2018版高考数学一轮复习易错知识清单(理)
【推荐下载】2018高考数学一轮复习易错知识点-推荐word版 (6页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018高考数学一轮复习易错知识点为了向别人、向世界证明自己而努力拼搏,你必须在高考中取得好成绩。
下面小编为大家整理的高考数学一轮复习易错知识点,希望大家喜欢。
高考数学一轮复习易错知识点01.遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
02.忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
03.混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
04.充分条件、必要条件颠倒致误对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
05.“或”“且”“非”理解不准致误命题p⊦q真?p真或q真,命题p⊦q假?p假且q假(概括为一真即真);命题p⊥q真?p真且q真,命题p⊥q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
06.函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
2018年高考数学一轮复习(讲+练+测): 专题2.2 函数定义域、值域(讲)
专题2.2 函数定义域、值域【考纲解读】【直击考点】题组一 常识题1.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是________.A .y =xB .y =lg xC .y =2xD .y =1x【答案】D 【解析】y =10lg x=x ,定义域与值域均为(0,+∞),只有选项D 满足题意.2.已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤0,52 【解析】 由x ∈[-2,3],得x +1∈[-1,4],由2x -1∈[-1,4],得x ∈⎣⎢⎡⎦⎥⎤0,52 3.[教材改编] 函数f (x )=8-xx +3的定义域是________. 【答案】(-∞,-3)∪(-3,8]【解析】要使函数有意义,则需8-x ≥0且x +3≠0,即x ≤8且x ≠-3,所以其定义域是(-∞,-3)∪(-3,8]. 题组二 常错题4.函数y =f (cos x )的定义域为⎣⎢⎡⎦⎥⎤2k π-π6,2k π+2π3(k ∈Z ),则函数y =f (x )的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤-12,1【解析】 由于函数y =f (cos x )的定义域是⎣⎢⎡⎦⎥⎤2k π-π6,2k π+2π3(k ∈Z ),所以u =cos x 的值域是⎣⎢⎡⎦⎥⎤-12,1,所以函数y =f (x )的定义域是⎣⎢⎡⎦⎥⎤-12,1.5.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ∈[0,1],92-32x ,x ∈(1,3],当t ∈[0,1]时,f [f (t )]∈[0,1],则实数t 的取值范围是______________. 【答案】⎣⎢⎡⎦⎥⎤log 373,1【解析】 因为t ∈[0,1],所以f (t )=3t ∈[1,3],所以f [f (t )]=f (3t)=92-32·3t ∈[0,1],即73≤3t≤3,所以log 373≤t ≤1.6.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.【答案】⎣⎢⎡⎭⎪⎫0,34. 【解析】函数的定义域为R ,即mx 2+4mx +3≠0恒成立.①当m =0时,符合题意;②当m ≠0时,Δ=(4m )2-4×m ×3<0,即m (4m -3)<0,解得0<m <34.综上所述,实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.题组三 常考题7.若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y =x 2,值域为{1,4}的“同族函数”共有________个. 【答案】98. 函数f (x )=lg(x 2+x -6)的定义域是________. 【答案】{x |x <-3或x >2}【解析】 要使函数有意义,则需x 2+x -6>0,解得x <-3或x >2.9.设函数f (x )在区间[0,1]上有意义,若存在x ∈R 使函数f (x -a )+f (x +a )有意义,则a 的取值范围为________. 【答案】 [-2,-1].【知识清单】1 函数的定义域1.已知函数解析式,求定义域,其主要依据是使函数的解析式有意义,主要形式有:(1)分式函数,分母不为0;(2)偶次根式函数,被开方数非负数; (3)一次函数、二次函数的这定义域为R ; (4)0x 中的底数不等于0; (5)指数函数x y a =的定义域为R ;(6)对数函数log a y x =的定义域为{}|0x x >; (7)sin ,cos y x y x ==的定义域均为R ;(8)tan y x =的定义域均为|,2x x k k z ππ⎧⎫≠+∈⎨⎬⎩⎭; 2.求抽象函数的定义域:(1)由()y f x =的定义域为D ,求[()]y f g x =的定义域,须解()f x D ∈; (2)由[()]y f g x =的定义域D ,求()y f x =的定义域,只须解()g x 在D 上的值域就是函数()y f x = 的定义域;(3)由[()]y f g x =的定义域D ,求[()]y f h x =的定义域.3.实际问题中的函数的定义域,除了使解析式本身有意义,还要使实际问题有意义. 2 函数的值域 函数值域的求法:(1)利用函数的单调性:若y=f(x)是 [a,b]上的单调增(减)函数,则f(a),f(b)分别是f(x)在区间[a,b]上取得最小(大)值,最大(小)值.(2)利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的范围. (3)利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-.(4)利用“分离常数”法:形如y=ax b cx d ++ 或2ax bx ey cx d++=+ (a,c 至少有一个不为零)的函数,求其值域可用此法.(5)利用换元法:形如y ax b =+,可用此法求其值域. (6)利用基本不等式:(7)导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域【考点深度剖析】定义域是函数的灵魂,高考中考查的定义域多以填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,难度中等.【重点难点突破】考点1 函数的定义域 【1-1】函数y(+)的定义域为_________.【答案】(-∞,-1)∪(-1,0).【1-2】函数22-25+1+)cos (=x x log y 的定义域为_________.【答案】33x x ππ⎧⎫-≤≤⎨⎬⎩⎭【解析】由已知条件,自变量x 需满足22log cos 10250x x +≥⎧⎨-≥⎩得1cos 22,23355x k x k k Z x ππππ⎧≥⇒-+≤≤+∈⎪⎨⎪-≤≤⎩ 所以33x ππ-≤≤故而所求函数定义域为33x x ππ⎧⎫-≤≤⎨⎬⎩⎭.【1-3】设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为________.【答案】()()2,11,2 --【解析】由202x x +>-得,()f x 的定义域为{}|22x x -<<.故22,222 2.xx⎧-<<⎪⎪⎨⎪-<<⎪⎩,解得()()4,11,4x ∈--.故⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为()()2,11,2 -- 【1-4】若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 【答案】[-1,0]【思想方法】(1)已知具体函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.【温馨提醒】对于含有字母参数的函数定义域,应注意对参数取值的讨论;对于实际问题的定义域一定要使实际问题有意义;而分段函数的定义域是各段区间的并集、各个段上的定义域交集为空集,即各个段的端点处不能重复. 考点2 函数的值域【2-1】求函数y =x +4x(x <0)的值域.【答案】(-∞,-4].【解析】∵x <0,∴x +4x=-⎝ ⎛⎭⎪⎫-x -4x ≤-4,当且仅当x =-2时等号成立. ∴y ∈(-∞,-4]. ∴函数的值域为(-∞,-4].【2-2】 求函数y =x 2+2x (x ∈[0,3])的值域. 【答案】[0,15].【解析】(配方法)y =x 2+2x =(x +1)2-1,∵y =(x +1)2-1在[0,3]上为增函数, ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. 【2-3】 求函数y =1-x21+x 2的值域.【答案】(-1,1].【2-4】 求函数f (x )=x -1-2x .的值域.【答案】1(,]2-∞.【解析】法一:(换元法)令1-2x =t ,则t ≥0且x =1-t22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是1(,]2-∞.法二:(单调性法)容易判断f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以11()22y f ≤=即函数的值域是1(,]2-∞.【2-5】 求函数y =x 2-xx 2-x +1的值域.【答案】1[,1)3-【思想方法】求函数值域常用的方法(1)配方法,多适用于二次型或可转化为二次型的函数. (2)换元法. (3)基本不等式法. (4)单调性法. (5)分离常数法.【温馨提醒】求函数值域的方法多样化,需结合函数解析式的特点选用恰当的方法【易错试题常警惕】分段函数的参数求值问题,一定要注意自变量的限制条件. 如:已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()11f a f a -=+,则a 的值为_______.【分析】当0a >时,11a -<,11a +>,由()()11f a f a -=+得2212a a a a -+=---,解得32a =-,不合题意;当0a <时,11a ->,11a +<,由()()11f a f a -=+得 1222a a a a -+-=++,解得34a =-.所以a 的值为34-.【易错点】没有对a 进行讨论,以为11a -<,11a +>直接代入求解而致误;求解过程中忘记检验所求结果是否符合要求而致误. 【练一练】函数f (x )=⎩⎪⎨⎪⎧log 2 x ,x >0,4x ,x ≤0,则f (f (-1))的值为________.【答案】-2【解析】∵f (-1)=4-1=14,∴f (f (-1))=f ⎝ ⎛⎭⎪⎫14=log 2 14=-2.。
高三数学一轮复习知识点讲解5-3三角函数的图象与性质
高三数学一轮复习知识点讲解专题5.3 三角函数的图象与性质【考纲解读与核心素养】1. 理解正弦函数、余弦函数、正切函数的图象与性质,了解三角函数的周期性.2.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 3.高考预测:(1) “五点法”作图; (2)三角函数的性质;(3)往往将三角恒等变换与三角函数图象、性质结合考查. 4.备考重点:(1)掌握正弦、余弦、正切函数的图象;(2)掌握三角函数的周期性、单调性、对称性以及最值.【知识清单】知识点1.正弦、余弦、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1- []1,1-R知识点2.“五点法”做函数()sin y A x h ωϕ=++的图象 “五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图象,最后把这个周期的图象以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图象.【典例剖析】高频考点一 三角函数的定义域和值域 【典例1】(2020·山东高一期末)函数tan2xy =的定义域为_____.【答案】{}2,x x k k Z ππ≠+∈ 【解析】 解不等式()22x k k Z ππ≠+∈,可得()2x k k Z ππ≠+∈, 因此,函数tan2xy =的定义域为{}2,x x k k Z ππ≠+∈. 故答案为:{}2,x x k k Z ππ≠+∈.【典例2】(2017新课标2)函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.【规律方法】1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【变式探究】1.(2020·上海高三专题练习)函数sin y m x n =+的最大值为2,最小值为4-,则m =_________,n =_________.【答案】3± 1- 【解析】由已知得24m n m n ⎧+=⎪⎨-+=-⎪⎩,解得31m n =±⎧⎨=-⎩. 故答案为:3±;1-.2.(2020·全国高一课时练习)求下列函数的定义域. (1)y =(2)sin cos tan x xy x+=.【答案】(1){|22,}x k x k k Z πππ≤≤+∈;(2)|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭【解析】(1)要使函数有意义,必须使sin 0x ≥.由正弦的定义知,sin 0x ≥就是角x 的终边与单位圆的交点的纵坐标是非负数. ∴角x 的终边应在x 轴或其上方区域, ∴22,k x k k Z πππ≤≤+∈.∴函数y ={|22,}x k x k k Z πππ≤≤+∈.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠.∴,()2x k k Z x k πππ⎧≠+⎪∈⎨⎪≠⎩ ∴,2kx k Z π≠∈. ∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭.【总结提升】在使用开平方关系sin α=±1-cos 2α和cos α=±1-sin 2α时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论. 高频考点二 三角函数的单调性【典例3】(2020·海南枫叶国际学校高一期中)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.【典例4】(2020·河南洛阳�高一期末(理))已知sin33a =︒,cos55b =︒,tan35c =︒则a ,b ,c ,的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】因为cos55sin35sin33b a ==>=,且sin 35tan 35sin 35cos35c ==>,所以c b a >>. 故选:A .