相似三角形压轴题综合运用(含详解)

合集下载

相似三角形难题集锦(含问题详解)

相似三角形难题集锦(含问题详解)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△E相似?4.如下列图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C 〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假如能,求出AP的长;假如不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t <6〕。

〔1〕当t为何值时,△QAP为等腰直角三角形?〔2〕当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为〔1,3〕,将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为〔〕A. B.C. D.10..,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。

中考相似三角形压轴题+答案

中考相似三角形压轴题+答案

相似1-10一.解答题(共10小题)1.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.2.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).第1页(共20页)3.已知,把Rt△ABC和Rt△DEF按图1摆放,(点C与E点重合),点B、C、E、F始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如图2,△DEF从图1出发,以每秒1个单位的速度沿CB 向△ABC匀速运动,同时,点P从A出发,沿AB以每秒1个单位向点B 匀速移动,AC与△DEF的直角边相交于Q,当P到达终点B时,△DEF 同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)△DEF在平移的过程中,当点D在Rt△ABC的边AC上时,求t的值;(2)在移动过程中,是否存在△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在移动过程中,当0<t≤5时,连接PE,是否存在△PQE为直角三角形?若存在,求出t的值;若不存在,说明理由.第2页(共20页)4.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC 绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.5.如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.①当t为何值时,点P、M、N在一直线上?②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.第3页(共20页)6.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB 向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=,PD=.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.7.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.第4页(共20页)8.已知∠AOB=90°,OM是∠AOB的平分线,将一个直角RPS的直角顶点P在射线OM上移动,点P不与点O重合.(1)如图,当直角RPS的两边分别与射线OA、OB交于点C、D时,请判断PC与PD的数量关系,并证明你的结论;(2)如图,在(1)的条件下,设CD与OP的交点为点G,且,求的值;(3)若直角RPS的一边与射线OB交于点D,另一边与直线OA、直线OB分别交于点C、E,且以P、D、E为顶点的三角形与△OCD相似,请画出示意图;当OD=1时,直接写出OP的长.9.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C 的长度和为6cm.那么灯泡离地面的高度为.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n 的代数式表示)第5页(共20页)分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.第6页(共20页)六六六六六六-相似1-10参考答案与试题解析一.解答题(共10小题)1.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.【解答】解:(1)如图1,当t=1秒时,AE=2,EB=10,BF=4,FC=4,CG=2,由S=S梯形GCBE﹣S△EBF﹣S△FCG,=×﹣=×(10+2)×8﹣×10×4﹣=24(cm2);(2)①如图1,当0≤t≤2时,点E、F、G分别在边AB、BC、CD上移动,此时AE=2t,EB=12﹣2t,BF=4t,FC=8﹣4t,CG=2t,S=S梯形GCBE﹣S△EBF﹣S△FCG=×(EB+CG)•BC﹣EB•BF﹣FC•CG=×8×(12﹣2t+2t)﹣×4t(12﹣2t)﹣×2t(8﹣4t)=8t2﹣32t+48(0≤t≤2).②如图2,当点F追上点G时,4t=2t+8,解得t=4,当2<t<4时,点E在边AB上移动,点F、G都在边CD上移动,此时CF=4t﹣8,CG=2t,FG=CG﹣CF=2t﹣(4t﹣8)=8﹣2t,S=FG•BC=(8﹣2t)•8=﹣8t+32.即S=﹣8t+32(2<t<4).(3)如图1,当点F在矩形的边BC上的边移动时,在△EBF和△FCG中,∠B=∠C=90°,①若=,即=,解得t=.第7页(共20页)所以当t=时,△EBF∽△FCG,②若=即=,解得t=.所以当t=时,△EBF∽△GCF.综上所述,当t=或t=时,以点E、B、F为顶点的三角形与以F、C、G为顶点的三角形相似.2.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴,∵BP=a,CQ=a,BE=CE,∴,∴BE=CE=a,∴BC=3a,∴AB=AC=BC•sin45°=3a,∴AQ=CQ﹣AC=a,PA=AB﹣BP=2a,第8页(共20页)在Rt△APQ中,PQ==a.3.已知,把Rt△ABC和Rt△DEF按图1摆放,(点C与E点重合),点B、C、E、F始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如图2,△DEF从图1出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从A出发,沿AB以每秒1个单位向点B 匀速移动,AC与△DEF的直角边相交于Q,当P到达终点B时,△DEF 同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)△DEF在平移的过程中,当点D在Rt△ABC的边AC上时,求t的值;(2)在移动过程中,是否存在△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在移动过程中,当0<t≤5时,连接PE,是否存在△PQE为直角三角形?若存在,求出t的值;若不存在,说明理由.【解答】解:(1)当D在AC上时,第9页(共20页)∵DE=DF,∴EC=CF=EF=5,∴t=5.(2)存在.∵AP=t,∠EDF=90°,∠DEF=45°,∴∠CQE=45°=∠DEF,∴CQ=CE=t,AQ=8﹣t,当0≤t<5时,①AP=AQ,t=8﹣t,∴t=4;②AP=PQ,作PH⊥AC于H,AH=HQ=AQ=4﹣t,∵PH∥BC,∴△APH∽△ABC,∴=,∴=,∴t=;③AQ=PQ,作QI⊥AB于I,AI=PI=AP=t(等腰三角形的性质三线合一),∵∠AIQ=∠ACB=90°,∠A=∠A,∴△AIQ∽△ACB,∴=,∴=,∴t=,④当5≤t≤10时,AQ=PQ,作PH⊥BC,PG⊥AC,同理可求出,FC=QC=10﹣t,BP=10﹣t,PH=(10﹣t)=8﹣t,第10页(共20页)BH=(10﹣t)=6﹣t,QG=QC﹣GC=QC﹣PH=10﹣t﹣(8﹣t)=2﹣,PG=HC=6﹣(6﹣t)=t,PQ=AQ=8﹣(10﹣t)=t﹣2,∴PQ 2=PG 2+QG 2,(t﹣2)2=(t)2+(2﹣)2,解得:t=秒,其它情况不符合要求,综合上述:当t等于4秒、秒、秒、秒时△APQ是等腰三角形.(3)由勾股定理:CE=CQ=t,∵sinA===,cosA===,∴PW=t,AW=t,∴QW=8﹣t﹣t=8﹣t,∴PQ2=PM2+QW2=(t)2+(8﹣t)2=t2﹣t+64,PE2=PH2+EH2=(t+8﹣t)2+(t﹣t)2=t2﹣t+64,①∠PQE=90°,在Rt△PEQ中PQ2+QE2=PE2,∴t1=0(舍去)t2=;②∠PEQ=90°,PE2+EQ2=PQ2t1=0(舍去)t2=20(舍去)∴此时不存在;③当∠EPQ=90°时PQ2+PE2=EQ2,t1=(舍去)t2=4,综合上述:当t=或t=4时,△PQE是直角三角形.第11页(共20页)4.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC 绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.【解答】解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,∴∠CC1B=∠C1CB=45°,∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.(2)∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,∴∠ABA1=∠CBC1,∴△ABA1∽△CBC1.∴,∵S△ABA1=4,∴S△CBC1=;(3)①如图1,过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上,第12页(共20页)在Rt△BCD中,BD=BC×sin45°=,当P在AC上运动,BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7.5.如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.①当t为何值时,点P、M、N在一直线上?②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.【解答】解:(1)若0<t≤5,则AP=4t,AQ=2t.则==,又∵AO=10,AB=20,∴==.∴=.又∵∠CAB=30°,∴△APQ∽△ABO.∴∠AQP=90°,即PQ⊥AC.当5<t≤10时,同理,可由△PCQ∽△BCO得∠PQC=90°,即PQ⊥AC.∴在点P、Q运动过程中,始终有PQ⊥AC.第13页(共20页)(2)①如图,在Rt△APM中,∵∠PAM=30°,AP=4t,∴AM=.在△APQ中,∠AQP=90°,∴AQ=AP•cos30°=2t,∴QM=AC﹣2AQ=20﹣4t.由AQ+QM=AM得:2t+20﹣4t=,解得t=.∴当t=时,点P、M、N在一直线上.②存在这样的t,使△PMN是以PN为一直角边的直角三角形.设l交AC于H.如图1,当点N在AD上时,若PN⊥MN,则∠NMH=30°.∴MH=2NH.得20﹣4t﹣=2×,解得t=2.如图2,当点N在CD上时,若PM⊥PN,则∠HMP=30°.∴MH=2PH,同理可得t=.故当t=2或时,存在以PN为一直角边的直角三角形.6.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB 向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=8﹣2t,PD=t.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.【解答】解:(1)根据题意得:CQ=2t,PA=t,第14页(共20页)∴QB=8﹣2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA==,∴PD=t.故答案为:(1)8﹣2t,t.(2)不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD=t,∴BD=AB﹣AD=10﹣t,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8﹣2t=,解得:t=.当t=时,PD==,BD=10﹣×=6,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8﹣vt,PD=t,BD=10﹣t,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即t=10﹣t,解得:t=当PD=BQ,t=时,即=8﹣,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=﹣2x+6.∵点Q(0,2t),P(6﹣t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x=代入y=﹣2x+6得y=﹣2×+6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2单位长度.第15页(共20页)7.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.【解答】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S=[32+(m﹣n)2]=+(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,由(2)知,m最大=3﹣3.第16页(共20页)∴S最大=[9+(m最大﹣n最小)2]=[9+(3﹣3﹣6+3)2] =99﹣54….(S最大≈5.47也正确)综上所述,S最大=99﹣54,S最小=.8.已知∠AOB=90°,OM是∠AOB的平分线,将一个直角RPS的直角顶点P在射线OM上移动,点P不与点O重合.(1)如图,当直角RPS的两边分别与射线OA、OB交于点C、D时,请判断PC与PD的数量关系,并证明你的结论;(2)如图,在(1)的条件下,设CD与OP的交点为点G,且,求的值;(3)若直角RPS的一边与射线OB交于点D,另一边与直线OA、直线OB分别交于点C、E,且以P、D、E为顶点的三角形与△OCD相似,请画出示意图;当OD=1时,直接写出OP的长.【解答】解:(1)PC与PD的数量关系是相等.证明:过点P作PH⊥OA,PN⊥OB,垂足分别为点H、N.∵∠AOB=90°,易得∠HPN=90度.∴∠1+∠CPN=90°,而∠2+∠CPN=90°,∴∠1=∠2.∵OM是∠AOB的平分线,∴PH=PN,又∵∠PHC=∠PND=90°,∴△PCH≌△PDN;∴PC=PD.第17页(共20页)(2)∵PC=PD,∠CPD=90°,∴∠3=45°,∵∠POD=45°,∴∠3=∠POD.又∵∠GPD=∠DPO,∴△POD∽△PDG.∴.∵,∴.(3)如图1所示,若PR与射线OA相交,则OP=1;如图2所示,若PR与直线OA的交点C与点A在点O的两侧,则OP=﹣1.9.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C 的长度和为6cm.那么灯泡离地面的高度为180cm.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n第18页(共20页)的代数式表示)【解答】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(4分)(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3分)(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(1分)(直接得出三角形相似或比例线段均不扣分)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=(1分).10.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F 分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF 于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.【解答】解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,第19页(共20页)∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM===.∵△BMA∽△CMG,∴.∴.∴CG=.∴在Rt△BGC中,BG==.第20页(共20页)。

