第二学期高二数学期中试卷及详解201317
高二下学期期中数学试题解析版
故选:C
【点睛】本题考查了特称量词命题的否定,解题方法是:先否定量词,再否定结论.属于基础题.
4.设随机变量 ,若 ,则 等于()
A. 0.5B. 0.6C. 0.7D. 0.8
【答案】D
【解析】
【分析】
根据正态曲线的对称性可得 ,再根据概率的性质可得结果.
【详解】由概率的性质可得 ,解得 ,
,
,
,
,
故选:CD
【点睛】本题考查了概率的性质,考查了离散型随机变量的期望和方差公式,属于基础题.
11.已知函数 ,若 的零点为 ,极值点为 ,则()
A. B.
C. 的极小值为 D. 有最大值
【答案】BC
【解析】
分析】
分两段利用导数研究函数的极值,讨论函数的零点和最值可得答案.
9.函数 ,则下列结论正确的有()
A. 是奇函数B. 是偶函数
C. 是偶函数D. 是奇函数
【答案】AC
【解析】
【分析】
根据奇函数和偶函数的定义分别对四个选项进行奇偶性的判断可得答案.
【详解】因为 的定义域为 ,又 ,所以选项 正确, 不正确;
因为 ,所以 是偶函数,所以选项 正确;
因为 ,所以 是偶函数,故选项 不正确.
故选:AC
【点睛】本题考查了函数的奇偶性的定义,考查了正弦函数的奇偶性,属于基础题.
10.设离散型随机变量 的分布列为
0
1
2
3
4
0.4
0.1
0.2
0.2
若离散型随机变量 满足 ,则下列结果正确的有()
A. B. ,
C. , D. ,
高二数学第二学期期中考试卷(附答案)
高二数学第二学期期中考试卷本卷满分100分,考试时间90分钟一、填空题(本大题共有11小题,每小题4分,共44分)1.直线y =-3x +1的倾斜角为 .2.过点A(1,-4),且与直线2350x y ++=垂直的直线方程为 . 3.两平行直线3450x y ++=与34250x y +-=间的距离是 . 4.若方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,则k 的取值范围是___________.5.与双曲线116922=-y x 有共同的渐近线,且一顶点为(0,8)的双曲线的方程 是 .6.已知圆C 的方程(x-2)2+y 2=4,过原点与圆C 相交的弦的中点轨迹是__________.7.设12,F F 为椭圆2212516x y +=的两个焦点,直线过1F 交椭圆于,A B 两点,则2AF B ∆的周长是 .8.已知双曲线b 2x 2-a 2y 2=a 2b 2的两渐近线的夹角为2α,则c:a = .9.椭圆1222=+y x 和双曲线1222=-y x 有相同的焦点,则实数n 的值是10. 等腰直角三角形的直角顶点是(4,-1),斜边在直线3x -y +2=0上,两条直角边所在的直线方程是 .11. 已知椭圆方程为221499x y +=中,F 1, F 2分别为它的两个焦点,则下列说法:①焦点在x 轴上,其坐标为(±7, 0);② 若椭圆上有一点P 到F 1的距离为10,则P 到F 2的距离为4;③焦点在y 轴上,其坐标为(0, ±2);④ a =49,b =9,c =40,正确的有 .二、选择题:(本大题共4小题;每小题4分,共16分)12.直线320x y ++=与直线4210x y +-=夹角是 ( ) A.34π B. 4πC. 2arctgD. arctg 12. 3k >是方裎22131x y k k +=--表示双曲线的条件是 ( ) A.充分但不必要 B. 必要但不充分 C.充要 D.既不充分也不必要14.直线1y x =-上的点到圆224240x y x y ++-+=的最近距离是 ( ) A.1 B. 1+ D. 115. 椭圆13422=+y x 上有n 个不同的点: P 1, P 2, …, P n , 椭圆的右焦点为F . 数列{|P n F |}是公差大于1001的等差数列, 则n 的最大值是 ( )A 、198B 、199C 、200D 、20110三、解答题:(本大题共6小题,共40分)P 射出,被x轴反射,反射光线经过点Q(7,1),16.(6分)已知光线从点(1,5)求入射光线所在的直线方程.21的17. (6分)已知中心在原点,顶点A1、A2在x轴上,焦距与长轴长的比为3双曲线过点P(6,6) 求双曲线方程18. (6分)求过点(1,6)M 且与圆22230x y x ++-=相切的切线方程.19. (7分)过椭圆141622=+y x 内一点M (2,1)内引一条弦,使弦被M 点平分,求这条弦所在直线的方程.20.(7分)斜率为2的直线l 被双曲线x y 22321-=截得的弦长为2515,求直线l 的方程.21.(8分)已知动点P 到直线4x =的距离等于到定点1(1,0)F 的距离的2倍, (1) 求动点P 的轨迹方程;(2) 过1(1,0)F 且斜率1k =的直线交上述轨迹于C 、D 两点,已知(2,0)A ,求ACD ∆的面积S .高二数学参考答案1.120° 2. 3x -2y -11=0 3. 6 4.(-∞,-1)∪(4,+∞)5.1366422=-x y 6. x 2+y 2-2x=0 7.20 8. αsec 9. 3± 10.2x+y-7=0或x-2y-6=0 11. ② 12. B 13.A 14.D 15. C16. 解:点B 关于x 轴对称点为C(7,-1), 入射光线所在的直线为AC43-=AC k入射光线所在的直线方程为3x+4y -17=0.17.解:设双曲线方程为2222by a x -=1由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12所以所求双曲线方程为12922y x -=1 18.解:设直线的方程为y=k(x -1)+6,圆心(-1,0)到直线的距离等于半径221622=++-k k ,解得k=34切线方程为46(1)3y x -=-或10x -= 19.解:设直线与椭圆的交点为(x 1 , y 1),(x 2 , y 2),M(2,1)为AB 的中点故x 1+x 2= 4, y 1+y 2 = 2 ,由于点 A 、B 在椭圆上,则 x 12 + 4y 12 = 16, x 22 +4y 22 =16 两式相减得 ∴k AB =-=--2121x x y y 21244)(42121-=⨯-=++y y x x故所求直线方程为x +2y – 4 =020. 解:设直线l 的方程为y x m =+2 将y x m =+2代入23622x y -=得232622x x m -+=() 整理得101232022x mx m +++=()设直线l 与双曲线的两个交点坐标为P x y 111(,),P x y 222(,)∴+=-=+x x m x x m 12122653102,()·由P P kx x 122121=+-得()()()[]25151225155422122212212⎛⎝ ⎫⎭⎪=+-⎛⎝ ⎫⎭⎪=+-x x x x x x1255654310222=-⎛⎝ ⎫⎭⎪-⨯+⎡⎣⎢⎢⎤⎦⎥⎥m m () 解得m m 21223==±,∴所求的直线方程是y x =±22321.(1)设动点(,)P x y ,由题设知4x -=化简得动点(,)P x y 的轨迹方程是22143x y +=. (2)过1(1,0)F 且斜率1k =的直线方程为1y x =-代入椭圆方程消去y , 得 27880x y --=.设1122(,),(,)C x y D x y ,则12127y y x x -=-==而11211122ACD S AF y y ∆=⋅-=⨯=。
高二年下学期数学期中试卷参考答案.doc
高二年下学期数学期中试卷参考答案一. 选择题(本题共36 分)二、填空题(本题共16分)13.66,132 14.28或 15.60 16.④三、解答题(本题共48分)17.解:(1)依题意知nx x ⎪⎪⎭⎫ ⎝⎛-3321展开式中的第1+r 项为 32331)21()1()21()(r n r r n r r rn r nr x C xx C T --+-=-=………………'2∴前三项系数的绝对值为:4,2,210n n nC C C 即8)1(,2,1-n n n ………'1 依题意知,089,8)1(12=+--+=n n n n n ……………………'1 ∴)1(8舍去==n n …………………………………………………'1(2)由(1)知32881)21(r r r r xC T -+-=,令0328=-r得4=r ……'1 ∴第五项835)21(4485=-=C T 为常数项……………………………'1 (3)令1=x 得各项系数和为2561)21(8=…………………………'118.解:分别记“甲、乙、丙参加入学考试,考试合格”为事件A 、B 、C 则A 、B 、C 彼此独立,并且52)(,21)(,32)(===C P B P A P ………………………'2(1)“三个人中恰有两人合格”包括三种情况:C AB C B A BC A ,,且它们彼此互斥……………………………………………'1故“三个人中恰有两人合格”的概率为:)(C AB C B A BC A P ++………'1)()()(C AB P C B A P BC A P ++=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=532132522132522131⨯⨯+⨯⨯+⨯⨯= 52=……………………………………………………………………………'1 (2)法一:“三人无一人合格”的概率为101532131)(=⨯⨯=C B A P ……………………'1 又“三人无一人合格”是“三人中至少有一个合格”的对立事件……………'1 故“三人中至少有一人合格”的概率为1091011)(1=-=-C B A P …………'1 法二:“三人中至少有一人合格”包括七种情况:C B A C B A C B A C AB C B A BC A ABC ,,,,,,……………………………'1“三人中至少有一人合格”的概率为:)(C B A C B A C B A C AB C B A BC A ABC P ++++++…………………'1 )()()()()()()(C B A P C B A P C B A P C AB P C B A P BC A P ABC P ++++++=522131532131532132532132522132522131522132⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=302303306306304302304++++++= 3027= 109=……………………………………………………………………………'1 19.解:孩子一对基因可能为rd rr dd ,,其概率分别为21,41,41,…………'1 孩子有显性决定特征的有dd 或rd ………………………………………'1(1)1个孩子有显性决定特征的概率为432141=+……………………'2(2)2个孩子中至少有一个有显性决定特征的概率为:1615169166)43(4341)2()1(2221222=+=⨯+⨯⨯=+C C P P …………'2 另解:1615)43()431(1)0(1002022=--=--C P ……………………'220.证明: (1)∵c b b =⊂βαββ ,,//∴c b //………………………………'3又b a //∴c a //……………………………………………………………'2⎪⎭⎪⎬⎫⊄⊂∴=βββαa c c ca //)2(∴β//a …………………………………………'321.解:(1)在长方体ABCD —A 1B 1C 1D 1中,1,BB AB AD AB ⊥⊥∴AB 为AD 与1BB 的公垂线段…………'2在BA B Rt 1∆中,a AB a BB BAB 3,3011=∴==∠∴AD 与1BB 的距离为a 3…………………………………………'1 (2)连结AC 、BD 交于点O ,取DD 1中点O 1,连结O O 1∵O 为BD 中点 ∴O O 1∥BD 1又A 1C 1//AC∴∠AOO 1(或其补角)为BD 1和A 1C 1所成的角。
