2020年新高考数学自学检测黄金卷03(解析版)

合集下载

高考数学专题03数列求和问题(第二篇)(解析版)

高考数学专题03数列求和问题(第二篇)(解析版)

⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。

2020年高考数学(理)重难点专练03 空间向量与立体几何(解析版)

2020年高考数学(理)重难点专练03  空间向量与立体几何(解析版)

2020年高考数学(理)重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B 【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C.5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D .2【答案】A 【解析】 【分析】取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R .【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB ==PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==,所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P .由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u uu v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =【解析】 【分析】(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥, 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩令1x =,得1,y z =⎧⎪⎨=⎪⎩所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,0,,(0,22F E ⎛⎫ ⎪ ⎪⎝⎭, 设(01)FQ FE λλ=u u u r u u u r &剟,整理得1),2,22Q λλλ⎛⎫-+ ⎪ ⎪⎝⎭,则1,22BQ λλ⎛+=-- ⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u ur u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==. 【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值 为5.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴ 【解析】 【分析】(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角. 在Rt PCD V中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,02C ⎫⎪⎪⎝⎭,(0,2,0)D,1,14M ⎫-⎪⎪⎝⎭所以3,,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩,令11y =,则1,1)n =u r.设平面CDM 的一个法向量为()2222,,n x y z =u ur,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E ,()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r ,所以12BC FP =u u u u r u u u r,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r . 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。

2020年普通高等学校招生全国统一考试(全国卷Ⅲ)数学(理)试题(解析版)

2020年普通高等学校招生全国统一考试(全国卷Ⅲ)数学(理)试题(解析版)

绝密★启用前 考试时间:2020年7月7日15:00-17:002020年普通高等学校招生全国统一考试(全国卷Ⅲ)数学(理科)试题 (解析版)试卷总分150分, 考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i-的虚部是( ) A. 310-B. 110-C.110D.310【答案】D 【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C. 14230.2,0.3p p p p ==== D. 14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,。

2020年全国统一高考数学试卷理科新课标Ⅲ解析版_PDF密码解除

2020年全国统一高考数学试卷理科新课标Ⅲ解析版_PDF密码解除
2 2

2
2
2
a b a b a 2a b b
25 2 6 36 7
19 19
a ab
cos a, a b
因此,
.
5 7 3查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,
考查计算能力,属于中等题.
2
2

2
2
PF1 PF2 2 PF1 PF2
2
4c
,即
a2 5a2 4 0
,解得
a 1 ,
故选:A.
【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于
中档题.
”“ 12.已知55<84,134<85.设a=log53,b=log85,c=log138,则( )
x
A
方差为

s2 1 2.5 0.1 2 2.5 0.4 3 2.5 0.4 4 2.5 0.1 0.65
2
2
2
2
A
对于B选项,该组数据的平均数为 x 1 4 0.4 2 3 0.1 2.5,
B
方差为
2
2
2
2

s2 1 2.5 0.4 2 2.5 0.1 3 2.5 0.1 4 2.5 0.4 1.85
3
,即可求得答案.
根据余弦定理: AB2 AC2 BC2 2 AC BC cosC
2
AB2 42 32
2 4 3
3
可得 AB2 9 ,即 AB 3
由 cos B
AB2 BC2 AC2 1
9 9 16
2AB BC
233

2020年新高考数学自学检测黄金卷07(解析版)

2020年新高考数学自学检测黄金卷07(解析版)

