A simple simulated annealing algorithm for the maximum clique problem

合集下载

很经典的模拟退火算法PPT

很经典的模拟退火算法PPT

Simulated Annealing
22
其他的问题(2/4) 其他的问题(2/4)
价值函数(Cost Function) 价值函数(Cost Function) – Hard Constraints 在不违背合适解的条件下,所提出的强制规定. 在不违背合适解的条件下,所提出的强制规定. – Soft Constraints 无论这种解是否违背条件,都算是合适解. 无论这种解是否违背条件,都算是合适解. – HardConstraints会给一个很大的weight HardConstraints会给一个很大的weight – SoftConstraints则是情况给予不同的weight SoftConstraints则是情况给予不同的weight
Simulated Annealing
26
算法修正(1/2) 算法修正(1/2)
可接受的机率(Acceptance Probability) 可接受的机率(Acceptance Probability)
P(E) =1 (E / t)
– 少计算exponential会加快速度 少计算exponential会加快速度 – 建立一个可查询各种值的table 建立一个可查询各种值的table 冷却(Cooling) 冷却(Cooling) – 花一些时间找寻最佳温度(包括最终温度,温差)
19
机率函(3/3)
当 T越高或 f越小时,则 p(X ' ) 越大,相对的扰动解被接受成新解的机 越大, 率越高. 因此会随着迭代次的增加而逐渐下,所以较差的扰动解被接受成 因此 T 新解的机会也随着 T 的下而越越小. 所以当迭代到最后因为温度 T 已到达低点,这时系统只会接受较佳的 扰动解为新解. 而扰动解 f (X ' ) 若小于目前解 f (X )则一定接受为新解,但若是 f ( X ' ) > f ( X ) 则接受为新解的机率随着f 的变大而越小.

基于蛙跳模糊算法的Jiles Atherton铁心磁滞模型参数确定

基于蛙跳模糊算法的Jiles Atherton铁心磁滞模型参数确定

基于蛙跳模糊算法的Jiles Atherton铁心磁滞模型参数确定王洋;刘志珍【摘要】Jiles Atherton(JA)模型广泛应用于铁心磁滞建模领域,其参数确定精确与否直接影响铁心磁滞现象的表达,为此提出蛙跳模糊算法对JA模型参数进行辨识.为了防止蛙跳算法陷入局部最优解并加快收敛速度,根据特殊点(矫顽力、矫顽力点磁化率)处实测值与计算值的相对误差,采用模糊控制方法,得到动态反馈系数,修正蛙跳算法的步长调整公式.采用爱泼斯坦方圈搭建磁滞回线测量系统,测得铁心饱和磁滞回线与局部磁滞回线.采用蛙跳模糊算法、蛙跳算法、粒子群算法和遗传算法分别求解得到模型参数,并将计算的磁滞回线与实测磁滞回线进行比较,证明了所提出的蛙跳模糊算法不易陷入局部最优解且具有更快的收敛速度.根据蛙跳模糊算法得到的局部磁滞回线模型参数辨识结果,研究模型参数与磁通密度的关系并进行拟合,得到不同磁通密度下的局部磁滞回线参数拟合模型.%Jiles Atherton (JA) hysteresis model is widely used in core hysteresis modeling. Its parameters determination affects the expression of core hysteresis phenomenon. A fuzzy-shuffled frog leaping algorithm (F-SFLA) is proposed in this paper to identify the parameters of JA hysteresis model. In order to speed up the convergence and avoid falling into local optimal solution of shuffled frog leaping algorithm (SFLA), a dynamical feedback factorF, which is the output of the fuzzy logic, is added to the step length of SFLA. The input of the fuzzy logic is the relative error of the measured and the calculated value at the special points (the coercive field amplitude, the dM/dH on the coercive field amplitude). F-SFLA, SFLA, particle swarm optimization algorithm (PSOA) and genetic algorithm (GA) are applied to determine theparameters of major hysteresis loop and minor hysteresis loop. Compared with hysteresis loops measured by Epstein frame measuring system, the results show that F-SFLA has less computational time and is not easy to fall into local optimal solution. Additionally, the relationship between the parameters of minor loop and magnetic flux density is analyzed, and the parameters of minor loop varying with magnetic flux density are fitted.【期刊名称】《电工技术学报》【年(卷),期】2017(032)004【总页数】8页(P154-161)【关键词】Jiles;Atherton模型;蛙跳模糊算法;爱泼斯坦方圈;局部磁滞回线参数【作者】王洋;刘志珍【作者单位】山东大学电气工程学院济南 250061;山东大学电气工程学院济南250061【正文语种】中文【中图分类】TM43精确的铁磁材料磁滞模型对于描述变压器、电机、互感器运行过程中的各种现象有着重要的意义。

模拟退火算法缩写

模拟退火算法缩写

模拟退火算法缩写
模拟退火算法(Simulated Annealing Algorithm)的缩写可以有多种形式,常见的缩写包括:SA、SimAnneal 或 Simulated Annealing。

这些缩写通常在学术文献、研究报告或代码中使用,以简洁地表示模拟退火算法。

模拟退火算法是一种启发式随机搜索算法,用于在复杂的优化问题中找到近似最优解。

它基于物理退火过程的原理,通过模拟物质在加热和冷却过程中的行为,逐步搜索更优的解决方案。

在模拟退火算法中,通过随机生成候选解,并根据一个适应度函数评估每个候选解的质量。

然后,根据概率接受较差的候选解,以避免陷入局部最优解。

随着算法的进行,温度逐渐降低,接受较差解的概率也逐渐减小,从而使算法更倾向于找到全局最优解。

模拟退火算法在许多领域都有应用,如组合优化、神经网络训练、图像处理等。

它的优点包括在一定程度上避免陷入局部最优、对初始解的依赖性较小、能够处理复杂的约束和目标函数等。

需要注意的是,缩写的使用可能因领域、团队或个人偏好而有所不同。

在具体的上下文中,可能会使用其他特定的缩写或术语来表示模拟退火算法。

此外,在使用缩写时,确保在相关文档或说明中明确其含义,以避免混淆和误解。

希望以上内容对你有所帮助!如果你对模拟退火算法或其他相关问题有更多的疑问,请随时提问。

数据分析知识:数据分析中的模拟退火搜索算法

数据分析知识:数据分析中的模拟退火搜索算法

数据分析知识:数据分析中的模拟退火搜索算法数据分析中的模拟退火搜索算法数据分析是一个不断发展的领域,处理数据所需的技能和算法也在不断更新。

模拟退火搜索算法(Simulated Annealing Algorithm)是一种用于处理复杂问题的启发式优化算法,它可以在超大规模的数据集中快速找到最优解。

下文将详细介绍模拟退火搜索算法的原理、应用以及优缺点。

一、原理模拟退火搜索算法是一种通用的启发式算法,它是在固体退火过程的基础上发展起来的。

退火是一种物理过程,是指将材料加热到一定温度,然后慢慢降温,让材料过程中的分子重新排列组合,从而获得最佳的材料结构。

同样地,模拟退火算法也是借鉴了这个场景,通过随机性和概率性的方式搜索一个问题的解空间,进而得到最优解。

模拟退火搜索算法的基本步骤如下:1.随机生成一个初始解,比如在解空间中随机选取一个点作为初始解。

2.根据一定的概率选择下一个解,比如在解空间中随机选取一个新的点作为下一个解。

3.计算目标函数(即损失函数)的值,比较当前解和下一个解的目标函数值的差异。

4.如果新解比当前解更优,则接受新解。

5.如果新解比当前解更差,则通过一定概率接受新解,以避免陷入局部最优解。

6.重复步骤二至五直到满足搜索停止条件(如达到设定的迭代次数或目标误差范围)。

二、应用模拟退火搜索算法在数据分析中有着广泛的应用,以下是一些常见的应用示例:1.旅行商问题(TSP):模拟退火搜索算法能够在旅行商问题中找到最佳路径,从而实现路径最优化问题的解决。