高二数学第二学期期中试卷(附答案)
高二数学第二学期期中试卷一、选择题(每小题只有一个正确的答案,每小题3分):1.有下列三个命题:命题1:,m n m n αβαβ⊂⊂⇒,,与不重合异面命题2:两组对边分别相等的四边形是平行四边形命题3:一条直线与一个平面的无数条直线垂直,则此直线垂直于该平面 其中正确..命题的个数是 ( ) A . 0 B . 1 C . 2 D . 32.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确...的是( ) (A )若AC 与BD 共面,则AD 与BC 共面(B )若AC 与BD 是异面直线,则AD 与BC 是异面直线(C) 若AB =AC ,DB =DC ,则AD =BC(D) 若AB =AC ,DB =DC ,则AD ⊥BC3.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面, 下列四个命题中正确的是 ( )A .若//,//,//m m αβαβ则;B .若l ⊥β且α⊥β,则l ∥α;C .若,,//αβαγβγ⊥⊥则;D .若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂∆中,已知∠B=90°,∠C=30°,AC=4,D是BC中点,E是平面ABC 4.在ABC外一点, DE 平面ABC, DE=1,那么点E到直线AC的距离为()A.7B. 5C. 2D.25.一个正方体内接于一个球,过球心作一截面,则截面的可能图形是()A. ①③B. ②④C. ①②③D. ②③④二、填空题Ⅰ(每小题3分):6.一个六棱柱的底面是边长为a的正六边形,侧棱长为b,侧棱与底面所成的角为60°,则这个棱柱的体积为7. A、B、C是球O表面上三点,AB=6,BC=8,AC=10,点O到△ABC所在平面的距离为5,则球O的表面积为。
8.在一个坡面的倾斜角为60°的斜坡上,有一条与坡脚的水平线成30°角的直线,沿这条道行走到20m时人升高了米(坡面的倾斜角为坡面与水平面所成的二面角的平面角)9.已知半径为R的球面上有两点A、B,且AB=R3,则这两点的球面距离为10.如图所示,以长方体ABCD—A 1B1C1D1顶点为顶点且四个面都是直角三角形的四面体是。
高二下学期期中考试数学试卷-附带参考答案和解析
高二下学期期中考试数学试卷-附带参考答案和解析本试卷共5页 22小题 满分150分.考试用时120分钟.考生注意事项:1.试卷分第Ⅰ卷和第Ⅰ卷 第Ⅰ卷用2B 铅笔涂在答题卡上 第Ⅰ卷用黑色钢笔 签字笔在答题卡上作答2.质量监测时间120分钟 全卷满分150分.一、选择题:本大题共8小题 每小题5分 共40分 每小题只有一项是符合题目要求的.1.已知集合(){}2log 20A x x =∈-≤N {A x y =∈N ,则A B ⋃=( )A .{}0,1,2B .{}1,2C .{}0,1D .{}1【答案】C【分析】根据对数的单调性 一元二次不等式的解法 结合并集的定义进行求解即可. 【详解】由(){}2log 20021121x x x A -≤⇒<-≤⇒≤<⇒=由{}210110,1x x B -≥⇒-≤≤⇒=所以A B ⋃={}0,1 故选:C2.复数z 满足()1i i z += i 为虚数单位,则下列说法正确的是( ) A .1z = B .z 在复平面内对应的点位于第二象限 C .z 的实部为12D .z 的虚部为1i 2【答案】C【分析】根据复数的除法运算求出复数z 即可求得其模以及实部和虚部 以及对应的点所在象限 一一判断各选项 即得答案.【详解】因为()1i i z += 故i i (1i)11i 1i (1i)(1i)22z ⋅-===+++-则z ==A 错误 z 在复平面内对应的点为11(,)22位于第一象限 B 错误z 的实部为12C 正确z 的虚部为12D 错误故选:C .3.在ABC 中 点D 是线段AB 上靠近B 的四等分点 点E 是线段CD 上靠近D 的三等分点,则AE =( )A .2133CA CB -+ B .1526CA CB -C .1233CA CB -+D 5162CA CB -+.【答案】D【分析】方法一:利用平面向量基本定理得到答案方法二:设ABC 是等腰直角三角形 且4CA CB == 建立空间直角坐标系 写出点的坐标 设m A CA nCB E =+ 从而得到方程组 求出答案.【详解】方法一:如图 由题意得23CE CD = 34AD AB =故()22123333AE AC CE AC CD AC AD AC AC AD =+=+=+-=+()111151323262AC AB CA CB CA CA CB =+=-+-=-+方法二:不妨设ABC 是等腰直角三角形 且4CA CB == 以C 为坐标原点建立平面直角坐标系 如图所示 则()()()()20,0,0,4,4,0,3,1,2,3C A B D E ⎛⎫ ⎪⎝⎭则()()0,4,4,0CA CB == 设m A CA nCB E =+故()()102,0,44,03m n ⎛⎫-=+ ⎪⎝⎭所以1042,43n m ==- 解得51,62m n =-=故5162CA C A B E -=+.故选:D .4.函数()()()2sin 0,ππf x x ωϕωϕ=+>-<<的部分图像如图所示,则ω ϕ的值分别是( )A .2 π6- B .2 π3-C .2π3D .4 5π6-【答案】B【分析】根据三角函数图像与性质求ω ϕ的值即可. 【详解】设()f x 的周期为T则由图像知35π9π3πππ4123124T T ⎛⎫=--==⇒= ⎪⎝⎭所以2π2Tω==,则()()2sin 2f x x ϕ=+ 因为()f x 在5π12x =处取得最大值 所以5π2π2π,Z 122k k ϕ⨯+=+∈ 得π2π,Z 3k k ϕ=-+∈因为ππϕ-<< 所以π0,3k ϕ==-.故选:B5.在数列{}n a 中的相邻两项n a 与()*1n a n +∈N 之间插入一个首项为1n a n- 公差为1n -的等差数列的前n 项记构成的新数列为{}n b 若21n a n =+,则{}n b 前65项的和为( ) A .252-B .-13C .272-D .-14【答案】A【分析】根据题意 得到数列{}n b 中n a 及其后面n 项的和为n S ()()1112n n n n S n a n+=+-⨯求解. 【详解】解:数列{}n b 为:1122233331121,1,,,1,,,,1,,,233n n a a a a a a a a a a a n-------1231,,,,1,,n n n n n n a a a a a n nn+-----设n a 及其后面n 项的和为n S ,则()()()1111123222n n n n n S n a n n ++=+-⨯=-=- 所以数列{}n S 是以1为首项 公差为12-的等差数列.所以{}n b 前65项的和为1210710125222S S S ⎛⎫- ⎪⎝⎭+++==-故选:A.6.冬季是流感高发期 其中甲型流感病毒传染性非常强.基本再生数0R 与世代间隔T 是流行病学基本参考数据.某市疾控中心数据库统计分析 可以用函数模型()2rtW t =来描述累计感染甲型流感病毒的人数()W t 随时间t Z t ∈(单位:天)的变化规律 其中指数增长率r 与基本再生数0R 和世代间隔T 之间的关系近似满足01R rT =+ 根据已有数据估计出04R =时 12T =.据此回答 累计感染甲型流感病毒的人数增加至()0W 的3倍至少需要(参考数据:lg 20.301≈ lg30.477≈)( )A .6天B .7天C .8天D .9天【答案】B【分析】先求得r 然后根据“()0W 的3倍”列方程 化简求得需要的时间. 【详解】依题意 01R rT =+ 且04R =时 12T =即14112,4r r =+⨯= 所以()142tW t = ()10W =令()1423tW t == 两边取以10为底的对数得14lg 340.477lg 2lg 3, 6.34lg 20.301t t ⨯==≈≈ 所以至少需要7天. 故选:B7.如图 在长方形ABCD 中 2AB = 1BC = E 为DC 的中点 F 为线段EC (端点除外)上的动点.现将AFD △沿AF 折起 使平面ABD ⊥平面ABC 在平面ABD 内过点D 作DK AB ⊥ K 为垂足.设AK t ,则t 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .51,4⎛⎫ ⎪⎝⎭【答案】C【分析】设DF x = 求得x 关于t 的表达式 根据x 的取值范围求得t 的取值范围. 【详解】如图 在平面ADF 内过点D 作DH AF ⊥垂足为H 连接HK .过点F 作//FP BC 交AB 于点P .设FAB θ∠= AE AC == 所以cos θ∈⎝⎭.设DF x =,则12x <<.因为平面ABD ⊥平面ABC 平面ABD ⋂平面ABC AB =DK AB ⊥ DK ⊂平面ABD 所以DK ⊥平面ABC又AF ⊂平面ABC 所以DK AF ⊥. 又因为DHAF ⊥DKDH D = DK DH ⊂平面DKH 所以AF ⊥平面DKH 所以AF HK ⊥ 即AH HK ⊥.在Rt ADF 中 AF DH因为ADF △和APF 都是直角三角形 PF AD = 所以Rt Rt ADF FPA ≌△△ AP DF x ==.因为AHD ADF ∽△△,1AH DH AH AH AD DF ===所以cos AH AP AK AF θ=== 得1x t=. 因为12x << 所以112t<< 所以112t <<.故选:C【点睛】方法点睛:线面垂直 面面垂直转化的过程中 要从线面垂直得到面面垂直 需要“经过一个平面的垂线” 要从面面垂直得到线面垂直,则需要“在一个平面内 垂直于交线” 在答题过程中 要注意使用正确的符号语言.8.在直角坐标系xOy 内 圆22:(2)(2)1C x y -+-= 若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣ B.44⎡--⎣C.22⎡--⎣D.2⎡-⎣【答案】A【分析】由题意首先得出旋转后的直线为1:0l x y m 然后由直线与圆的位置关系列出不等式即可求解. 