 这本书被认为是价值投资的圣经,详细介绍了如何进行证券分析,评估投资价值和风险。

3. 《投资学》(Investments)-泰勒·麦克雷文、斯坦利·恩沃尔特市场经济向导
- 这本教科书解释了金融市场和各种投资工具,包括股票、债券和衍生品等,以及投资组合的理论和实践。

4. 《金融市场的随机过程:简介》(An Introduction to the Mathematics of Financial Derivatives)-萨丕尼·罗西
- 这本书涵盖了金融衍生品的数学模型和定价方法,适合对金融工程和衍生品感兴趣的读者。

5. 《证券市场操纵》(Reminiscences of a Stock Operator)-爱德温·莱费弗市场经济向导
- 这本书是一本经典的传记式小说,通过描述一位投机者的故事,深入探讨了投资心理和市场行为。

以上仅是一些入门书籍的推荐,不同人对学习风格和兴趣的偏好不同,可以根据自己的需求和兴趣选择适合自己的金融入门书籍。

此外,还可以参考学术期刊、在线课程和金融专业网站等资源来扩展知识和深入学习。

金融数学 英文

金融数学 英文

金融数学英文金融数学是一个非常重要的学科,它涉及到金融领域中的各种数学应用,包括金融风险管理、投资组合管理、金融工程等等。

对于想要从事金融行业的人来说,学习金融数学是必不可少的。

在学习金融数学时,英文资源是非常重要的。

以下是一些可以帮助你学习金融数学的英文资源:1. 'Options, Futures, and Other Derivatives' by John C. Hull - 这是一个非常经典的金融数学教材,涵盖了金融衍生品的理论和实践。

该书已经被翻译成多种语言,包括中文。

2. 'Introduction to Mathematical Finance: Discrete Time Models' by Stanley R. Pliska - 这是一个非常全面的金融数学教材,涵盖了离散时间模型的基础知识和应用。

3. 'Mathematical Methods for Financial Markets' by Monique Jeanblanc, Marc Yor, and Marc Chesney - 这是一本关于金融市场数学方法的教材,涵盖了随机微积分和随机分析的基础知识。

4. 'Stochastic Calculus for Finance I: The Binomial Asset Pricing Model' by Steven E. Shreve - 这是关于随机微积分和金融应用的入门教材。

5. 'Financial Engineering: The Evolution of a Profession' by Tanya S. Beder - 这是一本关于金融工程学科的历史和发展的书籍,对于了解这个领域的发展历程非常有帮助。