2.组合优化问题:比如在资源分配、员工排班等领域,模拟退火搜索算法可以优化资源分配方案,实现最小成本或最大收益。

3.物理学模拟:模拟退火搜索算法被广泛用于物理学模拟中,如蛋白质折叠、固体表面形貌和量子力学模拟等领域。

4.机器学习:模拟退火搜索算法可以用于优化机器学习中的超参数,如不同的学习率和不同的激活函数等。

以上只是模拟退火搜索算法的一部分应用,实际上它可以处理很多的优化问题。

np难问题常用算法

np难问题常用算法

np难问题常用算法NP难问题是计算机科学中一个重要的概念,指的是一类问题,其解决方案的验证可以在多项式时间内完成,但要找到解决方案却需要非多项式时间。

NP难问题常常需要借助一些特定的算法来解决,这些算法在计算复杂度上可能并不高,但在实际应用中却起到了至关重要的作用。

下面将介绍一些常用的算法,用于解决NP难问题。

1. 贪婪算法(Greedy Algorithm)贪婪算法是一种常用的近似算法,用于解决优化问题。

它的基本思想是每一步都选择当前最优的解决方案,希望最终得到全局最优解。

虽然贪婪算法不能保证得到最优解,但在一些问题中却表现良好,比如最小生成树问题、背包问题等。

2. 动态规划算法(Dynamic Programming)动态规划算法通常用于解决具有重叠子问题和最优子结构性质的问题。

其基本思想是将原问题分解为若干个子问题,先求解子问题,再利用子问题的解逐步推导出原问题的解。

动态规划算法在解决NP难问题中有着重要的应用,比如最长公共子序列问题、背包问题等。

3. 分支定界算法(Branch and Bound Algorithm)分支定界算法是一种用于解决组合优化问题的算法。

它通过逐步分解问题,将问题空间划分为若干个子问题,再利用上下界信息剪枝,最终找到最优解。

分支定界算法在解决NP难问题中有着广泛的应用,比如旅行商问题、背包问题等。

4. 遗传算法(Genetic Algorithm)遗传算法是一种模拟生物进化过程的优化算法,用于解决复杂的组合优化问题。

它通过模拟遗传、突变、选择等过程,逐步优化问题的解。

遗传算法在解决NP难问题中有着独特的优势,比如图着色问题、旅行商问题等。

5. 模拟退火算法(Simulated Annealing Algorithm)模拟退火算法是一种基于统计力学原理的全局优化算法,用于解决组合优化问题。

它通过模拟固体退火过程,逐步降低系统能量,最终找到全局最优解。

模拟退火算法在解决NP难问题中表现优异,比如图着色问题、背包问题等。

模拟退火算法及其应用

模拟退火算法及其应用

模拟退⽕算法及其应⽤摘要⽣活中存在许多需要使⽤优化的情况,⽽为了解决这种情况便出现了很多的优化算法.模拟退⽕算法就是多种优化组合算法中的⼀种,它⼀直以来都是⼀个优化领域的热点,收到⼴⼤研究者的关注.作为优化组合算法中的佼佼者,它拥有相较于早期其他优化算法更便于计算,使⽤灵活适⽤于并⾏运算的优点,解决了部分传统算法⽆法规避⼤规模问题的不可⾏因素.模拟退⽕算法来源于模拟退⽕的过程,在1953年被Metropofis提出这种先进的思想,⽽后被Kirkpatrick等⼈于1983年引⼊到优化组合领域中,从此模拟退⽕算法就成为了许多优化算法中的⼀种.当然对于这种优越的算法并不仅仅是⽤于简单的优化问题中,它可⽤于的领域包括着⼯程科学在内的多种领域中.(删掉,摘要⾥不需要写这些)模拟退⽕算法虽然在各个领域中有着⼗分的成就,但它在组合优化上还是占有着⾮常重要的地位.本⽂中将会对于模拟退⽕算法的背景做出简述,并对模拟退⽕算法的原理内容做出介绍.为了更加清楚的了解模拟退⽕算法的性能,本⽂中对其举出例⼦来演⽰其在优化问题中的表现.在组合优化领域中NP(NP-Hard)问题⼀直都是⼀个⿇烦的问题,尤其其中著名的旅⾏商问题有着简单、⿇烦的特点.简单是指它的问题描述最为简化时,就是在⼏个点中找出最为短的路径;⿇烦却是当⼏个点增长到⼀定程度是就很难得出⼀个准确的解.⽽模拟退⽕算法却在这种难题中有着不俗的表现.关键词:模拟退⽕算法;组合优化问题;TSP问题AbstractMany require the use of optimization condition exists in life, and in order to resolve this situation occurs many optimization algorithm. Simulation is a combination of several optimization algorithm of simulated annealing algorithm, it is always a hot one optimization field, received the majority of researchers. As a leader in combination optimization algorithm, it has compared to other early optimization algorithm more easy to calculate, the use of flexible advantages of parallel computing, solve the infeasible factor part of traditional algorithm cannot avoid large-scale problems. Simulated annealing algorithm derived from the simulated annealing process, in 1953 Metropofis proposed the advanced ideas, and then by Kirkpatrick et al in 1983 into the optimization in the field, then the simulated annealing algorithm is one of many in the optimization algorithm. Of course, this algorithm is not only superior to simple optimization problems in various fields, which can be used in fields including engineering science in. Simulated annealing algorithm is very success in every field, but it is in the combinatorial optimization and occupies a very important position. This paper will make a brief for the simulated annealing algorithm to make the background, principle and content of the simulated annealing algorithm. In order to more clearly understand the performance of simulated annealing, to demonstrate the optimization problem in the performance for the examples in this article.In the field of combinatorial optimization problem in NP is always a difficult problem, especially the well-known traveling salesman problem which has the characteristics of simple, trouble. Simple refers to the description of the problem is the most simple, is at several points out the most short path; the trouble is when several points up to a certain extent is hardly an accurate solution. The simulated annealing algorithm has a good performance in this problem.Key words: the simulated annealing algorithm; combinatorial optimization;TSP⽬录第1章引⾔ ........................................... 错误!未定义书签。

人工智能原理_北京大学中国大学mooc课后章节答案期末考试题库2023年

人工智能原理_北京大学中国大学mooc课后章节答案期末考试题库2023年

人工智能原理_北京大学中国大学mooc课后章节答案期末考试题库2023年1.Turing Test is designed to provide what kind of satisfactory operationaldefinition?图灵测试旨在给予哪一种令人满意的操作定义?答案:machine intelligence 机器智能2.Thinking the differences between agent functions and agent programs, selectcorrect statements from following ones.考虑智能体函数与智能体程序的差异,从下列陈述中选择正确的答案。

答案:An agent program implements an agent function.一个智能体程序实现一个智能体函数。

3.There are two main kinds of formulation for 8-queens problem. Which of thefollowing one is the formulation that starts with all 8 queens on the boardand moves them around?有两种8皇后问题的形式化方式。

“初始时8个皇后都放在棋盘上,然后再进行移动”属于哪一种形式化方式?答案:Complete-state formulation 全态形式化4.What kind of knowledge will be used to describe how a problem is solved?哪种知识可用于描述如何求解问题?答案:Procedural knowledge 过程性知识5.Which of the following is used to discover general facts from trainingexamples?下列中哪个用于训练样本中发现一般的事实?答案:Inductive learning 归纳学习6.Which statement best describes the task of “classification” in machinelearning?哪一个是机器学习中“分类”任务的正确描述?答案:To assign a category to each item. 为每个项目分配一个类别。

