拉氏变换定义、计算、公式及常用拉氏变换反变换

合集下载

laplace拉普拉斯变换,拉普拉斯定理

laplace拉普拉斯变换,拉普拉斯定理
j
二、拉氏变换的几个基本性质 (1)线性性质
设L[ f1 (t )] F1 ( s ),L[ f 2 (t )] F2 ( s ),a、b为常数,则有 L[ af1 (t ) bf2 (t )] aL[ f1 (t )] bL[ f 2 (t )] aF1 ( s ) bF2 ( s ) L1[aF1 ( s ) bF2 ( s )] aL1[ F1 (t )] bL1[ F2 (t )] af1 (t ) bf2 (t )
利用本公式可得: L[ u (t )] 1 / s L[t 2 ] 2 / s 3 L[t ] 1 / s 2
5、指数函数
e f (t ) 0

at
t0 t0
f(t)
a0
F (s) e e
at 0

st
dt
0
a0
t
e
0

( s a )t
1
1 d ( m 1) C1 lim ( m 1) [(s s1 ) m F ( s )] ( m 1)! s s ds
1
f (t ) L1 [ F ( s )]
n Cm C m 1 m 2 st m 1 [ t t C 2 t C1 ]e Ci e s t ( m 1)! ( m 2)! i m 1
(2)微分性质
设L[ f (t )] F ( s ),则有 df (t ) ] sF ( s ) f (0) dt d 2 f (t ) L[ ] s 2 F ( s ) sf (0) f ' (0) dt 2 L[ d n f (t ) L[ ] s n F ( s ) s n 1 f (0) s n 2 f ' (0) f dt n

拉普拉斯变换及反变换

拉普拉斯变换及反变换
0
t
重要性质





( t ) f ( t ) dt f ( 0 )
( t ) dt ( t ) dt 1
0

0


L[ ( t )]



(t ) e
st
0
dt ( t ) e


st
dt 1
第7页
黄河科技学院
(5)指数函数
f (t )
控制工程基础
f (t )
(k =const)
0 2 f ( t ) kt 1( t ) 1 2 kt t 2 2 1
0
t0
t
t0
0
t
F ( s ) L [ f ( t )]
( b)
跃函数
坡 函 kt 斜 2 数
0

1
2
e
st
dt
k s
3
F s

的原函数;L是表示进行拉氏变换的 符号。
第2页
黄河科技学院
控制工程基础
F ( s ) L [ f ( t )]
f ( t ) L [ F ( s )]
拉氏变换是这样一种变换,即在一定的 条件下,它能把一实数域中的实变函数 f t 变换为一个在复数域内与之等价的 复变函数 F s 。
控制工程基础
2)当解出s有重根时,对F(s)作因式分解:
F (s) br ( s p1 )
r

b r 1 ( s p1 )
r 1

b1 ( s p1 )
r

a r 1 ( s p r 1 )

最全拉氏变换计算公式

最全拉氏变换计算公式

1最全拉氏变换计算公式1. 拉氏变换的基本性质 1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][ '- -=-=----=-∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk k n n nn dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时)(])([s F s dtt f d L n nn = 3积分定理一般形式∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰==+-===+=++=+=nk t n n k n n nn t t t dt t f s s s F dt t f L sdt t f s dt t f s s F dt t f L sdt t f s s F dt t f L 101022022]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共初始条件为0时n n n ss F dt t f L )(]))(([=⎰⎰个共4 延迟定理(或称t 域平移定理))()](1)([s F e T t T t f L Ts -=--5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=-6 终值定理 )(lim )(lim 0s sF t f s t →∞→=7 初值定理 )(lim )(lim 0s sF t f s t ∞→→=8 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =-=-⎰⎰τττττ22. 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s)时间函数e(t) Z 变换E(z)1 1δ(t) 12 Tse --11∑∞=-=0)()(n T nT t t δδ1-z z 3 s1 )(1t1-z z 4 21s t2)1(-z Tz5 31s 22t32)1(2)1(-+z z z T6 11+n s!n t n)(!)1(lim 0aT n n n a ez z a n -→-∂∂- 7 as +1 at e - aTe z z-- 8 2)(1a s +atte- 2)(aT aT e z Tze ---9 )(a s s a+ ate--1))(1()1(aT aT e z z z e ----- 10 ))((b s a s ab ++-bt at e e --- bTaT e z ze z z ----- 11 22ωω+s t ωsin1cos 2sin 2+-T z z Tz ωω 12 22ω+s st ωcos1cos 2)cos (2+--T z z T z z ωω13 22)(ωω++a s t e atωsin - aTaT aT eT ze z Tze 22cos 2sin ---+-ωω 14 22)(ω+++a s a st eatωcos -aTaT aT e T ze z T ze z 222cos 2cos ---+--ωω15aT s ln )/1(1- T t a /az z -33. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