三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)

三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)

三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。

特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。

直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。

模型01 与三角形有关的线段应用高(AD)中线(AD)角平分线(AD)中位线(DE)模型02 与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03 三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。

专题21 相似三角形中的压轴题专练(二)(解析版)九下数学专题培优训练

专题21 相似三角形中的压轴题专练(二)(解析版)九下数学专题培优训练

专题21 相似三角形中的压轴题专练(二)班级:___________姓名:___________得分:___________一、选择题1.如图,点A,B分别在反比例函数y=1x(x>0),y=a x (x<0)的图象上.若OA⊥OB,OBOA=2,则a的值为()A. −4B. 4C. −2D. 2【答案】A【分析】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数系数k的几何意义是解答此题的关键.过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,利用相似三角形的判定定理得出△AOM∽△OBN,再由反比例函数系数k的几何意义得出S△AOM:S△BON=1:(−a),进而可得出结论.【解答】解:过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∴∠AMO=∠BNO=90°,∴∠AOM+∠OAM=90°,∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠OAM=∠BON,∴△AOM∽△OBN,∵点A,B分别在反比例函数y=1x (x>0),y=ax(x>0)的图象上,∴S△AOM:S△BON=1:(−a),∴AO:BO=1:√−a,∵OB:OA=2,∴a=−4,2.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A. B.C. D.【答案】C【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.证得△BPD∽△CAP是关键.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°=∠C,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4−x),∴y=−14x2+x=−14(x−2)2+1,开口向下,顶点坐标为(2,1).3.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90∘,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A. 5B. 6C. 2√5D. 3√2【答案】C【分析】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得OA:BD=OF:BH,即可解决问题.【解答】解:如图,作DH⊥AB于H,连结BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB⋅DH=320,∴DH=16,在Rt△ADH中,AH=√AD2−DH2=12,∴HB=AB−AH=8,在Rt△BDH中,BD=√DH2+BH2=8√5,设⊙O与AB相切于F,连结OF.∵AD=AB,AO平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90∘,∠ABE+∠BDH=90∘,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90∘,∴△AOF∽△DBH,∴OABD =OFBH,∴108√5=OF8,∴OF=2√5.4.如图,在等腰三角形△ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形的面积为1,△ABC的面积为42,则四边形DBCE的面积是()A. 20B. 22C. 24D. 26【答案】D【分析】本题考查了相似三角形的性质,关键是掌握相似三角形面积的比等于相似比的平方.利用△AFH∽△ADE得到,所以设S△AFH=9x,S△ADE=16x,则16x−9x=7,解得x=1,从而得到S△ADE=16,然后计算两个三角形的面积差得到四边形DBCE的面积.【解答】解:如图,根据题意得△AFH∽△ADE,设S△AFH=9x,则S△ADE=16x,∴16x−9x=7,解得x=1,∴S△ADE=16,∴四边形DBCE的面积=42−16=26.5.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,P是AC上一点,PH⊥AB于点H,以PH为直径作⊙O,当CH与PB的交点落在⊙O上时,AP的值为()A. 52B. 32C. 2D. 3【答案】A【分析】本题考查相似三角形的判定与性质,勾股定理,圆周角定理.先由勾股定理求出AB=5,再由PB与CH交点D在⊙O上,所以∠PDH=90°,再证三角形相似,再由相似三角形性质证PH=PC,然后证△PAH∽△BAC,得PHBC =APAB,因PH=PC=AC−AP=4−AP,求解即可.【解答】解:如图,设PB交CH于D,在Rt△ABC中,由勾股定理得:AB=√AC2+BC2=5,∵点D在⊙O上,PH是⊙O直径,∴∠PDH=90°,∵PH⊥AB,∴∠PHB=90°=∠PDH,∵∠DPH=∠HPB,∴△DPH∽△HPB,同理得△DPC∽△CPB,∴PHPB =PDPH,PCPB=PDPC,∴PH2=PD·PB=PC2,∴PH=PC,∵∠PHA=∠ACB=90°,∠A=∠A,∴△PAH∽△BAC,∴PHBC =APAB,∵PH=PC=AC−AP=4−AP,∴4−AP3=AP5∴AP=52.6.如图,已知正方形ABCD,E为AB的中点,F是AD边上的一个动点,连接EF将△AEF沿EF折叠得△HEF,延长FH交BC于M,现在有如下5个结论:①△BEM≌△HEM;②△EFM定是直角三角形;③当M与C重合时,有DF=3AF;④MF平分正方形ABCD的面积;⑤FH·MH=14AB2,在以上5个结论中,正确的有()A. 2B. 3C. 4D. 5【答案】C【分析】本题考查正方形的性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.利用正方形的性质,全等三角形的判定和性质,一一判断即可.【解答】解:如图1中,∵四边形ABCD是正方形,∴∠A=∠B=90°,∵E为AB的中点,∴EA=EB,由翻折可知:FA=FH,EA=EH,∠A=∠FHE=90°,∵∠EHM=∠B=90°,EM=EM,EH=EB,∴Rt△EMH≌Rt△EMB(HL),∴∠MEH=∠MEB,∵∠FEH=∠FEA,∴∠FEM=∠FEH+∠MEH=12(∠AEH+∠BEH)=90°,故①②正确,如图2中,当M与C重合时,设AE=EB=2a.则AB=BC=AD=CD=4a,∵△AEF∽△BCE,∴AFEB =AEBC,可得AF=a,∴DF=3a,∴DF=3AF,故③正确,如图3中,当点F与点D重合时,显然直线MF不平分正方形的面积,故④错误,如图1中,∵EH⊥FM于H,∠FEM=90°,∴△EHF∽△MEH,∴EH2=HF⋅HM,AB,∵EH=12∴1AB2=HF⋅HM.故⑤正确,4二、填空题7.如图,在▱ABCD的一边AB上取点M,使AM:MB=1:3,对角线AC与DM相交于点N,则AN:AC=______.【答案】1:5【分析】由平行四边形的对边平行且相等,得到三角形AMN与三角形CND相似,由相似得比例求出所求即可.此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.【解答】解:∵四边形ABCD为平行四边形,∴DC//AB,DC=AB,∴∠CDN=∠AMN,∠DCN=∠MAN,∴△CND∽△ANM,∵AM:MB=1:3,∴AM:AB=AM:DC=1:4,∴AM:DC=AN:NC=1:4,则AN:AC=1:5,8.如图,正方形OABC的边长为8,A、C两点分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=kx 的图像经过点Q,若S△BPQ=19S△OQC,则k的值为_____.【答案】−36【分析】本题考查了反比例函数系数k的几何意义以及待定系数法求一次函数及反比例函数解析式,解题的关键是求出点Q的坐标.解决该题型题目时,根据相似三角形的面积比等于相似比的平方结合给定条件求出点Q的坐标,再利用待定系数法求出反比例函数解析式即可.由PB//OC可得出△PBQ∽△COQ,结合三角形面积比等于相似比的平方可得出PB=13OC,结合正方形OABC的边长为8可得出点C、点P的坐标,利用待定系数法即可求出直线CP的函数解析式,联立直线OB与直线CP的函数解析式即可得出点Q的坐标,利用待定系数法即可求出k值.【解答】解:由四边形OABC为正方形,得PB//OC,∴△PBQ∽△COQ,∴S△BPQS△OQC =(PBOC)2=19,∵正方形OABC的边长为8,∴PB=13OC=83,∴AP=8−83=163,∴点C(0,8),点P(−8,163),由题意易得直线OB的解析式为y=−x①,∴设直线CP的解析式为y=ax+8,∵点P(−8,163)在直线CP上,∴163=−8a+8,解得:a=13,故直线CP的解析式为y=13x+8②.联立①②得:{y=−xy=13x+8,解得:{x =−6y =6,∴点Q 的坐标为(−6,6).将点Q(−6,6)代入y =k x 中,得:6=k −6,解得:k =−36.9. 如图,在矩形ABCD 中,AB =6,BC =8,点E 是边AB 上一点,且AE =2EB ,点P 是边BC 上一动点,连接EP ,过点P 作PQ ⊥PE 交射线CD 于点Q.若点C 关于直线PQ 的对称点恰好落在边AD 上,则BP 的长为__________.【答案】2或65【分析】此题主要考查相似三角形的性质及判定,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.过点P 作PF ⊥AD 于点F ,可证得四边形CPFD 是矩形,可证得△BEP∽△CPQ 和△PFC′∽△C′DQ ,从而得BE CP =BP CQ ,PF C′D =FC′DQ =PC′C′Q ,可设BP =x ,则DF =PC =8−x ,可求得CQ ,继而可求得C′D ,FC′与BP 的关系,而DF =C′D +FC′,通过解一元二次方程,解得x ,即可求得BP .【解答】解:如图,过点P 作PF ⊥AD 于点F ,∴∠PFC′=90°,∵矩形ABCD 中,AB =6,BC =8,∴∠FAB =∠B =∠C =∠QDC′=90°,CD =AB =6,∴四边形CPFD 是矩形,∴DF =PC ,PF =CD =6,∵AE =2EB ,∴AE =4,EB =2,设BP =x ,则DF =PC =8−x ,∵点C 与C′关于直线PQ 对称,∴△PC′Q≌△PCQ ,∴PC′=PC =8−x ,C′Q =CQ ,∠PC′Q =∠C =90°,∵PE ⊥PQ ,∴∠BPE +∠CPQ =90°,∵∠BEP +∠BPE =90°,∴∠BEP =∠CPQ ,∴△BEP∽△CPQ ,同理可得:△PFC′∽△C′DQ , ∴BE CP =BP CQ ,PF C′D =FC′DQ =PC′C′Q , ∴CQ =CP·BP BE =x(8−x)2, ∴C′Q =x(8−x)2,DQ =6−x(8−x)2=12−8x+x 22, ∴6C′D =FC′12−8x+x 22=8−xx(8−x)2=2x, ∴C′D =3x ,FC′=12−8x+x 2x ,∵FC′+C′D =DF ,∴12−8x+x 2x +3x =8−x ,解得x =2或x =65.10. 如图,将面积为32√2的矩形ABCD 沿对角线BD 折叠,点A 的对应点为点P ,连接AP 交BC 于点E ,若BE =√2,则AP 的长为________.【答案】163√2【分析】设AB =a ,AD =b ,则ab =32√2,构建方程组求出a 、b 即可解决问题; 本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识.【解答】解:设AB =a ,AD =b ,则ab =32√2,由△ABE∽△DAB可得:BEAB =ABAD,∴b=√22a2,∴a3=64,∴a=4,b=8√2,设PA交BD于O.在Rt△ABD中,BD=√AB2+AD2=12,∴OP=OA=AB⋅ADBD =8√23,∴AP=163√2.11.如图所示,在边长为4的正方形ABCD中,对角线AC与BD相交于点O,E是OD的中点,F是边BC(不与B、C两点重合)上的一个动点,过E点作EG⊥EF,交CD于G,当△DEG为等腰三角形时,CF的长为_____________.【答案】1或3√2−2【分析】本题主要考查了正方形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,解题的关键注意分类讨论;本题当△DEG为等腰三角形时,根据(1)DE=DG,(2)GE=GD,(3)ED=EG三种情况讨论,并且注意是否都成立.