模拟退火算法

模拟退火算法
模拟退火算法 (Simulation Annealing) 及其改进
目录
搜索算法简介
模拟退火算法的原理
模拟退火算法的应用
英文文献介绍
参考文献
搜索问题
最小最优解的搜索
局部最优
除对当 前的位 置外, 对环境 无任何 感知。
全局最优
搜索算法
• 盲目搜索与启发式搜索 • 按照预定的控制策略实行搜索,在搜索过程中 获取的中间信息不用来改进控制策略,称之为 盲目搜索,反之,称为启发式搜索。 • 盲目搜索
文献讲解——问题描述
• 如图,为一个二维运输网,由供应商,直接转运设施与用 户组成,本文做出以下相关假设,约束条件方便建模。
文献讲解——算法应用
• 退火算法流程 所示如图
• 求新解的方法 1.改变货物的顺序 2.改变进入车的顺序 3.改变出去车的顺序
文献讲解——计算与结论
• 通过设置不同的参数(S/C/D/Fmax) • 文中设置了两个例子分析:单产品,单卡车模型与多产品 多卡车模型。
外文文献讲解[2]
• 文献题目:Simulated annealing approach for transportation problem of cross-docking network design • 译名:使用模拟退火方法解决运输问题中的直接转运网的 设计 • 2014年,Uludag 大学,第二届世界商业经济管理大会 • 研究背景:在产品供应链管理中,运输效率是一个重要因 素,高效的运输既满足了顾客的需求,也降低了成本。直 接转运策略降低了储存成本加速了产品流通,而直接转运 网的设计与优化是一个研究热点。 • 研究目的:设计二维的直接转运网络,设计卡车载运计划 与货物的流通路径来实现最低的运输费用。

模拟退火算法及其改进算法

模拟退火算法及其改进算法

模拟退火算法及其改进算法模拟退火算法(Simulated Annealing Algorithm)是一种基于概率的全局优化算法,它模拟了金属冶炼过程中的“退火”过程。

退火过程是指将高温物质逐渐降温,使之逐渐固化形成晶态结构。

同样地,模拟退火算法通过随机和接受不太好的解决方案的策略,以找到全局最优解。

算法的基本思路是在一个空间中随机生成一个起始解,然后通过一系列的变换和评估过程逐步更新当前解,直到找到满足优化目标的解决方案。

在每次迭代中,算法会通过采样邻域解决方案来将当前解转移到新的状态,并计算相应的目标函数值。

如果新的状态比当前解更优,则接受新的解作为当前解,并在下一次迭代中继续。

如果新的状态不是更优的解,则以一定的概率接受新的解,概率的大小与两个解之间的差距以及当前温度有关。

温度逐渐降低,使得算法在开始时可以接受较差的解决方案,但随着迭代次数的增加逐渐降低接受较差解决方案的概率,最终使算法收敛到一个较好的解。

尽管模拟退火算法在全局优化问题中表现优秀,但仍存在一些问题,例如收敛速度慢、易陷入局部最优解等。

因此,研究者提出了一些改进算法来提高模拟退火算法的性能。

一种改进算法是自适应模拟退火算法(Adaptive Simulated Annealing, ASA),它利用负自适应参数来调整算法自身的控制参数,从而提高收敛速度。

通过对负自适应参数进行精确建模和合适的调整,能够使算法自动地根据当前状态的差距和目标函数值的变化来调整的速度和方向。

另一种改进算法是量子模拟退火算法(Quantum Simulated Annealing, QSA),它引入了量子位操作和量子态演化来提高效率。

QSA利用一种特殊的迭代方式来更新解决方案,将随机排列算法与量子信息处理技术相结合,通过量子态的演化来寻找最优解,并避免陷入局部最优解。

此外,还有一些其他的改进算法,如多重爬山算法(Multi-startHill Climbing)、禁忌算法(Tabu Search)等,它们在模拟退火算法的基础上增加了一些启发式方法和约束条件,从而进一步提高性能。

25个经典的元启发式算法

25个经典的元启发式算法

25个经典的元启发式算法1.贪婪算法(Greedy Algorithm):每一步都选择当前最优的解决方案。

2.动态规划(Dynamic Programming):将一个问题分解成多个子问题,通过保存并复用已解决的子问题的解来解决整个问题。

3.回溯算法(Backtracking):通过不断尝试所有可能的解决方案来解决问题,当出现无法继续的情况时进行回溯。

4.分支限界算法(Branch and Bound):通过评估当前解决方案并设置界限,避免无效的搜索,提高搜索效率。

5. A*算法(A-star):在图形结构中寻找从起点到终点的最短路径的算法,通过启发函数的估计值来指导搜索。

6. Dijkstra算法:用于计算图中各节点之间的最短路径的算法。

7.强化学习(Reinforcement Learning):通过试错和奖惩机制来训练智能体,使其逐渐改进策略。

8. K近邻算法(K-Nearest Neighbors):通过比较数据点之间的距离,将新数据点分类到最近的邻居中。

9.遗传算法(Genetic Algorithm):通过模拟生物遗传和进化的过程,优化问题的解。

10.蚁群算法(Ant Colony Optimization):通过模拟蚂蚁觅食的行为,优化问题的解。

11.神经网络(Neural Networks):模仿人类神经系统的结构和功能,进行模式识别和处理复杂数据。

12.禁忌搜索算法(Tabu Search):通过禁止一定范围内的已访问的解决方案,避免陷入局部最优解。

13.模拟退火算法(Simulated Annealing):模仿金属退火的过程,通过随机接受劣质解来逐步接近最优解。

14.最小生成树算法(Minimum Spanning Tree):寻找连接所有节点的最小代价的树形结构。

15.扩展算法(Expansion Algorithm):在图形结构中,通过扩展当前路径,寻找从起点到终点的最短路径。

爬山算法matlab代码

爬山算法matlab代码

爬山算法matlab代码爬山算法(Hill Climbing Algorithm)是一种简单而有效的优化算法。

它从一个初始解出发,通过不断地沿着当前最优解方向搜索,来达到局部最优解。

在爬山算法中,我们首先需要定义目标函数。

假设我们的目标是最小化一个函数$f(x)$,其中$x$是一个向量或多个变量的值。

1. 算法过程爬山算法的基本过程如下:(1)初始化当前解$x = x_0$,其中$x_0$可以是随机的。

(2)在初始解$x$的邻域中选择一个新的解$x'$。

(3)如果$f(x')$比$f(x)$更优,则将新解作为当前解$x$,重复步骤2和3,直到找到一个局部最优解或达到指定的停止条件。

注意,在爬山算法中,我们只考虑了当前解的邻域。

这意味着,我们可能会陷入局部最优解,而不是全局最优解。

在实际应用中,我们可以多次运行爬山算法,每次使用不同的初始解。

或者,我们可以使用更加复杂的优化算法,如遗传算法(Genetic Algorithm)或模拟退火算法(Simulated Annealing Algorithm),来找到全局最优解。

2. 算法特点(1)简单易懂,容易实现。

(2)只需要存储当前解和邻域解,不需要存储其他信息,因此占用内存较少。

(3)适用于优化问题较简单、目标函数连续可微的情况。

(4)容易陷入局部最优解,无法保证全局最优解。

3. 算法实现```function [x_opt, f_opt] = hill_climbing(f, x0, step_size, max_iter)% f: 目标函数% x0: 初始解% step_size: 邻域大小% max_iter: 最大迭代次数%% 初始化当前解x_curr = x0;f_curr = f(x_curr);%% 迭代寻找最优解for i = 1:max_iter%% 生成邻域解x_new = x_curr + step_size * randn(size(x0)); f_new = f(x_new);%% 判断邻域解是否更优if f_new < f_currx_curr = x_new;f_curr = f_new;endendend```4. 算法应用举例我们可以使用上述Hill Climbing算法来优化该函数。

基本模拟退火算法

基本模拟退火算法

基本模拟退火算法基本模拟退火算法概述模拟退火算法(Simulate Anneal ,SA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解。