拉氏变换

拉氏变换

)
=
⎧0(t
⎨ ⎩
t
(t
< ≥
0) 0)
L[t] =
1 s2
4.加速度函数
f
(t )
=
⎪⎧ ⎨ ⎪⎩
0(t < 0) 1 t 2 (t ≥ 0) 2
L[ 1 2
t2] =
1 s3
5
时间域:δ(t)→ 1(t)→t→ t2/2 复数域: 1→1/s→1/s2→1/s3
4.指数函数
f (t) = e−at (t ≥ 0)
t →0+
s→∞
证明方法同上。只是要将s→∞取极限。
15
(6) 衰减定理 若f2(t)=e-at f1(t), 则
F2(s) =F1(s+a)
L[e−at f (T )] = F (s + a)
16
8
(7) 延迟定理 (处理复杂时间函数) 若 f2(t)=f1(t-a), 则 F2(s)=e-as F1(s)
=
f (t) ∞ 0
= lim t→∞
f (t) −
f (0)
右边 = lim [sF (s) − f (0)] = lim sF (s) − f (0)
s→0
s→0
∴ lim f (t ) = lim sF (s)
t→∞
s→0
14
7
(5)初值定理
若 f(t) 在t=0+处有初值f(0+),则
lim f (t) = f (0+ ) = lim sF (s)
1
= 1 (1 − 1)
(s + a)(s + b) b − a s + a s + b

附+拉氏变换与拉氏反变换

附+拉氏变换与拉氏反变换

(t ) = eαt (C1 cos ωt + C2 sin ωt ) y αt = Ae sin (ωt + ϕ )
南昌大学机电学院
可见这类微分方程的解无非是一些像: 可见这类微分方程的解无非是一些像: αt Ae 、B sin (ωt + ϕ ) 之类的指数函数和正弦函数的组合。 之类的指数函数和正弦函数的组合。其中 时间特征量: 时间特征量: α、ω 微分方程的系数有关; 、 微分方程的系数有关; 幅 值: A、B、C 件有关。 、 、 初始条件和外部条 件有关。 因此, 因此,出现了一种直接根据其系数和初始条 件求解微分方程的方法------拉氏变换法。 拉氏变换法。 件求解微分方程的方法 拉氏变换法
/
( )

0
f (t )e dt = ∫ e df (t )
− st − st 0

令:u = e dv = df (t )
− st
du = − se dt v = f (t )
− st
南昌大学机电学院
则:L f (t ) = e
/
[
]
− st
推广: 推广: L f
(t )] = s 2 F (s ) − sf (0 + ) − f / (0 + ) df (t ) / + 式中:f (0 ) = │
x = ab ⇒ lg x = lg a + lg b x = a b ⇒ lgx = m lg a + n lg b
m n
南昌大学机电学院
b)拉氏变换和拉氏反变换可以利用公式和图表简 b)拉氏变换和拉氏反变换可以利用公式和图表简 化其运算,而不必求上述积分运算。 化其运算,而不必求上述积分运算。