【详解】连接OP 设POx θ∠=(即以x 轴正方向为始边 OP 为终边的角)由题意对于直线:0l x y m ++=上任意一点(),P x y存在R a θ=∈ 使得()cos ,sin P a a θθ 则直线:0l x y m ++=绕原点O 顺时针旋转90后 点()cos ,sin P a a θθ对应点为1ππcos ,sin 22P a a θθ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 即()1sin ,cos Pa a θθ- 因为()cos ,sin P a a θθ在直线:0l x y m ++=上 所以满足cos sin 0a a m θθ++= 设11sin ,cos x a y a θθ==- 所以110y x m -++= 即()1sin ,cos P a a θθ-所在直线方程为1:0l xy m而圆22:(2)(2)1C x y -+-=的圆心 半径分别为()2,2,1r = 若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点所以圆心()2,2C 到直线1:0l x y m 的距离1d r =≤= 解得m ≤故选:A.【点睛】关键点睛:关键是求出旋转后的直线 从而即可顺利得解.二 多选题9.某校举行演讲比赛 6位评委对甲 乙两位选手的评分如下: 甲:7.5 7.5 7.8 7.8 8.0 8.0 乙:7.5 7.8 7.8 7.8 8.0 8.0 则下列说法正确的是( )A .评委对甲评分的平均数低于对乙评分的平均数B .评委对甲评分的方差小于对乙评分的方差C .评委对甲评分的40%分位数为7.8D .评委对乙评分的众数为7.8 【答案】ACD【分析】由平均数 方差 百分位数 众数的概念及求法分别求解判断即可. 【详解】选项A 评委对甲评分的平均数7.57.57.87.88.08.017.87.8630x +++++==-<甲评委对乙评分的平均数7.57.87.87.88.08.017.87.8660x +++++==+>乙所以x x <甲乙 故A 正确选项B 由A 知 两组数据平均数均约为7.8且纵向看 甲组数据与乙组数据仅一组数据7.5,7.8不同 其余数据相同 又甲组数据7.5与平均数的差明显大于乙组数据7.8与平均数的差 且差距较大 故与平均数比较 甲组数据波动程度明显大些即评委对甲评分的方差大于对乙评分的方差 故B 错误 选项C 由640% 2.4⨯=不是整数则评委对甲评分的40%分位数为从小到大第3个数据 即:7.8 故C 正确 选项D 评委对乙评分中最多的数据 即众数为7.8 故D 正确.故选:ACD.10.下列说法正确的是( )A .“α为第一象限角”是“2α为第一象限角或第三象限角”的充分不必要条件 B .“π2π6k α=+ Z k ∈”是“1sin 2α=”的充要条件C .设ππ,Z 4M k k αα⎧⎫==±∈⎨⎬⎩⎭ π,Z 4k N k αα⎧⎫==∈⎨⎬⎩⎭,则“M θ∈”是“N θ∈”的充分不必要条件D .“sin 0θ>”是“θtan 02>”的必要不充分条件 【答案】AC【分析】对于A 利用象限角 求得角α的范围 可判定充分性 取π3α= 验证必要性即可 对于B 考查1sin 2α=时 α的取值范围 可判定必要性不成立 对于C 根据集合M N 的关系即可判定 对于D 根据条件求得α的取值范围即可判断. 【详解】对于A,因为α为第一象限角 所以π2π2π,Z 2k k k α<<+∈ 则πππ,Z 4k k k α<<+∈, 当k 为偶数时 α为第一象限角 当k 为奇数时 α为第三象限角 所以充分性成立 当π3α=时 α为第一象限角,则2π23α= 为第二象限角 即必要性不成立 故A 正确 对于B 当π2π6k α=+ Z k ∈时 1sin 2α=成立,则充分性成立当1sin 2α=时 π2π6k α=+或5π2π6k α=+ Z k ∈, 故必要性不成立,则B 错误对于C ()41πππ,Z ,Z 44k M k k k αααα⎧⎫⎧⎫⎪⎪==±∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭而π,Z 4k N k αα⎧⎫==∈⎨⎬⎩⎭则MN 故则“M θ∈”是“N θ∈”的充分不必要条件 故C 正确对于D,当sin 0θ>时 2π2ππ,Z k k k θ<<+∈, 则πππ,Z 22k k k θ<<+∈ 则θtan 02> 故充分性成立 当θtan02>时 πππ,Z 22k k k θ<<+∈则2π2ππ,Z k k k θ<<+∈ 则sin 0θ>成立 所以“sin 0θ>”是“θtan 02>”的充要条件 故D 错误 故选:AC.11.椭圆C 的标准方程为22121,,82x y F F +=为椭圆的左 右焦点 点()2,1P .12PF F △的内切圆圆心为(),I I I x y 与1212,,PF PF F F 分别相切于点,,D E H ,则( )A .126PF F S =△ B .13x C .1233y = D .226PD PE ==【答案】BCD【分析】根据椭圆中焦点三角形的性质求解12PF F S再结合三角形内切圆的几何性质逐项判断即可得结论.【详解】椭圆C :22182x y +=,则22,2,826a b c ===-= 所以()()126,0,6,0F F又()2,1P 所以点P 再椭圆上 连接12,,,,,ID IE IH IP IF IF则121211122PF F p SF F y =⋅=⨯ 故A 不正确由椭圆的定义可得122PF PF a +==又12PF F △的内切圆圆心为(),I I I x y 所以内切圆半径I r y = 由于121212PF F IF F IF PIF PSSSS=++()(121212121111122222I I I I I F F y PF y PF y y F F PF PF y =⨯⨯+⨯⨯+⨯⨯=⋅++=⋅故3I r y === 故C 正确又1122,,PD PE DF F H EF HF ===所以12121212PF PF PD DF PE EF PD F H PE HF PD PE F F +=+++=+++=++=则2PD = 所以PD PE == 故D 正确又2PF == 所以222HF EF PF PE ==-又H I x x = I x = 即1x 故B 正确. 故选:BCD.12.已知函数()()e xf x a x =+ ()()lng x x a x =+,则下列说法正确的是( )A .若函数()y f x =存在两个极值,则实数a 的取值范围为21,e ⎛⎫-∞ ⎪⎝⎭B .当1a =时 函数()y g x =在(0,)+∞上单调递增C .当1a =时 若存在1x ≥ 使不等式()()2()ln f mx fxx x ≥+成立,则实数m 的最小值为0D .当1a =时 若()()12(0)f x g x t t ==>,则()121ln x x t +⋅的最小值为1e【答案】BC【分析】对A 选项:由极值点的性质结合导数讨论单调性即可得 对B 选项:结合导数讨论单调性即可得 对C 选项:结合()f x 单调性 可转化为当1x ≥时 有()1ln m x x ≥+成立 求出()1ln x x +最小值即可得 对D 选项:采用同构法可确定12e xx = 再将多变量化为单变量后结合导数讨论单调性即可得.【详解】对A 选项:()()()e e 1e x x xf x x a x a +=+'=++若函数()y f x =存在两个极值,则函数()f x '必有两个变号零点令()()1e 0x f x x a =++=',则()1e xa x =-+令()()1e xh x x =-+,则()()2e xh x x +'=-则当2x >-时 ()0h x '< 当<2x -时 ()0h x '> 故()h x 在(),2∞--上单调递增 在()2,∞-+上单调递减故()()()221221e e h x h -≤-=--+=又当1x >-时 ()()1e 0xh x x =-+<恒成立当x →-∞时 ()0h x →故当210,e a ⎛⎫∈ ⎪⎝⎭函数()f x '有两个变号零点即若函数()y f x =存在两个极值,则实数a 的取值范围为210,e⎛⎫ ⎪⎝⎭故A 错误对B 选项:当1a =时 ()(1)ln g x x x =+ ()11ln ln 1x g x x x x x='+=+++ 令()()x g x μ=',则()22111x x x x xμ'-=-= 则当()0,1x ∈时 ()0x μ'< 当()1,x ∞∈+时 ()0x μ'> 故()x μ在()0,1上单调递减 在()1,∞+上单调递增故()()120g x g '='≥> 故函数()y g x =在(0,)+∞上单调递增 故B 正确对C 选项:当1a =时 ()()e 1xf x x =+()()()e e 11e 1x x x f x x x =++=++'令()()m x f x =',则()()2e xm x x +'=则当<2x -时 ()0m x '< 当2x >-时 ()0m x '> 故()m x 在(),2∞--上单调递减 在()2,∞-+上单调递增故()()2212e 110e f x f -≥-=-+=-'>' 故()f x 在R 上单调递增则存在1x ≥ 使不等式()()2()ln f mx fxx x ≥+成立等价于存在1x ≥ 使不等式()2ln mx x x x ≥+成立则当1x ≥时 有()1ln m x x ≥+成立由当1a =时 ()(1)ln g x x x =+ 且()y g x =在(0,)+∞上单调递增 故()11ln10m ≥+= 即实数m 的最小值为0 故C 正确对D 选项:当1a =时 由B C 可知 ()f x ()g x 均为定义域上的增函数 由()00f = ()10g = 故有1>0x 21x >由()()12f x g x =,则()()1122e 11ln xx x x +=+即()()()111122e 1e 1ln e 1ln x x x x x x +=+=+ 故12e xx =又()()111e 10xf x t x ==+> 故()121ln ln x x t t t +⋅=令()ln n x x x =,则()1ln n x x x ='+ 令()()1ln p x n x x x==+'则()22111x p x x x x='-=- 则当()0,1x ∈时 ()0p x '< 当()1,x ∞∈+时 ()0p x '> 故()p x 在()0,1上单调递减 在()1,∞+上单调递增 即()()10n x n ''≥= 故()n x 在()0,∞+上单调递增 故()n x 无最小值 即()121ln x x t +⋅无最小值 故D 错误. 故选:BC.【点睛】思路点睛:本题考查导数在研究函数中的综合应用问题 其中D 选项中涉及到多变量问题的求解 求解此类问题的基本思路是根据已知中的等量关系 将多变量转化为单变量的问题 从而将其转化为函数最值问题的求解. 三 填空题13.()622x x y y ⎛⎫+- ⎪⎝⎭的展开式中42x y 的系数为 .(用数字作答)【答案】40-【分析】由二项式定理得到()62x y -的通项公式 结合2xy+得到34,T T 得到42x y 的系数. 