【典例5】(2020·浙江柯城�衢州二中高三其他)已知函数()()2sin 0f x x ωω=>,则()f x 的最大值为________,若()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是________. 【答案】2 30,2⎛⎤ ⎥⎝⎦【解析】因为函数()()2sin 0f x x ωω=>, 所以()[]2sin 2,2ω=∈-f x x , 所以()f x 的最大值为2, 因为()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数, 所以,,4322πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 所以4232πωππωπ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得30,2ω⎛⎤∈ ⎥⎝⎦.故答案为:(1). 2 (2). 30,2⎛⎤⎥⎝⎦【规律方法】1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).2.当0ω<时,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解. 【变式探究】1.(2020·河北路北�开滦第一中学高一期末)在ABC 中,A B C >>,且2C π≠,则下列结论中正确的是( ) A .tan tan A C < B .tan tan A C >C .sin sin <A CD .sin sin A C >【答案】D 【解析】若543,,12123124A B C πππππ=====,由于02C A π<<<,则tan tan A C >,所以A 选项错误. 若74,,1212312A B C ππππ====,则tan 0tan A C <<, 75sin sin sin sin sin 121212A C πππ==>=,所以BC 选项错误.在三角形ABC 中,大角对大边,由于A C >,所以a c >,由正弦定理得2sin 2sin R A R B >①,R 是三角形ABC 外接圆的半径.由①得sin sin A C >.所以D 选项正确. 故选:D2.(2020·河南林州一中高一月考)π()sin()(0,),2f x x ωϕωϕ=+>≤若π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴,()f x 在区间ππ(,)54上单调,则ω的最大值是 ( ) A .14 B .18C .20D .22【答案】A 【解析】因为π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴, 所以2144n T n N ,π+=∈,即21244n ππω+=, n N ∈,即42,?n n N ω=+∈,即ω为正偶数. 因为()f x 在区间ππ,54⎛⎫⎪⎝⎭上单调,则ππ45202T π-=≤,即210T ππω=≥. 20ω≤. 当18ω=时,ππ sin 18088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得9 ,4k k Z πϕπ-+=∈,9 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=,()πsin 184f x x ⎛⎫=+ ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π779518,42020x ππ⎛⎫+∈ ⎪⎝⎭,其中,901202f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调; 当14ω=时,ππ sin 14088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得7 ,4k k Z πϕπ-+=∈,7 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=-,()πsin 144f x x ⎛⎫=- ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π516514,42020x ππ⎛⎫-∈ ⎪⎝⎭,满足()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调. 故ω的最大值是14. 故选A.3.(2019·涡阳县第九中学高一期末(文))已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭.求()f x 的单调增区间; 【答案】5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【解析】因为sin y x =在区间2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上单调递增,所以222,232k x k k πππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-≤≤+∈ 所以()f x 的单调增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【总结提升】1.对正弦函数、余弦函数单调性的两点说明(1)正弦函数、余弦函数在定义域R 上均不是单调函数,但存在单调区间.(2)由正弦函数、余弦函数的最小正周期为2π,所以任给一个正弦函数、余弦函数的单调区间,加上2k π,(k ∈Z)后,仍是单调区间,且单调性相同. 2.对正弦函数、余弦函数最值的三点说明(1)明确正、余弦函数的有界性,即|sin x |≤1,|cos x |≤1.(2)函数y =sin x ,x ∈D ,(y =cos x ,x ∈D )的最值不一定是1或-1,要依赖函数定义域D 来决定. (3)形如y =A sin(ωx +φ)(A >0,ω>0)的函数最值通常利用“整体代换”,即令ωx +φ=Z ,将函数转化为y =A sin Z 的形式求最值.3.正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性.(2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),…上都是增函数.(3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函数在(-π2,π2)∪(π2,3π2)∪…上是增函数.高频考点三 三角函数的周期性 【典例6】(2018年全国卷Ⅲ文)函数的最小正周期为( )A. B. C. D.【答案】C 【解析】 由已知得的最小正周期故选C. 【规律方法】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值.3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 【变式探究】已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 【答案】(1)见解析;(2)是,2π. 【解析】(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π]k ∈Z ,0,x ∈[2k π-π,2k πk ∈Z . 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π. 【特别提醒】最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.. 高频考点四 三角函数的奇偶性【典例7】(2018届辽宁省丹东市测试(二))设,若,则函数A. 是奇函数B. 的图象关于点对称C. 是偶函数D. 的图象关于直线对称【答案】C 【解析】 由题意得,∴.∴,∴函数为偶函数.故选C . 【规律方法】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数.2. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【变式探究】(浙江省2019届高考模拟卷(二))函数的图象可能是( )A .B .C .D .【答案】A 【解析】 由题意得函数的定义域为,∵,∴函数为偶函数,∴函数图象关于y 轴对称,故排除C,D . 又当时,,因此可排除B . 故选A . 【特别提醒】利用定义判断与正切函数有关的一些函数的奇偶性时,必须要坚持定义域优先的原则,即首先要看f(x)的定义域是否关于原点对称,然后再判断f(-x)与f(x)的关系. 高频考点五 三角函数的对称性 【典例8】(2018年江苏卷)已知函数的图象关于直线对称,则的值是________. 【答案】【解析】 由题意可得,所以,因为,所以【规律方法】函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【变式探究】(2021·广西钦州一中高三开学考试(理))关于函数()1cos cos f x x x=+有如下四个命题: ①()f x 的图像关于y 轴对称. ②()f x 的图像关于原点对称. ③()f x 的图像关于直线2x π=对称.④()f x 的图像关于点,02π⎛⎫⎪⎝⎭对称. 其中所有真命题的序号是__________. 【答案】①④ 【解析】对于①,()f x 定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,显然关于原点对称, 且()()()()11cos cos cos cos x x x f x f x x=-=-++=-,所以()f x 的图象关于y 轴对称,命题①正确;对于②,532f π⎛⎫= ⎪⎝⎭,532f π⎛⎫-= ⎪⎝⎭,则33f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于原点对称,命题②错误; 对③,532f π⎛⎫= ⎪⎝⎭,2532f π⎛⎫=- ⎪⎝⎭,则233f f ππ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于2x π=对称,命题③错误; 对④,1sin 2sin f x x x π⎛⎫-=+ ⎪⎝⎭,1sin 2sin f x x x π⎛⎫+=-- ⎪⎝⎭, 则22f x f x ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭,命题④正确. 故答案为:①④.【特别提醒】1.求y =Asin(ωx +φ)或y =Acos(ωx +φ)函数的对称轴或对称中心时,应把ωx +φ作为整体,代入相应的公式中,解出x 的值,最后写出结果.2.正切函数图象的对称中心是(k π2,0)而非(k π,0)(k ∈Z ).高频考点六 三角函数的图象和性质的应用 【典例9】(2018年理北京卷】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________. 【答案】 【解析】 因为对任意的实数x 都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.【典例10】(2020·上海高三专题练习)函数3sin 1()sin 2x f x x -=+的最大值是____,最小值是_________.【答案】234- 【解析】3(sin 2)77()3sin 2sin 2x f x x x +-==-++ sin [1,1]x[]sin 21,3x ∴+∈11,1sin 23x ⎡⎤∴∈⎢⎥+⎣⎦777,sin 23x ⎡⎤∴-∈--⎢⎥+⎣⎦7234,sin 23x ⎡⎤∴-∈-⎢⎥+⎣⎦即max 2()3f x =,min ()4f x =- 故答案为:23;4- 【典例11】(2020·陕西省汉中中学(理))已知函数()2sin()1(0)6f x x πωω=-->的周期是π.(1)求()f x 的单调递增区间; (2)求()f x 在[0,]2π上的最值及其对应的x 的值.【答案】(1)(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)当0x =时,()min 2f x =-;当3x π=时,()max 1f x =.【解析】 (1)解:∵2T ππω==,∴2ω=,又∵0>ω,∴2ω=,∴()2sin 216f x x π⎛⎫=-- ⎪⎝⎭, ∵222262k x k πππππ-+≤-≤+,k Z ∈,∴222233k x k ππππ-+≤≤+,k Z ∈, ∴63k x k ππππ-+≤≤+,k Z ∈,∴()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)解:∵02x π≤≤,∴02x ≤≤π,∴52666x πππ-≤-≤,∴1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭, ∴12sin 226x π⎛⎫-≤-≤ ⎪⎝⎭,∴22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭, 当0x =时,()min 2f x =-, 当226x ππ-=,即3x π=时,()max 1f x = 【规律方法】1.求形如y =a sin x +b 的函数的最值或值域时,可利用正弦函数的有界性(-1≤sin x ≤1)求解.2.对于形如y =A sin(ωx +φ)+k (Aω≠0)的函数,当定义域为R 时,值域为[-|A |+k ,|A |+k ];当定义域为某个给定的区间时,需确定ωx +φ的范围,结合函数的单调性确定值域.3.求形如y =a sin 2x +b sin x +c ,a ≠0,x ∈R 的函数的值域或最值时,可以通过换元,令t =sin x ,将原函数转化为关于t 的二次函数,利用配方法求值域或最值,求解过程中要注意正弦函数的有界性.4.求形如y =a sin x +bc sin x +d ,ac ≠0的函数的值域,可以用分离常量法求解;也可以利用正弦函数的有界性建立关于y 的不等式反解出y .综上可知,求与三角函数有关的函数的值域(或最值)的常用方法有:(1)借助于正弦函数的有界性、单调性求解;(2)转化为关于sin x 的二次函数求解.注意求三角函数的最值对应的自变量x 的值时,要考虑三角函数的周期性. 【变式探究】1.(2020·山东潍坊�高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>-⎪⎝⎭B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭【答案】C 【解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+,令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈, 当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭. 故选:C.2.(2020·陕西新城�西安中学高三月考(文))设0a <,若不等式22cos (1)cos 0x a x a -+-+≥对于任意的x ∈R 恒成立,则a 的取值范围是__________. 【答案】2a ≤- 【解析】令cos [1,1]t x =∈- ,则不等式22()(1)0f t t a t a =---≤ 对[1,1]t ∈- 恒成立,因此22(1)00,02(1)020f a a a a f a a -≤⎧-≤⎧⇒<∴≤-⎨⎨≤--≤⎩⎩ 3.(浙江省绍兴市第一中学2019届高三上期末)设函数(1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为,求的值【答案】(1) 最小正周期,为的单调递增区间;(2) .【解析】 (1)则的最小正周期当时,单调递增即的单调递增区间为:(2)当时,当,即时,所以【总结提升】比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.。