拉氏变化及反变换

拉氏变化及反变换
0
t 0
1
2 单位阶跃函数
f (t )
1
0, t 0 1(t ) 1, t 0
0
t
L[1(t )]

0
1 st 1 1(t )e dt e 0 s s
st
3 单位斜坡函数
f (t )
f (t )
0, t 0 f (t ) t, t 0
1 1 1(t ) 1(t T ) T T
L[ f (t )]
1 1 sT 1 e (1 e sT ) Ts Ts Ts
T T f (t ) f1 (t ) f1 (t ) f1 (t ) f1 (t T ) 2 2 4 4 T 4 T 4 2 t 2 (t ) 2 (t ) 2 (t T ) T T 2 T 2 T
1 jt sin t (e e jt ) 2j
st
Hale Waihona Puke e j cos j sin e j cos j sin
L[sin t ] sin t e dt
0
0
1 jt jt st e e e dt 2j
10.像函数的微分性质
设L[ f (t )] F (s)
dF ( s) Ltf (t ) ds
11.像函数的积分性质
设L[ f (t )] F (s)
1 L f (t ) F ( s)ds t s
例 求图示方波和三角波的拉氏变换
方波: f (t ) f1 (t ) f1 (t T )


1 1 1 s 2 2 s j s j s 2

(电机学)第十四章 拉普拉斯变换-091216

(电机学)第十四章  拉普拉斯变换-091216
第 十 四 章
线性动态电路的复频域分析
2014-12-29
浙江工业大学信息学院
1
主 要 内 容
拉 普 拉 斯 变 换
拉氏 变换 基本 性质
拉氏 反变 换的 部分 分式 展开
运 算 电 路
应用 拉氏 变换 分析 线性 电路
2014-12-29
浙江工业大学信息学院
14- 2
§14-1 拉氏变换的定义
例: 求下列函数的原函数
F (s)
F (s)
s 1 s 3 2s 2 2s
解:
s 1 s 1 A B C s 3 2s 2 2s s ( s 1 j )( s 1 j ) s s 1 j s 1 j
其中系数:A s F (s)
t2 tn
A/ s
1 e
t
A s A s(s )
e
t
sin(t )
et cos(t )
tet
sin(t )
s2 2
s s2 2 1 s2
(s )2 2 s (s )2 2
1 (s )2 s (s )2
若时间函数f (t) 的拉氏变换为F (s) ,则f (t) 的导数 f (1) (t)的拉氏变换为: £ £
如果f(t)代表电容电压或电感电流,则它们导数的象函数 中的第二项便是uc(0-)或iL(0-),即动态元件的初始状态。 二阶导数f (2) (t)的拉氏变换为:
£
n 阶导数f (n) (t)的拉氏变换为:
浙江工业大学信息学院
14- 14
五、复频域平移性质
若时间函数f (t) 的拉氏变换为F (s) ,则将f (t) 乘以eat后得拉氏变换为的拉氏变换为: £

拉氏变换常用公式

拉氏变换常用公式

拉氏变换常用公式拉氏变换是一种重要的数学工具,常被用于信号处理、系统分析、电路设计等领域。

在进行拉氏变换时,我们常用到一些常用的公式,这些公式是解决问题的关键。

本文将介绍一些常用的拉氏变换公式,以及其在实际应用中的意义和用法。

1. 基本定义拉氏变换是一种将时域函数转换为复频域函数的方法。

它定义如下:F(s) = L{f(t)} = ∫[0,∞)e^(-st) f(t) dt其中,F(s)表示拉氏变换结果,L表示拉氏变换算子,f(t)表示时域函数,s表示复频域变量。