第 1 页 共 24 页2020年新高考数学自学检测黄金(07)卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={}{}|1,,2,.x x a x R B x x b x R -<∈=-∈若A ⊆B,则实数a,b 必满足A .3a b +≤B .3a b +≥C .3a b -≤D .3a b -≥【答案】D【解析】{}{}|1,|11A x x a x R x a x a =-<∈=-<<+,{}{}222B x x b x x b x b =-=+<-或,若A ⊆B ,则有21b a +≤-或21b a -≥+3a b ∴-≥2.已知向量(,1)m a =-u r ,(21,3)n b =-r (0,0)a b >>,若m n u r r P ,则21a b+的最小值为( )第 2 页 共 24 页A .12B .843+C .15D .1023+【答案】B【解析】∵m =r (a ,﹣1),n =r (2b ﹣1,3)(a >0,b >0),m r ∵n r, ∵3a +2b ﹣1=0,即3a +2b =1, ∵21a b +=(21a b +)(3a +2b ) =843b aa b++≥8432b aa b+⋅ =843+,当且仅当43b a a b =,即a 336-=,b 314-=,时取等号, ∵21a b+的最小值为:843+. 故选:B .3.在数列{}n a 中,11a =,12n n a a +⋅=-(123)n =L ,,,,那么8a =( ) A .2- B .12-C .1D .2【答案】A【解析】由11a =,12n n a a +⋅=-可得,第 3 页 共 24 页22a =-,31a =,42a =-,故数列是以2周期的数列,所以82a =-. 故选:A4.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 【答案】D【解析】对于A ,由图象可知当速度大于40km /h 时,乙车的燃油效率大于5km /L , ∵当速度大于40km /h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误;对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲第 4 页 共 24 页车的行驶路程最远,∵以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误; 对于C ,由图象可知当速度为80km /h 时,甲车的燃油效率为10km /L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故C 错误; 对于D ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率, ∵用丙车比用乙车更省油,故D 正确 故选D . 5.方程sin()lg 3x x π+=的实数根个数为( )A .3个B .5个C .7个D .9个【答案】A【解析】解:方程sin()lg 3x x π+=的实数根个数等价于函数sin()3y x π=+与函数lg y x =的图像的交点个数,在同一直角坐标系中,函数sin()3y x π=+与函数lg y x =的图像如图所示,由图可知,函数sin()3y x π=+与函数lg y x =的图像的交点个数为3个,则方程sin()lg 3x x π+=的实数根个数为3个,故选:A.第 5 页 共 24 页6.已知奇函数()f x 满足()(4)f x f x =+,当(0,1)x ∈时,()2x f x =,则()2log 12f =( )A .43-B .2332C .34D .38-【答案】A【解析】由题意()(4)f x f x =+,故函数()f x 是周期为4的函数,由23log 124<<,则21log 1240-<-<,即204log 121<-<, 又函数()f x 是定义在R 上的奇函数,则()()()2244log 12222log 1224log 12log 1244log 12223f f f -=-=--=-=-=-,故选:A.7.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC ∆是边长为23的等边三角形,7PA PB ==,则该三棱锥外接球的表面积为( )第 6 页 共 24 页A .16πB .654πC .6516πD .494π【答案】B 【解析】如图所示,取AB 中点D ,连接,PD CD ,三角形的中心E 在CD 上, 过点E 作平面ABC 垂线.在垂线上取一点O ,使得PO OC =, 因为三棱锥底面是一个边长为23的等边三角形,E 为三角形的中心,,OA OB OC ∴== O ∴点即为球心,因为,PA PB D =为AB 中点,所以PD AB ⊥,因为平面PAB ⊥平面,ABCPD ∴⊥平面ABC ,则//OE PD ,2221233,2,13CD CA AD CE CD DE CD CE =-=-====-=,222PD PB BD =-=,第 7 页 共 24 页设球的半径为r ,则有2,4PO OC r OE r ===-, 作OG PD ⊥于G ,则OEDG 为矩形,222()PD DG OG PO -+=,即()2222241r r --+=,解得26516r =, 故表面积为26544S r ππ==,故选B . 8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,以OF 为直径的圆与双曲线C 的渐近线交于不同原点O 的A B ,两点,若四边形AOBF 的面积为()2212a b +,则双曲线C 的渐近线方程为( )A .22y x =±B .2y x =±C .y x =±D .2y x =±【答案】C【解析】根据题意,OA AF ⊥,双曲线C 的焦点F 到C 的一条渐近线by x a=±的距离为22bcb a b =+,则||AF b =,所以||OA a =,所以()2212ab a b =+,所以1b a =,所以双曲线C 的渐近线方程为y x =±.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。

2020年全国统一高考数学试卷(理科)(新课标Ⅲ)(解析版)

2020年全国统一高考数学试卷(理科)(新课标Ⅲ)(解析版)