2018年2018广东高考数学一轮复习易错知识点word版本 (4页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018广东高考数学一轮复习易错知识点高考虽然不是升学唯一的途径,但却是升学考试中最好的途径。
下面小编为大家整理的广东高考数学一轮复习易错知识点,希望大家喜欢。
广东高考数学一轮复习易错知识点1.不能实现二次函数,一元二次方程和一元二次不等式的相互转换。
二次函数令y为0→方程→看题目要求是什么→要么方程大于小于0,要么刁塔(那个小三角形)b的平方-4ac大于等于小于0种种。
2.比较大小时,对指数函数,对数函数,和幂函数的性质记忆模糊导致失误。
3.忽略对数函数单调性的限制条件导致失误。
4.函数零点定理使用不当致误。
f(a)xf(b)<0,则区间ab上存在零点。
5.忽略幂函数的定义域而致错。
x的二分之一次方定义域为0到正无穷。
6.错误理解导数的定义致误。
7.导数与极值关系不清致误。
f‘派x为0解出的根不一定是极值这个要注意。
8.导数与单调性关系不清致误。
9.误把定点作为切点致误。
10.计算定积分忽视细节致误。
高考数学复习方法一、“六先六后”,因人因卷制宜。
考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。
1.先易后难。
2.先熟后生。
3.先同后异。
先做同科同类型的题目。
4.先小后大。
先做信息量少、运算量小的题目,为解决大题赢得时间。
5.先点后面。
高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。
6.先高后低。
即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。
二、一慢一快,相得益彰,规范书写,确保准确,力争对全。
审题要慢,解答要快。
在以快为上的前提下,要稳扎稳打,步步准确。
假如速度与准确不可兼得的话,就只好舍快求对了。
三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。
2018版高三数学(理)一轮复习易错知识清单(理)
2018版高三数学(理)一轮复习易错知识清单(理)1.集合的概念与运算(1)解题时要明确集合中元素的特征,关注集合的代表元素(集合是点集、数集还是图形集).(2)集合中的元素具有确定性、无序性和互异性,在求解有关集合的问题时,尤其要注意元素的互异性. (3)空集是任何集合的子集,是任何非空集合的真子集,要时刻注意对空集的讨论,防止漏解.(4)解题时注意区分两大关系:一是元素与集合的从属关系,二是集合与集合的包含关系.(5)Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.(6)处理集合问题时,一定要注意检验结果是否与题设相矛盾.2.命题及其关系、充分条件与必要条件(1)当一个命题有大前提而要写出其他三种命题时,必须保留大前提.(2)判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q”的形式. (3)判断条件之间的关系时要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.3.简单的逻辑联结词、命题的否定与否命题(1)p ∨q 为真命题,只需p 、q 有一个为真即可;p ∧q为真命题,必须p 、q 同时为真.(2)p 或q 的否定:非p 且非q;p 且q 的否定:非p 或非q. (3)命题的否定与否命题:“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.二、函数与导数1.分段函数在求分段函数的值)(0x f 时,要先判断x0属于定义域的哪个子集,然后代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.2.函数的单调性与最值(1)区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者是指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.(2)函数的单调区间不一定是整个定义域,可能是定义域的子集,但一定是连续的.(3)函数的额单调性是针对定义域内的某个区间而言的,函数在某个区间上是单调函数,但在整个定义域上不一定是单调函数,如函数y=x1在(-∞,0)和(0,+∞)上都是减函数,但在定义域上不具有单调性.(4)若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f(x)在区间(-1,0)上是减函数,在(0,1)上也是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数xx f 1)(=.3.(1)f(0)=0既不是函数f(x)是奇函数的充分条件,也不是必要条件. (2)判断分段函数的奇偶性要有整体的观点,可以分类讨论,也可以利用图象进行判断.4.二次函数与幂函数(1)对于函数c bx axy ++=2,要认为它是二次函数,就必须满足a ≠0,当题目条件未说明a ≠0时,就要讨论a=0和a ≠0两种情况.(2)幂函数的图象一定会出现在第一象限,一定不会出现在第四象限,至于是否出现在第二、三象限,要看函数的奇偶性;幂函数的图象最多能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.5.指数与指数函数(1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)解决和指数函数有关的值域或最值问题时,要熟练掌握指数函数的单调性,弄清复合函数的结构,利用换元法求解时要注意“新元”的取值范围.(3)对可化为02=++c ba ax x 或02≥++c ba a x x (≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.6.对数与对数函数 (1)在运用性质M M a a log logαα=(a>0,且a ≠1)时,要特别注意条件M>0,在无M>0的条件下应为M M a a log log αα=|(α为偶数).(2)指数函数xa y =(a>0,且a ≠1)与对数函数x y a log =(a>0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.(3)解决与对数函数有关的问题时需注意两点:①务必先研究函数的定义域;②注意对数底数的取值范围.7.函数的图象(1)函数图象的每次变换都是针对自变量“x ”而言,如从f(-2x)的图象到f(-2x+1)的图象是向右平移21个单位,即把x 变成x-21. (2)当图形不能准确地说明问题时,可借助“数”的精确性进行求解,解题过程中要注重数形结合思想的运用.8.函数与方程(1)函数f(x)的零点是一个实数,是方程f(x)=0的根,也是函数y=f(x)的图象与x轴交点的横坐标.(2)函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要依据函数的单调性、对称性或结合函数图象.9.函数模型及其应用(1)函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.(2)要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.(3)注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.10.导数的概念及运算(1)利用公式求导时要特别注意除法公式中分子中的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.(2)求曲线切线时,要分清在点P处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.(3)曲线的切线与曲线的交点个数不一定只有一个. 11.导数与函数的单调性、极值、最值(1)求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减小失分的可能性.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.(3)解题时要注意区别求单调性和已知单调性的问题,处理好 f ′(x)=0时的情况;区分极值点和导数为0的点.12.导数的综合应用(1)若函数f(x)在某个区间内单调递增,则f ′(x)≥0,而不是f ′(x)>0(f ′(x)=0在有限个点处取到).(2)利用导数解决实际生活中的优化问题时,要注意问题的实际意义.13.定积分(1)被积函数若含有绝对值符号,应先去绝对值符号,再分段积分.(2)若定积分式子中有几个不同的参数,则必须先分清谁是积分变量.(3)定积分式子中隐含的条件是积分上限大于积分下限.(4)定积分的几何意义是曲边梯形的面积,但要注意面积非负,而定积分的结果可以为负.(5)将要求面积的图形进行科学而准确地划分,可使面积的求解变得简捷.三 、数列1.数列的概念及简单表示法(1)数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列)(n f an =)和函数)(x f y =的单调性是不同的.(2)数列的通项公式不一定唯一.2.等差数列及其前n 项和(1)当公差d ≠0时,na 是n 的一次函数,当公差d=0时,n a 为常数.(2)公差不为0的等差数列的前n 项和n s 是n 的二次函数,且常数项为0.若某数列的前n 项和Sn 是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.3.等比数列及其前n 项和(1)注意等比数列中的分类讨论.(2)由n n a q a ∙=+1(q ≠0),并不能判断数列{n a }是等比数列,还要验证1a 是否为0.4.数列求和 (1)直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数时,应对公比是否为1进行分类讨论.(2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n+1的式子要合并.(3)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项后剩多少项.四、三角函数1.任意角的三角函数(1)注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=πrad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)已知三角函数值的符号确定角的终边位置时不要遗漏终边在坐标轴上的情况.2.同角三角函数的基本关系与诱导公式(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤为:去负—脱周—化锐.要特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.(3)注意求值与化简后的结果要尽可能有理化、整式化.3.三角函数的图象与性质(1)闭区间上最值或值域问题,要先在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.(2)要注意求函数y=Asin(ωx+φ)的单调区间时ω的符号,尽量化成ω>0时的情况.(3)三角函数的最值不一定在自变量区间的端点处取得,直接将两个端点处的函数值作为最值是错误的. 4.函数y=A sin(ωx+φ)的图象及应用(1)由函数y=sin x的图象经过变换得到y=A sin(ωx+φ)的图象,如先伸缩,再平移时,要把x前面的系数提取出来.(2)复合形式的三角函数的单调区间的求法.函数y=A sin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看作一个整体.若ω<0,要先根据诱导公式进行转化.(3)求函数y=Asin(ωx+φ)在x∈[m,n]上的最值,可先求t=ωx+φ的范围,再结合图象得出y=Asin t的值域,即得原函数的最值.5.两角和与差的正弦、余弦、正切公式(1)运用公式时注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2所对应的(2)在(0π)范围内,sin(α+β)=2角α+β不是唯一的.(3)在三角求值时,往往要估计角的范围后再求值.6.简单的三角恒等变换(1)利用辅助角公式asin x+bcos x 进行转化时,一定要严格对照和、差公式,防止弄错辅助角.(2)计算形如y=sin(ωx+φ),x ∈[a ,b]的函数最值时,不要将ωx+φ的范围和x 的范围混淆.7.正弦定理、余弦定理(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,可能出现一解、两解、无解的情况,所以要进行分类讨论.(2)利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.8.三角形的实际应用在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易弄错.五、不等式 1.不等关系与不等式(1)a>b ⇒ac>bc 或a<b ⇒ac<bc ,当c ≤0时不成立.(2)a>b ⇒a 1<b 1或a<b ⇒a 1>b 1,当ab ≤0时不成立.(3)a>b ⇒a n >b n ,对于正数a 、b 才成立.(4)b a>1⇔a>b ,对于正数a 、b 才成立.(5)注意不等式性质中“⇒⇔a>b ,b>c a>c ,反过来a>c ,不能推出a>b ,b>c.(6)作商法比较大小时,要注意两式的符号.(7)求范围问题时,如果多次利用不等式,则可能扩大变量的取值范围.2.不等式的解法及应用 (1)对于不等式ax 2+bx+c>0,求解时不要忘记讨论a=0时的情况.(2)当Δ<0时,要注意区分ax 2+bx+c>0(a ≠0)的解集为R 还是空集.(3)对于含参数的不等式要注意选好分类标准,避免盲目讨论.(4)注意用“根轴法”解整式不等式的注意事项及解分式不等式)()(x g x f >a(a ≠0)的一般思路——移项通分. (5)求解含参数不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”.注意:求解完之后要写上“综上,原不等式的解集是……”;若按参数讨论,最后应按参数取值分别说明其解集;若按未知数讨论,最后应求并集.提醒:①解不等式就是求不等式的解集,最后务必用集合的形式表示;②不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(6)解决恒成立问题一定要弄清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.3.二元一次不等式(组)与简单的线性规划问题(1)画二元一次不等式(组)表示的平面区域时,避免错误的重要方法就是使二元一次不等式(组)标准化.