以上是一些可以帮助你学习金融数学的英文资源,当然还有很多其他的书籍和在线资源可供选择。

Mathematics_for_Finance

Mathematics_for_Finance

Mathematics for Finance: An Introduction to Financial EngineeringAmerican Mathematical Monthly, The, Dec 2004 by Protter, PhilipMathematical finance (or financial engineering, as it is often known) is a young subject for mathematics, but is highly popular with students. No doubt the allure of being connected to vast sums of money is a part of the attraction. Yet it is a difficult subject, requiring a broad array of knowledge of subjects that are traditionally considered hard to learn.Forty years ago, options and what are now called "financial derivatives" were little known. Options were traded on the Chicago Board Options Exchange (CBOE), primarily for commodities such as pork bellies, orange juice, coffee, and precious metals. Let us take a minute to describe a situation where an option is useful. Imagine a small Indiana farmer raising pigs. The price is high now, but his pigs are only 80% grown. He can market them now and make a handsome profit, or he can wait until they are fully grown and make a larger profit if the price stays up, but end up making significantly less money if the price falls. He could solve the problem by buying a forward contract, locking in a prearranged price and thus a sure profit, but what if the price rises further? Then he will kick himself for having locked in the price. An option, on the other hand, gives him the right, but not the obligation, to sell his pigs at the prearranged price, thus guaranteeing him the nice profit but not excluding a potentially bigger one.The prices of options such as the one just described were set by the market: supply and demand. In the United States there is a fervent belief that the market knows best and, if left alone, will arrive at a fair and just price. There are many unspoken hypotheses involved with this belief, and in the case of commodities, several were violated. It will suffice to point out that small farmers were buying options sold by large banks and companies. In the early 1970s, Black, Scholes, and Merton showed that by using the ItO stochastic calculus and a simple model describing the dynamics of the price of a risky asset, one could arrive at a fair price for an option. They did this using a key idea: if one sells the option for $x, there is a hedging strategy by which one can use that $x to trade in the commodity over time until the option is due and end up with exactly what is owed to the option purchaser at the settlement time. There is no risk at all, except the implicit risk that the model for the dynamic price of the commodity is wrong. Therefore, if the market price is larger than $x, one can charge the market price and match the option and have money left over. If the market price is less than $x, one can buy the options and make money in reverse. It turned out that the market is often wrong, but the breakthrough of Black and Scholes went largely ignored by the financial players. This gradually changed, largely through the efforts of a few visionary people at Wells Fargo Bank, who worked not so much with commodities as with the (then) new concepts of portfolio insurance and index funds (see [2]).The option I described has the result of removing the risk for the pig farmer. For a (usually rather small) fee, he can buy what amounts to an insurance policy on the price of pork bellies. This is known as a transfer of risk: the option seller assumes the risk the farmer is not willing to assume, just as an insurance company assumes (for a fee) the financial risk of one's house burning down. This example also shows the utility of such insurance, since now the farmer will not slaughter the pigs before they are fully grown, and society as a whole will benefit (assuming that people eat pork). Once the methodology for pricing this transfer of risk became widely known, the concept spread widely. It has transformed modern business and arguably helped to create the financial boom years of the 1990s. One can now insure against currency fluctuations, dangerous drops in stock prices in one's portfolio, and all manner of (often fairly esoteric) business operations by this form of risk transfer. Options are also widely used for less virtuous goals, such as helping companies and executives avoid paying taxes, and of course for what amounts, simply, to gambling。

金融数学 教学大纲

金融数学   教学大纲

金融数学一、课程说明课程编号:130325Z10课程名称:金融数学/ Financial mathematics课程类别:专业课学时/学分:48/3先修课程:数学分析、概率统计适用专业:应数、统计和信科教材、教学参考书:1. Sheldon.M.Ross,冉启康(译).数理金融初步[M],第3版.北京:机械工业出版社,20132. 斯塔夫里, 蔡明超(译).金融数学[M],第1版.北京:机械工业出版社,2004.二、课程设置的目的意义金融数学是应用数学和统计研究的重要分支,是数学、金融学和统计学等的交叉学科,通过该课程的学习可以系统的了解数理金融方面的基本知识。

这些内容包括:套利理论、Black-Scholes期权定价公式、效用函数、最优资产组合原理和资产定价模型等。

该课程的学习对于学生以后从事相关专业提供了很好的理论基础。

三、课程的基本要求知识要求:要正确理解以下概念:效用与偏好序,投资组合,套利,风险厌恶,等价概率分布,风险中性定价,状态定价向量,布朗运动与扩散,倍率函数,风险控制函数;股票与债券,证券与衍生证券,期货与期权,未定权益,利率期限结构,公司资本结构等基本概念。

能力要求:使学生了解金融数学研究的主要对象和经济背景,理解金融数学中的主要概念和理论,掌握主要的建模工具以及重要的数学模型的应用方法,较为熟练地运用一些主要的公式进行计算。