【解答】解:∵在正方形ABCD中,AB=AD=4,∴BD=√AB2+AD2=4√2,∵E是OD的中点,∴DE=12OD=14AD=√2,当△DEG为等腰三角形时,(1)若DE=DG,过E 作EM ⊥CD,EN ⊥BC ,垂足分别为M 、N ,∵∠BDC =45∘,DE =√2,∴EM =DM =1,∴MG =DG −DM =√2−1,EN =CM =DC −DM =3,又∵EG ⊥EF ,∠MEN =90∘,∴∠FEN =∠GEM,∠ENF =∠EMG =90∘,∴△MEG ∽△NEF ,∴ME EN =MG FN ,∴FN =MG·EN ME =(√2−1)×31=3√2−3,∴CF =FN +CN =FN +EM =3√2−2;(2)若GE =GD ,∵∠GDE =45∘,∴∠DGE =90∘,DE =2,EG =(√2)22=1,又∵EG ⊥EF ,∴四边形EGCF 为矩形,∴ CF =EG =1;(3)若ED =EG 时,∵∠EDG =45∘,∴∠GED =90∘,又∵EG ⊥EF ,∴∠FEG +∠GED =180∘,这时点F 与点B 重合,故不成立;综上所述,CF 的长为1或3√2−2;12.如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(8,4),反比例函数y=kx(k>0)的图象分别交边BC、AB于点D、E,连结DE,△DEF与△DEB关于直线DE对称,当点F恰好落在线段OA上时,则k的值是______.【答案】12【分析】本题考查了反比例函数,矩形的性质,轴对称的性质,相似三角形的判定与性质,勾股定理等知识.综合性较强,有一定难度.准确作出辅助线构造相似三角形是解题的关键.过点D作DG⊥OA,垂足为G.由于四边形OABC是矩形,且△DEF与△DEB关于直线DE对称.当点F正好落在边OA上,可得△DGF∽△FAE,然后把D、E两点的坐标用含k的代数式表示出来,再由相似三角形对应边成比例求出AF的长,然后利用勾股定理求出k的值即得到答案.【解答】解:过点D作DG⊥OA,垂足为G,如图所示.由题意知D(k4,4),E(8,k8),DG=4.又∵△DEF与△DEB关于直线DE对称,点F在边OA上,∴DF=DB,∠B=∠DFE=90°,∵∠DGF=∠FAE=90°,∠DFG+∠EFA=90°,又∵∠EFA+∠FEA=90°,∴∠DFG=∠FEA,∴△DGF∽△FAE,∴DGDF =AFEF,即48−k4=AF4−k8,解得:AF=2,∵EF2=EA2+AF2,即(4−k8)2=(k8)2+22,解得:k =12.13. 如图,在一块直角三角板ABC 中,∠C =90°,∠A =30°,BC =1,将另一个含30°角的△EDF 的30°角的顶点D 放在AB 边上,E ,F 分别在AC ,BC 上,当点D 在AB 边上移动时,DE 始终与AB 垂直,若△CEF 与△DEF 相似,则AD =________. 【答案】65或43【分析】本题考查相似三角形的应用.解题的关键是对△DEF 的直角顶点分类讨论.由∠A =∠EDF =30°,ED ⊥AB 得∠FDB =∠B =60°,从而得到△BDF 是等边三角形,利用三角形边的关系得到AD =CF +1.①当∠FED =90°时△CEF∽△EDF ,得CF EF =EF DF ,②当∠EFD =90°时△CEF∽△FED ,得CF FD =CE FE ,将EF 和DF 转化为只含CF 的式子,解之即可求解.【解答】解:∵∠A =∠EDF =30°,ED ⊥AB ,∴∠FDB =∠B =60°.∴FD =FB∴△BDF 是等边三角形.∵BC =1,∴AB =2.∵BD =BF ,∴2−AD =1−CF .∴AD =CF +1.①如图,若∠FED=90°,∵∠A=30°,∴∠AED=90°−30°=60°,∴∠CEF=180°−90°−60°=30°,∵△BDF是等边三角形,∴∠FDB=60°,∵∠EDF=180°−60°−90°=30°,∴∠CEF=∠EDF,∴△CEF∽△EDF,∴CFEF =EFDF,即CF2CF=2CF1−CF.解得CF=15.∴AD=15+1=65.②如图,若∠EFD=90°,∵∠BFD=60°,∴∠CFE=180°−90°−60°=30°,即∠CFE=∠FDE,又∠C=∠EFD=90°,∴△CEF∽△FED,∴CFFD =CEFE,即CF1−CF=12.解得CF=13.∴AD =13+1=43.综上所述,AD 的长为65或43.三、解答题14. 在直角坐标系中,过原点O 及点A(8,0),C(0,6)作矩形OABC ,连接OB ,点D 为OB 的中点,点E 是线段AB 上的动点,连接DE ,作DF 垂直于DE ,交OA 于点F ,连接EF ,已知点E 从A 点出发,,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t 秒(1)如图1,当t =3时,求DF 的长(2)如图2,当点E 在线段AB 上移动的过程中,DF DE的大小是否发生变化?如果变化,请说明理由;如果不变,请求出DF DE 的值(3)连接AD ,当AD 将△DEF 分成的两部分的面积之比为1:2时,请直接写出t 的值【答案】解:(1)当t =3时,点E 为AB 的中点,∵A(8,0),C(0,6),∴OA =8,OC =6,∵点D 为OB 的中点,∴DE//OA ,DE =12OA =4,∵四边形OABC 是矩形,∴OA ⊥AB ,∴DE ⊥AB ,∴∠OAB =∠DEA =90°,又∵DF ⊥DE ,∴∠EDF =90°,∴四边形DFAE 是矩形,∴DF =AE =3; (2)DF DE 的大小不变; 理由如下: 如图2所示:作DM ⊥OA 于M ,DN ⊥AB 于N ,∵四边形OABC 是矩形,∴OA ⊥AB ,∴四边形DMAN 是矩形,∴∠MDN =90°,DM//AB ,DN//OA ,∵点D 为OB 的中点,∴M 、N 分别是OA 、AB 的中点,∴DM =12AB =3,DN =12OA =4, ∵∠EDF =90°,∴∠FDM +∠MDE =∠MDE +∠EDN =90°∴∠FDM =∠EDN ,又∵∠DMF =∠DNE =90°,∴△DMF∽△DNE ,∴DF DE =DM DN =34; (3)7517或7541.【分析】本题是四边形综合题目,考查了矩形的性质和性质、坐标与图形性质、三角形中位线定理、相似三角形的判定与性质、平行线分线段成比例定理、一次函数解析式的求法等知识;本题综合性强,难度较大.(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE//OA,DE=12OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM//AB,DN//OA,由平行线分线段成比例和三角形中位线的性质证明△DMF∽△DNE,再利用相似三角形的性质求解即可;(3)作作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,NE=3−t,由△DMF∽△DNE得:MF=34(3−t),求出AF=4+MF=−34t+254求出点G的坐标,求出直线AD的解析式,将点G的坐标代入即可求出t的值;②当点E越过中点之后,NE=t−3,由△DMF∽△DNE得:MF=34(t−3),求出AF=4−MF=−34t+254,求出点G的坐标,求出直线AD的解析式,将点G的坐标代入即可求出t的值.【解答】解:(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3−t,由△DMF∽△DNE得:MF=34(3−t),∴AF=4+MF=−34t+254,∵点G 为EF 的三等分点,∴G(3t+7112,23t), 设直线AD 的解析式为y =kx +b , 把A(8,0),D(4,3)代入得:{8k +b =04k +b =3, 解得:{k =−34b =6, ∴直线AD 的解析式为y =−34x +6,把G(3t+7112,23t)代入得: −34×3t+7112+6=23t , 解得:t =7541;②当点E 越过中点之后,如图4所示,NE =t −3,由△DMF∽△DNE 得:MF =34(t −3),∴AF =4−MF =−34t +254,∵点G 为EF 的三等分点,∴G(3t+236,13t), G(3t+236,13t)代入直线AD 的解析式y =−34x +6得:−34×3t+236+6=13t , 解得:t =7517.综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为7517或7541. 故答案为7517或7541.15.(1)尝试探究如图1,Rt△ABC中,AB=AC,AD是高,点E是AB边上一点,CE与AD交于点G,过点E作EF⊥CE交BC于点F.若AE=2BE,则EF与EG的数量关系是________________.(2)类比延伸如图2,在(1)的条件下,若AE=nBE(n>0),则EF与EG的数量关系是________________(用含n的代数式表示),试写出解答过程;(3)拓展迁移如图3,Rt△ABC中,∠BAC=90∘,AD是高,点E是AB边上一点,CE与AD交于点G,过点E作EF⊥CE交BC于点F,若AE=aBE,AB=bAC(a>0,b>0),则EF与EG的数量关系是________________.【答案】解:(1)EG=2EF;(2)EG=nEF.理由:如图2中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q.∴∠BPE=∠AQE=90°.∵AD是等腰直角三角形的高,∴∠B=∠EAQ=45°,∴△BPE∽△AQE,∴EPEQ =BEAE,∵AE=nBE,∴EQ=nEP.∵∠FEP+∠PEG=90°,∠GEQ+∠PEG=90°,∴∠FEP=∠GEQ.又∵∠EPF=∠EQG=90°,∴△EPF∽△EQG,∴EPEQ =EFEG,∴EG=nEF.故答案为EG=2EF;(3)EG=abEF本题考查相似三角形的判定和性质,解题的关键是添加辅助线,构造相似三角形,本题需要用到多次相似,属于中考常考题型.(1)如图1中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,先证明△BPE∽△AQE,再证明△EPF∽△EQG即可;(2)如图2中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,证明方法类似(1);(3)如图3中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,由△EPF∽△EQG,得AEBE =AQEP①,由△AEQ∽△CBA,得ABAC=EQAQ②,①×②得EQEP=ab,由此即可解决问题.【解答】解:(1)EG=2EF;理由:如图1中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q.∴∠BPE=∠AQE=90°.∵AD是等腰直角三角形的高,∴∠B=∠EAQ=45°,∴△BPE∽△AQE,∴EPEQ =BEAE=12,∴EQ=2EP,∵∠FEP+∠PEG=90°,∠GEQ+∠PEG=90°,∴∠FEP=∠GEQ.又∵∠EPF=∠EQG=90°,∴EPEQ =EFEG=12,∴△EPF∽△EQG,∴EG=2EF.故答案为EG=(2)见答案;(3)EG=abEF,理由:如图3中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,∵△EPF∽△EQG,∴AEBE =AQEP①,∵∠AQE=∠BAC,∠EAQ=∠ACB,∴△AEQ∽△CBA,∴AQAC =EQAB,∴ABAC =EQAQ②,①×②得AEBE ·ABAC=EQEP=ab,∵△EPF∽△EQG,∴EPEQ =EFEG,∴EGEF=ab,∴EG=abEF.故答案为EG=abEF.16.如图,一路灯AB与墙OP相距20米,当身高CD=1.6米的小亮在离墙17米的D处时,影长DG为1米;当小亮站在点F时,发现自己头顶的影子正好接触到墙的底部O处.(1)求路灯AB的高度.(2)请在图1中画出小亮EF的位置,并求出此时的影长.(3)如果小亮继续往前走(如图2),在距离墙2米的N处停下,那么小亮MN在墙上的影子有多高?【分析】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.(1)求出BD的长,再求出BG的长,然后根据△ABG和△CDG相似,利用相似三角形对应边成比例列式求解即可;(2)根据△ABO和△EFO相似,利用相似三角形对应边成比例列式求解即可得到影长FO;(3)设影子在墙上的落点为L,过M作HK//BO交AB于H,交PO于K,求出AH、HM 的长,然后根据△AHM和△LKM相似,利用相似三角形对应边成比例列式求出KL,再根据MN的长度列式计算即可得解.【解答】解:(1)∵BO=20米,OD=17米,∴BD=BO−OD=20−17=3米,∵DG=1米,∴BG=BD+DG=3+1=4米,∵AB、CD都与地面BO垂直,∴△ABG∽△CDG,∴CDAB =DGBG,即1.6AB =14,解得AB=6.4米;(2)小亮EF的位置如图1所示,此时,∵△ABO∽△EFO,∴EFAB =FOBO,即1.66.4=FO20,解得FO=5米,即此时影长5米;(3)如图2,设影子在墙上的落点为L,过M作HK//BO交AB于H,交PO于K,∵小亮距离墙2米,∴ON=MK=2米,HM=20−2=18米,∵AB=6.4米,MN=1.6米,∴AH=6.4−1.6=4.8米,∵△AHM∽△LKM,∴KLAH =MKHM,即KL4.8=218,解得KL=815米,∴在墙上的影子为1.6−815=1615米.17.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上、且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a时,P、Q两点间的距离(用含a的代数式表示).【分析】本题考查的是旋转的性质,全等三角形的判定与性质,相似三角形的判定与性质有关知识.(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,继而求得AQ与AP 的长,利用勾股定理即可求得P、Q两点间的距离.【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵{BE=CE ∠B=∠C BP=CQ,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴BPCE =BECQ,∵BP=a,CQ=92a,BE=CE,∴aCE =CE92a,∴BE=CE=3√22a,∴BC=3√2a,∴AB=AC=BC⋅sin45°=3a,∴AQ=CQ−AC=3a,PA=AB−BP=2a,2a.在Rt△APQ中,PQ=√AQ2+AP2=52。