(2)通过求直线的截距b z 的最值间接的求z 的最值时,要注意:当b>0时,若截距b 取最大值,则z 也取最大值,若截距b z 取最小值,则z 也取最小值;当b<0时,若截距b z 取最大值,则z 取最小值,若截距b z 取最小值,则z 取最大值.4.基本不等式及其应用(1)利用基本不等式求最值时应注意“一正”“二定”“三相等”三个条件缺一不可.(2)连续使用基本不等式求最值时要求每次等号成立的条件一致. (3)对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘.一般地,每个表示实际意义的代数式必须为正,由此可得自变量的取值范围,然后利用基本不等式求最值.六、平面向量1.平面向量的概念及线性运算(1)求解向量的概念问题时要注意两点:一是不仅要考虑向量的大小,还要考虑向量的方向;二是要考虑零向量是否也满足条件.要特别注意零向量的特殊性.(2)在利用向量减法时,易弄错两向量的顺序,从而求得的向量是所求向量的相反向量,导致错误.(3)两个向量共线有方向相同、相反两种情况,要考虑全面. 2.平面向量的基本定理及坐标表示(1)要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息.(2)若a=(x 1,y 1),b=(x 2,y 2),则a ∥b 的充要条件不能表示成21x x =21y y ,因为x 2,y 2有可能等于0,所以应该表示为x 1y 2-x 2y 1=0.(3)使用平面向量基本定理时一定要注意两个基底向量不共线. 3.平面向量的数量积(1)对数量积的运算律要准确理解、应用.例如,a ·b=a ·c (a ≠0)不能得出b=c,因为两边不能同时约去向量a.(2)若两个向量的夹角为锐角,则有a·b>0,反之不成立;若两个向量的夹角为钝角,则有a·b<0,反之不成立.4.平面向量应用举例(1)注意向量夹角和三角形内角的关系,两者并不等价.(2)注意向量共线和两直线平行的关系.(3)利用向量求解解析几何中的平行与垂直问题,可有效避免因斜率不存在使问题漏解的情况.七、立体几何1.三视图与直观图(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(3)若相邻两物体的表面相交,表面的交线是它们的(4)确定正视、侧视、俯视的方向,观察同一物体方2.空间几何体的表面积(1)求组合体的表面积时,要注意各几何体重叠部分(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.3.空间点、线、面位置关系(1)正确理解异面直线“不同在任何一个平面内”的(2)不共线的三点确定一个平面,一定不能丢掉“不(3)两条异面直线所成角的范围是(0°,90°].4.直线、平面平行的判定与性质(1)在推证线面平行时,一定要强调直线不在平面内,(2)在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序则恰好相反,但也要注意,转化的方向总是由题目的具(3)解题中注意符号语言的规范应用.5.直线、平面垂直的判定与性质(1)在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替(2)面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.6.空间向量及其应用(1)求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.(2)用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.(3)利用向量求角,一定要注意将向量夹角转化为各(4)求点到平面的距离,有时利用等体积法求解可能(5)求二面角要根据图形确定所求角是锐角还是钝角.八、解析几何1.直线方程(1)明确直线方程各种形式的适用条件:点斜式、斜截式方程适用于与x轴不垂直的直线;两点式方程不能表示垂直于x轴、y轴的直线;截距式方程不能表示垂直(2)截距不是距离,距离是非负值,而截距可正可负可为零,在求解与截距有关的问题时,要注意讨论截距(3)求直线方程时,若不能判断直线是否存在斜率,则应分类讨论,即应对斜率是否存在加以讨论.(4)当直线的斜率不存在时,直线的倾斜角为2π,而不是不存在;当直线与y 轴垂直时,直线的倾斜角为0,π.2.两直线位置关系(1)在判断两条直线的位置关系时,首先分析直线的斜率是否存在.若两条直线的斜率都存在,则可根据判定定理判断两条直线的位置关系,若任一条直线的斜率不存在,则要单独考虑.(2)在运用两平行直线间的距离公式d=2221B A C C +-时,一定要注意将两方程中x,y 的系数化为相同的形式.3.圆的方程(1)圆的标准方程和圆的一般方程都含有三个独立的(2)过圆外一定点求圆的切线,必有两条.若只求出一条,除了考虑运算过程是否正确外,还应该考虑切线斜率不存在的情况.4.圆锥曲线的方程和性质(1)区分椭圆两种标准方程的方法是比较标准方程中x2与y 2(2)注意椭圆的范围,若设椭圆12222=+b y a x (a>b>0)点的坐标为P(x,y),则|x |≤a,这往往在求与点P 有关的最值问题中用到,也是容易被忽略而导致求最值错误的原因.(3)区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 大小关系,在椭圆中a 2=b 2+c 2c 2=a 2+b 2.(4)双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1)(5)双曲线2222b y a x -=1 (a>0,b>0)的渐近线方程是y =±a bx ,2222b x a y -=1 (a>0,b>0)的渐近线方程是y =x b a y ±=.(6)求抛物线的标准方程时一般用待定系数法求出p 值,但要先判断抛物线是否为标准方程,以及是哪一种(7(8)求轨迹方程时,要注意曲线上的点与方程的解是一一对应关系.检验可从以下两个方面进行:一是方程的变形是否是同解变形;二是是否符合题目的实际意(9)求点的轨迹与求轨迹方程是不同的要求.求点的轨迹时,应先求轨迹方程,然后根据方程说明点的轨迹的5.直线与圆、圆锥曲线的位置关系(1)直线与双曲线交于一点时,其位置关系不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.(2)在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情.(3)若利用弦长公式计算问题,在设直线斜率时要注意说明斜率不存在(4)对于中点弦问题,可以利用“点差法”求解,但不要忘记验证Δ>0或说明中点在曲线内部.九、计数原理1.两个计数原理(1)切实理解“完成一件事”的含义,以确定需要分类还是需要(2)分类的关键在于要做到“不重不漏”,分步的关键(32.排列与组合(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,然后利用两个计数原理(2)解受条件限制的组合题时,通常用直接法(合理分类)和间接法(排除法)来解决.分类标准应统一,避免出(3)对于选择题要谨慎处理,注意答案的不同等价形式.处理选择题可采用排除法,错误的答案会有重复或遗漏现象.3.二项式定理(1)项的系数与n和a,b的值有关,二项式系数只与n有关,且大于0(n为项数).(2(3)关于组合式的证明,常采用“构造法”——构造(4)展开式中第k+1项的二项式系数与第k+1项的系数一般是不相同的.在具体求各项的系数时,一般先确定符号,再确定数值;确定符号时对根式和指数的运算要细心,以防出错.十、概率与统计1.随机事件的概率(1)正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定(2)需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.2.古典概型(1)古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个(2)概率的一般加法公式:P(A∪B)=P(A)+P(B)-P(A ∩B)提示:①公式的作用是求A∪B的概率,当A∩BA、B互斥,此时P(A∩B)=0,所以P(A∪B)=P(A)+P(B);②要计算P(A∪B),需要求P(A)、P(B),更重要的是确定事件A∩B,并求其概率;③该公式可以看作一个方程,知三可求一.3.几何概型(1)准确把握几何概型的“测度”是解题关键.(2)几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.4.二项分布(1)运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立.(2)独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件.5.离散型随机变量的均值与方差、正态分布(1)会根据分布列的两个性质来检验求得的分布列的(2)对于实际应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的(3)解决正态分布问题有三个关键点:①对称轴x=μ;②标准差σ;③分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.6.随机抽样(1)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会相等;总体分组后,在起(2①分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.②为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.7.用样本估计总体(1)频率分布直方图的纵坐标为频率,每一个小长方形组距的面积表示样本个体落在该区间内的频率.(2)条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.8.变量间的相关关系、统计案例(1)相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.例如正方形面积S与边长x之间的关系S=x2就是函数关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.例如商品的销售额与广告费是相关关系.两个变量(2)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义,根据回归方程进行预报,得出的仅是一个预报值,而不是真实发生的值.十一、算法、复数、推理与证明1.算法(1)注意起止框与处理框、判断框与循环框的不同.(2)注意条件结构与循环结构的联系:循环结构具有重复性,条件结构具有选择性没有重复性,并且循环结构中必定包含一个条件结构,用于确定何时终止循环体.。
高考数学18个易错知识点汇总
高考数学18个易错知识点汇总关于高考数学普遍存在的18个易错点,帮大家做好了错因分析,希望考生看到了这些错题分析之后,可以试着用这种分析方法去找出这里没有提到,但是自己经常会错的易错点。
一、集合与简单逻辑1.易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
2.易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再具体解决问题。
3.易错点四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若A则B”,逆否命题是“若B则A””。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。
4.易错点充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
2018高考数学必备知识点总结
2018 年高考数学必备知识点总结1、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不一样的看法,命题 p 的否定能否定命题所作的判断,而“否命题”是对“若p ,则 q ”形式的命题而言,既要否定条件也要否定结论。
2、忽视会集元素的三性致误会集中的元素拥有确立性、无序性、互异性,会集元素的三性中互异性对解题的影响最大,特别是带有字母参数的会集,实质上就隐含着对字母参数的一些要求。
3、判断函数奇偶性忽视定义域致误判断函数的奇偶性,第一要考虑函数的定义域,一个函数具备奇偶性的必需条件是这个函数的定义域关于原点对称,假如不具备这个条件,函数必定是非奇非偶函数。
4、函数零点定理使用不妥致误假如函数 y=f (x)在区间 [a ,b] 上的图像是一条连续的曲线,而且有 f(a)f(b )0,那么,函数 y=f (x)在区间(a,b )内有零点,但 f(a)f(b )0 时,不可以否定函数 y=f (x)在(a,b )内有零点。
函数的零点有“变号零点”和“不变号零点”,关于“不变号零点”函数的零点定理是“力所不及”的,在解决函数的零点问题时要注意这个问题。
5、函数的单调区间理解禁止致误在研究函数问题时要不时辰刻想到“函数的图像”,学会从函数图像上去解析问题、找寻解决问题的方法。
关于函数的几个不一样的单调递加(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递加(减)区间即可。
6、三角函数的单调性判断致误关于函数 y=Asin (ω x+ φ)的单调性,当ω0时,因为内层函数 u= ω x+ φ是单调递加的,所以该函数的单调性和y=sinx的单调性相同,故可完整依据函数y=sinx 的单调区间解决;但当ω0时,内层函数u= ω x+ φ是单调递减的,此时该函数的单调性和函数y=sinx 的单调性相反,就不可以再依据函数y=sinx 的单调性解决,一般是依据三角函数的奇偶性将内层函数的系数变成正数后再加以解决。
2018年高考数学一轮总复习 专题2.1 函数及其表示练习(含解析)理