2. 常见公式以下是一些常用的拉氏变换公式:2.1 常数函数L{1} = 1/s2.2 单位阶跃函数L{u(t)} = 1/s2.3 指数函数L{e^(at)} = 1/(s-a),其中a为常数2.4 正弦函数L{sin(at)} = a/(s^2 + a^2)2.5 余弦函数L{cos(at)} = s/(s^2 + a^2)2.6 钟形函数L{rect(t)} = 1/sinc(s/2),其中sinc(x) = sin(x)/x2.7 基本运算拉氏变换具有一些基本运算规则,如时移、倍乘和微分等。

这些运算可以用于求解更复杂的函数对应的拉氏变换。

详细的运算规则可以参考相应的数学教材。

3. 实际应用拉氏变换在信号处理、系统分析和电路设计等领域有着广泛的实际应用。

3.1 信号处理在信号处理中,常常需要对信号进行滤波、频域分析等操作。

通过将信号进行拉氏变换,可以将复杂的时域信号转换为频域函数,便于对信号特性的分析和处理。

3.2 系统分析拉氏变换在系统分析中有着重要的作用。

通过将系统的输入和输出进行拉氏变换,可以得到系统的传递函数,进而分析系统的频率响应、稳定性等性质。

3.3 电路设计在电路设计中,拉氏变换可以用于求解电路的导纳、阻抗等参数。

通过将电路的输入和输出进行拉氏变换,可以得到电路的传输函数,进而进行电路的设计和优化。

综上所述,拉氏变换是一种重要的数学工具,广泛应用于信号处理、系统分析、电路设计等领域。

拉氏变换及其反变

拉氏变换及其反变

式中:s=σ+jω(σ,ω均为实数); F(s)称为函数f(t)的拉普拉氏变换或象函数; f(t)称为F(s)的原函数; L为拉氏变换的符号。
拉氏反变换的定义
其中L-1为拉氏反变换的符号。
1.1 拉氏变换的计算
单位脉冲函数
单位阶跃函数 单位速度函数 单位加速度函数 指数函数
三角函数
幂函数
拉氏变换及其反变换
1
拉氏变换的定义 拉氏变换的计算 拉氏变换求解方程
拉氏)满足:
1f(t)实函数; 2当t<0时 , f(t)=0; 3当t0时,f(t)的积分 0 f (t )e st dt 在s的某一域内收敛 则函数f(t)的拉普拉氏变换存在,并定义为:
初值定理
1.3 拉氏反变换方法 部分分式法的求取拉氏反变换
B(s) b0 s m b1s m1 .... bm1s bm F ( s) ,m n n n 1 A(s) a0 s a1s .... an1s bn
L-1[F(s)] = L-1[F1(s)]+L-1[F2(s)]+…+L-1[Fn(s)] = f1(t) + f2(t) + … + fn(t) F(s)= F1(s)+F2(s)+…+Fn(s)
线性定理
叠加定理
比例定理
微分定理
多重微分
原函数的高阶导数 像函数中s的高次代数式
积分定理
多重积分
原函数的n重积分像函数中除以sn
位移定理
原函数乘以指数函数e-at像函数d在复数域中作位移a
延时定理
原函数平移 像函数乘以 e-s
终值定理
原函数f(t)的稳态性质 sF(s)在s=0邻域内的性质