模拟退火是S.Kirkpatrick, C.D.Gelatt 和M.P.Vecchi 在1983年所发明。

而V .Černý在1985年也独立发明此演算法。

模拟退火算法是解决TSP 问题的有效方法之一。

SA 来自冶金学的专有名词退火。

退火是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。

材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。

退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。

SA 的原理也和金属退火的原理近似:将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。

演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

1、算法原理基本SA 算法允许以一定的概率接受比当前解差的解,因此有助于跳出局部最优解,达到全局寻优的目的。

SA 算法接受新解的概率为:111 ()()()()t t C tt t f x f x P ef x f x +-∆+≤⎧=⎨>⎩ 其中1()()t t C f x f x +∆=- 2、算法步骤基本SA 算法的基本步骤如下:Step 1 随机生成一个可行解0x ,评估其适应度()0f x ;Step 2 主循环。

判断min T T <是否成立,若成立,输出结果退出程序,若不成立,继续。

Step 3 内循环Step 3.1 置内循环次数N c =0,Step 3.2 从邻域内产生一个新解,对其进行适应度评估,判断其适应度是否下降,若是,则接受该解,否则的话,再判断(0,1)C e rand -∆>是否成立,若是同样接受该解,否则舍弃该解。

simulated annealing算法

simulated annealing算法

simulated annealing算法摘要:1.简介2.模拟退火算法原理3.算法应用领域4.算法优缺点5.我国在模拟退火算法领域的研究进展正文:1.简介模拟退火算法(Simulated Annealing Algorithm)是一种受物理学中退火过程启发而来的全局优化算法。

该算法广泛应用于组合优化、信号处理、机器学习等领域,寻求复杂优化问题的全局最优解。

2.模拟退火算法原理模拟退火算法的基本思想是模拟物理中的退火过程。

在算法执行的初期,将搜索空间中的所有解看作是“冷”的,随着算法的执行,逐步将这些解“加热”到高温状态,使解在搜索空间中随机游走,增加解的多样性。

当达到一定的温度后,算法开始“冷却”,逐渐降低温度,并以一定概率接受更差的解,避免陷入局部最优解。

在整个过程中,算法通过接受或拒绝解来更新解的分布,最终收敛于全局最优解。

3.算法应用领域模拟退火算法在众多领域中都有广泛应用,如组合优化问题(旅行商问题、装载问题等)、信号处理(滤波器设计、图像处理等)、机器学习(特征选择、神经网络训练等)。

4.算法优缺点模拟退火算法的优点在于能够跳出局部最优解,寻找到全局最优解。

同时,算法具有较强的鲁棒性,适用于处理复杂、非线性、高维的优化问题。

然而,该算法在搜索过程中需要大量的计算资源,收敛速度相对较慢,且在某些问题中可能陷入局部最优解。

5.我国在模拟退火算法领域的研究进展近年来,我国在模拟退火算法领域取得了一系列研究成果。

不仅在理论上对算法进行了深入研究,如改进算法收敛速度、降低计算复杂度等,还将其应用于实际问题中,如无线通信、数据挖掘等。

模拟退火算法的教程

模拟退火算法的教程

exp(-(E(rt)-E(r))/t)>random(0,1), 则令r=rt.
Step2.2 不满足内循环停止条件时1,. 达重到复终S止t温ep度2.1
Step3 外循环
2. 达到迭代次数 3. 最优值连续若干步
Step3.1 降温t = decrease(t)
保持不变
Step3.2 如不满足外循环停止条件,则转Step2;否则算 法结束
6 模拟退火算法关键参数和操作的设计
状态产生函数
❖ 原则 产生的候选解应遍布全部解空间
❖ 方法 在当前状态的邻域结构内以一定概率方式(均匀分 布、正态分布、指数分布等)产生
❖ 6 模拟退火算法关键参数和操作的设计
状态接受函数 ❖ 原则
(1)在固定温度下,接受使目标函数下降的候选解的 概率要大于使目标函数上升的候选解概率; (2)随温度的下降,接受使目标函数上升的解的概率 要逐渐减小; (3)当温度趋于零时,只能接受目标函数下降的解。 ❖ 方法 具体形式对算法影响不大 一般采用min[1,exp(-∆C/t)]
3模拟退火算法的原理
❖ 根据Metropolis准则,粒子在温度T时趋于平衡的概率为 exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变量,k 为Boltzmann常数。用固体退火模拟组合优化问题,将内能 E模拟为目标函数值f,温度T演化成控制参数t,即得到解组 合优化问题的模拟退火算法:由初始解i和控制参数初值t开 始,对当前解重复“产生新解→计算目标函数差→接受或舍 弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得 近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随 机搜索过程。
可知: >0
<1
(1)在同一个温度,分子停留在能量小状态的概率

模拟退火算法英文实验报告

模拟退火算法英文实验报告

模拟退火算法英文实验报告Simulated Annealing Algorithm: An Experimental ReportIn the realm of optimization problems, the simulated annealing algorithm stands as a powerful heuristic technique inspired by the annealing process in metallurgy. This report presents an experimental study on the simulated annealing algorithm, detailing its implementation, performance, and comparison with other optimization methods.IntroductionThe simulated annealing algorithm was first introduced by Kirkpatrick, Gelatt, and Vecchi in 1983 as a probabilistic technique for finding an approximate solution for a given optimization problem. It is particularly useful for complex problems where traditional methods such as gradient descent may fail to find the global minimum due to local minima.MethodologyThe experiment was conducted using a Python implementation of the simulated annealing algorithm. The objective function chosen for the experiment was a multimodal function, which is known to be challenging for optimization algorithms. The algorithm parameters, including the initial temperature, cooling rate, and stopping criteria, were carefully chosen to ensure a thorough exploration of thesolution space.ResultsThe algorithm was run multiple times with differentinitial conditions to evaluate its robustness. The results demonstrated that the simulated annealing algorithm was able to find near-optimal solutions consistently. The convergence rate and the quality of the solutions were analyzed, and the algorithm showed a gradual improvement in performance as the temperature decreased.Comparison with Other AlgorithmsThe performance of the simulated annealing algorithm was compared with other optimization techniques such as hill climbing and genetic algorithms. The comparison revealed that while hill climbing was faster, it was prone to getting stuck in local minima. On the other hand, the simulated annealing algorithm, with its probabilistic acceptance of worse solutions, was able to escape local minima and find better solutions overall.DiscussionThe simulated annealing algorithm's performance is highly dependent on its parameters. The choice of initial temperature and cooling schedule significantly affects the algorithm's ability to explore the solution space and converge to a good solution. The experiment highlighted the importance of parameter tuning in achieving optimal results.ConclusionThe simulated annealing algorithm proved to be aneffective tool for solving complex optimization problems. Its ability to balance exploration and exploitation makes it a versatile choice for a wide range of applications. Futurework could involve refining the parameter selection process and exploring its applicability to real-world problems.References1. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680.2. Cerny, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41-51.This report concludes with a brief overview of the simulated annealing algorithm's application and its potential for further research and practical use in optimization problems.。