专题.1 函数及其表示真题回放1. 【2017高考天津理第1题】设函数y =A ,函数ln(1)y x =-的定义域B ,则A B =( )(A )()1,2 (B )(]1,2 (C )()2,1- (D )[)2,1- 【答案】D【解析】:由240x -≥得22x -≤≤,由10x ->得1x <,故AB ={}|21x x -≤≤,选D【考点解读】1.集合的运算 2.函数定义域 3.简单不等式的解法,集合的交、并、补运算问题,应先把集合化简再运算,常常借助数轴或韦恩图来处理2. 【2015高考湖北文第6题】函数256()lg 3x x f x x -+=-的定义域为( )(A )()2,3 (B )(]2,4 (C )()(]2,33,4 (D )()(]1,33,6-【答案】C【考点解读】本题考察函数的定义域,涉及根式、绝对值、对数和分式、交集等内容 3. 【2015高考福建理第14题】若函数64,2()(01)3log ,2a x x f x a a x x -+≥≥⎧=>≠⎨+<⎩且的值域是[)4+∞,,则实数的取值范围是______ 【答案】(]12,【解析】:当2x ≤,故64x -+≥,要使得函数()f x 的值域为[)4+∞,,只需()1()3l o g2a f x x x =+>的值域包含于[)4+∞,,故1a >,所以1()3log 2a f x >+,所以3log 24a +≥,解得12a <≤,所以实数的取值范围是(]12,【考点解读】本题考查分段函数的值域问题,分段函数是一个函数,其值域是各段函数值取值范围的并集,将分段函数的值域问题转化为集合之间的包含关系,是本题的两点,要注意分类讨论思想的运用 考点分析1.函数及其表示了解构成函数的要素,会求一些简单函数的定义域和值域 了解映射的概念在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数 2.了解简单的分段函数并能简单的应用3.函数的概念、解析式、图像、分段函数的应用为高考主要考点,重点考查数形结合、分类讨论思想及逻辑推理能力,2018年复习时应予以高度关注. 融会贯通题型一 映射与函数的概念【例1】给出四个命题:①函数是其定义域到值域的映射;②()f x =③函数2(N)y x x ∈=的图象是一条直线;④2()x f x x=与()g x x =是同一个函数.其中正确的有( )A .1个B .2个C .3个D .4个 【答案】A知识链接1.符号:f A B →表示集合A 到集合B 的一个映射,它有以下特点: (1)对应法则有方向性, :f A B →与:f B A →不同;(2)集合A 中任何一个元素,在f 下在集合B 中都有唯一的元素与对应; (3)象不一定有原象,象集C 与B 间关系是C B ⊆.2.函数是特殊的映射,它特殊在要求集合A 和B 都是非空数集.函数三要素是指定义域、值域、对应法则.同一函数必须满足:定义域相同、对应法则相同.3.要注意()f a 与()f x 的区别与联系,()f a 表示x a =时,函数()f x 的值,它是一个常数,而()f x 是自变量的函数,对于非常数函数,它是一个变量,()f a 是()f x 的一个特殊值.4.区间是某些数集的一种重要表示形式,具有简单直观的优点.应注意理解其含义并准确使用.5.函数的表示方法有三种:解析法、图象法、列表法. 【变式训练】1.下列四组函数中,表示为同一函数的是( )A .(),()f x x g x ==B .x x f -=2)(与2)(-=x x gC .21(),()11x f x g x x x -==+- D .()()f x g x ==【答案】A2.已知函数()23,f x x x A =-∈的值域为{1,1,3}-,则定义域A 为 . 【答案】{1,2,3}【解析】由函数定义,令()f x 分别等于1,1,3-,求对应自变量的值,即得定义域为{1,2,3}. 解题技巧与方法总结1.判断一个对应是否为映射,关键看是否满足“集合A 中元素的任意性,集合B 中元素的唯一性”.2. 判断一个对应f :A →B 是否为函数,一看是否为映射;二看A ,B 是否为非空数集.若是函数,则A 是定义域,而值域是B 的子集.3. 函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同. 题型二 函数的定义域问题典例1. (2017·南师大考前模拟)函数()f x =的定义域为 ▲ .【答案】3,22⎛⎤ ⎥⎝⎦【解析】由题意得123log (23)0023122x x x -≥⇒<-≤⇒<≤,即定义域是3,22⎛⎤ ⎥⎝⎦【变式训练】(2017届河南南阳一中高三文月考)函数()lg(1)f x x =+的定义域为( )(A )(1,0)(0,1]- (B )(1,1]- (C )(4,1]-- (D )(4,0)(0,1]-【答案】A【解析】要使函数有意义,应有⎪⎩⎪⎨⎧≠+>+≥+--11,01,0432x x x x 解得01<<-x 或10≤<x ,故选A.解题技巧与方法总结已知解析式求函数定义域问题列式主要从分母不为零、偶次根式下被开方数非负、对数中真数大于零等角度出发,而解则与一元二次不等式、指对数不等式、三角不等式等联系在一起 典例2. (2016·福建福州五校联考理)已知函数(2)y f x =-定义域是[]0,4,则(1)1f x y x +=-的定义域是_________ 【答案】[)3,1-【变式训练1】已知函数()f x 的定义域为[]1,2-,求函数2(1)(1)y f x f x =+--的定义域【答案】由题意2112112x x -≤+≤⎧⎨-≤-≤⎩,1x ≤ 【解析】求函数()()y f x g x =+的定义域,一般先分别求函数()y f x =和函数()y g x =的定义域A 、B ,再求A B I ,即为所求函数的定义域【变式训练2】(2016~2017学年广西陆川县中学月考)已知函数12(log )y f x =的定义域为11,42⎡⎤⎢⎥⎣⎦,则函数(2)x y f =的定义域为( )A .[]1,0-B .[]0,2C .[]1,2-D .[]0,1 【答案】D解题技巧与方法总结(1)已知原函数()[](),f x a b f a x b << ()f x 的定义域为(),a b ,求复合函数[]()f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域;(2)已知复合函数[]()f g x 的定义域为(),a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域;(3)求函数()()y f x g x =+的定义域,一般先分别求函数()y f x =和函数()y g x =的定义域A 、B ,再求A B I ,即为所求函数的定义域典例3.已知函数()f x =R ,则实数的取值范围是( )(A )120a -<≤ (B )120a -<< (C )13a > (D )13a ≤ 【答案】A【解析】函数()f x =R ,只需分母不为即为,所以0a =或24(3)0a a a ≠⎧⎨∆=-⨯-<⎩,可得120a -<≤ 【变式训练】已知函数4()12f x x =-+的定义域是[],a b (,a b 为整数),值域是[]0,1,则所有满足条件的整数数对(),a b 所组成的集合为_____________ 【答案】()()()()(){}2,0,2,1,2,2,1,2,0,2----题型三 函数的值域问题 命题点1 求函数的值域 典例1.函数()=x f 25243x x -+的值域是 . 【答案】 (0,5]【解析】因为2x 2-4x+3=2(x-1)2+1≥1,所以0<212-43x x +≤1,所以0<y ≤5,所以值域为(0,5].典例2 求函数253)(-+=x x x f 的值域. 【答案】{}|3y y ≠【变式训练1】(2016·江苏省扬州市期末统考)函数221xx y =+()0x ≥的值域为 . 【答案】1,12⎡⎫⎪⎢⎣⎭【解析】函数221111212121x x x x x y +-===-+++110,21,212,0212x x x x ≥∴≥∴+≥∴<≤+Q 1111221x ∴≤-<+【变式训练2】(2016-2017学年黑龙江哈师大附中)函数()f x 的值域为 . 【答案】[)1,1-解题技巧与方法总结分离常数法求值域步骤:第一步 观察函数()f x 类型,型如()ax bf x cx d +=+; 第二步 对函数()f x 变形成()a ef x c cx d=++形式;第三步 求出函数ey cx d=+在()f x 定义域范围内的值域,进而求函数()f x 的值域.典例3 求函数y x =+. 【答案】(,1]-∞【解析】令210,2t t x -=≥=,原函数化为()211022y t t t =-++≥,其开口向下,并且对称轴是1t =,故当1t =时取得最大值为,没有最小值,故值域为(,1]-∞. 解题技巧与方法总结换元法求值域:第一步 观察函数解析式的形式,函数变量较多且相互关联;第二步 另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域. 典例4 (2016人教A 版双基双测)函数21xy x =+的值域为__________ 【答案】11,22⎡⎤-⎢⎥⎣⎦【解析】法一:当0x =时,0y =当0x >时,21112,x x y x x +==+≥=当且仅当1x x =即1x =时取“=”,所以102y <≤当0x <时,211112,x x x y x x x +⎛⎫⎫==+=----=- ⎪⎪⎝⎭⎭当且仅当1x x -=-即1x =-时取“=”,所以102y -≤<综上1122y -≤≤法二:21x y x =+,所以20yx x y -+=有解当0y =时方程有解;当0y ≠时,由0≥V 可得2140y -≥,∴1122y -≤≤且0y ≠综上可知1122y -≤≤ 【变式训练1】已知52x ≥,求函数245()24x x f x x -+=- 的最小值.【答案】最小值为1【变式训练2】 若函数()y f x =的值域为1,32⎡⎤⎢⎥⎣⎦,则函数()()()1F x f x f x =+的值域是( )A .1,32⎡⎤⎢⎥⎣⎦B .102,3⎡⎤⎢⎥⎣⎦C .510,23⎡⎤⎢⎥⎣⎦D .52,2⎡⎤⎢⎥⎣⎦【答案】B【变式训练3】(2016届浙江省杭州市学军中学高三5月模拟,理16)已知实数,a b R ∈,若223a ab b -+=, 则()22211ab a b +++的值域为 .【答案】160,7⎡⎤⎢⎥⎣⎦【解析】试题分析:222233233a ab b a b ab ab ab -+=⇒+=+≥⇒-≤≤()()2222211(3)9614ab ab t t a b ab t t++-===+-+++,其中4[1,7]t ab =+∈,所以9660t t +-≥=,当且仅当3t =时取等号,又当7t =时96t t +-取最大值167, 故值域为160,7⎡⎤⎢⎥⎣⎦考点:函数值域典例5求函数3274222++-+=x x x x y 的值域.【答案】9,22⎡⎫-⎪⎢⎣⎭【解析】 2223(1)20x x x ++=++>Q ,所以函数的定义域为R原函数可以化为2223247x y xy y x x ++=+-,整理得:()222(2)370y x y x y -+-++=当2y ≠时,上式可以看成关于的二次方程,该方程的范围应该满足解题技巧与方法总结判别式法求函数值域:观察函数解析式的形式,型如22dx ex fy ax bx c++=++的函数,将函数式化成关于的方程,且方程有解,用根的判别式求出参数y 的取值范围,即得函数的值域. 【精要点评】配方法、分离常数法和换元法是求常见函数值域的有效方法,但要注意各种方法所适用的函数形式,还要注意函数定义域的限制.换元法多用于无理函数,换元的目的是进行化归,把无理式转化为有理式来解;二次分式型函数求值域,多采用分离出整式利用基本不等式法求解. 命题点2 已知函数定义域(值域)求参数的取值范围典例1 (2016-2017学年河北卓越联盟高一上学期月考三数学试卷)若函数244y x x =--的定义域为[]0,m ,值域为[]8,4--,则m 的取值范围是( )A .()2,4B .[)2,4 C .(]2,4 D .[]2,4【答案】D【解析】二次函数对称轴为2x =,当2x =时取得最小值8-,当0x =时函数值为4-,由对称性可知4x =时函数值为4-,所以m 的取值范围是[]2,4【变式训练】(2014届陕西省考前保温训练)函数2()46f x x x =--的定义域为[0]m ,,值域为[10,6]﹣﹣,则m 的取值范围是( )A .0,4]B .2,4]C .2,6]D .4,6]【答案】B典例2(江苏省南京师范大学附属中学2015-2016学年期中)已知函数()f x =的定义域是一切实数,则m 的取值范围是__________. 【答案】[]04,【解析】当0m =时,显然函数有意义,当0m ≠,则210mx mx ++≥对一切实数恒成立,所以0{m >∆≤,得04m <≤,综合得04m ≤≤点睛:本题在解题时尤其要注意对0m =时的这种情况的检验,然后根据二次函数大于等于零恒成立,只需开口向上0∆≤即可.【变式训练】(2015-2016浙江湖州中学高二期中,理14)已知函数2()lg(1)f x mx mx =++,若此函数的定义域为R ,则实数m 的取值范围是 ;若此函数的值域为R ,则实数m 的取值范围是 .【答案】04m ≤< 4m ≥考点:对数函数定义域、值域.典例3 (2015-2016学年广西南宁八中高一上期末)若函数21242y x x =-+的定义域、值域都是闭区间[2]2b ,,则的取值为 . 【答案】2;【解析】联系二次函数图象特点,注意函数在闭区间[2]2b ,是单调增函数. 解:函数21242y x x =-+的图象是开口向上的抛物线,对称轴是2x =,∴函数在闭区间[2]2b ,上是单调增函数, 函数的定义域、值域都是闭区间[2]2b , ∴2x b =时,函数有最大值2b , ∴21422422b b b ⨯⨯+=﹣,∴1b =(舍去) 或2b =, ∴的取值为 2.考点:函数的值域;函数的定义域及其求法.【变式训练】(2017届江苏如东高级中学等四校高三12月联考)已知函数()224f x x x =-+定义域为[],a b ,其中a b <,值域[]3,3a b ,则满足条件的数组(),a b 为__________. 【答案】()1,4题型四 求函数的解析式典例1 (江西新余四中2016~2017月考)已知2(1)2f x x x +=-,求函数()f x 的解析式 【答案】2()43f x x x =-+【解析】令1x t +=,则1x t =-,求得()f t 的表达式,从而求得()f x 的解析式 考点:换元法求函数解析式【变式训练】(天津南大附中高一同步练习)已知,则的表达式是( ) A . B . C . D .【答案】A【解析】令1x t -=,得1x t =+ 因为2(1)45f x x x -=+-所以22()(1)4(1)56f t t t t t =+++-=+ 由此可得2()6f x x x =+典例2 (辽宁省阜新市2016~2017第一次月考)已知2(1)27f x x x -=-+,求()f x 的解析式【答案】2()6f x x =+【解析】由题意得2227(1)6x x x -+=-+,所以2(1)(1)6f x x -=-+,即2()6f t t =+ 【变式训练】(甘肃省武威第六中学2016~2017第一次月考)若函数()f x 满足(32)9+8f x x +=,则()f x 的解析式是( )(A )()9+8f x x = (B )()3+2f x x = (C )()34f x x =-- (D )()3234f x x x =+--或【答案】B【解析】由题意得(32)983(32)2f x x x +=+=++,所以()32f t t =+,即()32f x x =+ 考点:配凑法求函数解析式典例 3 (河南南阳一中2016级第一次月考)已知函数()y f x =满足1()2()3f x f x x=+,则()f x 的解析式为___________【答案】2()(0)f x x x x=--≠考点:解方程组法求函数解析式【变式训练】定义在(-1,1)内的函数()f x 满足()(-)()21f x f x lg x -=+,求函数()f x 的解析式. 【答案】21()lg(1)+lg(1-),(-11)33f x x x x =+∈, 【解析】当(-11)x ∈,时,有()(-)()21f x f x lg x -=+①以x -代,得2(-)()lg(1)f x f x x -=-+②由①②消去f (-x ),得21()lg(1)+lg(1-),(-11)33f x x x x =+∈,典例4 (山东蒙阴一中2016级高一开学考)已知函数()f x 是一次函数,若(())48f f x x =+,求()f x 的解析式【答案】8()2()283f x x f x x =+=--或【分析】设一次函数()(0)f x ax b a =+≠,利用(())48f f x x =+,得出关于,a b 的关系式,即可求解,a b 的值,得出函数的解析式考点:待定系数法求函数解析式 【变式训练】已知[]{}()2713ff f x x =+,且()f x 是一次式,求()f x 的解析式【答案】()31f x x =+【分析】由题意可得,设()(0)f x kx b k =+≠ []2()()f f x k kx b b k x kb b ∴=++=++[]{}232()()2713ff f x k kx kb b b k x k b kb b x ∴=+++=+++=+32273113k k b k b kb b ⎧==⎧⎪∴⎨⎨=++=⎪⎩⎩ ∴()31f x x =+ 解题技巧与方法总结1.