【详解】()62x y -的通项公式为()()66166C 2C 2rrr r r r r r T x y x y --+=-=-令2r =得 ()22424236C 260T x y x y =-= 此时4242602120x y x y ⋅=令3r =得 ()33333346C 2160T x y x y =-=- 此时3342160160xx y x y y-⋅=- 故42x y 的系数为12016040-=- 故答案为:40-14.设数列{}n a 满足12a = 26a = 且2122n n n a a a ++-+= 若[]x 表示不超过x 的最大整数,则122021202120212021a a a ⎡⎤+++=⎢⎥⎣⎦. 【答案】2020【分析】根据题意 得到()()2112n n n n a a a a +++---= 得到{}1n n a a +-为等差数列 求得其通项公式 结合累加法 得到(1)n a n n =+ 求得2021112021()1n a n n =-+ 再利用裂项求和 求得12202120212021202120212021(2020,2021)2022a a a +++=⨯∈ 即可求解. 【详解】因为2122n n n a a a ++-+= 可得()()2112n n n n a a a a +++---= 又因为12a = 26a = 可得214a a -=所以数列{}1n n a a +-是首项为4 公差为2的等差数列 所以14(1)222n n n a n a +-=+-⨯=+ 当2n ≥时 112211()()()n n n n n a a a a a a a a ---=-+-++-+(1)22(1)2222(1)2n n n n n n +=+-++⨯+=⨯=+ 且当1n =时 12a =也成立 所以()1n a n n =+ 所以202111120212021()(1)1n a n n n n =⨯=-++ 所以122021202120212021111112021[(1)()()]22320212022a a a +++=-+-++- 120212021(1)2021(2020,2021)20222022=-=⨯∈所以1220212021202120212020a a a ⎡⎤+++=⎢⎥⎣⎦. 故答案为:2020.15.已知椭圆 22221(0)x y C a b a b+=>>:的左右焦点为12,F F .直线y kx =与椭圆C 相交于,P Q 两点 若112PF QF = 且12π3PFQ ∠= ,则椭圆C 的离心率为. 【分析】由椭圆的对称性可得四边形12PFQF 为平行四边形 再根据椭圆的定义求出12,PF PF 再在12PF F △中 利用余弦定理求出,a c 的关系即可得解.【详解】由椭圆的对称性可得四边形12PFQF 为平行四边形,则21PF QF =由12π3PFQ ∠= 得12π3F PF ∠= 因为112PF QF = 所以122PF PF = 又122PF PF a += 所以1242,33a aPF PF == 在12PF F △中 由余弦定理得222121212122cos F F PF PF PF PF F PF =+-∠ 即2222164421442993323a a a a ac =+-⨯⨯⨯=所以c a =即椭圆的离心率c e a ==16.已知A M N 是棱长为1的正方体表面上不同的三点,则·AM AN 的取值范围是 . 【答案】1,32⎡⎤-⎢⎥⎣⎦【分析】根据正方体的性质可得·3cos ,a AM AN AM AN =≤结合夹角的定义可得3a ≤ 可得其最大值 根据数量积的运算可知24≥-MN a 可得其最小值.【详解】正方体表面上任意两点间距不超过体对角线长度d 则,AM AN d ≤ 故·3cos ,a AM AN AM AN =≤ 而[]cos ,1,1AM AN ∈- 故3a ≤如图建立空间直角坐标系 取()0,0,0A ,M N 重合为()1,1,1时 则()()1,1,11,1,13a =⋅= 取得最大值3由对称性 设A 在下底面 (),,AM x y z = (),,AN a b c =由A 在下底面知0,0,0z c zc ≥≥≥ 当且仅当,M N 也在下底面时取等 此时,,A M N 共面时 设MN 中点为E ,则EM EN =-()()()()()2222··4MN a AM AN AE EM AE EN AE EN EN==++=-≥-=-当且仅当,A E 重合时取等又因为2MN ≤ 可得2142-≥-≥a MN 例如11,,022A ⎛⎫ ⎪⎝⎭ ()()1,0,0,0,1,0M N ,则11111·,,0,,022222a AM AN ⎛⎫⎛⎫==--=- ⎪⎪⎝⎭⎝⎭所以·AM AN 的取值范围是1,32⎡⎤-⎢⎥⎣⎦. 故答案为:1,32⎡⎤-⎢⎥⎣⎦.四 解答题(共70分)17.(本题10分)如图 在ABC 中 6AB AC == 点D 是边BC 上一点且,cos AD AB CAD ∠⊥=2AE EB =(1)求BCE 的面积 (2)求线段AD 的长. 【答案】(1)(2)=AD【分析】(1)根据13BCE ABC S S =△△求解即可(2)解法1:在ABC 中根据余弦定理求出BC 结合等腰三角形的性质求cos B 在ABD △中勾股定理求AD 即可 解法2:由A BCABDACDSSS=+求得AD .【详解】(1)12,3BCEABCAE EB SS =∴=而11πsin 66sin 222ABCSAB AC BAC CAD ⎛⎫=⋅⋅∠=⨯⨯⨯∠+ ⎪⎝⎭ 18cos 18CAD =∠== 1423BCEABCSS ∴==(2)解法1:()1cos 0,π,sin 3CAD CAD CAD ∠=∠∈∴∠= π1cos cos sin 23CAB CAD CAD ⎛⎫∴∠=∠+=-∠=- ⎪⎝⎭在ABC 中 22212cos 3636266963BC AB AC AB AC CAB ⎛⎫=+-⋅⋅∠=+-⨯⨯⨯-= ⎪⎝⎭BC ∴=∴在等腰ABC 中12cos BCB BA ==∴Rt ABD △中6cos ,BA BBD BD BD===∴=AD ∴==解法2:()1cos 0,π,sin 3CAD CAD CAD ∠=∠∈∴∠== 由A BCABDACDSSS=+得1166sin 22AD AD CAD =⨯⨯+⨯⨯⋅∠,即()11166223AD AD =⨯⋅+⋅⋅⋅解得=AD18.(本题12分)已知数列{}n a 的前n 项和为n S 11a = 且满足()()11112n n n S nS n n ++=-+.(1)求数列{}n a 的通项公式(2)设()23cos πn a n n b a n =+⋅ 求数列{}n b 的前n 项和n T .【答案】(1)n a n =(2)()()()()11133,,24133,.24n n n n n n T n n n ++⎧++--⎪⎪=⎨++-⎪--⎪⎩为偶数为奇数【分析】(1)利用构造法和等差数列的定义与通项公式可得()12n n n S +=结合1n n n a S S -=-即可求解(2)由(1)知()()213nnn b n =-+- 利用分组求和法计算即可求解. 【详解】(1)根据题意 ()()11112n n n S nS n n ++=-+ 所以1112n n S S n n +-=+由于1111S a ==,则n S n ⎧⎫⎨⎬⎩⎭是以首项为1 公差为12的等差数列所以()111122n S n n n +=+-⨯= 所以()12n n n S += 当2n ≥时 1(1)(1)22n n n n n n na S S n -+-=-=-=. 验证1n =时11a =满足通项公式 故数列{}n a 的通项公式为n a n =.(2)由(1)知()()()223cos π13n n na n nb a n n =+⋅=-+-.设()21nn -的前n 项和为n A ,则当n 为偶数时 ()22222212341n A n n =-+-+-⋅⋅⋅--+()()()()()()2121434311n n n n ⎡⎤⎡⎤=-++-++⋅⋅⋅+--+-⎣⎦⎣⎦ ()()1123412n n n n +=++++⋅⋅⋅+-+=. 当n 为奇数时 ()()2211122n n n n n n A A n n --+=-=-=-设()3n-的前n 项和为n B ,则()()()131333134nn nB +⎡⎤-⋅-----⎣⎦==+. 因为=+n n n T A B 所以()()()()11133,,24133,.24n n n n n n T n n n ++⎧++--⎪⎪=⎨++-⎪--⎪⎩为偶数为奇数 19.(本题12分)如图 在四棱锥P ABCD -中 PAD 为等边三角形 AD CD ⊥ //AD BC 且22AD BC ==CD =PB = E 为AD 中点.(1)求证:平面PAD ⊥平面ABCD(2)若线段PC 上存在点Q 使得二面角Q BE C --的大小为60︒ 求CQCP的值. 【答案】(1)证明见解析 (2)12【分析】(1)首先连接PE 根据线面垂直的判定定理证明PE ⊥平面ABCD 再利用面面垂直的判定定理证明平面PAD ⊥平面ABCD . (2)设()01CQ CP λλ=≤≤,再利用向量法求二面角Q BE C --的平面角 再列方程得到12λ= 即得CQCP 的值.【详解】(1)证明:连接PEPAD 是边长为2的等边三角形 E 是AD 的中点PE AD ⊥∴PE =//DE BC DE BC = AD CD ⊥ ∴四边形BCDE 是矩形BE CD ∴==222PE BE PB ∴+= PE BE ∴⊥又AD BE E = AD BE ⊂平面ABCDPE ∴⊥平面ABCD又PE ⊂平面PAD∴平面PAD ⊥平面ABCD .(2)以E 为原点 以EA EB EP 为坐标轴建立空间直角坐标系 如图所示:则(00P()C -()0B ()0,0,0E ()0EB ∴=, ()100BC =-,,(1CP = 设()01CQCPλλ=≤≤则()1BQ BC CQ BC CP λλ=+=+=- 设平面QBE 的法向量为(),,m x y z =则00m EB m BQ ⎧⋅=⎪⎨⋅=⎪⎩即()010x y z λ⎧=⎪⎨-=⎪⎩,,令1z = 得()301m λλ=-,,又PE ⊥平面ABCD()001n ∴=,,为平面BEC 的一个法向量cos 3m n m n m nλ⋅∴==,二面角Q BE C --的大小为60︒12= 解得12λ=. 12CQ CP ∴=. 20.(本题12分)2023年秋末冬初 呼和浩特市发生了流感疾病. 为了彻底击败病毒 人们更加讲究卫生讲究环保. 某学校开展组织学生参加线上环保知识竞赛活动 现从中抽取200名学生 记录他们的首轮竞赛成绩并作出如图所示的频率直方图 根据图形 请回答下列问题:(1)若从成绩低于60分的同学中按分层抽样方法抽取5人成绩 求5人中成绩低于50分的人数 (2)以样本估计总体 利用组中值估计该校学生首轮竞赛成绩的平均数(3)首轮竞赛成绩位列前10%的学生入围第二轮的复赛 请根据图中信息 估计入围复赛的成绩(记为K ). 【答案】(1)2人 (2)71 (3)88K ≥【分析】(1)利用分层抽样的定义求解即可 (2)利用平均数公式求解即可(3)根据题意设入围复赛的成绩的临界值为[)80,90K ∈,则()900.0250.050.1K -⨯+= 求出K 的值即可. 