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

1拉氏变换及反变换公式1. 拉氏变换的基本性质 1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][ '- -=-=----=-∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk kn nnndtt f dt ffss F s dtt f dL f sf s F s dt t f dL f s sF dt t df L )(初始条件为0时)(])([s F s dtt f dL nnn=3 积分定理一般形式∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰==+-===+=++=+=nk t nn k n nnn t t t dt t f sss F dt t f L sdt t f sdt t f ss F dt t f L s dt t f ss F dt t f L 112222]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共初始条件为0时nnn ss F dt t f L )(]))(([=⎰⎰个共4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts-=--5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=-6 终值定理 )(lim )(lim 0s sF t f s t →∞→=7 初值定理 )(lim )(lim 0s sF t f s t ∞→→=8 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =-=-⎰⎰τττττ22. 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s)时间函数e(t) Z 变换E(z)1 1δ(t)12 Tse--11∑∞=-=)()(n T nT t t δδ1-z z 3 s1 )(1t1-z z 4 21st2)1(-z Tz5 31s22t32)1(2)1(-+z z z T6 11+n s!n tn)(!)1(limaTnn na ez zan -→-∂∂-7 as +1 ate- aTez z -- 8 2)(1a s + atte- 2)(aTaT ez Tze --- 9 )(a s s a + ate--1 ))(1()1(aTaTez z ze-----10 ))((b s a s ab ++- btatee---bTaTez z ez z ----- 11 22ωω+s tωsin 1cos 2sin 2+-T z z T z ωω12 22ω+s s tωcos1cos 2)cos (2+--T z z T z z ωω13 22)(ωω++a s t eatωsin - aTaT aTeT zez T ze22cos 2sin ---+-ωω 14 22)(ω+++a s a st eatωcos -aTaTaTeT ze zTzez 222cos 2cos ---+--ωω15aT s ln )/1(1-Tt a/az z-33. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

拉氏变换定义、计算、公式及常用拉氏变换反变换

拉氏变换定义、计算、公式及常用拉氏变换反变换

****拉普拉斯变换及反变换****定义:如果定义:• 是一个关于的函数,使得当时候,;•是一个复变量;• 是一个运算符号,它代表对其对象进行拉普拉斯积分;是的拉普拉斯变换结果。

则的拉普拉斯变换由下列式子给出:1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][- -=-=----=-∑11)1()1(1222)()()0()()(0)0(')(])([)0()(])([k k k k nk k n nnn dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时)(])([s F s dtt f d L n nn =2.表A-2 常用函数的拉氏变换和z变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。

拉氏变换详细解读

拉氏变换详细解读

φ = arctan
1− 1 1−ζ
2
ζ
e−ζωnt sin ωn 1 − ζ 2 t + φ 1−ζ 2
(
18
φ = arctan
2 ωn 2 s ( s2 + 2ζωn s + ωn )
ζ
根据表格直接写出结果
L [δ (t )] = 1, L e
− at
1 L [1(t )] = , s
ω s L [sin ωt ] = 2 , L [ cos ωt ] = 2 2 2 s +ω s +ω
e sinωt →
−at
1 = s+a,
1 L [t ] = 2 s 1 at L e = s−a
s + a ) + ω2 (
2
ω
e cosωt →
−at
s + a ) + ω2 (
3
2
5s3Y (s) + 6s2Y (s) + sY (s) + 2Y (s) = 4sX(s) + X(s) (5s3 + 6s2 + s + 2)Y (s) = (4s + 1) X(s)
Y (s) 4s + 1 = 3 X (s) 5s + 6s2 + s + 2
3.积分定理 积分定理
f (t )dt = 1 F(s) + 1 f (−1) (0+ ) L ∫ s s
2. 部分分式展开法 (利用逆变化的线性原理)
控制工程中,象函数F(s)通常可以表示有理分式形式 控制工程中,
B(s) bm sm + bm−1sm−1 + bm−2 sm−2 +⋅⋅⋅⋅⋅⋅ +b1s + b0 F(s) = = A(s) an sn + an−1sn−1 + an−2 sn−2 +⋅⋅⋅⋅⋅⋅ +a1s + a0

拉氏变换及其计算机公式

拉氏变换及其计算机公式

时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。

例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。

一、拉氏变换的定义已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为(2-45)式中,称为原函数,称为象函数,变量为复变量,表示为(2-46)因为是复自变量的函数,所以是复变函数。