已知函数类型,用待定系数法求解析式.2.已知函数图象,用待定系数法求解析式,如果图象是分段的,要用分段函数表示.3.已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法.4.若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解. 5.应用题求解析式可用待定系数法求解.6.求函数解析式一定要注意函数的定义域,否则极易出错. 题型三 分段函数典例1.【河北枣强中学2016~2017第一次月考】已知21,1()23,1x x f x x x ⎧+<=⎨-+≥⎩,则((2))f f =( ) (A) -7 (B) 2 (C) -1 (D) 5 【答案】B【解析】由题意得2((2))(1)(1)12f f f =-=-+= 考点:函数值的求解【变式训练】(山东鄄城一中2016~2017调研)设[]3,10()(5),10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则(6)f 的值为_______ 【答案】7【分析】[](6)(65)((11))(8)f f f f f f =+==由(8)((85))(133)=(10)7f f f f f =+=-=典例2.(2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域)设函数()f x =246,06,0x x x x x ⎧-+≥⎨+<⎩,则不等式()()1f x f >的解集是( ) A .(),1,)3(3-∞U + B .()3,1,()2∞U -+ C .()1,1,()3∞U -+ D .(),3()1,3∞U -- 【答案】A典例3.【2014上海,理18】⎪⎩⎪⎨⎧>++≤-=,0,1,0,)()(2x a x x x a x x f 若)0(f 是)(x f 的最小值,则的取值范围为( ).(A)-1,2] (B)-1,0] (C)1,2] (D) [0,2] 【答案】D【考点】分段函数的单调性与最值问题.典例4.【2014高考重庆理第16题】若不等式2212122++≥++-a a x x 对任意实数恒成立,则实数的取值范围是____________. 【答案】11,2⎡⎤-⎢⎥⎣⎦【解析】令()()312121|2|3221312x x f x x x x x x x ⎧⎪--≤-⎪⎪⎛⎫=-++=--<≤⎨ ⎪⎝⎭⎪⎪⎛⎫+>⎪ ⎪⎝⎭⎩,其图象如下所示(图中的实线部分)考点:1、分段函数;2、等价转换的思想;3、数形结合的思想. 典例 5.(安徽省六安市2016~2017第一中学)设函数31,1()2,1xx x f x x -<⎧=⎨≥⎩,则满足()(())2f a f f a =的的取值范围是_________【答案】23a ≥解题技巧与方法总结1.因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.2.“分段求解”是处理分段函数问题解的基本原则. 知识交汇1.(北京第四中学2016~2017期中)已知函数()log ()xa f x a ka =-,其中01,a k R <<∈(1) 若1k =,求函数()f x 的定义域 (2) 若12a =,且()f x 在[)1,+∞内总有意义,求的取值范围 【答案】(1){}|1x x >(2)1k <【交汇技巧】将定义域问题与对数函数的性质进行结合,需要注意对数函数的单调性及真数大于0;本题求参数取值范围采用参数分离,参数分离法求取值范围的原则为分离后不等式另一边函数的单调性、最值、值域等易求2. (江苏连云港房山中学月考)已知函数2()25(1)f x x ax a =-+> (1) 若函数()f x 的定义域和值域均是[]1,a ,求实数的值(2) 若对任意的[]12,1,1x x a ∈+,总有12()()4f x f x -≤,求实数的取值范围 【答案】(1)=2 (2)13a <≤【解析】(1)Q 22()()5(1)f x x a a a =-+->∴()f x 在[]1,a 上是减函数,又定义域和值域均为[]1,a ∴(1),()1f a f a == 解得=2(2)若2a ≥,又[]1,1x a a =∈+,且(1)1a a a +-≤-∴2max min (1)62,()5f f a f f a a ==-==-∴对任意的[]12,1,1x x a ∈+,总有12()()4f x f x -≤∴max min 4f f -≤即2(62)(5)4a a ---≤,解得13a -≤≤∴23a ≤≤若12a <<,22max min (1)6,()5f f a a f f a a =+=-==-max min 4f f -≤显然成立综上13a <≤练习检测1.下列对应法则f 为A 上的函数的个数是( )①2Z N A B f x y x →+=,=,:=;②Z A B Z f x y →=,=,:; ③{}[11]00A B f x y →=-,,=,:= A .0 B .1 C .2 D .3 【答案】B2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).【答案】B【解析】选项A 中定义域为[]2,0-,选项C 的图像不是函数图像,选项D 中的值域不对,选B.3. 已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≥02-x,x <0(a ∈R ),若ff (-1)]=1,则a =( )A.14B.12 C .1 D .2 【答案】A【解析】因为-1<0,所以f (-1)=2-(-1)=2,又2>0,所以ff (-1)]=f (2)=a ·22=1,解得a =14。
2019年2018广东高考数学易错知识点复习资料word版本 (4页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018广东高考数学易错知识点复习资料每个人在高考复习的时候总会经历许许多多的失意与挫折,下面小编为大家整理的广东高考数学易错知识点复习资料,希望大家喜欢。
广东高考数学易错知识点复习资料1.三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sin x的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
2.图像变换方向把握不准致误函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的图像可看作由下面的方法得到:()把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>时)或伸长(当0<ω<时)到原来的ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>时)或缩短3.忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。
它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
4.向量夹角范围不清致误解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
2018高考数学易错点汇总
2018 年高考数学易错点汇总数学是一座顶峰,哪怕是高考数学这样的小山丘,也让无数学子望其背而心戚戚,混淆知识点,满纸计算却只好挣得卷面分,看得自己也是好一阵疼爱啊,搬出高考数学易错知识点总结,希望能让大家少走一点弯路。
会集与简单逻辑★1易错点:忘记空集致误错因分析:因为空集是任何非空会集的真子集,所以,关于会集B,就有 B=A ,φ≠ B, B≠φ,三种状况,在解题中假如思想不够周密就有可能忽视了 B≠φ这种状况,以致解题结果错误。
特别是在解含有参数的会集问题时,更要充分注意当参数在某个范围内取值时所给的会集可能是空集这种状况。
空集是一个特别的会集,因为思想定式的原由,考生常常会在解题中忘记了这个会集,以致解题错误或是解题不全面。
★2易错点:忽视会集元素的三性致误错因分析:会集中的元素拥有确立性、无序性、互异性,会集元素的三性中互异性对解题的影响最大,特别是带有字母参数的会集,本质上就隐含着对字母参数的一些要求。
在解题时也可以先确立字母参数的范围后,再详尽解决问题。
★3易错点:四种命题的结构不明致误错因分析:假如原命题是“若 A 则 B”,则这个命题的抗命题是“若 B 则 A”,否命题是“若┐A则┐ B”,逆否命题是“若┐B则┐ A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与抗命题等价”。
在解答由一个命题写出该命题的其余形式的命题时,必定要明确四种命题的结构以及它们之间的等价关系。
别的,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“ b 都是偶a,数”的否定应当是“a ,b 不都是偶数”,而不该当是“ b 都是a奇,数”。
★4易错点:充分必需条件颠倒致误错因分析:关于两个条件 A,B,假如 A=B 成立,则 A 是 B 的充分条件, B 是 A 的必需条件;假如 B=A 成立,则 A 是 B 的必需条件, B 是 A 的充分条件;假如 AB,则 A,B 互为充分必需条件。
高考数学一轮复习易错知识点
高考数学一轮复习易错知识点2021高考曾经进入温习备考阶段,查字典数学网高考频道小编整理了高考数学一轮温习易错知识点,供大家参考。
一、集合与函数1.停止集合的交、并、补运算时,不要忘了选集和空集的特殊状况,不要遗忘了借助数轴和文氏图停止求解。
2.在运用条件时,易A疏忽是空集的状况3.你会用补集的思想处置有关效果吗?4.复杂命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判别充沛与必要条件?5.你知道否命题与命题的否认方式的区别。
6.求解与函数有关的效果易疏忽定义域优先的原那么。
7.判别函数奇偶性时,易疏忽检验函数定义域能否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易疏忽标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,那么一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号和或单调区间不能用集合或不等式表示。
12.求函数的值域必需先求函数的定义域。
13.如何运用函数的单调性与奇偶性解题?①比拟函数值的大小;②解笼统函数不等式;③求参数的范围(恒成立效果)。
这几种基本运用你掌握了吗?14.解对数函数效果时,你留意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及运用掌握了吗?如何应用二次函数求最值?16.用换元法解题时易疏忽换元前后的等价性,易疏忽参数的范围。
17.实系数一元二次方程有实数解转化时,你能否留意到:事先,方程有解不能转化为。
假定原题中没有指出是二次方程,二次函数或二次不等式,你能否思索到二次项系数能够为的零的情形?二、不等式18.应用均值不等式求最值时,你能否留意到:一正;二定;三等。
19.相对值不等式的解法及其几何意义是什么?20.解分式不等式应留意什么效果?用根轴法解整式(分式)不等式的本卷须知是什么?21.解含参数不等式的通法是定义域为前提,函数的单调性为基础,分类讨论是关键,留意解完之后要写上:综上,原不等式的解集是。
2018届高考数学一轮复习错题笔记五数列
笔记五数列易错点26奇、偶项的变化规律归纳错误典例26数列{a n}中,a n+1+a n=3n-54(n∈N*).若a1=-20,求数列的通项公式.【错因分析】将n分为奇数和偶数进行讨论时,辨别不清其奇、偶项的变化规律导致推理运算错误.【正确解答】由a2+a1=3-54=-51,得a2=-31.又a n+1+a n=3n-54,a n+2+a n+1=3n-51,∴a n+2-a n=3.当n为奇数时,a n=3n-432;当n为偶数时,a n=3n-682,即a n=3n-432(n为奇数), 3n-682(n为偶数).易错点27a n与S n关系不清楚典例27已知数列{a n}的首项a1=3,通项a n与前n项和S n之间满足2a n=S n S n-1(n≥2).(1)求证1S n是等差数列,并求公差;(2)求数列{a n}的通项公式.【错因分析】第(1)问中,对数列的通项a n与前n项和S n的关系,即当n≥2时恒有a n=S n-S n-1理解不清导致出错;第(2)问中,由S n求a n的过程中,忽视了对n=1的分类讨论,导致最后只求出了对n≥2成立的结果.【正确解答】(1)∵2a n=S n S n-1(n≥2),∴2(S n-S n-1)=S n S n-1,两边同时除以S n S n-1,得21S n-1-1S n=1,∴1S n −1S n-1=-12,∴ 1S n 是等差数列,公差d=-12. (2)∵1S 1=1a 1=13, ∴1S n =13+(n-1)× -12 =-12n+56=5-3n 6,∴S n =65-3n .当n=1时,a 1=S 1=3,当n ≥2时,a n =12S n S n-1=12×65-3n ×68-3n =18(5-3n )(8-3n ), ∴a n = 3 (n =1),18(8-3n )(5-3n ) (n ≥2).易错点28 求最值时忽视n 的取值要求典例28 在等差数列{a n }中,a 1=25,S 9=S 16,求此数列的前多少项和最大.【错因分析】本题易出现以下两个错误:①解题不细心,在用等差数列前n 项和公式求解时,解得n=12.5,误认为n=12.5.②考虑不全面,在用等差数列性质求解得出a 13=0时,误认为只有S 13最大.数列的通项公式与前n 项和公式都是关于正整数n 的函数,要善于用函数的观点认识和理解数列问题.但是考生很容易忽视n 为正整数的特点,有时即使考虑了n 为正整数,但对于n 为何值时,能够取到最值的讨论中出错.在关于正整数n 的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定.【正确解答】∵S 9=S 16,a 1=25,设公差为d ,由求和公式可得:9×25+9×(9-1)2d=16×25+16×(16-1)2d , 解得d=-2512,∴S n =25n+n (n -1)2× -2512 =-2524n 2+62524n. ∴当n=12或n=13时,此数列前12项和与前13项和一样大.易错点29 用错位相减法求和时项数处理不当典例29 已知数列{a n }是公比为q 的等比数列,a 1=1,a n+2=a n +1+a n 2(n ∈N *).(1)求数列{a n }的通项公式;(2)令b n =na n ,求{b n }的前n 项和S n .【错因分析】用错位相减法求数列{b n}的前n项和时,易出现三个错误:①出现某些项的遗漏;②项数的计算错误;③两式相减时,等比数列前面的系数出错.【正确解答】(1)∵数列{a n}是公比为q的等比数列,a1=1,a n+2=a n+1+a n2(n∈N*),∴a3=a2+a12,∴a1q2=a1q+a12,∴2q2-q-1=0,解得q=1或q=-12,∴a n=1或a n=-12n-1.(2)当a n=1时,b n=n,S n=1+2+…+n=n(n+1)2.当a n=-12n-1时,b n=na n=n·-12n-1,∴S n=-120+2·-12+3·-122+…+n·-12n-1,①-1 2S n=-12+2·-122+3·-123+…+n·-12n,②①-②,得32S n=-12+-12+-122+…+-12n-n·-12n=1--12n1--12-n·-12n,∴S n=49−49+2n3·-12n.易错点30数列的递推关系转换不当典例30已知函数f(x)=2xx+1,数列{a n}满足a1=23,a n+1=f(a n),b n=a n1-a n,n∈N*,则{b n}的通项公式为b n=.【错因分析】对递推式转换不当,在变换中方向不明确,导致思维混乱,致使其转换错误.【正确解答】∵函数f(x)=2xx+1,数列{a n}满足a1=23,a n+1=f(a n),∴a n+1=2a na n+1,∴1a n+1=121+1a n,∵b n=a n1-a n ,∴1b n=1a n-1,∴1b n+1=1a n+1-1=121a n-1=12·1b n,1b1=1a1-1=12,∴1b n 是首项为12,公比为12的等比数列,∴1b n=12n,∴b n=2n.。