相似三角形综合题锦(含答案)

相似三角形综合题锦(含答案)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。

相似三角形难题集锦(含问题详解)

相似三角形难题集锦(含问题详解)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。

初中数学《相似三角形》压轴30题含解析

初中数学《相似三角形》压轴30题含解析

相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。

(完整版)相似三角形难题集锦含答案,推荐文档

(完整版)相似三角形难题集锦含答案,推荐文档

求证:

求证:
24.已知,如图,锐角△ABC 中,AD⊥BC 于 D,H 为 垂心(三角形三条高线的交点);在 AD 上有一点 P, 且∠BPC 为直角.求证:PD2=AD·DH 。
求 C、D 两点的坐标。
三、构造相似辅助 线——A、X 字型 11.如图:△ABC 中,D 是 AB 上一点,AD=AC,BC 边上的 中线 AE 交 CD 于 F。 求证:
12.四边形 ABCD 中,AC 为 AB、AD 的比例中项,且 AC 平分∠DAB。
求证:
14.已知:如图,在△ABC 中,M 是 AC 的中点,E、F 是 BC 上的两点,且 BE=EF=FC。 求 BN:NQ:QM.
7.在△ABC 中,
AB= ,AC=4,BC=2,以 AB 为边在 C 点的异侧作△ABD, 使△ABD 为等腰直角三角形, 求线段 CD 的长.
8.在△ABC 中,AC=BC,∠ACB=90°,点 M 是 AC 上的一 点,点 N 是 BC 上的一点,沿着直线 MN 折叠,使得点 C 恰好落在边 AB 上的 P 点.求证:MC:NC=AP:PB.
2.如图,在△ABC 中, ABC=90°,AB=6m,BC=8m,
动点 P 以 2m/s 的速度从 A 点出发,沿 AC 向点 C 移 动.同时,动点 Q 以 1m/s 的速度从 C 点出发,沿 CB 向 点 B 移动.当其中有一点到达终点时,它们都停止移 动.设移动的时间为 t 秒. (1)①当 t=2.5s 时,求△CPQ 的面积; ②求△CPQ 的面积 S(平方米)关于时间 t(秒)的函数 解析式; (2)在 P,Q 移动的过程中,当△CPQ 为等腰三角形时, 求出 t 的值.
二、构造相似辅助 线——双垂直模型 6.在平面直角坐标系 xOy 中,点 A 的坐标为(2,1), 正比例函数 y=kx 的图象与线段 OA 的夹角是 45°, 求这个正比例函数的表达式.

相似三角形难题集锦(含问题详解)

相似三角形难题集锦(含问题详解)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。

三角形相似综合训练-2023年中考数学拉分专题(教师版含解析)

三角形相似综合训练-2023年中考数学拉分专题(教师版含解析)