.10 D.310 C.12020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A B中元素的个数为()A.2【答案】C【解析】【分析】采用列举法列举出AB.3C.4B中元素的即可.D.6⎧y≥x【详解】由题意,A B中的元素满足⎨,且x,y∈N*,⎩x+y=8由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题2.复数11-3i的虚部是()A.-310 B.-110【答案】D 【解析】【分析】【详解】因为 z = 1 3.在一组样本数据中,1,2,3,4 出现的频率分别为 p , p , p , p ,且 ∑ p = 1 ,则下面四种情形中,对应 ...利用复数的除法运算求出 z 即可.1 + 3i 1 3= = + i ,1 - 3i (1- 3i)(1+ 3i) 10 10 所以复数 z = 1 3的虚部为 .1 - 3i 10故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题41 2 3 4 ii =1样本的标准差最大的一组是()A. p = p = 0.1, p = p = 0.41423C. p = p = 0.2, p = p = 0.31423B. p = p = 0.4, p = p = 0.11 42 3D. p = p = 0.3, p = p = 0.21 42 3【答案】B【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组【详解】对于 A 选项,该组数据的平均数为 x = (1 + 4)⨯ 0.1+ (2 + 3)⨯ 0.4 = 2.5 ,A方差为 s 2 = (1 - 2.5)2 ⨯ 0.1+ (2 - 2.5)2 ⨯ 0.4 + (3 - 2.5)2 ⨯ 0.4 + (4 - 2.5)2 ⨯ 0.1 = 0.65 ; A对于 B 选项,该组数据的平均数为 x = (1 + 4)⨯ 0.4 + (2 + 3)⨯ 0.1 = 2.5 ,B方差为 s 2 = (1 - 2.5)2 ⨯ 0.4 + (2 - 2.5)2 ⨯ 0.1+ (3 - 2.5)2 ⨯ 0.1+ (4 - 2.5)2 ⨯ 0.4 = 1.85 ; B对于 C 选项,该组数据的平均数为 x = (1 + 4)⨯ 0.2 + (2 + 3)⨯ 0.3 = 2.5 ,C方差为 s 2 = (1 - 2.5)2 ⨯ 0.2 + (2 - 2.5)2 ⨯ 0.3 + (3 - 2.5)2 ⨯ 0.3 + (4 - 2.5)2 ⨯ 0.2 = 1.05 ; C对于 D 选项,该组数据的平均数为 x = (1 + 4)⨯ 0.3 + (2 + 3)⨯ 0.2 = 2.5 ,D方差为 s 2 = (1 - 2.5)2 ⨯ 0.3 + (2 - 2.5)2 ⨯ 0.2 + (3 - 2.5)2 ⨯ 0.2 + (4 - 2.5)2 ⨯ 0.3 = 1.45 .D因此,B 选项这一组 标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题 4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎1 + e -0.23(t -53) ,其中 K 为最大确诊病例数.当 ),所以 I t * = K ) = 0.95K ,则 e 0.23 t *-53 = 19 , t t = ln19 ≈ 3 ,解得 t * ≈ .,0 ⎪ ⎭B. ,0 ⎪⎭C.(1,0)⎝ 4 ⎝ 2 4,所以 D (2,2 ),代入抛物线方程 4 = 4 p ,求得 p = 1 ,所以其焦点坐标为 ( ,0) ,累计确诊病例数 I(t)(t 的单位:天)的 Logistic 模型: I (t )=KI( t * )=0.95K 时,标志着已初步遏制疫情,则t * 约为()(ln19≈3A. 60 【答案】C【解析】【分析】B. 63C. 66D. 69将 t = t * 代入函数 I (t ) =1 + eK ()【详解】I (t ) =K1 + e-0.23(t -53)( )1 + e -0.23( *-53( )所以, 0.23 (* - 53)30.23+ 53 ≈ 66 .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题 5.设 O 为坐标原点,直线 x = 2 与抛物线 C : y 2 = 2 px( p > 0)焦点坐标为()⎛ 1 ⎫⎛ 1 ⎫A.【答案】B【解析】【分析】交于 D , E 两点,若 O D ⊥ OE ,则 C 的D. (2,0)根据题中所给的条件 O D ⊥ OE ,结合抛物线的对称性,可知∠DOx = ∠EOx =π4,从而可以确定出点D的坐标,代入方程求得 p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线 x = 2 与抛物线 y 2 = 2 px( p > 0) 交于 E, D 两点,且 O D ⊥ OE ,根据抛物线的对称性可以确定 ∠DOx = ∠EOx =π12故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,35B.