25个经典的元启发式算法

25个经典的元启发式算法

25个经典的元启发式算法元启发式算法(metaheuristic algorithm)是一种用于解决复杂优化问题的算法。

它们通常基于自然界的现象或者数学模型,能够快速、有效地寻找到全局最优解或者接近最优解。

下面我们来看看25个经典的元启发式算法。

1.蚁群算法(Ant Colony Optimization):模拟蚂蚁寻找食物的行为,用于解决组合优化问题。

2.遗传算法(Genetic Algorithm):模拟生物进化的过程,用于解决优化问题。

3.粒子群算法(Particle Swarm Optimization):模拟鸟群觅食的行为,用于解决连续优化问题。

4.模拟退火算法(Simulated Annealing):模拟固体退火的过程,用于解决组合优化问题。

5.蚁狮算法(Ant Lion Optimizer):模拟蚁狮捕食的过程,用于解决连续优化问题。

6.蝗虫优化算法(Grasshopper Optimization Algorithm):模拟蝗虫觅食的行为,用于解决优化问题。

7.人工蜂群算法(Artificial Bee Colony Algorithm):模拟蜜蜂寻找花蜜的行为,用于解决优化问题。

8.蝇算法(Fly Algorithm):模拟蝇类觅食的行为,用于解决优化问题。

9.骨骼优化算法(Skeleton-based Optimization Algorithm):模拟骨骼结构的优化过程,用于解决优化问题。

10.人工鱼群算法(Artificial Fish Swarm Algorithm):模拟鱼群觅食的行为,用于解决优化问题。

11.基因表达式编程算法(Gene Expression Programming Algorithm):模拟基因调控的过程,用于解决优化问题。

12.蚁狮算法(Ant Lion Optimizer):模拟蚁狮捕食的过程,用于解决连续优化问题。

13.蝗虫优化算法(Grasshopper Optimization Algorithm):模拟蝗虫觅食的行为,用于解决优化问题。

遗传算法,模拟退火,粒子群

遗传算法,模拟退火,粒子群

遗传算法,模拟退火,粒子群遗传算法(Genetic Algorithm,简称GA)是一种模拟自然界生物进化过程的优化算法。

它基于达尔文的进化论和遗传学理论,通过模拟群体中个体之间的遗传、变异、选择和适应度评估等操作,来寻找最优解。

遗传算法以其优秀的全局搜索能力和适应于复杂问题的特点而受到广泛关注和应用。

遗传算法通常包含以下几个重要的步骤:初始化种群、选择操作、交叉操作、变异操作和适应度评估。

初始化种群:首先需要随机生成一定数量的个体,这些个体称为种群。

每个个体由一组基因表示,每个基因可看作是问题的一个解空间,种群中每个个体都是解空间的一个备选解。

选择操作:选择操作是指根据个体适应度对种群中的个体进行筛选,选出一定数量的优秀个体作为下一代个体的父母。

交叉操作:交叉操作是指从父代个体中选取一对个体,通过基因交换产生新的个体。

交叉的方式可以是单点交叉、多点交叉或均匀交叉等。

变异操作:变异操作是指对个体的基因进行变异,以增加种群的多样性。

变异操作通常是在某些染色体位置进行随机变换。

适应度评估:适应度评估是根据问题的要求,对个体的解进行评估,计算其适应度值。

适应度值反映了个体解的优劣程度,是选定优秀个体的依据。

模拟退火算法(Simulated Annealing,简称SA)是一种基于物理退火原理的优化算法。

它借鉴了固体物质在退火过程中达到热平衡的特性,通过模拟系统在高温下随机运动和在低温下逐渐冷却的过程,来寻找最优解。

模拟退火算法通常包含以下几个关键步骤:初始化状态、定义初始温度、定义温度下降策略、状态转移和判断停止条件。

初始化状态:首先需要随机生成一个初始解,这个解可以是问题的一个备选解。

定义初始温度:初始温度是模拟退火算法的一个重要参数,它决定了初始状态的接受概率。

初始温度越高,接受次优解的概率越大。

定义温度下降策略:温度下降策略是指在退火过程中温度如何下降的策略。

通常采用指数或线性函数来降低温度。

状态转移:状态转移是模拟退火算法的关键步骤,它决定了是否接受新的状态。

模拟退火算法原理

模拟退火算法原理

模拟退火算法原理
1模拟退火算法
模拟退火算法(Simulated Annealing Algorithm)是一种随机搜索算法,它可以用来求解各种最优化问题。

模拟退火算法可以在给定要求下,以较小的步骤寻找局部最优值,从而实现全局搜索。

2基本原理
模拟退火算法是一种基于物理模型的搜索算法,它借鉴了金属固态材料的固熔变换原理。

一个金属在加热的过程中,先熔化再固化。

在它熔化的时候,可以使处于混乱的状态,然后在冷却的过程中,金属就会自动的变为一个更熔化状态的结构。

同样的,模拟退火算法也是在每次搜索过程中,建立一个限制使它位于搜索空间一个固定且局部最佳的点。

来达到现实生活中金属固化状态找到最优结构的目的。

3工作原理
模拟退火算法通常是从初始解出发搜索最优解。

每次搜索的时候,它会根据“退火温度”进行邻域搜索,并接受低于当前温度的任何节点,而拒绝更高温度的节点。

当温度逐渐降低时,节点被搜索概率就会减少,使得搜索更加局部化,从而提高搜索效率,因此可以找到更优的解决方案。

4应用
模拟退火算法可以应用于求解优化问题中,比如最小路径规划问题,解决非线性规划问题,投资运筹学中组合优化等。

此外,模拟退火算法还可以用于信息检索,图像处理,自然语言处理,建模,网络结构研究,机器学习研究,控制研究等。

最新提出了玻尔兹曼机BM是典型的随机神经网络-药学医学精品资料

最新提出了玻尔兹曼机BM是典型的随机神经网络-药学医学精品资料

9
Simulated annealing

Simulated annealing algorithm
set T optimize for given T lower T repeat
• Geman & Geman (1984): if T is lowered sufficiently slowly (with respect to the number of iterations used to optimize at a given T), simulated annealing is guaranteed to find the global minimum. • Caveat: this algorithm has no end (Geman & Geman’s T decrease schedule is in the 1/log of the number of iterations, so, T will never reach zero), so it may take an infinite amount of time for it to find the global minimum.
8
Simulated Annealing Metropolis algorithm
– Metropolis algorithm 是一种改进的Monte Carlo随机方法,在充分迭代的基础下,以保证 某个温度下的热平衡。 – 它给出了在某个温度下随机扰动产生的新状态 的接受原则─结合爬山法和随机行走。 – 是模拟退火过程的基础。在退火过程中,在每 个温度下需进行Metropolis algorithm


平衡态:网络的各个状态会以不同的概率出现。或者说,平衡态

matlab simulated_annealing 函数的使用

matlab simulated_annealing 函数的使用

matlab simulated_annealing 函数的使用在 MATLAB 中,simulated_annealing 函数是用于模拟退火算法的优化函数。

它可以帮助我们寻找一个函数的全局最小值(或最大值),即找到使目标函数取值最小(或最大)的参数。

下面是使用 simulated_annealing 函数的一般步骤:1. 定义目标函数。

首先,需要定义需要进行优化的目标函数。

这个函数可以是任意 MATLAB 函数,只要它接受参数并返回一个标量值。

2. 设置算法参数。

使用 optimoptions 函数来创建一个 options对象,用于设置模拟退火算法的参数。

例如,可以设置初始温度、退火率、最大迭代次数等。

3. 调用 simulated_annealing 函数。

使用 simulated_annealing 函数来运行模拟退火算法。

需要传递目标函数和 options 对象作为参数。

下面是一个简单的示例,说明如何使用 simulated_annealing 函数:```matlab% 定义目标函数objective = @(x) x(1)^2 + x(2)^2;% 创建 options 对象options = optimoptions('simulannealbnd', 'MaxIterations', 1000);% 调用 simulated_annealing 函数x0 = [1, 1]; % 初始参数值[xmin, fmin] = simulated_annealing(objective, x0, [], [], options);```在这个示例中,目标函数是简单的二次函数(x1^2 + x2^2),我们的目标是找到使其最小化的参数值。