专题02 三角形相似综合训练1.如图,在矩形ABCD 中,将ADC △绕点D 逆时针旋转90︒得到FDE B F E ,、、三点恰好在同一直线上,AC 与BE 相交于点G ,连接DG .以下结论正确的是( )①AC BE ⊥;BCG GAD ~②;③点F 是线段CD 的黄金分割点;④CG EG = A .①②③ B .①③C .①②③D .①③④【答案】D 【详解】证明:FDE ADC ≌,∴AD DF DC DE ==,又∴四边形ABCD 是矩形,∴90ADC ∠=︒, ∴90DAC DCA ∠+∠=即DAG DEF ∠+∠=即BGC 是直角三角形,而AGD 不是直角三角形,∴②错误;Rt FCB 和Rt 中, BFC EFC ∠=∠Rt FCB Rt FDE ∽, FC BCDF DE=, BC AD DF DE DC ===,FC DFDF DC=, F 是线段CD 的黄金分割点,和DEG '中,∴SAS DCG DEG '≌(DG DG CDG ='∠=,90CDG GDA ∠+∠=︒90EDG GDA ∠'+∠=90GDG ∠'=︒,∴GDG '是等腰直角三角形,2GG DG '=EG CG '=EG EG ='故选:D .【我思故我在】2.如图,在ABC 中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C 重合),连结AM 交DE 于点N ,则( )A .ADANANAEB .BD MNMN CEC .DN NEBM MCD .DN NEMC BM,AN ANNE DN NEAM AMMCBMMC,故选相似三角形的判定和性质,解题的关键是熟练掌握3.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72aACD BCA ∆,再由相似三角形的性质得到答案ACD BCA ∆,2AC BC ⎛⎫= ⎪⎝⎭,即BCA ∆的面积为的面积为:.4.如图,在矩形ABCD 中,E,F分别为边BC 、CD 中点,线段AE ,AF 与对角线BD 分别交于点G ,H .设矩形ABCD 的面积为S ,则以下4个结论中:①AG :GE =2:1 ②BG :GH :HD =1:1:1;③12325S S S S ++=;④ 246124S S S =::::正确的结论有( )A .1个B .2个C .3个D .4个【答案】C∴,BGE DGA ∽ 2,AG AD BGGE BE DG===②∴AG AD BGGE BE DG==13BG BD =,1所以本题的3个结论符合题意; 故选:C .【我思故我在】本题考查了矩形的性质,三角形相似的性质和判定,三角形面积等知识,解题的关键是理解题意,等底同高三角形面积相等,相似三角形面积的比等于相似比的平方. 5.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于E 、F ,连接BD 、DP ,BD 与CF 相交于点H .给出以下结论:①3BE AE =;②DFP BPH ;③2DP PH PC =⋅;④若2AB =,则1BPD S △.其中正确结论的是( )A .①②③④B .②③④C .①②④D .①③④从而证明DFP BPH ,正确;利用DPH CPD ~,得DP PC ,将ΔBPD S 转化为S 四边形解:BPC ∆是等边三角形,BC ,60PBC PCB BPC ∠=∠=∠=ABCD 中,AB BC CD =,A ∠30ABE DCF ∴∠==︒2BE AE ∴=故①错误PC CD =PDC ∴∠=FDP ∴∠=DBA =∠DFP ∠=DFP BPH ∴~,故②正确;30PDH PCD ∠=∠=︒DPH CPD ∴~,∴DP PHPC DP=, 2DP PH PC ∴=⋅,故③正确;如图,过点P 作PM正方形的边长6.如图, 在平行四边形ABCD 中, 点,M N 分别是AD BC 、上的点, 且22AM DM BN CN ==,, 点O 是CM , DN 的交点, 直线AB 分别与CM DN ,的延长线交于点,P Q . 若平行四边形ABCD 的面积为144 , 则POQ △的面积为( )A .72B .216C .268D .300∴AMP DMC ∽, AP AMDC DM=, 2AM DM = 2AP AMDC DM==, 2AP CD =, ∴COD POQ ∽, 1215h CD h PQ ==, ∴∴POQ 的高为56h ,144ABCDS CD h =⋅=151POQS=故选:D 【我思故我在】的性质及平行四边形的性质是解题的关键.7.如图,在正方形ABCD 中,点G 是BC 上一点,且12GC BG =,连接DG 交对角线AC 于F 点,过D 点作DE DG ⊥交CA 的延长线于点E ,若5AE =,则DF 的长为( )A .BC .92D ,证明DEH DGC ∽,推出,求出5EH HA ==延长线于H ,DE DG ⊥EDG ∠∴21∴∠+∠1∠∠∴=DEH DGC ∴∽,∴EH DHGC DC =, 12GC BG =, ∴设GC x =,则BG =∴3EH DHGC x=, AC 是正方形DAC ∴∠EAH ∠=HEA ∴∠=EH HA ∴=2EH HA ∴+EH HA ∴=在正方形8.已知,如图,平行四边形ABCD 中,:1:3=CE BE ,且1EFC S =△,那么ABCS=_____.ACD ABC SS =,证明1:4AD =,则CE AD =. 9.P 是ABC 边上的任一点(P 不与A 、B 、C 重合),过点P 的一条直线截ABC ,如果截得的三角形与ABC 相似,我们称这条直线为过点P 的∴ABC 的“相似线”.Rt ABC △中,90C ∠=︒,30B ∠=︒,当点P 是边BC 上一个三等分点时(PB PC >),过点P 的ABC 的“相似线”最多有___________条.【答案】4【分析】根据相似线的定义,可知截得的三角形与ABC 有一个公共角,分①公共角为A ∠时;②公共角为B ∠时;③公共角为C ∠时;三种情况进行讨论,即可得出答案.【详解】解:①当公共角为A ∠时,不存在;②公共角为B ∠时,过点P 作PD BC ⊥,交AB 于点D ,如图所示:∴90DPB C ∠=∠=︒,B B ∠=∠,∴BPD BCA ∽;过点P 作PD AB ⊥于点D ,如图所示:∴90PDB C ∠=∠=︒,B B ∠=∠,∴BPD BAC ∽△△;③公共角为C ∠时,连接AP ,如图所示:∴30B ∠=︒,∴2AB AC =,设AC a =,则2AB a =,∴ACP BCA∽;过点P作PD AB∥,交∴CDP CAB∽;综上分析可知,过点的ABC的“相似线故答案为:4.【我思故我在】本题主要考查了相似三角形的判定,平行线的性质,勾股定理,解题的关键是熟练掌握三角形相似的判定方法.10.如图,在ABC中,6BC=,AE AFEB FC=,动点P在射线EF上,BP交CE于点D,CBP∠的平分线交CE于点Q,当14CQ CE=时,EP BP+的值为______.【答案】18【分析】如图,延长EF交BQ的延长线于G.首先证明PB PG=,EP PB EG+=,由EG BC∥,11.如图,在矩形ABCD中,点E,F分别是,==∠=︒∠=︒,则BC的长度是___________.3,6,30,45BE CD FED FDE【答案】3##3+【分析】作FN DE ⊥于点N ,延长DE 交CB 的延长线于点M ,先证FND ∆是等腰直角三角形,设FN x =,利用勾股定理、含30度角的直角三角形的性质求出DN ,EF ,NE 的长度,FDE ∠=DFN ∴∠FND ∴∆是等腰直角三角形.由题意得:设FN x =FED ∠=2EF FN ∴=NE ∴=DE DN ∴=3BE =,AE BE ∴=又EAD ∠=EAD ∴∆∆≌AD BM ∴=EBM ∠=EBM ∴∆∽BM BE MN NF ∴=解得:BM 12.如图,在ABC 中,146AB AC ==,,在AC 上取一点D ,使2AD =,如果在AB 上取点E ,使ADE 和ABC 相似,则AE =___________.①ABC AED ;②ABC ADE ;可根据各四条线段的比例关系式求出AE 的长.此时ADE ACB ,::AC AE AD =,146AC AD ==,,此时ADE ABC ,::AC AD AE =,146AC AD ==,,67=, 故答案为:143或67.13.如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方,某一时刻,太阳光线恰好垂直照射叶片OA 、OB ,此时各叶片影子在点M 右侧成线段CD .测得8.5m MC =,13m CD =,垂直于地面的木棒EF 与影子FG 的比为23:.则点O 、M 之间的距离等于___________m ;【答案】10【分析】连接OM 交AC 于点H ,过点C 作CN BD ⊥,通过证明HMC EFG HAO ∽∽△△△,通过相似三角形对应边成比例即可解答.【详解】解:连接OM 交AC 于点H ,过点C 作CN BD ⊥,14.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE 并延长,交对角线BD 于点F 、DC 的延长线于点G .如果23CE BE =,求FE EG的值.15.矩形ABCD 中,AC BD ,为对角线,6cm 8cm AB BC ==,,E 为DC 中点,动点P 从点A 出发沿AB 方向,向点B 运动,动点Q 同时以相同速度,从点B 出发沿BC 方向向点C 运动,P 、Q 的速度都是1cm/秒,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为x 秒.()06t <<(1)PQ AC ∥时,求运动时间t ;(2)PQ BD ⊥时,求运动时间t ;(3)当t 为何值时,以点P ,B ,Q 为顶点的三角形与QCE 相似?(4)连接PE PQE ,△的面积能否达到矩形ABCD 面积的三分之一,若能求出t 的值;若不能,说明理由.7BP BQBP BQ为顶点的三角形与QCE相似216.解答题=;(1)如图1,ABC和ADE都是等边三角形,连接BD、CE,求证,BD CE[类比探究](2)如图2,ABC 和ADE 都是等腰直角三角形,90ABC ADE ∠=∠=︒,连接BD CE ,.求BD CE的值.[拓展提升](3)如图3,ABC 和ADE 都是直角三角形,90ABC ADE ∠=∠=︒,2AC AE AB AD==.连接BD CE 、,延长CE 交BD 于点F ,连接AF .若AFC ∠恰好等于90︒,请直接写出此时AF BF CF ,,之间的数量关系.证明BAD CAE ∽,从而得出结果;B 作BH CF ⊥,垂足为点AOF BOH ∆∽,根据对应边成比例,【详解】(1)解:∴ABC 和ADE 都是等边三角形,AC ,AD AE =,∠∠DAE BAC =BAC BAE ∠-∠,即:在BAD 和CAE 中,AB AC DAB EAC AD AE =∠=∠=,(SAS BAD CAE ≌△△BD CE =.∴ABC 和ADE 都是等腰直角三角形,45BAC =∠=︒,ADE ∠ADE △∽,AE AC ,则AD AB AE AC=,BAE BAC -∠=∠-∠在BAD 和CAE 中,DAB EAC =∠,AD AE ∴BAD CAE ∽,BD AB CE AC =, 令AB x =,根据勾股定理可得:2BD AB x CE AC x===(3)∴BAD CAE ∽,ACE ABD ∠=∠,在FOB ∆和AOC ∆中,ACE ABD ∠=∠,∠60OFB OAC ∠=∠=设FH x =,OH y =,则17.在△ABC 中,90ACB ∠=,BE 是AC 边上的中线,点D 在射线BC 上.(1)如图1,点D 在BC 边上,:1:2CD BD =,AD 与BE 相交于点P ,过点A 作AF BC ,交BE 的延长线于点F ,易得AP PD的值为 ; (2)如图2,在△ABC 中,90ACB ∠=,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,:1:2DC BC =,求AP PD的值; (3)在(2)的条件下,若CD=2,AC=6,则BP= .18.在∴ABC 中,CA CB =,ACB α∠=,点P 在平面内不与点A ,C 重合,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接,,AD BD CP .(1)如图①,当60α=︒,BD CP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)如图②,当90α=︒时,请写出BD CP的值及直线BD 与直线CP 相交所成的较小角的度数,并说明理由. (3)当90α=︒时,若点E ,F 分别是,CA CB 中点,点P 在直线EF 上,请直接写出当C ,P ,D 在同一直线上时,求AD CP 的值. ,ABC 是等腰直角三角形,根据等腰直角三角形的性质证明,利用相似的性质即可得解;上,和P 在线段解:如图,延长CP 交60︒,∴ABC 是等边三角形,由题意可知∴PAD 是等边三角形,PAD ∠=∠CAP ∠+∠在CAP 和BAD 中,CA BA CAP BAD AP AD =⎧⎪∠=∠⎨⎪=⎩,CAP BAD △≌△ (SAS),PC BD ACP =∠=∠在AOC 和△1BD PC=,直线BD ∴ABC 是等腰直角三角形,CAB ∠=∠∴ AB AC =AB AD AC AP∴=CAB ∠+∠AD是ABC的中位线,2219.如图,点E是矩形ABCD的边AB的中点,F是BC边上一动点(点F与点B,点C不重合),线段DE和:AF相交于点P,连接PC.(1)若在线段DP 上取一点Q ,使得2DP EQ =,连接AQ ,猜想PC 与AQ 的关系并证明;(2)若AF DE ⊥时,8,10AB AD ==,求BF 的长;(3)当点F 为BC 的中点时,求AP PF 的值. AEQCDP ∆,即可得出结论;,再判断出DAE ABF ,即可得出结论;,先判断出(AAS)ADE BGE ∆≅∆,再判断出2,2AD BF BG BF ==,进而判断出,即可得出结论.∴90BAF AED .90BAF AFB ∠+∠=︒,AED AFB ∠=∠,90DAE ABF ∠=∠=︒,∴DAEABF , AD AE AB BF =,即1083.2BF =;(3)解:如图,延长AD GC ,APD FPG ∆,23AD GF ==.【我思故我在】此题查了矩形的性质,构造出相似三角形是解本题的关键.。