-35C.17D.19 ()(a+b)==193 D.22点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a,b满足|a|=5,|b|=6,a⋅b=-6,则cos a,a+b=()A.-311935【答案】D【解析】【分析】计算出a⋅a+b、a+b的值,利用平面向量数量积可计算出c os<a,a+b>的值.【详解】a=5,b=6,a⋅b=-6,∴a⋅(a+b)=a2+a⋅b=52-6=19.a+b=2a2+2a⋅b+b2=25-2⨯6+36=7,因此,cos<a,a+b>=a⋅(a+b)a⋅a+b19=.5⨯735故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.△在ABC中,cosC=A.1923,AC=4,BC=3,则cosB=()11B. C.23【答案】A【解析】【分析】AB+B C2-AC2根据已知条件结合余弦定理求得AB,再根据c osB=,即可求得答案.2AB⋅B C【详解】在ABC中,cos C=2,AC=4,BC=3 3根据余弦定理:AB2=AC2+BC2-2A C⋅BC⋅cos CAB2=42+32-2⨯4⨯3⨯可得AB2=9,即AB=32 3..△S ABC=△S ADC=S由AB2+BC2-AC29+9-161cos B===2A B⋅BC2⨯3⨯391故cos B=.9故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题8.下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:1△CDB=2⨯2⨯2=2根据勾股定理可得:AB=AD=DB=22∴△A DB是边长为22的等边三角形根据三角形面积公式可得:△S ADB =1.2 tan θ - tan θ + ⎪ = 7 ,∴ 2 tan θ - = 7 ,.B. y =2x +1 2C. y = 2D. y = ( ),则x> 0 ,2 x ,则直线 l 的斜率 k = 2 x1 3 AB ⋅ AD ⋅ s in 60︒ = (2 2) 2 ⋅ = 2 32 2 2∴ 该几何体的表面积是: 3 ⨯ 2 + 23 = 6 + 2 3 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知 2tan θ–tan(θ+A. –2π)=7,则 tan θ=( )4B. –1C. 1D. 2【答案】D【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案【详解】⎛ π ⎫ t an θ + 1 ⎝ 4 ⎭ 1 - t an θ令 t = tan θ , t ≠ 1,则 2t -1 + t1 - t= 7 ,整理得 t 2 - 4t + 4 = 0 ,解得 t = 2 ,即 tan θ = 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题10.若直线 l 与曲线 y = x 和 x 2+y 2= 1 5都相切,则 l 的方程为( )A. y =2x +1 1x +1 1 1x + 2 2【答案】D【解析】【分析】根据导数的几何意义设出直线 l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线 l 在曲线 y =x 上的切点为 x ,x0 0函数 y =x 的导数为 y ' =11 2 x,设直线 l 的方程为 y - x =1 (x - x ),即 x - 2x y + x = 0 ,0 0由于直线 l 与圆 x + y = 相切,则 ,5..= 5 ,∴ c = 5a ,根据双曲线的定义可得 PF - PF = 2a , | ) + 2 PF1x 1 2 2 0 = 51 + 4 x 5 01两边平方并整理得 5x 2 - 4x -1 = 0 ,解得 x = 1 , x = - (舍),0 0 0 0则直线 l 的方程为 x - 2 y + 1 = 0 ,即 y =1 1 x + .2 2故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题11.设双曲线 C : x 2 y 2 - a 2 b 2= 1 (a >0,b >0)的左、右焦点分别为 F 1,F 2,离心率为 5 .P 是 C 上一点,且F 1P ⊥F 2△P .若 PF 1F 2 的面积为 4,则 a =()A. 1B. 2C. 4D. 8【答案】A【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案【详解】c a1 2△S PF 1F 2 = 12| PF | ⋅ PF = 4 ,即 | PF | ⋅ PF = 8 ,1 2 1 2F P ⊥ F P ,∴ PF |2 + PF12122= (2c )2 ,∴ ( PF - PF1221⋅ PF = 4c 2 ,即 a 2 - 5a 2 + 4 = 0 ,解得 a = 1 ,2故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知 55<84,134<85.