options 对象中设置了最大迭代次数为 1000。

初始参数值 x0 设置为 [1, 1],即优化过程的起点。

运行 simulated_annealing 函数后,返回最优参数值 xmin 和最小目标函数值 fmin。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A simple simulated annealing algorithm for the maximum clique problemXiutang Geng *,Jin Xu,Jianhua Xiao,Linqiang PanKey Laboratory of Image Processing and Intelligent Control,Department of Control Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,ChinaReceived 20June 2006;received in revised form 3June 2007;accepted 6June 2007AbstractSimulated annealing technique has mostly been used to solve various optimization and learning problems,and it is well known that the maximum clique problem is one of the most studied NP-hard optimization problems owing to its numerous applications.In this note,a simple simulated annealing algorithm for the maximum clique problem is proposed and tested on all 80DIMACS maximum clique instances.Although it is simple,the proposed simulated annealing algorithm is effi-cient on most of the DIMACS maximum clique instances.The simulation results show that the proposed simulated anneal-ing algorithm outperforms a recent efficient simulated annealing algorithm proposed by Xu and Ma,and the solutions obtained by the proposed simulated annealing algorithm have the equal quality with those obtained by a recent trust region heuristic algorithm of Stanislav Busygin.Ó2007Elsevier Inc.All rights reserved.Keywords:Simulated annealing algorithm;Maximum clique problem;Minimum vertex cover problem;NP-hard optimization problem;Heuristic algorithm1.IntroductionIn this note,only simple undirected graphs are considered.For notions and notations on graph theory and simulated annealing,please refer to [21,19],respectively.For a given graph,the maximum clique problem is to find the largest number of vertices,any two of which are adjacent.In 1999,Hastad [9]showed that unless NP =ZPP,for any e >0,there is no polynomial-time algorithm to approximate Max-Clique within a factor n 1Àe ,where ZPP is the class of languages which can be recognized by randomized algorithms for which the expected running time is polynomial in the input size.So it seems to be impossible to have an exact polynomial time algorithm for the maximum clique problem,and approximation of large clique is also hard.But,the maximum clique problem is related to many real-life0020-0255/$-see front matter Ó2007Elsevier Inc.All rights reserved.doi:10.1016/j.ins.2007.06.009*Corresponding author.Tel.:+862787543563;fax:+862787543130.E-mail addresses:gxt1028@ (X.Geng),jxu@ (J.Xu),jhxiao@ (J.Xiao),lqpan@ (L.Pan).Information Sciences 177(2007)5064–5071X.Geng et al./Information Sciences177(2007)5064–50715065 problems,such as classification theory,coding theory and project selection.Hence there is,in practice,a great need of efficient heuristic algorithms.Some exact algorithms for the maximum clique problem have been proposed.For instance,Balas and Yu [1]discussed how tofind a maximum clique in an arbitrary graph;Carraghan and Pardalos[5]gave an exact algorithm for the maximum clique problem;Pardalos and Rodger[15]proposed a branch and bound algo-rithm for the maximum clique problem;and O¨sterga˚rd[14]introduced an improved branch and bound algo-rithm for the maximum clique problem.However,these exact algorithms are only adapted to some graphs with small size.So,various approximate methods have been applied in solving the maximum clique problem.For example,Zhang et al.[23]proposed an algorithm for the maximum clique problem of a given graph based on the Hopfield networks;Bomze et al.[3]presented a new heuristic algorithm for the maximum clique problem based on annealed replication;Gala´n Marı´n et al.[7]discussed the modeling competitive Hopfield networks for the maximum clique problem;Han-sen et al.[8]proposed a basic variable neighborhood search for the maximum clique problem;Zhang et al.[22] described an evolutionary algorithm with guided mutation for the maximum clique problem;Katayama et al.[10]proposed an effective local search for the maximum clique problem;Busygin[4]developed a new trust region technique for the maximum weight clique problem;Dukanovic and Rendl[6]presented a new method of semi-definite programming relaxations for maximal clique problem;Tomita and Kameda[18]proposed an efficient branch-and-bound algorithm forfinding a maximum clique with computational experiments.For the above various approximate algorithms,different algorithms are efficient for different types of DIMACS max-imum clique instances.For instance,the algorithm in[22]is more efficient for the type gen maximum clique instances than the algorithm in[4],while the algorithm in[4]is more efficient for the type brock maximum clique instances than the algorithm in[22].As a result,a new approximate algorithm for the maximum clique problem is of interest.Simulated annealing technique was formally introduced for solving combinatorial optimization problems [11]in1983.Since then,it has been widely used to solve many optimization problems:Bandyopadhyay et al.[2]described a method forfinding decision boundaries using simulated annealing algorithm;Sa´nchez et al.[17]developed a simulated annealing-based method for inducting both parameters and structure of a fuzzy classifier;Poranen[16]presented a simulated annealing algorithm for determining the thickness of a graph;Xu et al.[20]considered an efficient simulated annealing algorithm for the minimum vertex cover prob-lem;Lin and Chen[12]proposed a simulated annealing algorithm based on graph model to solve multi-layer constrained via minimization;Nalini and Raghavendra Rao[13]discussed a systematic study of efficient heu-ristic in the successful attacks of some block ciphers by simulated annealing algorithm.Simulated annealing is a choice technique forfinding good solutions to a wide variety of problems.However,any published paper for the maximum clique problem based on simulated annealing algorithm hasn’t been proposed yet.Hence,an efficient simulated annealing algorithm for the maximum clique problem is of interest and necessity.For a given graph with n vertices,in this note,a simple simulated annealing algorithm forfinding a clique m (maximum clique or approximate maximum clique)is proposed,where n P m.With the proposed simulated annealing algorithm,a clique of the given graph can be putational experiments indicate that the proposed simulated annealing algorithm is more efficient than a recent efficient simulated annealing algorithm in[20],and the solutions obtained by the proposed simulated annealing algorithm have the equal quality with those obtained by a recent trust region heuristic algorithm in[4].The rest of the note is organized as follows.Section2presents the objective function of the maximum clique problem.The simple simulated annealing algorithm for the maximum clique problem is described in Section3. Some experimental results obtained are presented in Section4.The note is concluded in Section5.2.The objective function for the maximum clique problemTo solve the maximum clique problem with different methods,different objective functions have to be set up.In this note,a new objective function for the maximum clique problem is proposed based on simulated annealing algorithm,and the establishment of the objective function is as follows.Let G(V,E)be a graph with n vertices,and let A G(a k,l)be the adjacency matrix of G(V,E),where k, l=0,1,...,nÀ1.Then G(V,E)has a clique of size m if there exists a permutation r of V such thatX mÀ2 k¼0X mÀ1l¼kþ1ð1Àa rðkÞ;rðlÞÞ¼0:ð1ÞSo,the objective of the maximum clique problem is to minimize the left of formula(1)equal to zero by trying random variation of permutation r.The random variation of permutation r is achieved by swapping the la-bels of two different vertices of G(V,E),and therefore transforms the adjacency matrix A G(a k,l).The rule of choosing two different vertices for swapping is described in step3of Section3.In this note,the objective func-tion for the maximum clique problem can be described as follows:FðG;rÞ¼X mÀ2k¼0X mÀ1l¼kþ1ð1Àa rðkÞ;rðlÞÞ:ð2Þ3.The simple simulated annealing algorithm for the maximum clique problemSimulated annealing technique canfind a good solution to an optimization problem by trying random vari-ations of the current solution.A worse variation is