【详解】(1)成绩在[)40,50的人数为0.011020020⨯⨯=(人) 成绩在[)50,60的人数为0.0151020030⨯⨯=(人) 则按分层抽样方法从成绩低于60分的同学中抽取5人成绩低于50分的人数为20522030⨯=+(人). 故5人中成绩低于50分的人数为2人(2)由()0.010.0150.0150.0250.005101a +++++⨯= 得0.030a = 则平均数450.1550.15650.15750.3850.25950.0571x =⨯+⨯+⨯+⨯+⨯+⨯=故该校学生首轮竞赛成绩的平均数约为71分(3)根据频率分布直方图可知:[]90,100的频率为0.005100.05⨯= [)80,90的频率为0.025100.25⨯=所以入围复赛的成绩一定在[)80,90可知入围复赛的成绩的临界值为[)80,90K ∈则()900.0250.050.1K -⨯+= 解得88K =故估计入围复赛的成绩为88K ≥分.21.(本题12分)已知椭圆2222:1(0)x y C a b a b +=>> 斜率为2的直线l 与x 轴交于点M l 与C 交于A B 两点 D 是A 关于y 轴的对称点.当M 与原点O 重合时 ABD △面积为169. (1)求C 的方程(2)当M 异于O 点时 记直线BD 与y 轴交于点N 求OMN 周长的最小值.【答案】(1)22142x y += (2)2【分析】(1)设出各点坐标 表示出面积后 结合面积与离心率计算即可得(2)要求OMN 的周长,则需把各边长一一算出 即需把M x N y 算出 设出直线方程与椭圆方程联立得与横坐标有关韦达定理 借助韦达定理表示出M x N y 可得OMN 各边边长 结合基本不等式即可求得最值.【详解】(1)当M 与原点O 重合时 可设()00,A x y ,则有()00,B x y -- ()00,D x y -且002y x = 即有AD BD ⊥, 则()()00001116229ABD S AD BD x x y y =⋅=++=即201649x = 又00x > 故023x =,则043y = 即有22416199a b +=即c a =则22222a c b c ==+ 故222a b = 即有224161189b b += 解得22b = 故24a = 即C 的方程为22142x y +=(2)设直线l 方程为2y x t =+ 令0y = 有2t x =- 即2M t x =- 设点()11,A x y ()22,B x y ,则()11,D x y - 联立直线与椭圆方程:222142y x t x y =+⎧⎪⎨+=⎪⎩ 消去y 有2298240x tx t ++-= ()222Δ64362414480t t t =--=->即t -<有1289t x x -+= 212249t x x -= BD l 为()122212y y y x x y x x -=-+-- 令0x = 故21222122122221122121212N x y x y x y x y x y x y x y x y y y x x x x x x -+-+++=+==--++ 由2y x t =+ 故()()2112211212121212224x x t x x t x y x y x x t x x x x x x ++++==++++ 其中2121224198429t x x t t x x t -==-+-+ 即12442N t y t t t ⎛⎫=-++= ⎪⎝⎭则22OMN N M t C y x t =+=+2≥=当且仅当2t =±时等号成立故OMN周长的最小值为2+【点睛】本题考查了椭圆的方程 在求解直线与椭圆的位置关系问题时 常用方法是设而不求 借助韦达定理等手段 将多变量问题转变为单变量问题 再用基本不等式或函数方式求取范围或最值.22.(本题12分)已知函数21()ln 2f x x x ax =+-. (1)当12a =时 求在曲线()y f x =上的点(1,(1))f 处的切线方程 (2)讨论函数()f x 的单调性(3)若()f x 有两个极值点1x 2x 证明:()()121222f x f x a x x -<--. 【答案】(1)3230x y --=(2)详见解析(3)详见解析.【分析】(1)根据导数的几何意义求出(2)求出导函数()1(0)f x x a x x '=+-> 在定义域()0,∞+内分类讨论解含参不等式即可求出 (3)由题意得2a > 12x x a += 121=x x 而()()1212f x f x x x --1212ln ln 12x x a x x -=-- 只需证明1212ln ln 2x x x x -<- 即证:11111ln ln 2x x x x ⎛⎫+<- ⎪⎝⎭ 即证:1111ln x x x <-对任意的1(1,)x ∈+∞恒成立即可. 【详解】(1)由题可知 当12a =时 211()ln 22f x x x x =+- ()112f x x x ∴=+-' ∴(1)0f = 3(1)2f '= ∴切点为(1,0) 切线的斜率为32 ∴切线方程为:30(1)2y x -=- 即3230x y --=(2)对函数()f x 求导可得 ()1(0)f x x a x x '=+->. 当2a ≤时 ()120f x x a a x=+-≥-≥'.则()f x 在(0,)+∞上单调递增. 当2a >时 ()2110x ax f x x a x x -+=+-=='.则1x =2x = 令()0f x '>,则10x x << 或2x x >.()0f x '<,则12x x x <<综上:当2a ≤时 ()f x 在(0,)+∞上单调递增当2a >时 ()f x在⎛ ⎝⎭和∞⎫+⎪⎪⎝⎭上单调递增 ()f x在⎝⎭上单调递减. (3)()f x 有两个极值1x 2x1x ∴ 2x 是方程210x ax -+=的两个不等实根则2a > 12x x a += 121=x x()()2211122212121211ln ln 22x x ax x x ax f x f x x x x x ⎛⎫+--+- ⎪-⎝⎭=-- ()()()121212*********ln ln ln ln 122x x x x x x a x x x x a a x x x x -+-+---==+--- 1212ln ln 12x x a x x -=--. 要证:()()121222f x f x a x x -<--.即证:1212ln ln 2x x x x -<-. 不妨设1210x x >>> 即证:11111ln ln 2x x x x ⎛⎫+<- ⎪⎝⎭. 即证:1111ln x x x <-对任意的1(1,)x ∈+∞恒成立. 令1()ln f x x x x =-+ (1)x >.则()22211110x x f x x x x -+=--=-<'. 从而()f x 在(1,)+∞上单调递减 故()(1)0f x f <=.所以()()121222f x f x a x x -<--.【点睛】本题考查了切线方程问题考查函数的单调性问题考查导数的应用以及分类讨论思想训练了构造函数法证明不等式的成立属难题.。
高二数学下学期期中考试试卷含答案(共5套,word版)
高二下学期数学期中考试试卷时量:120分钟 总分:150分一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设全集R I =,集合}1|{},3,log |{A 3-==>==x y x B x x y y ,则( )A .B A ⊆ B .A B A =⋃C .φ=⋂B AD .φ≠⋂)(B C A I 2.已知i 是虚数单位,复数z 满足i z i 2)1(=-,则z 的虚部是( ) A .1 B .i C .-1 D .-i3. 函数x x f 3log )(=的图象与函数()sin g x x π=的图象的交点个数是( ) A .2 B .3 C .4 D .54. 若向量,a b 的夹角为32π,且1||,2||==b a ,则向量b a 2+与向量a 的夹角为( ) A .6π B .3π C. 23π D .56π5. 已知0a >,0b >,若不等式313ma b a b+≥+恒成立,则m 的最大值为( )A .9B .12C .18D .246.已知21)4tan(=-πα,且0<<-απ,则αα2sin 22sin +等于( )A .B .25-C .25D .5127.已知直三棱柱ABC ﹣A 1B 1C 1,AB ⊥BC ,AB=BC=AA 1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为( )A .π48B .π32C .π12D .π8 8. 已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记)3(log 5.0f a =,),2(),5(log 2m f c f b ==则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<9.直线02=++y x 分别与轴轴,y x 交于B A ,两点,点P 在圆2)2(22=+-y x 上,则ABP ∆面积的取值范围是( )A .]6,2[B .]8,4[ C. ]23,2[ D .]23,22[ 10. 执行如图所示的程序框图,则输出的k 值为( ) A .4B .5C .7D .911.已知函数)(x f 是定义在R 上的偶函数,设函数)(x f 的导数为)(x f ',若对任意的0>x 都有0)()(2>'+x f x x f 成立,则( )A .)3(9)2(4f f <-B . )3(9)2(4f f >-C .)2(3)3(2->f fD .)2(2)3(3-<-f f12.设双曲线)0,0(12222>>=-b a by a x C ,:的左、右焦点分别为1F 、2F 。
2017学年第二学期高二数学期中考试试卷答案
考试答案一、 填空题:w W w .x K b 1.c o M1、 异面、平行;2、1i --;3、24y x =;4、52;5、垂直;6、43y x =±;7、4i -;8、38;9、1(,1)2;10、③④;1112、取1BB 中点R ,P 的轨迹即为线段RC 。
二、选择题:13、A ;14、D ;15、A ;16、A ;17、A ;18、C 三、解答题:19、<1)由(2i)i 5ib c -=-252,5c i bi b c ⇒+=+⇒==………3分故:2250x x ++=两根为1,224122ix i -±==-± 所以:225(12)(12)x x x i x i ++=+++-………6分新 课 标 第 一 网W2WB3qbx5G <2)证明:假设直线AB 与11A B 共面,设该平面为α。
………2分 可知直线AB 与11A B 在平面α上,所以11,,,A B A B α∈……………4分 即11,AA BB αα≠≠⊂⊂即直线,a b 为共面直线,与已知,a b 为异面直线矛盾。
故原假设不成立,则直线AB 与11A B 为异面直线。
……………6分 20、解:<1)12||10F F =………3分 <2)12||||32PF PF ⋅=………4分2221212(||||)36||||100PF PF PF PF -=⇒+=22212121212||||||cos 02||||PF PF F F F PF PF PF +-∠==⋅。