相似三角形(8大题型)(48道压轴题专练)(原卷版)—2024-2025学年九年级数学上册单元速记巧

相似三角形(8大题型)(48道压轴题专练)(原卷版)—2024-2025学年九年级数学上册单元速记巧

相似三角形(8大题型)(48道压轴题专练) 压轴题型一 相似形压轴题型1.(20-21九年级上·重庆渝中·期末)如图,△ABC 三个顶点的坐标分别是A (-2,2),B (-4,1),C (-1,-1).以点C 为位似中心,在x 轴下方作△ABC 的位似图形△A'B'C .并把△ABC 的边长放大为原来的2倍,那么点A'的坐标为( )A .(1,-6)B .(1,-7)C .(2,-6)D .(2,-7)2.(23-24八年级下·山东淄博·(2)ABCD AD AB AD <<纸片,以它的一边为边长剪去一个菱形,在余下的平行四边形中,再以它的一边为边长剪去一个菱形.若剪去两个菱形后余下的平行四边形与原平行四边形ABCD 相似,则平行四边形ABCD 的相邻两边AD 与AB 的比值是 .3.(2024·湖北武汉·一模)如图是由小正方形组成的网格,四边形ABCD的顶点都在格点上,仅用无刻度的直尺在所给定的网格中按要求完成下列画图,画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先以点A为位似中心,将四边形ABCD缩小为原来的12,画出缩小后的四边形111AB C D,再在AB上画点E,使得DE平分四边形ABCD的周长;(2)在图2中,先在AB上画点F,使得CF BC=,再分别在AD,AB上画点M,N,使得四边形BCMN 是平行四边形.4.(23-24九年级上·江苏南京·阶段练习)形状相同(即长与宽之比相等)的矩形是相似矩形,已知一个矩形长为()1a a³,宽为1.一分为二(1)如图1,将矩形分割为一个正方形(阴影部分)和小矩形,小矩形恰与原矩形相似,则a的值为______.(2)如图2,将矩形分割为两个矩形,使每个小矩形均与原矩形相似,则a的值为______.一分为多(3)有同学说“无论a为何值,该矩形总可以分割为几个小矩形,这几个小矩形都与原矩形相似”,你同意这个说法吗?若同意,在图3中画出一种可行的分割方案;若不同意,举出反例.一分为三(4)将矩形分割为三个矩形,使每个小矩形均与原矩形相似.画出所有可能的分割方案的示意图,并在每个示意图下方直接写出对应的a 的值.5.(20-21八年级下·山东淄博·期末)如图,四边形ABCD ∽四边形A B C D ¢¢¢¢,且62A Ð=°,75B Ð=°,140D Т=°,9AD =,11A B ¢¢=,6A D ¢¢=,8B C ¢¢=.(1)请直接写出:C Ð= 度;(2)求边AB 和BC 的长.6.(23-24九年级上·广西南宁·阶段练习)如图,在平面直角坐标系中,ABC V 的三个顶点坐标分别为()1,1A ,()3,2B ,()2,3C (每个方格的边长均为1个单位长度),请按下列要求画图:(1)111A B C △与ABC V 关于原点O 成中心对称,画出111A B C △并写出点1A 的坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC V 放大,画出放大后的222A B C △并写出点2B 的坐标;(3)根据信息回答问题:已知ABC V 的面积为32,AB ,请直接写出222A B C △的面积和22A B 边上的高的值.压轴题型二 比例线段压轴题型1.(2020古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底0.618≈,称为黄金分割比例),如图,著名的“断臂维纳斯”便是如此.此外,.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm2.(2024·四川乐山·一模)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG GN MN MG ==这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC V 中,已知3AB AC ==,4BC =,若D ,E 是边BC 的两个“黄金分割”点,则ADE V 的面积为 .3.(23-24八年级下·贵州六盘水·期末)已知a ,b ,c ,d ,e ,f 六个数,如果()0a c e k b d f b d f ===++¹,那么a c e k b d f++=++.理由如下:∵()0a c e k b d f b d f===++¹∴a bk =,c dk =,e fk =(第一步)∴()k b d f a c e bk dk fk k b d f b d f b d f++++++===++++++(第二步)(1)解题过程中第一步应用了______的基本性质;在第二步解题过程中,()k b d f k b d f ++=++应用了______的基本性质;(2)应用此解题过程中的思路和方法解决问题:①如果22567a b c ===,则218a b c ++=______;②已知0345x y z ==¹,求23x y z x y z -++-的值.4.(23-24九年级上··的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽1AB =.(1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连接AE ,求点D 到线段AE 的距离.5.(22-23九年级上·浙江·周测)若实数a b c ,,满足a b c b c a a c b c a b +-+-+-==,求()()()a b b c a c abc+×+×+的值.6.(23-24九年级下·山东淄博·期末)已知a ,b ,c ,d 为四个不为0的数.(1)如果3a b =,求a b b +与a b a b -+的值;(2)如果(),a c a b c d b d =¹¹,求证a c b a d c =--;(3)如果a c a b d b +=+,求证a c b d=.压轴题型三 相似三角形的判定压轴题型1.(21-22九年级上·陕西咸阳·期中)如图,在矩形ABCD 中,E 是AD 边的中点,BE ^F ,连接DF ,分析下列四个结论,①AEF CAB △∽△,②CF 2AF =;③DF DC =;④CD AC =.其中正确的结论有( )A .4个B .3个C .2个D .1个2.(2024·广东深圳·二模)如图,在等腰直角ABC V 中,4AB BC ==,D 为BC 上一点,E 为BC 延长线上一点,且45DAE =°∠,2AE AD =,则BD = .3.(2024·广东梅州·模拟预测)(1)如图1,在矩形ABCD 中,点C ,D 分别在边DC ,BC 上,AB AB ^,垂足为点G .求证:ADE DCF ∽V V .【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H Ð=Ð.【类比迁移】(3)如图3,在菱形ABCD 中,E F 分别在边DC ,BC 上,10AE DF ==,7DE =,60AED Ð=°,求CF 的长.4.(2024·山西晋中·二模)综合与实践问题情境:数学活动课上,老师要求同学们以正方形为背景探索几何图形运动变化中的数学结论.如图1,正方形ABCD 中,4AB =,点E ,F 分别是边AB ,AD 的中点,连接EF ,点G 是线段EF 上的一个动点,连接AG ,将线段AG 绕点A 逆时针方向旋转90°,得到AH ,连接HD ,GB .猜想证明:(1)针对老师给出的问题背景,“智慧小组”发现GB HD =,请你证明这一结论;操作探究:(2)“善思小组”提出问题:如图2,当点G 为线段EF 的中点时,连接FH ,试判断四边形AGFH 的形状,并说明理由;深入探究:(3)“创新小组”BG 与直线DH 交于点M ,当AHD V 为直角三角形时,请直接写出四边形AGMH 的面积.5.(2024·安徽蚌埠·一模)如图1,在四边形ABCD 中,120ABC Ð=°,60ADC Ð=°,对角线AC ,BD 相交于点O ,且AC AD =,BD 平分ABC Ð.(1)求证:DB AB CB =+;(2)如图2,过点D 作DE AB ∥,使DE BC =,连接AE ,取AE 中点 F ,连接DF ,求证:22AC DF OD =×.6.(23-24九年级上·湖南常德·期中)(1)如图1,在四边形ABCD 中,90BAD BCD Ð=Ð=°,连接AC BD ,,过点A 作AE AC ^交CB 的延长线于点E ,求证:E ACD Ð=Ð.(2)如图2,在四边形ABCD 中,AB AD =,(1)中的其它条件不变,点M ,N 分别是BD EC ,的中点,连接AN AM ,,MN .①求证:AE AC =﹔②求证:N ABE AM ∽△△.压轴题型四 相似三角形的性质压轴题型1.(22-23九年级上·上海长宁·期中)已知点D 在ABC V 的边BC 上,联结AD ,如果ABD △与ACD V 相似,那么下列四个说法:①BAD C Ð=Ð;②AD BC ^;③2AD BD CD =×;④22AB BD AC CD =.一定成立的是( ).A .②④B .①③C .①②③D .②③④2.(2024·上海浦东新·三模)如图,在ABC V 中,3AC BC ==,90C Ð=°,点D 在边BC 上(不与点B ,点C 重合),连接AD ,点E 在边AB 上,EDB ADC Ð=Ð.已知点H 在射线AC 上,连接EH 交线段AD 于点G ,当1CH =,且AEH BED Ð=Ð时,则BE AB = .3.(23-24八年级下·山东威海·期末)如图1,矩形ABCD ,点E ,点F 分别为AD ,BC 上的点,将矩形沿EF 折叠,使点B 的对应点B ¢落在CD 上,连接BB ¢.(1)如图2,当点B ¢与点D 重合时,连接BE ,试判断四边形BEB F ¢的形状,并说明理由;(2)若6AB =,8BC =,求折痕EF 的最大值.4.(23-24八年级下·山东东营·期末)综合与探究(1)如图1,在正方形ABCD 中,点E ,F 分别在边BC CD ,上,且AE BF ^,则线段AE 与BF 的之间的数量关系为_____________;(2)【类比探究】如图2,在矩形ABCD 中,35AB AD ==,,点E ,F 分别在边BC ,CD 上,且AE BF ^,请写出线段AE 与BF 的数量关系,并证明你的结论.(3)【拓展延伸】如图3,在Rt ABC V 中,9046ABC AB BC Ð=°==,,,D 为BC 上一点,且2BD =,连接AD ,过点B 作BE AD ^于点F ,交AC 于点E ,求BE 的长.5.(23-24九年级下·广西南宁·阶段练习)已知等边ABC V ,以AC 为斜边向外作Rt ACD △,定义Rt ACD △为等边ABC V 的“关联直角三角形”,连接BD 交AC 于点E ,下面我们来研究与DE BE的值有关的问题.(1)如图①,当“关联直角三角形”是等腰直角三角形时,DE BE的值为______;(2)如图②,当“关联直角三角形”是含30°的直角三角形时,求DE BE的值;(3)如图③,当“关联直角三角形”是一般的直角三角形时,若16,3DE AB BE ==,求BD 的值.6.(2024·安徽·中考真题)如图1,ABCD Y 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF Ð=°,求AC BD 的值.压轴题型五 相似三角形的应用压轴题型1.(2024·浙江温州·三模)图1是《九章算术》中记载的“测井深”示意图,译文指出:“如图2,今有井直径CD 为5尺,不知其深AD .立5尺长的木CE 于井上,从木的末梢E 点观察井水水岸A 处,测得“入径CF ”为4寸,问井深AD 是多少?(其中1尺10=寸)”根据译文信息,则井深AD 为( )A .500寸B .525寸C .550寸D .575寸2.(2022·浙江金华·一模)将一本高为17cm (即17cm EF =)的词典放入高(AB )为16cm 的收纳盒中(如图1).恰好能盖上盒盖时,测得底部F 离收纳盒最左端B 处8cm ,若此时将词典无滑动向右倒,书角H 的对应点H ¢恰为CD 中点.(1)收纳盒的长BC = ;(2)现将若干本同样的词典放入此有盖的收纳盒中,如图2放置,则最多有本书可与边BC 有公共点.3.(2024·江苏南京·一模)在光学中,由实际光线会聚成的像,称为实像,而光线能会聚的是因为折射.图中,凸透镜EF 的焦距为f ,主光轴l EF ^,A ,B ,C ,D 都在l 上,其中O 是光心,2OB OD f ==,蜡烛PQ l ^(蜡烛可移动,且OQ f >),光线PG l ∥,其折射光线GC 与另一条经过光心的光线PP ¢相交于点P ¢(P Q l ¢¢^)即为蜡烛在光屏上所成的实像.图中所有点都在同一平面内.记物高()PQ 为h ,像高()P Q ¢¢为h ¢,物距()OQ ,像距()OQ ¢为v .(1)若10cm f =,10cm h =,15cm u =,=v cm .(2)求证111u v f+=.(3)当f 一定时,画出v 与u 之间的函数图象()u f >,并结合图象描述v 是怎么随着u 的变化而变化的?4.(23-24九年级上·河北邢台·1,小红家的阳台上放置了一个晒衣架,图2是晒衣架的侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点在地面上,经测量得到136cm AB CD ==,51cm OA OC ==,34cm OE OF ==,现将晒衣架完全稳固张开,扣链EF 成一条线段.发现:连接AC .则AC 与EF 有何位置关系?并说明理由;探究:若32cm EF =,求利用夹子垂挂在晒衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上?5.(22-23九年级上·浙江·单元测试)如图,Rt ABC V 为一块铁板余料,90B Ð=°,6cm BC =,8cm AB =,要把它加工成正方形小铁板,有如图所示的两种加工方案,请你分别计算这两种加工方案的正方形的边长.6.(2022九年级·全国·专题练习)阅读理解:如图1,AD 是△ABC 的高,点E 、F 分别在AB 和AC 边上,且EF //BC ,可以得到以下结论:AH EF AD BC=.拓展应用:(1)如图2,在△ABC 中,BC =3,BC 边上的高为4,在△ABC 内放一个正方形EFGM ,使其一边GM 在BC 上,点E 、F 分别在AB 、AC 上,则正方形EFGM 的边长是多少?(2)某葡萄酒庄欲在展厅的一面墙上,布置一个腰长为100cm ,底边长为160cm 的等腰三角形展台.现需将展台用隔板沿平行于底边,每间隔10cm 分隔出一排,再将每一排尽可能多的分隔成若干个无盖正方体格子,要求每个正方体格子内放置一瓶葡萄酒.平面设计图如图3所示,将底边BC 的长度看作是0排隔板的长度.①在分隔的过程中发现,当正方体间的隔板厚度忽略不计时,每排的隔板长度(单位:厘米)随着排数(单位:排)的变化而变化.请完成下表:排数/排0123…隔板长度/厘米160__________________…若用n 表示排数,y 表示每排的隔板长度,试求出y 与n 的关系式;②在①的条件下,请直接写出该展台最多可以摆放多少瓶葡萄酒?压轴题型六 重心的性质压轴题型1.(23-24九年级上·浙江宁波·期末)如图,点G 是ABC V 的重心,过点G 作MN BC ∥分别交AB AC ,于点M ,N ,过点N 作ND AB ∥交BC 于点D ,则四边形BDNM 与ABC V 的面积之比是( )A .1:2B .2:3C .4:9D .7:92.(2023·上海·一模)在Rt ABC △中,9030B BAC BC Ð=°Ð=°=,,1,以AC 为边在ABC V 外作等边ACD V ,设点E 、F 分别是ABC V 和ACD V 的重心,则两重心E 与F 之间的距离是 .3.(2024·江苏盐城·中考真题)如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN 为平行四边形;(2)①如图2,连接AC BD 、交于点O ,可得M 、N 两点都在BD 上,当平行四边形ABCD 满足________时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)4.(23-24七年级下·江苏扬州·阶段练习)作图.(1)直尺作图:如图1,已知D 、E 分别为AB 、AC 中点,过点A 作AF 平分ABC V 面积;(2)直尺作图:如图2,已知AD BC ∥,在四边形ABCD 中作一点O ,使AOB COD S S =△△;(3)尺规作图:如图3,已知D 为AC 中点,点M 在BC ,在AC 上作点N 使MN 平分ABC V 面积.5.(2024·辽宁丹东·二模)阅读与思考:三角形的重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.三角形重心的一个重要性质:重心与一边中点的连线的长是对应中线长的13.下面是小明证明性质的过程.如图,在ABC V 中,D 、E 分别是边BC 、AC 的中点,AD 、BE 相交于点G ,求证:13GE GD BE AD ==证明:连接ED ,∵D ,E 是边BC ,AC 的中点,∴DE AB ∥,12DE AB =(依据1)∴ABG DEGV V ∽∴12GE GD DE GB GA AB ===(依据2)∴13GE GD BE AD ==(1)任务一,在小明的证明过程中,依据1和依据2的内容分别是:依据1:______________________依据2:______________________(2)应用①如图,在ABC V 中,点G 是ABC V 中的重心,连接AG 并延长交BC 与点E ,若 3.5GE =,求AG 长.②在ABC V 中,中线AD 、BE 相交于点O ,若ABC V 的面积等于30,求BOD V 的面积.6.(2024·河南周口·三模)(1)古往今来,人们在生产和生活中对三角形的应用层出不穷,三角形也是我们平时研究的重点,如图1,已知ABC V 是等边三角形. P 是ABC V 的重心,连接BP CP ,并延长分别交边AC AB ,于点E ,D .试判断:①BPD Ð的度数为 ;②线段PB PD PE ,,之间的数量关系:PB PD PE +;(填写“>”“<”或“=”)(2)如图2,若在等边ABC V 中,点E 是射线AC 上一动点(其中点E 不与点A 重合,且12CE AC <),连接BE ,作边BA 关于直线 BE 的对称线段 BD ,直线CD ,BE 相交于点 P ,试探究线段PB PC PD ,,的数量关系,并说明理由.压轴题型七 平面向量的线性运算压轴题型1.(23-24九年级上·上海·期中)下列判断不正确的是( )A .()222a b a b +=+r r r r ;B .如果向量a r 与b r 均为单位向量,那么a b =r r 或a b =-r r ;C .如果a b =r r ,那么a b =r r ;D .对于非零向量b r ,如果()0a k b k =×¹r r ,那么a b r r P .2.(2024·上海普陀·二模)如图,梯形ABCD 中,AD BC ∥,过点A 作AE DC ∥分别交BD 、BC 于点F 、E ,23BE BC =,设AD a =uuu r r ,AB b =uuu r r ,那么向量FE uuu r 用向量a r 、b r 表示为 .3.(23-24八年级下·上海崇明·期末)如图,点E 在平行四边形ABCD 的对角线BD 的延长线上.(1)填空:BA AB +uuu r uuu r = ,BA AE ED DC +++uuu r uuu r uuu r uuu r = ;(2)图中与AB uuu r 相等的向量是 ,与AD uuu r 相反的向量是 ;(3)求作:DC DE +uuu r uuu r (不写作法,保留作图痕迹,写出结论).4.(23-24八年级下·上海·期末)如图,在四边形ABCD 中,AD BC ∥,点O 是对角线AC 的中点,DO 的延长线与BC 相交于点E ,设AB a uuu r r =,AD b =uuu r r ,BE c =uuu r r .(1)试用向量a r 、b r 、c r 表示向量:ED =uuu r ______;(2)写出图中所有与AD uuu r 互为相反向量的向量:______;(3)求作:AD OC +uuu r uuu r.(画出所求向量,并直接写出结论)5.(23-24八年级下·上海闵行·期末)如图,已知梯形ABCD 中,AB DC P ,点E 在AB 上,ED BC ∥.(1)填空:BE ED DC CB +++=uuu r uuu r uuu r uuu r ,(2)填空:BA AD DC EA ++-=uuu r uuu r uuu r uuu r ;(3)在图中直接作出AE ED AB +-uuu r uuu r uuu r .(不写作法,写结论)6.(2022八年级下·上海·专题练习)如图,已知点M 是△ABC 边BC 上一点,设AB uuu r =a r ,AC uuu r =b r .(1)当BM MC=2时,AM uuuu r =______;(用a r 与b r 表示)(2)当AM uuuu r =4377a b +r r 时,BM MC =______;(3)在原图上作出AM uuuu r 在AB uuu r 、AC uuu r 上的分向量.压轴题型八 相似三角形的动点问题1.(2020·山西·一模)如图,在ABC V 中,8AB AC ==,6BC =,点P 从点B 出发以1个单位长度/秒的速度向点A 运动,同时点Q 从点C 出发以2个单位长度/秒的速度向点B 运动,其中一点到达另一点即停.当以B ,P ,Q 为顶点的三角形与ABC V 相似时,运动时间为( )A .2411秒B .95秒C .2411秒或95秒D .以上均不对2.(2023八年级上·江苏·专题练习)如图,在ABC V 中,90C Ð=°,3AC =,4BC =,动点P 从点B 出发以每秒1个单位长度的速度沿B A ®匀速运动;同时点Q 从点A 出发同样的速度沿A C B ®®匀速运动.当点P 到达点A 时,P 、Q 同时停止运动,设运动时间为t 秒,当t 为 时,以B 、P 、Q 为顶点的三角形是等腰三角形.3.(2024·吉林长春·三模)如图,在Rt ABC △中,90ABC Ð=°,8AB =,6BC =,点D 为AC 中点,动点P 从点A 出发,沿边AB 以每秒5个单位长度的速度向终点B 运动,连结DP ,将线段DP 绕点D 逆时针旋转90°得线段DE ,连结PE .设点P 运动的时间为t 秒.(1)用含t 的代数式表示点P 到AC 的距离为________;(2)当点E 落在ABC V 内部(不包括边界)时,求t 的取值范围;(3)当PE 与ABC V 的一边平行时,求线段PE 的长度;(4)当经过点E 与ABC V 的一个顶点的直线平分ABC V 面积时,直接写出t 的值.4.(2024·江苏苏州·二模)如图,矩形ABCD 中,4AB =厘米,3BC =厘米,点E 从A 出发沿AB BC -匀速运动,速度为1厘米/秒;同时,点F 从C 出发沿对角线CA 向A 匀速运动,速度为1厘米/秒,连接DE DF EF 、、,设运动时间为t 秒.请解答以下问题:(1)当0 2.5t <<时①t 为何值时,EF AD ∥;②设DEF V 的面积为y ,求y 关于t 的函数;5.(2023·吉林松原·模拟预测)已知ABC V 中,90C Ð=°,3cm AC =,4cm CD =,BD AD =.点F 从点A 出发,沿AC CD -运动,速度为1cm/s ,同时点E 从点B 出发,沿BD DA -运动,运动速度为1cm/s ,一个点到达终点,另一点也停止运动.设AEF △ 的面积为S 2cm ,点E ,F 运动时间为t s .(1)求BD 的长;(2)用含t 的代数式表示DE ;(3)求S 与t 的函数关系式,并写出t 的取值范围.6.(23-24九年级下·河北邯郸·阶段练习)如图1和2,在矩形ABCD 中,6,8AB BC ==,点K 在CD 边上.且73CK =.点M N ,分别在,AB BC 边上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速运动,点E 在CD 边上随P 移动,且始终保持^PE AP ;点Q 从点D 出发沿DC 匀速运动,点P Q ,同时出发,点Q 的速度是点P 的一半,点P 到达点N 时停止,点Q 随之停止.设点P 移动的路程为x .(1)当点Q 与点K 重合时,通过计算确定点P 的位置;(2)若点P 在BN 上,当BP CE =时,如图2,求x 的值;(3)在点P 沿折线MB BN -运动过程中,求点Q ,E 的距离(用含x 的式子表示);(4)已知点P 从点M 到点B 再到点N 共用时20秒,请直接写出点K 在线段QE 上(包含端点)的总时长.。