设 a=log 53,b =log 85,c=log 138,则()A. a <b <c 【答案】A【解析】【分析】B. b <a <cC. b <c <aD. c <a <b结合 55< 84 可得出b < 45 5 b c b ⎪ = ⎪ < 1 ,∴ a < b ; = = ⋅ < ⋅ ⎪ = b log 5 lg 5 lg 5 (lg 5) ⎝2 ⎭ ⎝ 2lg 5 ⎭ ⎝ lg 25 ⎭ 5 13.若 x ,y 满足约束条件 ⎨2 x - y ≥ 0,,则 z =3x +2y 的最大值为_________.由题意可得 a 、 、 ∈ (0,1) ,利用作商法以及基本不等式可得出 a 、的大小关系,由 b = log 5 ,得 8b = 5 , 84,由 c = log 8 ,得13c = 8 ,结合134 < 85 ,可得出 c > ,综合可得出 a 、 b 、13c 的大小关系.【详 解 】 由 题 意可 知 a、b 、c ∈ (0,1) ,a log 3 lg 3 lg8 1 ⎛ lg 3 + lg8 ⎫2⎛ lg 3 + lg8 ⎫2 ⎛ lg 24 ⎫25 2 84由 b = log 5 ,得 8b = 5 ,由 55 < 84 ,得 85b < 84 ,∴ 5b < 4 ,可得 b < ;8由 c = log 13 8 ,得13c = 8 ,由134 < 85 ,得134 < 135c ,∴ 5c > 4 ,可得 c > 4 5.综上所述, a < b < c .故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.⎧ x + y ≥ 0, ⎪⎪ ⎩x ≤ 1,【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为 z = 3x + 2 y ,所以 y = - 3x z z+ ,易知截距 越大,则 z 越大,2 2 23x 3x z平移直线 y =- ,当 y =-+ 经过 A 点时截距最大,此时 z 最大, 2 2 2⎧ y = 2 x ⎧ x = 1由 ⎨ ,得 ⎨ , A(1,2) ,⎩ x = 1 ⎩ y = 2所以 zmax = 3 ⨯ 1 + 2 ⨯ 2 = 7 .⎛ 2 写出 x + ⎪ 二项式展开通项,即可求得常数项.⎛ 2 2 ⎫6x + ⎪ 6-r⎛ ⎪⎛ 2 x + ⎪ 的展开式中常数项是: C 64 ⋅ 24 = C 62 ⋅16 = 15 ⨯16 = 240 .故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.2 14. (x 2 + )6 的展开式中常数项是__________(用数字作答).x【答案】 240【解析】【分析】2 ⎫6⎝x ⎭【详解】⎝ x ⎭其二项式展开通项:T r +1= C r 6⋅ (x 2 ) ⋅ 2 ⎫r ⎝ x ⎭= C r ⋅ x 12-2r (2) r ⋅ x -r6= C r (2) r ⋅ x 12-3r6当12 - 3r = 0 ,解得 r = 4∴ 2 ⎫6⎝ x ⎭故答案为: 240 .【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握(a + b )n 的展开通项公式 Tr +1= C r a n -r b r ,考查了分析能力和计算能力,属于基础题.n.△S ABC=△AOC=⨯AB⨯r+⨯BC⨯r+⨯AC⨯r=⨯(3+3+2)⨯r=22,15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23π【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边上的中点,设内切圆的圆心为O,由于AM=32-12=22,故设内切圆半径为r,则:12⨯2⨯22=22,S△ABC=S△AOB+S△BOC+S11122212解得:r242,其体积:V=πr3=π.233故答案为:23π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f(x)=sin x+1sin x①f(x)的图像关于y轴对称.②f(x)的图像关于原点对称.有如下四个命题:【详解】对于命题①,f ⎛π⎫1⎛π⎫f -=+2=,⎝6⎭2⎝6⎭2f -⎪≠f ⎪,f(-x)=sin(-x)+1=-sin x-=- sin x+⎪=-f(x),⎝2⎭⎝2⎭sin⎛π-x⎫f -x⎪=sin -x⎪+=cos x+⎝2⎭⎝2⎭⎝2⎭sin⎛π+x⎫f +x⎪=sin +x⎪+=cos x+⎝2⎭f -x⎪=f +x⎪,.③f(x)的图像关于直线x=π2对称.④f(x)的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取-π<x<0可判断命题④的正误.综合可得出结论.