6分122F PF π⇒∠=………8分21、解:(1>222212x y c a a =⇒+=-,将代入,得2224142x y a =⇒+=。
3分<2)设1122(,),(,)A x y B x y ,AB 中点(,).M x y221112121222122224()()2()024x y y y x x y y x x x y ⎧+=-⇒+++=⎨-+=⎩。
高二数学期中考试试题及答案
高二数学期中考试试题及答案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高二数学期中考试试题及答案高二数学期中考试试题及答案参考高二是承上启下的一年,是成绩分化的分水岭,成绩都是往往形成两极分化:行则扶摇直上,不行则每况愈下。
2012-2013学年度第二学期高二数学期中考试试题及答答案
12012--2013学年第二学期期中考试高二年级数学(理科)试卷一、选择题(共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 1-i 的虚部为( ) A .1 B .i C .-1 D .i - 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3. 若()sin cos f x x α=-,则'()f α等于( )A s i nα B cos α C sin cos αα+ D 2s i n α4.函数53y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞5.复数ii+1对应的点落在 ( )A .第一象限 (B )第二象限C .第三象限D .第四象限 6. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( ) A 1个 B 2个 C 3个 D 4个7.曲江区决定从去年招考的12名大学生村官中挑选3个人担任村长助理,则甲、丙至少有1人入选,乙没有入选的不同选法的种数为 ( )(A)220 (B) 165 (C)84 (D).818. 用反证法证明命题:若整系数方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数,下列假设中正确的是( ).A 、假设,,a b c 都是偶数B 、假设,,a b c 都不是偶数C 、假设,,a b c 中至多有一个偶数D 、假设,,a b c 中至多有两个偶数二.填空题9.编号为1 ~8的八个小球按编号从小到大顺序排成一排,涂上红、白两种颜色,5个涂红色,三个涂白色,求恰好有三个连续的小球涂红色,则涂法共有____种.10. 由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为11. 设平面α内两个向量的坐标分别为(1,0,0)、(0,-1,0),则平面α的一个单位法向量是12.若a ,b ∈{ 0,1,2,3,4,5,6}则复数a bi +中不同的虚数有 个. 13. 函数y =x 3-3x 的极大值为m ,极小值为n ,则m -n 为14.已知函数),4()0,(,,()(23+∞⋃-∞∈+++=k d c b d cx bx x x f 为常数),当时,0)(=-k x f 只有一个实根;当k ∈(0,4)时,0)(=-k x f 有3个相异实根,现给出下列四个命题:①04)(=-x f 和0)(='x f 有一个相同的实根; ②()0f x =和0)(='x f 有一个相同的实根;③03)(=-x f 的任一实根大于()10f x -=的任一实根; ④05)(=+x f 的任一实根小于02)(=-x f 的任一实根.其中正确命题的序号是三.解答题(共六个答题,满分为80分;解答应写出文字说明、证明过程或演算步骤)15.(本题满分12分)设复数z ,满足z 292z iz i ∙+=+,求复数z .16.(本题满分12分)已知函数 )0(ln 6)(>=x x x f 和 )(x g = a x 2 + 8x (a 为常数)的图象在 x = 3 处有平行切线. (1)求 a 的值;2(2)求函数)()()(x g x f x F -=的极大值和极小值.17. (本题满分14分)已知数列{}n a 的前n 项和*1()n n S na n =-∈N . (1)计算1a ,2a ,3a ,4a ;(2)猜想n a 的表达式,并用数学归纳法证明你的结论.18.(本题满分14分)如图,四棱锥P ABCD -的底面为正方形,侧棱PA ⊥底面ABCD ,且2PA AD ==,,,E F H分别是线段,,PA PD AB 的中点. (Ⅰ)求证:PB //平面EFH ; (Ⅱ)求证:PD ⊥平面AHF ; (Ⅲ)求二面角H EF A --的大小.19. (本题满分14分)如图所示,设点P 在曲线2x y =上,从原点向A (2,4)移动,如果直线OP ,曲线2x y =及直线x=2所围成的面积分别记为1S 2S 。
高二数学期中试题参考答案.doc
3eud 教育网 教学资源集散地。
可能是最大的免费教育资源网!高二数学期中试题参考答案一、 选择题(本大题共12小题,每小题5分,共60分)CBBCD ACAAB CD二、 填空题(本大题共4小题,每小题4分,共16分)13、()1,3 14、21 15、120 16、()112122=-+⎪⎭⎫ ⎝⎛-y x (或()112122=++⎪⎭⎫ ⎝⎛-y x )三、 解答题(本大题共6小题,共74分.写出必要的解题步骤.) 17、解:设圆C 的圆心为()b a ,,半径为r ,则圆的方程为()()222r b y a x =-+-.……………………………………2分由已知得()()()()⎪⎪⎩⎪⎪⎨⎧=-+=-+--=--+-.02,11,11222222b a r b a r b a ………………………………………8分解得⎪⎩⎪⎨⎧===.2,1,1r b a ………………………………………………………………10分所以圆C 的方程为()()41122=-+-y x .……………………………… 12分18、解:由⎩⎨⎧=-=+02457y x y x 得交点()2,2.…………………………………… 4分设直线l 的方程为)2(2-=-x k y 即022=-+-k y kx .……………… 6分由点到直线的距离公式得()101221522=-+-+-k kk . ……………………8分 解得3=k .…………………………………………………………… 10分 所以直线l 的方程为043=--y x .…………………………………… 12分19、解:由已知,双曲线的一条渐进线为x y 34-=,故可设双曲线的方程为)0(16922≠=-m m y x .…………………………… 2分 因为双曲线经过点⎪⎪⎭⎫ ⎝⎛-374,4,所以m =--16)374(9422, 解得1=m .所以双曲线的方程为116922=-y x .…………………………………… 4分 所以4,3==b a ,则()()0,5,0,521F F -,且10221==F F c .由双曲线的定义知,621=-PF PF ,(1) 又在21F PF ∆中,2222110=+PF PF .(2) 由(1)(2)联立,得3221=⋅PF PF .………………………………… 8分 设点P 到x 轴的距离为d ,则21212121PF PF d F F ⋅=⋅,………………10分即32211021⨯=⨯⨯d ,解得516=d .即点P 到x 轴的距离为516.…………………………………………… 12分或解:双曲线的方程求法如上…………………………………………… 4分 设()00,y x P ,则由P F 1⊥P F 2得121-=⋅PF PF k k ,所以1550000-=-⋅+x y x y ,即202025y x -=.(1)……………………… 6分 又点()00,y x P 在双曲线上, 所以 11692020=-y x .(2)……………… 7分 由(1)(2)得,5160±=y .……………………………………………10分所以点P 到x 轴的距离为516.…………………………………………12分:设安排生产Z 、Y 种产品分别为件件和y x 时,获得的利润为z .则线性目标函数为y x z 10002000+=线性约束条件为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+.0,0,1563,12532,1004y x y x y x y x …… 4分作直线l :010002000=+y x ,即02=+y x , 将直线l 平移至可行域内的点A 时,直线l 在x 轴上的截距最大,此时,z 最大.…………………………………………… 8分由⎩⎨⎧=+=+.1563,12532y x y x 解得()9,49A .即当9,49==y x 时,z 最大.………………………………………… 10分 答:安排生产Z 、Y 种产品分别为49件、9件时,能获得最大利润.12分 21、解:(1)由题意,设抛物线C 的方程为)0(22>=p px y .因为准线方程为1-=x ,所以12=p,即2=p .所以抛物线C 的方程为x y 42=.……………………………………… 3分 (2)由题意,设直线1l 的方程为)1(+=x k y .由⎩⎨⎧=+=.4),1(2x y x k y 消去y 得,()0422222=+-+k x k x k .……… 5分则()016164422422>+-=--=∆k k k . (*).………………… 6分 设()()2211,,,y x B y x A ,由韦达定理得,222142kk x x --=+. 所以k k k k x x k y y 4)242()2(222121=+--=++=+.由中点坐标公式得,点P 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x ,即⎪⎪⎭⎫ ⎝⎛--k k k P 2,222.……………………………………………………… 8分因为抛物线C 的焦点为()0,1F ,则由斜率公式得直线2l 的斜率为)32t a n (a r c t a n 120222=----=k k k k PF ,即322222=-kk , 解得21=k ,或2-=k .……………………………………………………10分由(*)知21=k .所以直线1l 的方程为)1(21+=x y ,即012=+-y x .……………………12分22、解:(1)由题意,421=+AF AF ,即42=a ,2=a .又点⎪⎭⎫⎝⎛23,1A 在椭圆上,则123212222=⎪⎭⎫⎝⎛+b ,得32=b ,所以 1222=-=b a c .则椭圆C 的方程为13422=+y x ,焦点为()0,11-F ,()0,12-F .…………4分 (2)设线段K F 1的中点()y x M ,,椭圆C 上的点()11,y x K .则由中点坐标公式得⎪⎪⎩⎪⎪⎨⎧+=+-=.20,2111y y x x 即⎩⎨⎧=+=.2,1211y y x x所以()()13241222=++y x ,即1342122=+⎪⎭⎫ ⎝⎛+y x 为所求的轨迹方程.……8分(3)类似的性质:若N M 、是双曲线D :()0,012222>>=-b a by a x 上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PN PM 、的斜率都存在,并记为PN PM k k 、,那么PN PM k k 与之积是与点P 位置无关的定值.10分 下面证明:设点()n m M ,,则()n m N --,,其中12222=-bn a m .又设点()y x P ,为双曲线上任意一点,由n x m y k PM --=,nx my k PN ++=,得2222nx m y n x m y n x m y k k PN PM --=++⋅--=⋅.(*) 将22222b x a b y -=,22222b m a b n -=代入(*)22ab k k PN PM =⋅.即PN PM k k 与之积是与点P 位置无关的定值.………………………14分。