accepted as the new solution with a probability that decreases as the computation proceeds.The slower the cooling schedule,the more likely the algorithm is to find an optimal or near-optimal solution.Suppose the initial state(initial solution)of the maximum clique problem is defined by a random initial permutation r of V in G(V,E).After the labels of two different vertices of G(V,E)swap each other,a new per-mutation r0(new solution)of V is generated.In this note,the process of swap is called state transition,and the new permutation r0is a neighbor to the initial permutation r.Hence the increment of objective functions is described as follows:D F¼FðG;r0ÞÀFðG;rÞ:ð3ÞFor simulated annealing algorithm,if D F60,the new permutation r0is accepted.Otherwise the probability of accepting the new permutation r0is controlled by the acceptance function,and the rule of accepting the new permutation r0is described in step5of the proposed simulated annealing algorithm’s procedures.Where the acceptance function can be described as follows:p¼eÀD F=t;ð4Þwhere t denotes current temperature.Finally,the detailed procedures of the proposed simulated annealing algorithm for the maximum clique problem are given as follows:Step1:Initialize parameters.Set initial temperature T I,end temperature T S and cooling coefficient a of temperature.Input the adjacency matrix A G(a k,l)of a DIMACS maximum clique instance and a positive integer m which denotes the size of a clique of G(V,E),and compute objective function F(G,r).Suppose initial permu-tation r(i)=i,i=0,1,...,nÀ1.Step2:Adjust the initial permutation r.Intuitively,a vertex with higher degree(the number of incident edges)is more probable to be included in G’s a maximum clique.So the permutation r is adjusted with respect to the degrees of vertices so that d(r(1))<d(r(2))<ÁÁÁ<d(r(n)),where d(i)denotes the degree of the vertex i.Step3:Select two different vertices v u and v w of G(V,E).In the note,for the random variations of permutation r,the selection of two different vertices v u and v w is crucial,where u=0,1,2,...,mÀ1,and w=m,m+1,...,nÀ1.In the proposed simulated annealing algorithm,two restricting conditions for selecting v u and v w are set to help search a max-imum clique or an approximate maximum clique more efficiently.LetF0ðG;v zÞ¼X mÀ1i¼0;i¼z a i;z:ð5Þ5066X.Geng et al./Information Sciences177(2007)5064–5071X.Geng et al./Information Sciences177(2007)5064–50715067 Then the two restriction conditions are described as follows:Restricting condition1:If F0(G,v u)6F0(G,v w),the two vertices v u and v w are accepted,and go to step4.Restricting condition2:If F0(G,v u)>F0(G,v w),go back to step3and select a different vertex for v w.But,if F0(G,v u)>F0(G,v w) appears for more than8n times,the two vertices v u and v w are accepted,and go to step4.Step4:Perform state transition.After the selection of the two different vertices v u and v w of G(V,E),swap their labels and perform the state transition or the varying of permutation r,and a new permutation r0is attained.Finally,com-pute objective function F(G,r0).If F(G,r0)=0,end the proposed simulated annealing algorithm;otherwise go to step5.Step5:Accept or reject the new permutation r0.Compute the increment of the objective functions D F=F(G,r0)ÀF(G,r).If D F60,r=r0,i.e.r0is accepted.Otherwise compute the probability of accepting the new permutation r0according to for-mula(4),and generate a random number b,where b2[0,1].If p>b,r=r0;otherwise the new per-mutation r0is rejected.Step6:Continue or end the proposed simulated annealing algorithm.Compute current temperature t=a t.If t<T S,end the proposed simulated annealing algorithm;otherwise go back to step3and select two different vertices v u and v w.4.Simulation resultsIn order to assess the effectiveness of the proposed simple simulated annealing algorithm,in this note,sim-ulation was carried out on all80DIMACS maximum clique instances downloaded from the URL http:// /txn131/INSTANCES/clique.html.The parameters used in the proposed simulated annealing Table1Parameters used in the proposed simulated annealing algorithmParameters Initial value MeaningT I100.0Initial temperatureT S0.001End temperaturea10.9996The constant to decrease temperature for Table2a20.9995The constant to decrease temperature for Table3L8n The maximum times for rejecting the selected vertex v u and v w Table2The simulation results of the proposed simulated annealing algorithm(short for SAA)with a1=0.9996were compared with those obtained by a recent efficient simulated annealing algorithm(short for ESA)for the minimum vertex cover problem in[20]on9DIMACS maximum clique instancesInstance Order Density Clique cover ESA[20]Proposed SAATime(s)Rate(%)Time(s)Rate(%) MANN_a9450.9271629–100<1100c-fat200-22000.16324176–100<1100c-fat500-15000.03614486–98<1100 hamming6-2640.9053232–100<1100 johnson8-2-4280.556424–100<1100 johnson32-2-44960.87916480–99<1100p_hat300-33000.74436264–982100p_hat500-15000.2539491–99<1100 sanr200_0.72000.69718182–98<1100 Where notation‘‘–’’denotes that the computation time of the algorithm in[20]is absent.5068X.Geng et al./Information Sciences177(2007)5064–5071Table3The simulation results of the proposed simulated annealing algorithm with a2=0.9995were compared with those obtained by a trust region technique(short for TR)for the maximum weight clique problem in[4]on all80DIMACS maximum clique instances Instance Order Density Clique TR[4]Proposed SAAj C j Time(s)j C j Time(s)Rate(%)Run times brock200_12000.74521211Æ2157020brock200_22000.4961212<1Æ1281020brock200_32000.605151511429520brock200_42000.6581717<116<110020brock400_14000.7482727425222020brock400_24000.7492929425293020brock400_34000.7483131525263520brock400_44000.7493333425263520brock800_18000.649232336211311020brock800_28000.651242435211241020brock800_38000.649252537211221020brock800_48000.650262635211251020C125.91250.8983434<1Æ34<110020C250.92500.89944441Æ4449520C500.95000.900P57558Æ5759520C1000.910000.901P686471Æ682220.5200C2000.520000.500P16161547Æ168771020C2000.920000.900P77721519747762020C4000.540000.500P181715,558179032020c-fat200-12000.0771212<1Æ12<110020c-fat200-22000.1632424<1Æ24<110020c-fat200-52000.4265858<1Æ58<110020c-fat500-15000.03614144Æ1449520c-fat500-25000.07326263Æ26<110020c-fat500-55000.18664642Æ64<110020c-fat500-105000.3741261263Æ126<110020DSJC500.55000.500P13135Æ13179520DSJC1000.510000.500P151436Æ153631520gen200_p0.9_442000.9004442<1Æ44215520gen200_p0.9_552000.90055551Æ55110020gen400_p0.9_554000.90055512Æ55311020gen400_p0.9_654000.90065652Æ65289020gen400_p0.9_754000.90075752Æ75753520 hamming6-2640.9053232<1Æ32<110020 hamming6-4640.34944<1Æ4<110020 hamming8-22560.969128128<1Æ12839520 hamming8-42560.63916161Æ16<110020 hamming10-210240.99051251238Æ5124275520 hamming10-410240.829P403645Æ401448020 johnson8-2-4280.55644<1Æ4<110020 johnson8-4-4700.7681414<1Æ14<110020 johnson16-2-41200.76588<1Æ8<110020 johnson32-2-44960.87916165Æ16<110020keller41710.64911111Æ11<19520keller57760.751272616Æ271434100keller633610.818P59531291516441020 MANN_a9450.9271616<1Æ16<110020 MANN_a273780.9901261251Æ126491100 MANN_a4510350.996345342173343932020 MANN_a8133210.999P110010964771080187910020p_hat300-13000.244881Æ8<110020p_hat300-23000.48925251Æ25<110020p_hat300-33000.74436351Æ36210020p_hat500-15000.253993Æ9<110020p_hat500-25000.50536364Æ36110020(continued on next page)X.Geng et al./Information Sciences177(2007)5064–50715069Table3(continued)Instance Order Density Clique TR[4]Proposed SAAj C j Time(s)j C j Time(s)Rate(%)Run times p_hat500-35000.752P50484Æ50327520p_hat700-17000.249111110Æ11189520p_hat700-27000.498444412Æ44310020p_hat700-37000.748P626211Æ621210020p_hat1000-110000.245P101028Æ10610020p_hat1000-210000.490P464534Æ461610020p_hat1000-310000.744P686532Æ681008020p_hat1500-115000.253121295Æ124901100p_hat1500-215000.506P6564111Æ654010020p_hat1500-315000.754P9491108Æ942157020san200_0.7_12000.700303011791020san200_0.7_22000.7001818<11591020san200_0.9_12000.9007070<16112520san200_0.9_22000.90060601Æ6012520san200_0.9_32000.9004440<1Æ4465520san400_0.5_14000.500131327<110020san400_0.7_14000.700404032136520san400_0.7_24000.7003030216257020san400_0.7_34000.7002218217305520san400_0.9_14000.900100100257381020san100010000.5021515258<110020sanr200_0.72000.69718181Æ18<110020sanr200_0.92000.8984241<1Æ4257520sanr400_0.54000.50113132Æ13177020sanr400_0.74000.700P21202Æ21138020 