⎪⎪15=--2=-,则22⎛π⎫⎛π⎫⎝6⎭⎝6⎭所以,函数f(x)的图象不关于y轴对称,命题①错误;对于命题②,函数f(x)的定义域为{x x≠kπ,k∈Z},定义域关于原点对称,1⎛1⎫sin(-x)sin x⎝sin x⎭所以,函数f(x)的图象关于原点对称,命题②正确;对于命题③,⎛π⎫⎛π⎫11cos x,⎪⎛π⎫⎛π⎫11cos x,则⎪⎛π⎫⎛π⎫⎝2⎭⎝2⎭所以,函数f(x)的图象关于直线x=π2对称,命题③正确;对于命题④,当-π<x<0时,sin x<0,则f(x)=sin x+1sin x<0<2,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.( .17.设数列{a n }满足 a 1=3, a n +1 = 3a n - 4n .(1)计算 a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前 n 项和 S n .【答案】 1) a 2 = 5 , a 3 = 7 , a n = 2n + 1,证明见解析;(2) S n = (2n - 1)⋅ 2n +1 + 2 .【解析】【分析】(1)利用递推公式得出 a , a ,猜想得出{a23n}的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得 a 2 = 3a 1 - 4 = 9 - 4 = 5 , a 3 = 3a 2 - 8 = 15 - 8 = 7 ,由数列 {a n}的前三项可猜想数列{a }是以 3 为首项,2 为公差的等差数列,即 a nn= 2n + 1,证明如下:当 n = 1 时, a 1 = 3 成立;假设 n = k 时, a k = 2k + 1 成立.那么 n = k +1 时, a k +1 = 3a k - 4k = 3(2k + 1) - 4k = 2k + 3 = 2(k + 1) + 1 也成立.则对任意的 n ∈ N * ,都有 a n = 2n + 1成立;(2)由(1)可知, a ⋅ 2n = (2n + 1)⋅ 2nnS = 3 ⨯ 2 + 5 ⨯ 22 + 7 ⨯ 23 +n2S = 3 ⨯ 22 + 5 ⨯ 23 + 7 ⨯ 24 +n+ (2n - 1)⋅ 2n -1 + (2n + 1)⋅ 2n ,①+ (2n - 1)⋅ 2n + (2n + 1)⋅ 2n +1 ,②由① - ②得: -S = 6 + 2 ⨯ (22 + 23 +n+ 2n )- (2n + 1)⋅ 2n +1= 6 + 2 ⨯ 22⨯ (1 - 2n -1)1 - 2- (2n + 1)⋅ 2n +1= (1- 2n) ⋅ 2n +1 - 2 ,即 S = (2n - 1)⋅ 2n +1 + 2 .n【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题18.某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):高考数学;( (锻炼人次 [0,200] (200,400] (400,600]空气质量等级1(优) 2(良)3(轻度污染)4(中度污染)2567 161072 25128(1)分别估计该市一天的空气质量等级为 1,2,3,4 的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表)(3)若某天的空气质量等级为 1 或 2,则称这天“空气质量好”;若某天的空气质量等级为 3 或 4,则称这天“空气质量不好”.根据所给数据,完成下面的 2×2 列联表,并根据列联表,判断是否有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好n(ad - b c)2附: K 2 = ,(a + b )(c + d )(a + c)(b + d )P(K 2≥k)k0.0503.841 0.0106.635 0.00110.828【答案】 1)该市一天的空气质量等级分别为1、2 、3 、4 的概率分别为 0.43 、 0.27 、 0.21、 0.09 ;(2)350 ; 3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、 2 、 3 、 4 的概率;概率为 5 + 10 + 12 .(2)利用每组的中点值乘以频数,相加后除以100 可得结果;(3)根据表格中的数据完善 2 ⨯ 2 列联表,计算出 K 2的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1 的概率为 2 + 16 + 25= 0.43 ,等级为 2 的1006 +7 +8 7 + 2 + 0= 0.27 ,等级为 3 的概率为 = 0.21 ,等级为 4 的概率为 = 0.09 ;100 100 100100 ⨯ 20 + 300 ⨯ 35 + 500 ⨯ 45(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100(3) 2 ⨯ 2 列联表如下:人次 ≤ 400人次 > 400= 350空气质量不好空气质量好3322 378100 ⨯ (33⨯ 8 - 37 ⨯ 22)2K 2 =≈ 5.820 > 3.841 ,55 ⨯ 45 ⨯ 70 ⨯ 30因此,有 95% 的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关 【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体 ABCD - A 1B 1C 1D 1 中,点 E, F 分别在棱 DD 1, BB 1 上,且 2DE = ED 1 , BF = 2FB 1 .