2017学年第二学期高二数学期中考试试卷答案
考试答案一、填空题:w W w .x K b 1.c o M1、异面、平行;2、;3、;4、;5、垂直;6、;7、;8、;9、;10、③④;11、;12、取中点R,P地轨迹即为线段RC.二、选择题:13、A;14、D;15、A;16、A;17、A;18、C三、解答题:19、<1)由………3分故:两根为所以:………6分新课标第一网<2)证明:假设直线与共面,设该平面为.………2分可知直线与在平面上,所以……………4分即即直线为共面直线,与已知为异面直线矛盾.故原假设不成立,则直线与为异面直线.……………6分20、解:<1)………3分<2)………4分..........6分………8分21、解:(1>,将代入,得....3分<2)设,中点..........6分新课标第一网将代入得:AB中点轨迹为8分22、<1)延长DB与交于点P,P即为所求点.<图略)……………4分<2)过N点作交AB于点E,连结CN,CE.可知即为异面直线AM、CN所成角.......6分.,可求得.......9分则……………………10分X k B 1 . c o m23、<1)结论:上述直线上所有地点都是“点”………2分由题意得:直线……………3分设,由A为BP中点,可知由A、B两点在抛物线上,则:w W w .x K b 1.c o M化简得关于地方程:<*)…………5分其判别式恒成立,可知对方程<*)恒有解.即对直线上所有地点P,存在过P点地直线交抛物线于A、B两点,使得A为BP中点.…………8分<2)设直线地斜率为,直线,直线与抛物线地交点,…………2分斜率和为定值0……………4分如存在满足条件地点M,使得为定值仅当,即时,……………8分申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
2013年高二下册数学期中试题(北师大版附答案)-数学试题
2013年高二下册数学期中试题(北师大版附答案)-数学试题正阳高中高二下期第一次月考数学试题第一卷试题卷一、选择题:(每小题只有一个选项正确,每小题5分,共60分)1.如图所示,是全集,是的子集,则阴影部分所表示的集合为()(A)(B)(C)(D)2.已知向量,则向量的夹角为()A.B.C.D.3.已知ξ~N(0,62),且P(-2≤ξ≤0)=0.4,则P(ξ>2)等于()A.0.1 B.0.2 C.0.6 D.0.84.若直线过圆的圆心,则的值为()A. B. C. D.5.“ ”是“直线和平行”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.已知,并且是第二象限的角,那么的值等于()A. B. C. D.7.若直线不平行于平面,且,则( )A. 内的所有直线与异面B. 内不存在与平行的直线C. 内存在唯一的直线与平行D. 内的直线与都相交8.下列命题中错误的个数是()①命题“若则x=1”的否命题是“若则x≠1”②命题P: ,使,则,使③若P且q为假命题,则P、q均为假命题④ 是函数为偶函数的充要条件A.1 B.2 C.3 D.49.有6人被邀请参加一项活动,必然有人去,去几人自行决定,共有()种不同去法A. 36种 B. 35种 C. 63种 D. 64种10.二项式的展开式的第二项的系数为,则的值为()A. B. C. 或D. 或11.已知点是抛物线的焦点,是抛物线上的两点,,则线段的中点到轴的距离为()A. B. C. D.12.若多项式= ,则()A.9 B.10 C.D.二、填空题:(每小题5分,共20分)13.如图,点是圆上的点,且,则圆的面积等于.14.设向量,若向量与向量共线,则15.已知数列为等差数列,若,则.16.如果一条直线和平面内的一条直线平行,那么直线和平面的关系是.三、解答题:(写出必要的解题过程,6大题共70分)17.(本题满分10分)设X是一个离散型随机变量,其分布列如下表,试求随机变量的期望EX与方差DX.X -1 0 1P1-2q q218.(本题满分12分)已知函数(Ⅰ)求函数的最小正周期及单调递增区间;(6分)(Ⅰ)在中,若, ,,求的值.(6分)19.(本题满分12分)已知数列{an}的前n项和,且Sn的最大值为8.(1)确定常数k,求an;(5分)(2)求数列的前n项和Tn。
高二数学第二学期期中考试试卷含答案
高二年级第二学期期中考试数学试卷时量:120分钟 满分:150分 命题人一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}{}1,31,2,5A B ==,,则A B =( ) A .{}1,3 B .{}3 C .{}1 D .{}2,3,4,52.用一个平面去截圆锥,则截面不可能是( )A .椭圆B .矩形C .三角形D .圆3.下列函数是偶函数且在区间(–),0∞上为减函数的是( )A . y x =B .1y x= C . 2y x = D .2y x =- 4.《易经》是中国文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成( 表示一根阳线,表示一根阴线),从八卦中任取一卦,这一卦的三根线中至少有2根阳线的概率( )A .18B .14C .38D .125.已知角α的终边经过点()4,3-,则sin α=( )A .45B .35C .45-D .356.已知直线l 经过点()2,3-,且与直线250x y --=垂直,则直线l 的方程为( ) A .042=++y x B .042=-+y x C .082=--y x D .082=+-y x 7.已知0.62a =,20.6b =,0.6log 2c =则( ).A .c a b >>B .a c b >>C .a b c >>D .c b a >> 8.若函数{12)42(1)(>+-≤=x x a x a x f x 在R 上单调递减,则实数a 的取值范围是( ) A .(0,1)B .)1,21[ C .]54,21( D .)1,54[二、选择题:本题共4小题,每小题5分,共20分.每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知函数⎩⎨⎧>≤+=)0(2)0(1)(2x xx x x f ,若10)(=a f ,则a 的值可能是( ) A. 3- B. 3 C. 10log 2 D. 510.如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AC ,A 1B 的中点,则下列说法正确的是( ) A .MN ∥平面ADD 1A 1B .MN ⊥ABC .直线MN 与平面ABCD 所成角为45°D .异面直线MN 与DD 1所成角为60°11.已知角α的终边经过点(sin120,tan120)P ︒︒,则( )A .5cos 5α= B .25sin 5α= C .2tan -=αD .5sin cos αα+=12.已知圆9)2()1(:22=-+-y x C ,过点)3,1(-M 的直线被圆C 截得的弦长可能是( )A. 22B. 23C. 24D.25三、填空题:本题共4小题,每小题5分,共20分.13.计算12216log 4+的结果是__________.14.已知圆C :x 2+y 2=20,则过点P (4,2)的圆的切线方程是________.15.已知tan 2θ=-,则2sin sin cos θθθ-=________.16.若方程02||=--m x 有实数解,则实数m 的取值范围是______________.四、解答题:本题共6小题,第17题10分,第18至22题每小题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知{|3}A x a x a =≤≤+,2{|450}B x x x =-++<.(Ⅰ)若2a =-,求A B ;(Ⅱ)若A B B ⋃=,求实数a 的取值范围.18.(本小题满分12分)已知02<<-x π,51cos sin =+x x . (Ⅰ)求x x cos sin ⋅的值;(Ⅱ)求x x cos sin -的值19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2AB =,点E 是PD 的中点.(Ⅰ)求证://PB 平面ACE ;(Ⅱ)若直线PB 与面PAC 的夹角为30,求三棱锥D AEC -的体积.20.(本小题满分12分)近期中央电视台播出的《中国诗词大会》火遍全国.某选拔赛后,随机抽取100名选手的成绩,按成绩由低到高依次分为第1,2,3,4,5组,制成频率分布直方图如下图所示: (I)在第3、4、5组中用分层抽样抽取5名选手,求第3、4、5组每组各抽取多少名选手;(II)在(I)的前提下,在5名选手中随机抽取2名选手,求第4组至少有一名选手被抽取的概率.21.(本小题满分12分)圆P 的圆心坐标为P ()0,2-,且过点()4,1A(Ⅰ)求圆P 的方程;(Ⅱ)设直线290x y ++=与圆P 相交于M,N 两点.求△PMN 的面积。
高二下学期期中考试数学试卷含答案
高二下学期期中考试数学试卷含答案下学期期中考试数学试题一、选择题1.已知i是虚数单位,z是z的共轭复数,若z(1+i)=3+2i,则z的虚部为()。
A。
-1B。
iC。
-iD。
12.把4个不同的小球全部放入3个不同的盒子中,使每个盒子都不空的放法总数为()。
A。
2B。
3C。
4D。
53.曲线y=xex+1在点(0,1)处的切线方程是()。
A。
2x-y+1=0B。
x-y+1=0C。
x-y-1=0D。
x-2y+2=04.函数f(x)=xlnx的单调递减区间是()。
A。
(0,1/e)B。
(1/e,0)C。
(e,+∞)D。
(-∞,0)5.二项式1+x+x2(1-x)展开式中x4的系数为()。
A。
120B。
135C。
140D。
1006.设随机变量的分布列为P(X=k)=C(6,k)/2^6,则P(X≥3)的值为()。
A。
1B。
7/8C。
5/8D。
3/87.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()种。
A。
10B。
12C。
9D。
88.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图像可能是()。
A.B.C.D.9.若z∈C且z+2-2i=1,则z-1-2i的最小值是()。
A。
3B。
2C。
4D。