有时,拉氏变换还经常写为(2-47)拉氏变换有其逆运算,称为拉氏反变换,表示为(2-48)上式为复变函数积分,积分围线为由到的闭曲线。

二、常用信号的拉氏变换系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。

现复习一些基本时域信号拉氏变换的求取。

(1)单位脉冲信号理想单位脉冲信号的数学表达式为(2-49)且(2-50)所以(2-51)说明:单位脉冲函数可以通过极限方法得到。

设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。

当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。

在坐标图上经常将单位脉冲函数表示成单位高度的带有箭头的线段。

由单位脉冲函数的定义可知,其面积积分的上下限是从到的。

因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。

由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。

所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。

为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。

(2)单位阶跃信号单位阶跃信号的数学表示为(2-52)又经常写为(2-53)由拉氏变换的定义式,求得拉氏变换为(2-54)因为阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。

(3)单位斜坡信号单位斜坡信号的数学表示为(2-55)图2-15单位斜坡信号另外,为了表示信号的起始时刻,有时也经常写为(2-56)为了得到单位斜坡信号的拉氏变换,利用分部积分公式得(2-57)(4)指数信号指数信号的数学表示为(2-58)拉氏变换为(2-59) (5)正弦、余弦信号正弦、余弦信号的拉氏变换可以利用指数信号的拉氏变换求得。

拉氏变换常用公式

拉氏变换常用公式

拉氏变换常用公式拉氏变换是一种重要的数学工具,广泛应用于信号处理、控制系统分析和电路设计等领域。

本文将介绍拉氏变换常用的公式,包括重要的拉氏变换和反变换公式,以及一些常见的拉氏变换性质。

1. 拉氏变换公式拉氏变换公式是将一个时间域函数变换成复频域的函数。

以下是一些常用的拉氏变换公式:(1)常数信号的拉氏变换:如果输入信号为常数,即f(t)=A,其拉氏变换为F(s) = A/s,其中A 为常数。

(2)指数信号的拉氏变换:指数信号的拉氏变换公式为:f(t) = e^(at) -> F(s) = 1/(s-a),其中a为常数。

(3)单位冲激信号的拉氏变换:单位冲激信号的拉氏变换公式为:f(t) = δ(t) -> F(s) = 1,其中δ(t)表示单位冲激函数。

(4)正弦信号的拉氏变换:正弦信号的拉氏变换公式为:f(t) = sin(ωt) -> F(s) = ω/(s^2 + ω^2)。

其中ω为正弦信号的频率。

2. 拉氏反变换公式拉氏反变换是将复频域函数转换回时间域函数的过程,以下是一些常用的拉氏反变换公式:(1)常数信号的拉氏反变换:对于F(s) = A/s,其拉氏反变换为f(t) = A。

(2)指数信号的拉氏反变换:对于F(s) = 1/(s - a),其拉氏反变换为f(t) = e^(at),其中a为常数。

(3)单位冲激信号的拉氏反变换:对于F(s) = 1,其拉氏反变换为f(t) = δ(t)。

(4)正弦信号的拉氏反变换:对于F(s) = ω/(s^2 + ω^2),其拉氏反变换为f(t) = sin(ωt)。

3. 拉氏变换的性质拉氏变换具有一些重要的性质,其中包括线性性质、时间平移性质、频率平移性质、频率缩放性质、卷积定理等,这些性质对于信号处理和系统分析非常有用。

(1)线性性质:拉氏变换具有线性性质,即对于输入信号f1(t)和f2(t),以及相应的拉氏变换F1(s)和F2(s),有以下性质成立:a1*f1(t) + a2*f2(t) -> a1*F1(s) + a2*F2(s)。

(完整版)最全拉氏变换计算公式

(完整版)最全拉氏变换计算公式

最全拉氏变换计算公式1233. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(ΛΛ式中,n s s s ,,,21Λ是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss i s A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+Λ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;4其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- M)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L ΛΛΛ111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1(Λ (F-6)。