素质要求:不仅掌握金融数学中的基本概念、定理,而且还能针对具体问题运用投资消费、资本资产定价等模型进行评价计算。

提高学生理论联系实际的能力,使其形成一定的独立分析判断能力。

四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求本课程无实践教学部分。

六、考核方式及成绩评定本课程考核分为平时成绩和期末考试两个部分。

七、大纲主撰人:大纲审核人:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Answer
FV 15,000 1.5 ln(1.5) 0.405 0.135 e0.135 1.144 r = C0 (1+r)T = 10,000(1+r) 3 = (1+r) 3 = ln(1+r) 3 = 3ln(1+r) = ln (1+r) = 1+r =1+r ≈ 0.144 or 14.4%
THE VALUE OF MONEY: FUTURE VALUE
• Let us assume that one invests an amount of money at time zero (C0) in an account for T years and that the going annual interest rate is r. Then, the value of this amount after the completion of T years shall equal: FV = C0 (1+r)T where FV = Future Value • However, the above assumes annual compounding of the interest, yet the latter could be compounded: Semiannually: FV = C0 [1+(r/2)]2T Quarterly: FV = C0 [1+(r/4)]4T Monthly: FV = C0 [1+(r/12)]12T Daily: FV = C0 [1+(r/360)]360T Continuously: FV = C0 erT
Introduction to Mathematics & Statistics
Dr. Bill Kallinterakis Durham Business School
SETS (1)
• • • • • • • A set is a well-specified collection of elements These elements can be finite or infinite Finite set: A = {1,2,3,4,5,6,7,8,9,10} Infinite set: B = {x | x>0} Membership to a set expressed as: a ∈ A Conversely: a ∉ A Empty set: A = { } ,also expressed as A = ∅
THE VALUE OF MONEY: PRESENT VALUE
• Let us assume that an investor wishes to retain an amount C after T years of investment with the going annual interest rate equal to r. Then the amount of money he would have to invest now to obtain the amount C in the future is calculated as:
THE VALUE OF MONEY: FUTURE VALUE (continued)
• In general, compounding an investment m times a year over many years provides wealth of FV = C0 [1+(r/m)]mT
SETS (2)
• Let A = {1,3,5,7}, B = {2,3,4,6,8} and C = {1,5}. Then it holds that: A ⊃C or C ⊂ A, or else that “C is a subset of A”
• Let A = {1,2,3} and B = {4,5,6}. These two sets bear no common elements and are known as Disjoint • Let A = {1,2,3,4,5} and B = {1,2,3,4,5}. Then these sets are called Equal
Present va lue P Present va lue P Present va lue P V4 n [1 ( r / 4)]4 n V12 n [1 ( r / 12)]12 n V360n [1 ( r / 360)]360n
• Continuously:
THE VALUE OF MONEY : PRESENT VALUE (continued)
• In case the expected cash flows are unequal in size, the present value is calculated as:
Vi V3 Vn V1 V2 PV ... i 2 3 n i 1 (1 r ) (1 r ) (1 r ) (1 r ) (1 r )
Answer
Vn Present value P n (1 r )
X X = 100,000/(1+0.05) 3 ≈ £86,384
Exercise
You have ordered a tugboat and the manufacturer has informed you that he can prepare it immediately at the cost of £ 40,000. However, she has also advised you that you could receive the tugboat after 3 years for the price of £ 50,000. What is the interest rate at which you would be indifferent between buying the tugboat now and in 3 years’ time?
SETS OF NUMBERS
• Natural (“counting”) numbers
– ℕ = {1, 2, 3, 4,.....}
• Integers
– ℤ. = {0, 1, -1, 2, -2, .....}
• Rational numbers: ℤ : ℤ = ℚ 1 1 1 – ℚ = 1 , , 2 , 2 , , 2 2 3 3 ,...... • Irrational numbers: cannot be expressed as ℤ / ℤ • Example: 2 • Real numbers: R • ℕ ⊂ ℤ⊂ ℚ ⊂R
Vn Present va lue P rn e
Example
• Your parents have set up an endowment fund that will allow you to receive £ 100,000 once you reach the age of 30. Assume at the moment that you are 27 and that the going interest rate is 5 percent. What is the present value of this future cash flow?
Vn Present value P n (1 r )
THE VALUE OF MONEY: PRESENT VALUE
• However, the above assumes annual compounding of the interest, yet the latter could be compounded: V2 n • Semiannually: Present va lue P [1 ( r / 2)]2 n • Quarterly: • Monthly: • Daily:
i n
THE VALUE OF MONEY: SPECIAL CASES
• Perpetuity: constant stream of equal-sized cash-flows with no end
V Present value of a perpetuity r
• Thus, if a regular perpetual cash flow of £ 100 is to be received and the discount rate is 8%, then the present value of this series is £ 1250 (calculated as £ 100/.08). • Example: UK government consols (bonds)
Answer
Vn Present value P (1 r ) n
40,000 = 50,000/(1+r)3 0.8 = 1/(1+r)3 1.25 = (1+r)3 ln(1.25) = ln(1+r)3 0.223 = 3 ln(1+r) 0.074 = ln (1+r) e0.074 = 1+r 1.077 = 1 + r r ≈ 0.077 or 7.7%
THE VALUE OF MONEY: SPECIAL CASES
• Growing perpetuity
V Present va lue of a growing perpetuity rg • where g is the rate of growth per period expressed as a percentage
相关文档
最新文档