Where notation‘‘Æ’’denotes that the found clique is exact or best known solution.algorithm are shown in Table1.The proposed simulated annealing algorithm was carried out on an AOPEN-PC(PentiumIII,866MHz)with C++.In Table2,the results with a1=0.9996were compared with those obtained by a recent efficient simulated annealing algorithm in[20],and in Table3,the results with a2=0.9995were compared with those obtained by a trust region algorithm in[4].For a given graph G(V,E)with n vertices,let be the complement of graph G(V,E),let x(G)be the size of the maximum clique size of graph G(V,E),and let c(G)be the minimum vertex cover size of graph then x(G)=nÀc(G).So,the maximum clique problem is computationally equivalent to the mini-mum vertex cover problem.Therefore,in Table2,the results of the proposed simulated annealing algorithm were compared with that obtained by a recent efficient simulated annealing algorithm for the minimum vertex cover problem in[20]on 9DIMACS maximum clique instances,which were tested as example.The proposed simulated annealing algo-rithm was run100times from different initial solution states for each DIMACS maximum clique instance.In Table2,it can be seen that the simulation results show that the proposed simulated annealing algorithm can find the optimal solutions of the9DIMACS maximum clique instances with a rate of100%,and the average computation time is less than2s.However,the algorithm in[20]can onlyfind the optimal solutions with a rate of near100%.In Table3,all80DIMACS maximum clique instances are tested with the proposed simulated annealing algorithm.The proposed simulated annealing algorithm was run at least20times from different initial solu-tions for each DIMACS maximum clique instance,and the results of the proposed simulated annealing algo-rithm were compared with those obtained by a recent trust region technique for the maximum weight clique problem in[4].As shown in Table3,the trust region algorithm is faster than the proposed simulated annealing algorithm for some small instances,but for the higher order instance C4000.5and the equal clique size17,the proposed simulated annealing algorithm is faster.Exact or best known solutions were found by the trust region algorithm in57instances,and the proposed simulated annealing algorithm only found the exact or best known solutions in56instances.While the trust region algorithm managed tofind more exact solutions(in575070X.Geng et al./Information Sciences177(2007)5064–5071instances)than the proposed simulated annealing algorithm(56instances),the results are still encouraging. The proposed simulated annealing algorithm performed very well for the21DIMACS maximum clique instances of type gen and p-hat.For example,the proposed simulated annealing algorithm canfind the exact or best known solutions for the21instances,but,the trust region algorithm in[4]can onlyfind the exact or best known solutions for12instances.5.ConclusionIn this note,a simple simulated annealing algorithm for the maximum clique problem is proposed.In the proposed simulated annealing algorithm,two restriction conditions for the selection of two different vertices v u and v w are given in step3of Section3,the two restriction conditions have improved the efficiency of the pro-posed simulated annealing algorithm.For all80DIMACS maximum clique instances,the proposed simulated annealing algorithm canfind an exact or best solution in56instances with a rate of70%.At the same time,the proposed simulated annealing algorithm is efficient for the problems of c-fat,DSJC,gen,hamming,Johnson and p-hat according to Table3.The simulation results show that the proposed simulated annealing algorithm outperforms a recent efficient simulated annealing algorithm in[20],and the solutions have the equal quality with those obtained by a recent trust region heuristic algorithm of Stanislav Busygin in[4].Furthermore,the proposed simulated annealing algorithm is also efficient infinding the maximum wheel,the maximum circle, the maximum path and any sub-graph for a random graph.We focus mainly on simulated annealing algorithm for the maximum clique problem and do not mention on the other heuristic algorithms in this note,such as genetic algorithm and tabu search.Therefore,it may be a subject of future work.One hybrid heuristic algorithm for the maximum clique problem may be considered to find better solutions.Another study in the future may develop a more efficient method for the selection of the above two different vertices v u and v w to improve the speed of constringency.AcknowledgementsThe authors thank the anonymous reviewer and Professor Witold Pedrycz for their constructive comments and suggestions.Mr.Ho Simon Wang at Academic Writing Center,HUST,has provided tutorial support to improve the manuscript.The research was supported in part by the National Natural Science Foundation of China(Grant Nos.60373089,60674106,and60533010),the Program for New Century Excellent Talents in University(NCET-05-0612),the Ph.D.Programs Foundation of Ministry of Education of China (20060487014),and the Chenguang Program of Wuhan(200750731262).References[1]E.Balas,C.S.Yu,Finding a maximum clique in an arbitrary graph,SIAM Journal on Computing15(4)(1986)1054–1068.[2]S.Bandyopadhyay,S.K.Pal,C.A.Murthy,Simulated annealing based pattern classification,Information Sciences109(1998)165–184.[3]I.M.Bomze,M.Budinich,M.Pelillo,C.Rossi,Annealed replication:a new heuristic for the maximum clique problem,DiscreteApplied Mathematics121(2002)27–49.[4]S.Busygin,A new trust region technique for the maximum weight clique problem,Discrete Applied Mathematics154(2006)2080–2096.[5]R.Carraghan,P.M.Pardalos,An exact algorithm for the maximum clique problem,Operations Research Letters9(1990)375–382.[6]I.Dukanovic,F.Rendl,Semi-definite programming relaxations for graph coloring and maximal clique problems,MathematicalProgramming,Series B109(2007)345–365.[7]G.Gala´n-Marı´n, E.Me´rida-Casermeiro,J.Mun˜oz-Pe´rez,Modelling competitive Hopfield networks for the maximum cliqueproblem,Computers and Operations Research30(2003)603–624.[8]P.Hansen,N.Mladenovic,D.Urosˇevic,Variable neighborhood search for the maximum clique,Discrete Applied Mathematics145(2004)117–125.[9]J.Hastad,Clique is hard to approximate within n1Àe,Acta Mathematica182(1999)105–142.[10]K.Katayama,A.Hamamoto,H.Narihisa,An effective local search for the maximum clique problem,Information Processing Letters95(2005)503–511.[11]S.Kirkpatrick,C.D.Gelatt,M.P.Vecchi,Optimization by simulated annealing,Science220(1983)671–680.X.Geng et al./Information Sciences177(2007)5064–50715071 [12]R.B.Lin,S.Y.Chen,Conjugate conflict continuation graphs for multi-layer constrained via minimization,Information Sciences177(2007)2436–2447.[13]N.Nalini,G.Raghavendra Rao,Attacks of simple block ciphers via efficient heuristics,Information Sciences177(2007)2553–2569.[14]P.R.J.O¨sterga˚rd,A fast algorithm for the maximum clique problem,Discrete Applied Mathematics120(2002)197–207.[15]P.M.Pardalos,G.P.Rodger,A branch and bound algorithm for the maximum clique problem,Computers and Operations Research19(5)(1992)363–375.[16]T.Poranen,A simulated annealing algorithm for determining the thickness of a graph,Information Sciences172(2005)155–172.[17]L.Sa´nchez,I.Couso,J.A.Corrales,Combining GP operators with SA search to evolve fuzzy rule based classifiers,InformationSciences136(2001)175–191.[18]E.Tomita,T.Kameda,An efficient branch-and-bound algorithm forfinding a maximum clique with computational experiments,Journal of Global Optimization37(2007)95–111.[19]P.J.M.Van-Laarhoven,E.Aarts,Simulated Annealing:Theory and Applications,Kluwer,Dordrecht,1987.[20]X.S.Xu,J.Ma,An efficient simulated annealing algorithm for the minimum vertex cover problem,Neurocomputing69(2006)913–916.[21]X.D.Zhang,Z.L.Li,Graph Theory and Its Applications,Higher Education Publishing Company,Beijing,2005.[22]Q.F.Zhang,J.Y.Sun,E.Tsang,An evolutionary algorithm with guided mutation for the maximum clique problem,IEEETransactions on Evolutionary Computation9(2)(2005)192–200.[23]J.Y.Zhang,J.Xu,Z.Bao,Algorithm for the maximum clique and independent set of graphs based on Hopfield networks,Journal ofElectronics18(1996)122–127.。

相关文档
最新文档