中考数学专题训练:相似三角形(附参考答案)

中考数学专题训练:相似三角形(附参考答案)

中考数学专题训练:相似三角形(附参考答案)1.若a3=b2,则a+bb的值为( )A.32B.53C.52D.232.如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为( )A.3 B.4C.5 D.63.如图,AD∥BE∥FC,直线l1,l2分别与三条平行线交于点A,B,C和点D,E,F.若AB=3,BC=5,DF=12,则EF的长为( )A.4.5 B.6C.7.5 D.84.如图,小雅同学在利用标杆BE测量建筑物的高度时,测得标杆BE高1.2 m,又知AB∶BC=1∶8,则建筑物CD的高是( )A.9.6 m B.10.8 mC.12 m D.14 m5.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2).现以原点O为位似中心,在第一象限内作与△ABC的相似比为2的位似图形△A′B′C′,则顶点C′的坐标是( )A.(2,4) B.(4,2)C.(6,4) D.(5,4)6.如图(单位:mm),小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5 m时,标准视力表中最大的“E”字高度为72.7 mm,当测试距离为3 m时,最大的“E”字高度为( )A.121.17 mm B.43.62 mmC.29.08 mm D.4.36 mm7.如图,AC是□ABCD的对角线,点E在CD的延长线上,连接BE分别交AC,AD 于点F,G,则下列式子一定正确的是( )A.AFCF =AGDGB.ABCE=CFAFC.BFFG =EFBFD.ADDG=ABDE8.如图,在△ABC中,D,E分别为边AB,AC上的点,试添加一个条件:________________________,使得△ADE与△ABC相似.(任意写出一个满足的条件即可)9.如图,已知在梯形ABCD中,AD∥BC,S△ABDS△BCD =12,则S△BOCS△BCD=______.10.如图,在矩形ABCD中,若AB=3,AC=5,AFFC =14,则AE的长为_____.11.如图,为了测量山坡的护坡石坝高,把一根长为4.5 m 的竹竿AC斜靠在石坝旁,量出竿上AD长为1 m时,它离地面的高度DE为0.6 m,则坝高CF为________m.12.已知在平面直12角坐标系中,△AOB的顶点分别为A(2,1),B(2,0),O(0,0).若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为__________________________.13.如图,在△ABC中,点D,E分别是AB,AC的中点.若S△ADE=2,则S△ABC=_____.14.如图,在平面直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是____________.15.如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC∶S△DEC=4∶9,BC=6,求EC的长.16.如图,在△ABC中,AB=4,BC=5,点D,E分别在BC,AC上,CD=2BD,CE =2AE,BE交AD于点F,则△AFE面积的最大值是______.17.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布前形成倒立的实像CD(点A,B的对应点分别是C,D).若物体AB的高为6 cm,小孔O到物体和实像的水平距离BE,CE分别为8 cm,6 cm,则实像CD的高度为________cm.18.如图,在正方形ABCD中,点E是边CD上一点,连接BE,以BE为对角线作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连接AF,有以下五个结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF⊥BD;④2BG2=BH·BD;⑤若CE∶DE=1∶3,则BH∶DH=17∶16.你认为其中正确的是____________.(填写序号)19.已知,如图1,若AD是△ABC中∠BAC的内角平分线,通过证明可得ABAC =BDCD,同理,若AE是△ABC中∠BAC的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在△ABC中,BD=2,CD=3,AD是△ABC的内角平分线,则△ABC的BC边上的中线长l的取值范围是_____________.20.如图,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB 上,且CF=BE,AE2=AQ·AB.求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ.21.在等腰三角形ABC中,AB=AC,点D是边BC上一点(不与点B,C重合),连接AD.(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连接AE,DE,则∠BDE=________.(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连接BE.①在图2中补全图形;②探究CD与BE的数量关系,并证明.(3)如图3,若ABBC =ADDE=k,且∠ADE=∠C,试探究BE,BD,AC之间满足的数量关系,并证明.参考答案1.C 2.B 3.C 4.B 5.C 6.B 7.C8.ADAB =AEAC(答案不唯一) 9.2310.1 11.2.712.(4,2)或(-4,-2)13.8 14.(4,2) 15.(1)证明略(2)EC=916.43 17.4.5 18.①②③④ 19.12<l<25220.(1)证明略(2)证明略21.(1)30°(2)①图略②CD与BE的数量关系为CD=BE,证明略(3)AC=k(BD+BE),证明略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容等腰三角形分类讨论综合會喙学0护1•理解等腰三角形的性质和判定定理;2•能用等腰三角形的判定定理进行相关计算和证明; 3•初步体会等腰三角形中的分类讨论思想;4•体会在函数动点中寻找某些特殊的点形成的等腰三角形; 5.培养学生进行独立思考,提高独立解决问题的能力。