510.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品任取3件,取出的3件产品中一等品件数多于二等品件数的概率是()。
A。
37/120B。
3/10C。
4/9D。
1/211.已知(1-x)^10=a+a1x+a2x^2+。
+a10x^10,则a8的值为()。
A。
-180B。
45C。
180D。
-4812.定义在R上的函数f(x)满足f(x)+f'(x)>1,f(0)=4,则不等式exf(x)>ex+3的解集为()。
A。
(0,+∞)B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二学期高二数学期中试卷本试卷共有22道试题,满分100分,考试时间90分钟。
请考生用钢笔或圆珠笔将答案写在答题卷上一、填空题(本大题满分42分)本大题共有14题,只要求直接填写结果,每个空格填对得3分,否则一律得零分。
1. 1001001i i+= .2. 抛物线280y x +=的焦点坐标为 .3. 双曲线2238x y -=的两条渐近线的夹角为 .4. 从甲、乙、丙三名学生中任意安排2名学生参加数学、外语两个课外活动小组的活动,有 种不同的安排方案。
5. 若复数214tz t i+=-+在复平面上对应的点在第四象限,则实数t 的取值范围是 6. 6名学生排成一排,其中甲不在排头,乙不在排尾,则共有 种排法。
7. 已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则实数a = .8. 在抛物线220y x =上有一点P ,且P 与焦点的距离等于15,,则P 点坐标为 . 9. 复数2)2321(i z -=是实系数方程012=++bx ax 的根,则=⨯b a . 10. 某抛物线形拱桥的跨度为20米,拱高是4米,在建桥时,每隔4米需用一根支柱支撑,其中最高支柱的高度是 米.(答案保留两位小数........) 11. 已知焦点为(0,3)的双曲线方程是2288kx ky -=,则k = .12. 某高校食堂供应午饭,每位学生可以在食堂提供的菜肴中任选2荤2素共4种不同的品种。
现在食堂准备了5种不同的荤菜,若要保证每位学生有200种以上不同的选择,则食堂至少还需要准备不同的素菜品种 种.(结果用数值表示)13. 从抛物线24y x =上一点P 引其准线的垂线,垂足为M ,设抛物线的焦点为F ,且||5PF =,则MPF ∆的面积为 .14. 已知双曲线2222:1x y C a b-=,1F 、2F 分别为左右焦点,P 为C 上的任意一点,若122F PF π∠=,且124F PF S ∆=,则双曲线的虚轴长为 .二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为(A)、(B)、(C)、(D)的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在对应的空格内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在空格内),一律得零分。
15. 虚数的平方是( )(A) 正实数; (B) 虚数; (C) 负实数;(D) 虚数或负实数.16. 用1,2,3,4,5,这5个数字,组成没有重复数字的三位数,其中偶数共有 ()(A)24个(B)30个(C) 40个 (D) 60个17. 过点(0,1)与抛物线22 (0)y px p =>只有一个公共点的直线的条数是()(A) 1(B) 2(C) 3(D) 418. 已知曲线C :22||||1x x y y a b-=(0a b >>),下列叙述中正确的是 ()(A) 垂直于x 轴的直线与曲线C 存在两个交点(B) 直线y kx m =+(,k m R ∈)与曲线C 最多有三个交点(C) 曲线C 关于直线y x =-对称(D) 若111(,)P x y ,222(,)P x y 为曲线C 上任意两点,则有12120y y x x -<-三、解答题(本大题满分42分,8+10+10+14)本大题共有4小题,解答下列各题必须写出必要的步骤。
19. (本题满分8分)已知复数(13)(13)44i Z i ++-=+,求Z 及1Z.20. (本题满分10分,其中第1小题5分,第二小题5分)已知复数z x yi =+(,x y R ∈)满足:552z z a +--=,且z 在复平面上的对应点P 的轨迹C 经过点(4,3) (1) 求C 的轨迹;(2) 若过点(4,0)A ,倾斜角为4π的直线l 交轨迹C 于M N 、两点,求OMN △的面积S 。
21. (本题满分10分)已知关于x 的方程2224(1)10x m x m --++=的两根为1x 、2x ,且122x x +=,求实数m 的值。
22. (本题满分14分,其中第1小题4分,第二小题4分,第三小题6分)过抛物线22(0)y px p =>上一定点00(,) P x y 作两条直线分别交抛物线于11(,)A x y ,22(,)B x y ,(Ⅰ) 若横坐标为2p的点到焦点的距离为1,求抛物线方程; (Ⅱ) 若00(,) P x y 为抛物线的顶点,2APB π∠=,试证明:过A 、B 两点的直线必过定点(2,0)p ;(Ⅲ) 当PA 与PB 的斜率存在且倾斜角互补时,求12y y y +的值,并证明直线AB 的斜率是非零常数。
高二数学期中试卷本试卷共有22道试题,满分100分,考试时间90分钟。
请考生用钢笔或圆珠笔将答案写在答题卷上一、填空题(本大题满分42分)本大题共有14题,只要求直接填写结果,每个空格填对得3分,否则一律得零分。
23. 1001001i i+= .解: 21i =-,41i =,则:1001i=,10011i =,∴答案是2 ▋24. 抛物线280y x +=的焦点坐标为 .解:28,4,22py x p =-=-=- ∴焦点坐标为(2,0)- ▋ 25. 双曲线2238x y -=的两条渐近线的夹角为 .解:渐近线为:3y x=±∴夹角为:3π▋26. 从甲、乙、丙三名学生中任意安排2名学生参加数学、外语两个课外活动小组的活动,有 种不同的安排方案。
解:共有6种 ▋27. 若复数214tz t i +=-+在复平面上对应的点在第四象限,则实数t 的取值范围是 解: 2214(4)(1)t z t t t i i +=-+=--+ 240(1)0t t ⎧->⎨-+<⎩ ⇒221t t -<<⎧⎨>-⎩⇒(1, 2)t ∈- ∴t 的取值范围是(1, 2)-▋28. 6名学生排成一排,其中甲不在排头,乙不在排尾,则共有 种排法。
解:甲排在队尾:5!=120种排法; 甲不排在队尾:444!384⨯⨯=(甲有4种排法,此时乙有四种排法,剩下的4名学生有4!) ∴一共有:120+384=504种排法 ▋29. 已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则实数a = .解:渐近线:y ax =±;直线斜率:12k =,由垂直知:112a -⋅=-,∴4a =▋30. 在抛物线220y x =上有一点P ,且P 与焦点的距离等于15,,则P 点坐标为 .解:易知P 点横坐标为10,代入抛物线方程得:102y =±∴P 点坐标为:(10,102)或(10,102)-▋31. 复数2)2321(i z -=是实系数方程012=++bx ax 的根,则=⨯b a . 解: 21313()2222z i i =-=-- ∴方程的两根分别是:1322i --、1322i -+12113144x x a =⋅=+=,1a ⇒=;121bx x a-=+=-,1b ⇒= ∴1a b ⨯= ▋32. 某抛物线形拱桥的跨度为20米,拱高是4米,在建桥时,每隔4米需用一根支柱支撑,其中最高支柱的高度是 米.(答案保留两位小数........) 解: 抛物线方程为:210025x y -=当2x =±时,10043.8425y -== ∴最高支柱的高度是3.84米. ▋33. 已知焦点为(0,3)的双曲线方程是2288kx ky -=,则k = .解:22181y x k k-=-- ∴819k k --= 1k ⇒=- ▋ 34. 某高校食堂供应午饭,每位学生可以在食堂提供的菜肴中任选2荤2素共4种不同的品种。
现在食堂准备了5种不同的荤菜,若要保证每位学生有200种以上不同的选择,则食堂至少还需要准备不同的素菜品种 种.(结果用数值表示)解:答案:7 225200()x C C x Z +⨯>∈,(1)40x x ->,,7x ≥ ▋35. 从抛物线24y x =上一点P 引其准线的垂线,垂足为M ,设抛物线的焦点为F ,且||5PF =,则MPF ∆的面积为 .解:过F 作FD PM ⊥于D 点, 则2,MD =3PD =, 又5MP PF ==,∴4FD = ∴11541022S MP FD =⋅=⨯⨯= ▋36. 已知双曲线2222:1x y C a b-=,1F 、2F 分别为左右焦点,P 为C 上的任意一点,若122F PF π∠=,且124F PF S ∆=,则双曲线的虚轴长为 .解: 设1PF m =,2PF n =,则: 122PF PF a -=,即:2 m n a -=①; 又122F PF π∠=,所以:2221212PF PF F F +=,即:2224 m n c +=②;因为124F PF S ∆=,所以:142mn =②-①:2222244 =216c a m n m n mn -+--==∴2416b =,2b =,24b =;所以虚轴长为4 ▋二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为(A)、(B)、(C)、(D)的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在对应的空格内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在空格内),一律得零分。
37. 虚数的平方是( )(A) 正实数; (B) 虚数; (C) 负实数;(D) 虚数或负实数.解: 选(D)。
▋38. 用1,2,3,4,5,这5个数字,组成没有重复数字的三位数,其中偶数共有 ()(A)24个(B)30个(C) 40个 (D) 60个解:先选个位数:24324⨯⨯=,。
∴选(A)。
▋39. 过点(0,1)与抛物线22 (0)y px p =>只有一个公共点的直线的条数是()(A) 1(B) 2(C) 3(D) 4解:三条直线:1:0l x =,;2:1l y =;3:12p l y x =+,切点2(,2)p。
∴选(C)。
▋ 40. 已知曲线C :22||||1x x y y a b-=(0a b >>),下列叙述中正确的是 ()(A) 垂直于x 轴的直线与曲线C 存在两个交点(B) 直线y kx m =+(,k m R ∈)与曲线C 最多有三个交点(C) 曲线C 关于直线y x =-对称(D) 若111(,)P x y ,222(,)P x y 为曲线C 上任意两点,则有12120y y x x -<-解: 分四个象限讨论去绝对值符号,其中第二象限没有图像。
曲线C :222222222222111x y ab x y ab x y ab ⎧-=⎪⎪⎪-+=⎨⎪⎪+=⎪⎩, 大概图像:综上,选(B)。