复习拉氏变换知识

复习拉氏变换知识

s+3 2+ j = s → −1 + j (s + 1 − j)(s + 1 + j) 2j s+3 2− i C 2 = lim (s + 1 + j) = s → −1− j (s + 1 − j)(s + 1 + j) − 2 j
2 + j ( −1+ j ) t 2 − j ( −1− j ) t = 1 e − t ( 2 + j )e jt − ( 2 − j )e − jt f(t) = e e − 2j 2j 2j 1 −t e ⋅ j[2 cos t + 4 sin t ] = e − t ⋅ [cos t + 2 sin t ] = 2j s+1 1 s +1+ 2 s+3 = +2 = F(s) = 解二: 解二: 2 2 (s + 1 )2 + 12 (s + 1 )2 + 12 (s + 1 )2 + 12 (s + 1 ) + 1
11) 复习拉普拉斯变换有关内容(11)
用拉氏变换方法解微分方程
系统微分方程
y′′( t ) + a1 ⋅ y′( t ) + a2 ⋅ y( t ) = 1( t )
y(0) = y′(0) = 0
L变换 变换
1 Y ( s) = s( s 2 + a1 s + a 2 )
L-1变换
1 ( s + a1 s + a 2 ) ⋅ Y ( s ) = s
2 常见函数的拉氏变换
1 t ≥ 0 (1)阶跃函数 f ( t ) = 0 t < 0 ∞ − 1 − st ∞ − 1 (0 − 1) = 1 L[1(t )] = ∫ 1 ⋅ e − st dt = e 0 = s s s 0

拉氏变换

拉氏变换

控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。

一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。

f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。

2)当时,,M,a为实常数。

2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。

—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。

二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。

注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。

2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。

证:同理可推广到n阶:当初始条件为0时,即则有4、积分定理设f(t)的拉氏变换为F(s),则,其中时的值。

第二节 拉氏变换公式

第二节 拉氏变换公式

L
f
(t) t
F(s)ds
s
F (s)ds
f (t)e stdtds
s
s0
f (t)dt
e stds
0
s
f (t ) d t [ 1 e st ]
0
t
s
f (t ) e st d t L [ f (t ) ]
0t
t
(2-29)
例2-10:求如下函数的拉氏变换
复数域微分定理
证:
Ltf (t)dF(s)
ds
(2-30)
dF(s)d
f(t)estdt
d[f(t)est] dt
ds ds 0
0 ds
tf(t)estdt L[tf(t)] 0
推论:
L(t)n f(t)dndFsn(s)
例2-11:求如下函数的拉氏变换
例2-12:已知因果函数f(t)的象函数
初值定理
(2-26)
尺度变换定理
证:令 t a
L f (at ) aF(as)
(2-28)

L[f(t)] f(t)estdt f()easd(a)
a 0a
0
a f()easd 0
再令 as
则 L[f(t)]af()easdaf()ed
a
0
0
aF()aF(as)
复数域积分定理
证:
f(t)
A
T O
f ’(t)
解:
t
f(t)= f ’(t)+ f ’’(t) =Aε(t) -Aε(t-T)
O f ’’(t)
O
L[f(t)]= A/s- A/s ·e-sT
t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
eat sint eat cost
at /T
z z eaT
Tze aT ( z eaT ) 2
(1 e aT )z (z 1)(z e aT )
z
z

z eaT z ebT
z sin T z 2 2z cosT 1
z(z cos T ) z 2 2z cos T 1
i1 s si i1
(F-4)
② A(s) 0 有重根
设 A(s) 0 有 r 重根 s1 ,F(s)可写为
Fs
B(s)
(s s1 )r (s sr1)(s sn )
= cr cr1 c1 cr1 ci cn
ze aT sin T z 2 2zeaT cosT e2aT
z 2 zeaT cos T z 2 2ze aT cos T e 2aT
z za
3. 用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行
反变换。设 F (s) 是 s 的有理真分式
n
f
(t )

snF
(s)

n
s n k f (k 1) (0)
dt n
k 1
f (k 1) (t ) d k 1 f (t ) dt k 1

L[
d
n
f
(t ) ]

s
n
F (s)
dt n
一般形式 3 积分定理
初始条件为 0 时
F (s) [ f (t)dt]t0
序 号 拉氏变换 E(s)
时间函数 e(t)
1
1
1
2
1 eTs
ห้องสมุดไป่ตู้
1
3
s
1
4
s2
δ(t)