高考数学一轮复习易错知识点归纳
高考数学一轮复习易错知识点归纳高考第一轮复习是高考生跨入高三后基础能力过关时期,时间大概为今年9月至次年3月。
这一轮的复习十分重要,目的是将我们学过的基础知识梳理和归纳,既以教材为基本内容,又以教学大纲以及当年的考试说明为依据,做到知识点的全面涉及与提高巩固,同时也为我们二轮、三轮复习奠定基础。
在此,小编特整理了高考数学一轮复习易错知识点归纳,供各位考生参考。
一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道否命题与命题的否定形式的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号和或单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。
这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.实系数一元二次方程有实数解转化时,你是否注意到:当时,方程有解不能转化为。
2018年岳口高中高考考前数学知识易错点梳理 精品
2018年岳口高中高考考前数学知识易错点梳理一、集合、简易逻辑、函数1. 研究集合必须注意集合元素三个特征,即元素的确定性、互异性和无序性。
已知集合A={x,xy,lgxy},集合B={0,|x |,y},且A=B,则x+y=2. 研究集合,首先要弄清集合所表示的对象,即元素,才能理解集合的意义。
已知集合M={y |y=x 2 ,x ∈R},N={y |y=x 2+1,x ∈R},求M ∩N与已知集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x ∈R}求M∩N 的区别。
3. 集合 A 、B ,∅=⋂B A 时,你是否注意到了“极端”情况,即∅=A 或∅=B ;集合B A ⊆求子集A 时是否忘记∅. 例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了a =2的情况了吗?4. 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n 如满足条件}4,3,2,1{}1{⊂⊆M 的集合M 共有多少个8.可以判断真假的语句叫做命题. 逻辑连接词有“或”、“且”和“非”.p9为 互 逆否否 否否 否否 互 逆原命题与逆否命题同真同假;逆命题与否命题同真同假.转换等价命题时注意到了逻辑连接词的转换吗?如“或”变“且”,“且”变“或”。
10.什么是充要条件?充要条件的判断方法有哪些?(定义法、逆否法、集合法)11.什么是全称量词、存在量词,全称命题和特称命题?12.含有一个量词的命题的否定:①全称命题p :∀x ∈M ,p (x );它的否定⌝p :“∃x 0∈M ,⌝p (x 0)”是特称命题②特称命题p :“∃x 0∈M ,p (x 0)”;它的否定⌝p :“∀x ∈M ,⌝p (x )”是全称命题.13.你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B中与它对应元素的唯一性,是映射的特征。
高考数学18个易错知识点
高考数学18个易错知识点考试是每个考生都要面对的一场重要考试,而数学考试中总会有些易错的知识点让考生们头疼不已。
以下将介绍中的18个易错知识点,帮助考生们更好地备考和应对高考。
一、平方差公式平方差公式的应用非常广泛,但很多考生容易在运用时出错。
平方差公式的形式是:(a+b)(a-b)=a²-b²考生在运用平方差公式时,首先要将式子化简,再进行计算。
此外,还要注意运用平方差公式的时机和条件是否符合。
二、向量的坐标表示在向量的坐标表示中,很多考生容易出现弄反或漏写坐标的情况。
在使用向量的坐标表示时,要格外小心,确保坐标的正确性,避免计算错误。
三、三角函数的定义域和值域在求解三角函数的定义域和值域时,考生们往往会遗漏或混淆一些常见角度的范围。
因此在备考过程中,要重点掌握各个三角函数的定义域和值域,加强记忆和理解。
四、二次函数的图像二次函数的图像在中是重点和难点。
考生们容易在画图时弄错横坐标和纵坐标的方向,或者忽略关键点。
因此,在备考时,要细致入微地分析二次函数的特性和图像的绘制方法。
五、函数的奇偶性判断函数的奇偶性也是考试中的一道常见题型。
考生们容易在判断过程中出现计算错误或判断错误的情况。
因此,备考时要充分理解函数的奇偶性的定义和性质,多做例题进行巩固。
六、概率问题概率问题是高考中的常见题型,但很多考生在计算过程中容易出错。
在解决概率问题时,要注意列出概率空间和事件,并根据题目给出的条件进行计算,避免计算错误和逻辑错误。
七、直线的方程直线的方程是中的基本知识点,但很多考生在转换斜率和截距、利用已知点求方程等环节容易出错。
因此,在备考中要熟悉直线的各种方程形式,并能熟练地进行方程的转换和运算。
八、立体图形的体积和表面积立体图形的体积和表面积计算是中的重要内容,但很多考生容易计算错维度、忽略某些面或边等。
在备考过程中,要熟悉各种立体图形的计算公式,并注意问题的维度和条件。
九、逻辑推理与证明逻辑推理与证明是中的较难的内容,但也是容易得分的一部分。
高考数学18大易错知识点整合
高考数学18大易错知识点整合1易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
2易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再具体解决问题。
3易错点四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。
4易错点充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=B成立,则A是B的充分条件,B是A的必要条件;如果B=A成立,则A是B的必要条件,B是A 的充分条件;如果A=B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
5易错点逻辑联结词理解不准致误p∨q真=p真或q真,p∨q假=p假且q假(概括为一真即真);p∧q真=p真且q真,p∧q假=p假或q假(概括为一假即假);┐p真=p假,┐p假=p真(概括为一真一假)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、集合与常用逻辑用语 易错知识清单1.集合的概念与运算(1)解题时要明确集合中元素的特征,关注集合的代表元素(集合是点集、数集还是图形集).(2)集合中的元素具有确定性、无序性和互异性,在求解有关集合的问题时,尤其要注意元素的互异性.(3)空集是任何集合的子集,是任何非空集合的真子集,要时刻注意对空集的讨论,防止漏解.(4)解题时注意区分两大关系:一是元素与集合的从属关系,二是集合与集合的包含关系.(5)Venn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.(6)处理集合问题时,一定要注意检验结果是否与题设相矛盾.2.命题及其关系、充分条件与必要条件(1)当一个命题有大前提而要写出其他三种命题时,必须保留大前提.(2)判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p 则q ”的形式.(3)判断条件之间的关系时要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.3.简单的逻辑联结词、命题的否定与否命题(1)p ∨q 为真命题,只需p 、q 有一个为真即可;p ∧q 为真命题,必须p 、q 同时为真.(2)p 或q 的否定:非p 且非q;p 且q 的否定:非p 或非q.(3)命题的否定与否命题:“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论. 二、函数与导数易错知识清单1.分段函数在求分段函数的值)(0x f 时,要先判断x0属于定义域的哪个子集,然后代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.2.函数的单调性与最值(1)区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者是指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.(2)函数的单调区间不一定是整个定义域,可能是定义域的子集,但一定是连续的.(3)函数的额单调性是针对定义域内的某个区间而言的,函数在某个区间上是单调函数,但在整个定义域上不一定是单调函数,如函数y=x1在(-∞,0)和(0,+∞)上都是减函数,但在定义域上不具有单调性.(4)若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f(x)在区间(-1,0)上是减函数,在(0,1)上也是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数x x f 1)(.3.函数的奇偶性与周期性(1)f(0)=0既不是函数f(x)是奇函数的充分条件,也不是必要条件.(2)判断分段函数的奇偶性要有整体的观点,可以分类讨论,也可以利用图象进行判断.4.二次函数与幂函数(1)对于函数c bx ax y ++=2,要认为它是二次函数,就必须满足a ≠0,当题目条件未说明a ≠0时,就要讨论a=0和a ≠0两种情况.(2)幂函数的图象一定会出现在第一象限,一定不会出现在第四象限,至于是否出现在第二、三象限,要看函数的奇偶性;幂函数的图象最多能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.5.指数与指数函数(1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)解决和指数函数有关的值域或最值问题时,要熟练掌握指数函数的单调性,弄清复合函数的结构,利用换元法求解时要注意“新元”的取值范围.(3)对可化为02=++c ba a x x 或02≥++c ba a x x (≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.6.对数与对数函数(1)在运用性质M M a a log log αα=(a>0,且a ≠1)时,要特别注意条件M>0,在无M>0的条件下应为M M a a log log αα=|(α为偶数).(2)指数函数x a y =(a>0,且a ≠1)与对数函数x y a log =(a>0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.(3)解决与对数函数有关的问题时需注意两点:①务必先研究函数的定义域;②注意对数底数的取值范围.7.函数的图象(1)函数图象的每次变换都是针对自变量“x ”而言,如从f(-2x)的图象到f(-2x+1)的图象是向右平移21个单位,即把x 变成x-21. (2)当图形不能准确地说明问题时,可借助“数”的精确性进行求解,解题过程中要注重数形结合思想的运用.8.函数与方程(1)函数f(x)的零点是一个实数,是方程f(x)=0的根,也是函数y=f(x)的图象与x 轴交点的横坐标.(2)函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要依据函数的单调性、对称性或结合函数图象.9.函数模型及其应用(1)函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.(2)要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.(3)注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.10.导数的概念及运算(1)利用公式求导时要特别注意除法公式中分子中的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.(2)求曲线切线时,要分清在点P 处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.(3)曲线的切线与曲线的交点个数不一定只有一个.11.导数与函数的单调性、极值、最值(1)求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减小失分的可能性.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.(3)解题时要注意区别求单调性和已知单调性的问题,处理好f ′(x)=0时的情况;区分极值点和导数为0的点.12.导数的综合应用(1)若函数f(x)在某个区间内单调递增,则f ′(x)≥0,而不是f ′(x)>0(f ′(x)=0在有限个点处取到).(2)利用导数解决实际生活中的优化问题时,要注意问题的实际意义.13.定积分(1)被积函数若含有绝对值符号,应先去绝对值符号,再分段积分.(2)若定积分式子中有几个不同的参数,则必须先分清谁是积分变量.(3)定积分式子中隐含的条件是积分上限大于积分下限.(4)定积分的几何意义是曲边梯形的面积,但要注意面积非负,而定积分的结果可以为负.(5)将要求面积的图形进行科学而准确地划分,可使面积的求解变得简捷.三 、数列易错知识清单1.数列的概念及简单表示法(1)数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列)(n f a n =)和函数)(x f y =的单调性是不同的.(2)数列的通项公式不一定唯一.2.等差数列及其前n 项和(1)当公差d ≠0时,n a 是n 的一次函数,当公差d=0时,n a 为常数.(2)公差不为0的等差数列的前n 项和n s 是n 的二次函数,且常数项为0.若某数列的前n 项和Sn 是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.3.等比数列及其前n 项和(1)注意等比数列中的分类讨论.(2)由n n a q a •=+1(q ≠0),并不能判断数列{n a }是等比数列,还要验证1a 是否为0.4.数列求和(1)直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数时,应对公比是否为1进行分类讨论.(2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n+1的式子要合并.