例 1•如图,在 Rt △ ABC 中,/ BAC= 90 °, AB=3, AC=4 , AD 是 BC 边上的高, 动点,且/ EDF= 90° . (1 )求 DE : DF 的值;(2)设直线DF 与直线AB 相交于点G , △ EFG 能否成为等腰三角形?若能, 请说明理由。

(★★★★★)【满分解答】:(1 )•.•/ BAC= 90° •••/ B +/ C = 90°,•/ AD 是 BC 边上的高DAC + Z C=90°•••/ B = Z DAC又T Z EDF= 90°• Z BDE + Z EDA= Z ADF +Z EDA = 90°ZBDE = Z ADFDE BD△ BED AFDDF ADBD f AB 33 cot B 二• DE :AD AC 44(2)若厶EFG 为等腰三角形,根据点 G 的不同位置分两大类讨论:E 、F 分别是AB 边和AC 边上的 请直接写出线段 BE 的长;若不能,例1题图①当点G 在射线AB 上时,如图1。

因为.FEG CAB • . AFE >90: 所以.FEG 为钝角,则△ EFG 为等腰三角形时,EG 二EF•/ EG =EF , ED _ DF••• D 为GF 中点24则,在直角 AGF 中,GF =2AD 二一5又••• G= EFG 二 CBE = 54。

25②当点G 在射线BA 上时,如图2。

因为.FEG — CAB • . AEF >90; 所以/EFG 为钝角,则△ EFG 为等腰三角形时,FG 二EF•/ FG 二 EF , AF AE•- A 为EG 中点••• AEG 二 G 又••• B= FED• BDE= AEF 二 ADF • ADF = G123所以:BE =3。

5A例2•如图,在ABC 中,AB 二AC =5, BC=6 , D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、DEB 重 合),且保持DE // BC ,以DE 为边,在点A 的异侧作正方形 DEFG ,当BDG 是等腰三角形时,请直接写出 AD 的长。

(★★★★★)(图1) • cos _G 二cos C , 则DGAG AC 4EGGF可求得AG96=3。

所以:BC 5 54 BE =25另解:由厶 EFG 为等腰三角形可得AED ^ GBD ,所以BD =DE ,再过点 D 作BE 垂线,利用三角比可求得综上可得,当△ EFG 为等腰三角形时,BE = 54 或 BE = 3。

25 5【满分解答】:过点A作AQ _ BC,垂足为点Q。

4AB = AC = 5, BC = 6,贝U BQ = 3 AQ = 4 , cosQAB =;5设AD 二x,贝U BD = 5 — x , DE = DG = 6 x。

5当BDG是等腰三角形时,根据点G的位置,分以下情况讨论:(1)当点G在.ABC内部时:因为.DGB >90,所以该情况下只可能DG二BG。

(2)若点Q在线段PB上运动,与点P不重合,联结CQ并延长交但该情况下不能直接求解出,则画底边上的高(点G作GH贝U:. HDG 二.QAB,所以cos. HDG = cos QAB丄AB )。

(如图1)5 - x26x5二4,解得:5125x 一73 ;(2)①当②当当点G在ABC外面时:分以下情况讨论贝V空=5 — x,解得:x =兰;5 11(如图2)设BC与DG交点为M ,3x5 _45-x 5 'DB = DG 时:DB = DG 时:所以:cosWHDG =cos 三QAB,即:③当DG = BG ,不成立。

AD=12573则可得: BM _ DG且点M为DG中点,解得:x =——725 20。

11 71.已知在梯形ABCD中,AB//DC , 题满分14分)(★★★★★)(1)求证:PD // BC ;AD =2PD , PC =2PB,ADP = PCD , PD 二PC = 4,如图1 。

(本DP的延长线于点O,综合上可得:当BDG是等腰三角形时(图1)如图2,设PQ = x , DO = y,求y与x的函数关系式,并写出它的定义域;(1)证明:••• AB//DC••• . CPB — PCD .................. 1 分••: ADP 二PCD• . ADP = • CPB .................... 1 分••• AD =2PD , PC =2PBPD AD 八•- .......... 1 分(2)解:•/ AB//DC , PD//BC•四边形PBCD是平行四边形•PD 二BC•/ PD = PC = 4 • BC = 4 ........................ 1 分•/ PC =2PB•PB =2••• OD//BCP°J Q ..................................... 1 分BC QBT PQ = x , DO = y• PO = y - 4 , QB = 2 - xy _4 _ xPB PC•••△ ADP CPB ......... 1 分•APD 二B•PD//BC ...................... 1分定义域是:0:::x:::2......... 1分(3)解:①当PM二PN时,•/ PM //DC由(2)知:PD =4,DC =2PM 二PN 二PD - DN =2 ..................... 2 分②当MP二MN时,•••△ ADP CPB , PC 二BC=4易得:AP =AD =2PD =8易证:MN//AD即:四边形AMCD是平行四边形•DC 二AM =2•PM 二AP - AM =6 .............................. 2 分动点产生的直角三角形6•理解直角三角形的性质;7.能用直角三角形的性质解决相关问题;8•培养学生分类讨论的思想,并体验动态思维过程;9•培养学生分析问题、解决问题的能力。

DC DN••• DC 二DNPM PN(注:当NM二NP时不存在)练习1•在.ABC中,AB =AC =5 , BC = 8,点P、Q分别在边CB、AC上(点P不与点C、点B重合),且保持.APQ = . ABC 。

(1) 若BP二x,CQ=y,求y与x之间的函数关系式,并写出函数的定义域;【满分解答】:(1): . APQ CPQ = B BAP, . APQ 二ABC ,••• BAP 二CQP .又••• AB 二AC,「. B — C.•QCP s :ABP..CQ CP•• =BP AB '•/ BP 二x , BC =8 , • CP 二BC-BP=8-x ,又CQ = y , AB = 5 , • —= 8——,即y = _丄x?十8 x x 5 551 a故所求的函数关系式为y = - 1 x2• ° x , (0 :::x :::8).5 5(2)①当• CQP =90;时:如图1,•QAP APQ =90[ APQ 二C•QAP C = 90^,则AP — BC•••点P为BC中点,贝U BP =4②当• CPQ =90;时:如图2,••• B = C 二APQ(2) 当CPQ 为直角三角形时,求点P、B之间的距离。

••• cos. B / 二AB,解的BP 二255 BP 4③当一C = 90时,不成立。

••• EF 丄BC, EF=DE=y , • EC I3 y .3综上可得,当CPQ为直角三角形时,25BP =4 或BP 二—【备注】:本部分总结解题方法和策略,师生共同总结,大概动点产生的直接三角形问题的解题方法和策略:1•寻找题目中的已知量;2•观察能否利用“特殊点”、“交点”求解;3如不能,则利用勾股定理解答;5分钟左右。

1•已知△ ABC为等边三角形,AB=6,P是AB上的一个动点(与A、B不重合),过点D,以点D为正方形的一个顶点,在△ ABC内作正方形DEFG,其中D、E在BC上,+7分)(1)设BP的长为x,正方形DEFG的边长为y,写出y关于x的函数解析式及定义域;(2)A GDP是否可能成为直角三角形?若能,求出BP的长;若不能,请说明理由。

(★★★★★)P作AB的垂线与BC相交于点F在AC上。

(满分10分,3分•••/ B= / C=60o, AB=BC=AC= 6.•/ DP 丄AB, BP=x ,• BD= 2x ................................................ 1 分又•••四边形DEFG是正方形,(图(图4 5策略;3•培养学生对图形的直觉能力以及从变化中看到不变实质的数学洞察力; 4•培养学生学会挖掘题目中的隐藏条件,从未知到已知的一个转变;5•掌握动点产生的相似三角形的分类讨论情况,并能根据题目中的条件进行求解。

例1•如图,在Rt △ ABC 中,.ACB=90,CE 是斜边AB 上的中线,AB =10, tanA = 4,点P 是CE 延长线3上的一动点,过点 P 作PQ _ CB ,交CB 延长线于点Q ,设EP = x , BQ 二y 。

(★★★★) (1) 求y 关于x 的函数关系式及定义域;【满分解答】(1)在Rt △ ABC 中,.ACB =90,BC 4“ “T tan A, AB =10AC 3••• BC =8, AC =6 .1 •/ CE 是斜边AB 上的中线,• CE 二BE 二 AB = 5 2••• PCB = ABC, ••• PQC = ACB = 904X -4,定义域为5(2)T • Q = . ACB =90 , • QBF = . ACQ 二 BC PC AB叮即 (2) 过点B 作BF _ AB 交PQ 于F ,当L BEF 和匚QBF 相似时,求x 的值。

4分两种情况: ①当.FEB 二.A 时,在 Rt △ FBE 中,N FBE =90「 BE =5 BF y '' 35〔4X -4〕=4;<5,解得 x=10 ;3 5 3②当.FEB 二.ABC 时, 5 在 Rt △ FBE中,.FBEtO'BETBFyy125综合①②,X = ------ 或10.164AD // BC , AB=CD , AD=3 , BC=9 , tan • ABC 二一,3 直线MN 是梯形的对称轴,点 P 是线段MN 上一个动点 N 重合),射线BP 交线段CD 于点E ,过点C 作CF // AB 于点 F 。

相关文档
最新文档