T (t) (t nT )
n0
1(t )
t
1
t2
5
s3
2
1
tn
6
s n1
n!
Z 变换 E(z)
1
z z 1
z z 1
Tz (z 1) 2
T 2 z(z 1) 2(z 1)3
(1)n n
F (s) B(s) bm s m bm1s m1 b1s b0 A(s) an s n an1s n1 a1s a0
(n m)
式中系数 a0 , a1 ,...,an1 , an , b0 , b1 ,bm1 , bm 都是实常数; m, n 是正整数。按代数定理可 将 F (s) 展开为部分分式。分以下两种情况讨论。
L[ f (t)dt] s
s
L[
f (t)(dt)2] F (s) [
f (t)dt]t0 [
f (t)(dt)2 ]t 0
s2
s2
s

共n个
L[
f (t)(dt)n] F (s) n
共n个 1
[
sn
s n k 1
k 1
初始条件为 0 时
L[af (t)] aF (s) L[ f1 (t) f 2 (t)] F1 (s) F2 (s)
df (t) L[ ] sF (s) f (0)
dt
d 2 f (t)
L[
]
s 2 F ( s) sf
' (0)

f(0)
dt 2

L
d
(s s1 )r (s s1 )r1
(s s1 ) s sr1
s si
s sn
式中, s1 为 F(s)的 r 重根, sr1 ,…, sn 为 F(s)的 n-r 个单根; 其中, cr1 ,…, cn 仍按式(F-2)或(F-3)计算, cr , cr1 ,…, c1 则按下式计算:
****拉普拉斯变换及反变换****
定义:如果定义:

是一个关于 的函数,使得当
时候,

是一个复变量;
是一个运算符号,它代表对其对象进行拉普拉斯积分 的拉普拉斯变换结果。
则 的拉普拉斯变换由下列式子给出:
;是
1.表 A-1 拉氏变换的基本性质 1 齐次性 线性定理 叠加性
2 微分定理 一般形式
f (t)(dt)n ]t0
共n个
L[
f
(t)(dt)n ]

F (s) sn
4 延迟定理(或称 t 域平移定理) L[ f (t T )1(t T )] eTs F (s)
5 衰减定理(或称 s 域平移定理) L[ f (t)eat ] F (s a)
6 终值定理 7 初值定理 8 卷积定理
lim f (t) lim sF (s)
t
s0
lim f (t) lim sF (s)
t0
s
t
t
L[ 0 f1(t ) f2 ( )d ] L[ 0 f1(t) f2(t )d ] F1(s)F2(s)
2.表 A-2 常用函数的拉氏变换和 z 变换表
cr lim(s s1) r F (s) s s1
cr1 lim d [(s s1 )r F (s)] ds
① A(s) 0 无重根
这时,F(s)可展开为 n 个简单的部分分式之和的形式。
F (s) c1 c2
ci
cn
n

ci
s s1 s s2
s si
s sn i1 s si
(F-1)
式中, s1 , s2 ,, sn 是特征方程 A(s)=0 的根。 ci 为待定常数,称为 F(s)在 si 处的留数,可
z
lim
(
)
a0 n! a n z eaT
1
7
sa
1
8
(s a)2
a
9
s(s a)
ba
10
(s a)(s b)

11
s2 2
s
12
s2 2

13 (s a)2 2
s a
14
(s a)2 2
1
15
s (1/ T ) ln a
e at te at 1 e at e at e bt sin t cos t
按下式计算:
ci

lim(s
s si

si
)
F
(s)

(F-2)
B(s) ci A(s)
ssi
(F-3)
式中, A(s) 为 A(s) 对 s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数
f (t) L1
F (s)

L1

n
ci
n = ciesit
相关文档
最新文档