(3)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项后剩多少项.四、三角函数易错知识清单1.任意角的三角函数(1)注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=πrad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)已知三角函数值的符号确定角的终边位置时不要遗漏终边在坐标轴上的情况.2.同角三角函数的基本关系与诱导公式(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤为:去负—脱周—化锐.要特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.(3)注意求值与化简后的结果要尽可能有理化、整式化.3.三角函数的图象与性质(1)闭区间上最值或值域问题,要先在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.(2)要注意求函数y=Asin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时的情况.(3)三角函数的最值不一定在自变量区间的端点处取得,直接将两个端点处的函数值作为最值是错误的.4.函数y =A sin(ωx+φ)的图象及应用(1)由函数y =sin x 的图象经过变换得到y =A sin(ωx+φ)的图象,如先伸缩,再平移时,要把x 前面的系数提取出来.(2)复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx+φ看作一个整体.若ω<0,要先根据诱导公式进行转化.(3)求函数y=Asin(ωx+φ)在x ∈[m ,n]上的最值,可先求t=ωx+φ的范围,再结合图象得出y=Asin t 的值域,即得原函数的最值.5.两角和与差的正弦、余弦、正切公式(1)运用公式时注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.(2)在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. (3)在三角求值时,往往要估计角的范围后再求值.6.简单的三角恒等变换(1)利用辅助角公式asin x+bcos x 进行转化时,一定要严格对照和、差公式,防止弄错辅助角.(2)计算形如y=sin(ωx+φ),x ∈[a ,b]的函数最值时,不要将ωx+φ的范围和x 的范围混淆. 7.正弦定理、余弦定理(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,可能出现一解、两解、无解的情况,所以要进行分类讨论.(2)利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.8.三角形的实际应用在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易弄错.五、不等式易错知识清单1.不等关系与不等式(1)a>b ⇒ac>bc 或a<b ⇒ac<bc ,当c ≤0时不成立.(2)a>b ⇒a 1<b 1或a<b ⇒a 1>b1,当ab ≤0时不成立.(3)a>b ⇒a n >b n ,对于正数a 、b 才成立.(4)b a >1⇔a>b ,对于正数a 、b 才成立.(5)注意不等式性质中“⇒”与“⇔”的区别,如a>b ,b>c a>c ,反过来a>c ,不能推出a>b ,b>c.(6)作商法比较大小时,要注意两式的符号.(7)求范围问题时,如果多次利用不等式,则可能扩大变量的取值范围.2.不等式的解法及应用(1)对于不等式ax 2+bx+c>0,求解时不要忘记讨论a=0时的情况.(2)当Δ<0时,要注意区分ax 2+bx+c>0(a ≠0)的解集为R 还是空集.(3)对于含参数的不等式要注意选好分类标准,避免盲目讨论.(4)注意用“根轴法”解整式不等式的注意事项及解分式不等式)()(x g x f >a(a ≠0)的一般思路——移项通分.(5)求解含参数不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”.注意:求解完之后要写上“综上,原不等式的解集是……”;若按参数讨论,最后应按参数取值分别说明其解集;若按未知数讨论,最后应求并集.提醒:①解不等式就是求不等式的解集,最后务必用集合的形式表示;②不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(6)解决恒成立问题一定要弄清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.3.二元一次不等式(组)与简单的线性规划问题(1)画二元一次不等式(组)表示的平面区域时,避免错误的重要方法就是使二元一次不等式(组)标准化.(2)通过求直线的截距bz 的最值间接的求z 的最值时,要注意:当b>0时,若截距b 取最大值,则z 也取最大值,若截距b z 取最小值,则z 也取最小值;当b<0时,若截距bz 取最大值,则z 取最小值,若截距b z 取最小值,则z 取最大值. 4.基本不等式及其应用(1)利用基本不等式求最值时应注意“一正”“二定”“三相等”三个条件缺一不可.(2)连续使用基本不等式求最值时要求每次等号成立的条件一致.(3)对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘.一般地,每个表示实际意义的代数式必须为正,由此可得自变量的取值范围,然后利用基本不等式求最值.六、平面向量易错知识清单1.平面向量的概念及线性运算(1)求解向量的概念问题时要注意两点:一是不仅要考虑向量的大小,还要考虑向量的方向;二是要考虑零向量是否也满足条件.要特别注意零向量的特殊性.(2)在利用向量减法时,易弄错两向量的顺序,从而求得的向量是所求向量的相反向量,导致错误.(3)两个向量共线有方向相同、相反两种情况,要考虑全面.2.平面向量的基本定理及坐标表示(1)要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息.(2)若a=(x 1,y 1),b=(x 2,y 2),则a ∥b 的充要条件不能表示成21x x =21y y ,因为x 2,y 2有可能等于0,所以应该表示为x 1y 2-x 2y 1=0.(3)使用平面向量基本定理时一定要注意两个基底向量不共线.3.平面向量的数量积(1)对数量积的运算律要准确理解、应用.例如,a ·b=a ·c (a ≠0)不能得出b=c,因为两边不能同时约去向量a. (2)若两个向量的夹角为锐角,则有a ·b>0,反之不成立;若两个向量的夹角为钝角,则有a ·b<0,反之不成立.4.平面向量应用举例(1)注意向量夹角和三角形内角的关系,两者并不等价. (2)注意向量共线和两直线平行的关系.(3)利用向量求解解析几何中的平行与垂直问题,可有效避免因斜率不存在使问题漏解的情况.七、立体几何易错知识清单1.三视图与直观图(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法. (4)确定正视、侧视、俯视的方向,观察同一物体方向不同,所画的三视图也不同. 2.空间几何体的表面积(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.3.空间点、线、面位置关系(1)正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在一个平面内”.(2)不共线的三点确定一个平面,一定不能丢掉“不共线”的条件.(3)两条异面直线所成角的范围是(0°,90°].4.直线、平面平行的判定与性质(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序则恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.(3)解题中注意符号语言的规范应用.5.直线、平面垂直的判定与性质(1)在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的相互转化.(2)面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.6.空间向量及其应用(1)求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.(2)用向量方法证明直线a ∥b ,只需证明向量a=λb(λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.(3)利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.(4)求点到平面的距离,有时利用等体积法求解可能更方便.(5)求二面角要根据图形确定所求角是锐角还是钝角.八、解析几何易错知识清单1.直线方程(1)明确直线方程各种形式的适用条件:点斜式、斜截式方程适用于与x 轴不垂直的直线;两点式方程不能表示垂直于x 轴、y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.(2)截距不是距离,距离是非负值,而截距可正可负可为零,在求解与截距有关的问题时,要注意讨论截距是否为零.(3)求直线方程时,若不能判断直线是否存在斜率,则应分类讨论,即应对斜率是否存在加以讨论.(4)当直线的斜率不存在时,直线的倾斜角为2π,而不是不存在;当直线与y 轴垂直时,直线的倾斜角为0,而不是π.2.两直线位置关系(1)在判断两条直线的位置关系时,首先分析直线的斜率是否存在.若两条直线的斜率都存在,则可根据判定定理判断两条直线的位置关系,若任一条直线的斜率不存在,则要单独考虑.(2)在运用两平行直线间的距离公式d=2221B A C C +-时,一定要注意将两方程中x,y 的系数化为相同的形式.3.圆的方程(1)圆的标准方程和圆的一般方程都含有三个独立的参数,因此,确定一个圆的方程需要三个独立的条件.(2)过圆外一定点求圆的切线,必有两条.若只求出一条,除了考虑运算过程是否正确外,还应该考虑切线斜率不存在的情况.4.圆锥曲线的方程和性质(1)区分椭圆两种标准方程的方法是比较标准方程中x 2与y 2的分母大小.(2)注意椭圆的范围,若设椭圆12222=+by a x(a>b>0)点的坐标为P(x,y),则|x |≤a,这往往在求与点P 有关的最值问题中用到,也是容易被忽略而导致求最值错误的原因.(3)区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 大小关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.(4)双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).(5)双曲线2222b y a x-=1 (a>0,b>0)的渐近线方程是y =±a b x ,2222b x a y -=1 (a>0,b>0)的渐近线方程是y =x ba y ±=. (6)求抛物线的标准方程时一般用待定系数法求出p 值,但要先判断抛物线是否为标准方程,以及是哪一种标准方程.(7)注意应用抛物线的定义解决问题.(8)求轨迹方程时,要注意曲线上的点与方程的解是一一对应关系.检验可从以下两个方面进行:一是方程的变形是否是同解变形;二是是否符合题目的实际意义.(9)求点的轨迹与求轨迹方程是不同的要求.求点的轨迹时,应先求轨迹方程,然后根据方程说明点的轨迹的形状、位置、大小等.5.直线与圆、圆锥曲线的位置关系(1)直线与双曲线交于一点时,其位置关系不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.(2)在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情.(3)若利用弦长公式计算问题,在设直线斜率时要注意说明斜率不存在的情况.(4)对于中点弦问题,可以利用“点差法”求解,但不要忘记验证Δ>0或说明中点在曲线内部.九、计数原理易错知识清单1.两个计数原理(1)切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.(2)分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.(3)确定题目中是否有特殊条件限制.2.排列与组合(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,然后利用两个计数原理做最后处理.(2)解受条件限制的组合题时,通常用直接法(合理分类)和间接法(排除法)来解决.分类标准应统一,避免出现重复或遗漏现象.(3)对于选择题要谨慎处理,注意答案的不同等价形式.处理选择题可采用排除法,错误的答案会有重复或遗漏现象.3.二项式定理(1)项的系数与n和a,b的值有关,二项式系数只与n有关,且大于0(n为项数).(2)求二项式系数的和,可采用“赋值法”.(3)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种不同算法.(4)展开式中第k+1项的二项式系数与第k+1项的系数一般是不相同的.在具体求各项的系数时,一般先确定符号,再确定数值;确定符号时对根式和指数的运算要细心,以防出错.十、概率与统计易错知识清单1.随机事件的概率(1)正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.(2)需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.2.古典概型(1)古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.(2)概率的一般加法公式:P(A∪B)=P(A)+P(B)-P(A∩B).提示:①公式的作用是求A∪B的概率,当A∩B=时,A、B互斥,此时P(A∩B)=0,所以P(A∪B)=P(A)+P(B);②要计算P(A∪B),需要求P(A)、P(B),更重要的是确定事件A ∩B,并求其概率;③该公式可以看作一个方程,知三可求一.3.几何概型(1)准确把握几何概型的“测度”是解题关键.(2)几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.4.二项分布(1)运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立.(2)独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件.5.离散型随机变量的均值与方差、正态分布(1)会根据分布列的两个性质来检验求得的分布列的正误.(2)对于实际应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.(3)解决正态分布问题有三个关键点:①对称轴x=μ;②标准差σ;③分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.6.随机抽样(1)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会相等;总体分组后,在起始部分抽样时,采用简单随机抽样.(2)进行分层抽样时应注意以下几点:①分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.②为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.7.用样本估计总体。