(1)证明:点 C 1 在平面 AEF 内;(2)若 AB = 2 , AD = 1 , AA 1 = 3 ,求二面角 A - EF - A 1 的正弦值.(2的C G=CG,BF=2FB,∴CG=CC=BB=BF且CG=BF,233【答案】1)证明见解析;(2)427.【解析】【分析】(1)连接C1E、C1F,证明出四边形AEC1F为平行四边形,进而可证得点C1在平面AEF内;(2)以点C1为坐标原点,C1D1、C1B1、C1C所在直线分别为x、y、z轴建立空间直角坐标系C1-xyz,利用空间向量法可计算出二面角A-EF-A1余弦值,进而可求得二面角A-EF-A的正弦值.11【详解】(1)在棱CC上取点G,使得C G=CG,连接DG、FG、C E、C F,1111在长方体ABCD-A1B1C1D1中,AD//BC且AD=BC,BB1//CC1且BB1=CC1,1221111所以,四边形BCGF为平行四边形,则AF//DG且AF=DG,同理可证四边形DEC1G为平行四边形,∴C1E//DG且C1E=DG,∴C E//AF且C E=AF,则四边形AEC F为平行四边形,111因此,点C1在平面AEF内;(2)以点C1为坐标原点,C1D1、C1B1、C1C所在直线分别为x、y、z轴建立如下图所示的空间直角坐标系C1-xyz,由 ⎨ ,得 ⎨ 取 z = -1,得 x = y = 1 ,则 m = (1,1,-1),⎩-2 x 1 - 2 z 1 = 0 ⎪⎩m ⋅ AF = 0 ⎪由 ⎨,得 ⎨ ⎪ m ⋅ n =7,因此,二面角 A - EF - A 1 的正弦值为 42 20.已知椭圆 C : , A , B 分别为 C 的左、右顶点.则 A (2,1,3 )、 A (2,1,0 )、 E (2,0,2 )、 F (0,1,1),1AE = (0, -1, -1) , AF = (-2,0, -2), A E = (0, -1,2 ) , A F = (-2,0,1),1 1设平面 AEF 的法向量为 m = (x , y , z 111) ,⎧m ⋅ AE = 0 ⎧- y - z = 0 1 1 11 1设平面 A 1EF 的法向量为 n = (x 2 , y 2 , z2) , ⎧n ⋅ A E = 0 ⎧- y + 2z = 01 2 2⎪⎩n ⋅ A 1F = 0⎩-2x 2 + z 2 = 0 ,取 z 2 = 2 ,得 x 2 = 1 , y 2 = 4 ,则 n = (1,4,2 ),cos < m , n >= m ⋅ n3 7=3 ⨯ 21设二面角 A - EF - A 1 的平面角为θ ,则 cos θ =.77 42,∴ s in θ = 1 - cos 2θ =7 7. 【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能 力,属于中等题.x 2 y 2 15+ = 1(0 < m < 5) 的离心率为高考数学+ = 1(0 < m < 5) ,可得 a = 5 , b = m ,根据离心率公式,结合已知,即可求得答案;( ( 根据离心率 e = = 1 - ⎪ = 1 - ⎪ = , ⎝ 4 ⎭(1)求 C 的方程;(2)若点 P 在 C 上,点 Q 在直线 x = 6 上,且 | BP |=| BQ | , BP ⊥ BQ ,求 APQ 的面积.【答案】 1) 【解析】【分析】(1)因为 C : x 2 16 y 2 5+ = 1 ; 2) . 25 25 2x 2 y 225 m 2(2)点 P 在 C 上,点 Q 在直线 x = 6 上,且| BP |=| BQ | , BP ⊥ BQ ,过点 P 作 x 轴垂线,交点为 M ,设x = 6 与 x 轴交点为 N ,可得 △PMB ≥? BNQ ,可求得 P 点坐标,求出直线 AQ直线距离公式和两点距离公式,即可求得 APQ 的面积. 直线方程,根据点到的【详解】(1)x 2 y 2C : + = 1(0 < m < 5)25 m 2∴ a = 5 , b = m ,c ⎛ b ⎫2 ⎛ m ⎫215 a ⎝ a ⎭ ⎝ 5 ⎭4 解得 m =5 5或 m =- (舍),4 4x 2 y 2+ = 1∴ C 的方程为: 25 ⎛ 5 ⎫2 , ⎪x 2 16 y 2即 + = 1 ;25 25(2)不妨设 P , Q 在 x 轴上方点 P 在 C 上,点 Q 在直线 x = 6 上,且 | BP |=| BQ | , BP ⊥ BQ ,过点 P 作 x 轴垂线,交点为 M ,设 x = 6 与 x 轴交点为 N根据题意画出图形,如图可得 P 点纵坐标为 y = 1 ,将其代入 + = 1 ,25 25| BP |=| BQ | , BP ⊥ BQ , ∠PMB = ∠QNB = 90︒ ,又∠PBM + ∠QBN = 90︒ , ∠BQN + ∠QBN = 90︒ ,∴ ∠PBM = ∠BQN ,根据三角形全等条件“ AAS ”,可得: △PMB ≥?BNQ ,x 2 16 y 2+ = 1 , 25 25∴ B(5,0) ,∴ PM = BN = 6 - 5 = 1 ,设 P 点为 ( x P , y P ) ,x 2 16 y 2Px 2 16可得: P + = 1,25 25解得: x P = 3 或 x P = -3 ,∴ P 点为 (3,1)或 (-3,1) ,①当 P 点为 (3,1)时, 故 MB = 5 - 3 = 2 ,△PMB ≥? BNQ ,∴ | MB |=| NQ |= 2 ,22+112=可得:Q点为(6,2),画出图象,如图A(-5,0),Q(6,2),可求得直线AQ的直线方程为:2x-11y+10=0,根据点到直线距离公式可得P到直线AQ的距离为:d=2⨯3-11⨯1+10根据两点间距离公式可得:AQ=(6+5)2+(2-0)2=55,APQ面积为:1⨯55⨯5=5;∴2525125=55,②当P点为(-3,1)时,故MB=5+3=8,△PMB≥?BNQ,∴|MB|=|NQ|=8,可得:Q点为(6,8),画出图象,如图A(-5,0),Q(6,8),高考数学根据点到直线距离公式可得 P 到直线 AQ 的距离为: d = 8 ⨯ (-3)- 11⨯1 + 40 .( 1 1 f ' ( ) = 0,即 3⨯ ⎛ ⎫⎪ + b = 0可求得直线 AQ 的直线方程为: 8x -11y + 40 = 0 ,根据两点间距离公式可得: AQ =(6 + 5)2 + (8 - 0 )282 + 112== 185 ,5 185 = 5185 ,1 5 5∴ APQ 面积为: ⨯ 185 ⨯= , 2 185 2综上所述, APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题21.设函数 f ( x ) = x 3 + bx + c ,曲线 y = f ( x ) 在点(1 1,f( ))处的切线与 y 轴垂直. 2 2(1)求 b .(2)若 f ( x ) 有一个绝对值不大于 1 的零点,证明: f ( x ) 所有零点的绝对值都不大于 1.【答案】 1) b = -3 4;(2)证明见解析【解析】【分析】1(1)利用导数的几何意义得到 f ' ( ) = 0 ,解方程即可;2 (2)由(1)可得 f ' ( x ) = 3x 2 -3 1 1 1= 2( x + )( x - ) ,易知 f ( x ) 在 (- , ) 上单调递减,在 (-∞, - ) ,4 2 2 2 2 21 1 1 1 1 1 1( , +∞) 上单调递增,且 f (-1) = c - , f (- ) = c + , f ( ) = c - , f (1) = c + ,采用反证法,推出 2 4 2 4 2 4 4矛盾即可.【详解】(1)因为 f ' ( x ) = 3x 2 + b ,由题意, 1 1 2 2 ⎝ 2 ⎭3则 b =- ;4(2)由(1)可得 f ( x ) = x 3- 3x + c ,43 1 1f ' ( x ) = 3x 2 - = 3(x + )( x - ) ,4 2 22令 f '( x ) > 0 ,得 x > 1 1 1 1或 x <- ;令 f ' ( x ) < 0 ,得 - < x < ,2 2 2 21 1 11 所以 f ( x ) 在 (- , ) 上单调递减,在 (-∞, - ) , ( , +∞) 上单调递增,2 2 21 1 1 1 1 1且 f (-1) = c - , f (- ) = c + , f ( ) = c - , f (1) = c + ,4 2 4 2 4 4若 f ( x ) 所有零点中存在一个绝对值大于 1零点 x ,则 f (-1) > 0 或 f (1) < 0 ,即 c > 1 1或 c < - .4 4的1 1 1 1 1 1 1当 c > 时, f (-1) = c - > 0, f (- ) = c + > 0, f ( ) = c - > 0, f (1) = c + > 0 ,4 4 2 4 2 4 4又 f (-4c) = -64c 3 + 3c + c = 4c(1- 16c 2 ) < 0 ,由零点存在性定理知 f ( x ) 在 (-4c, -1) 上存在唯一一个零点 x ,即 f ( x ) 在 (-∞, -1) 上存在唯一一个零点,在 (-1,+∞) 上不存在零点,此时 f ( x ) 不存在绝对值不大于 1 的零点,与题设矛盾;1 1 1 1 1 1 1当 c < - 时, f (-1) = c - < 0, f (- ) = c + < 0, f ( ) = c - < 0, f (1) = c + < 0 ,4 4 2 4 2 4 4又 f (-4c) = 64c 3 + 3c + c = 4c(1 - 16c 2 ) > 0 ,由零点存在性定理知 f ( x ) 在 (1,-4c) 上存在唯一一个零点 x ' ,即 f ( x ) 在 (1, +∞) 上存在唯一一个零点,在 (-∞,1) 上不存在零点, 此时 f ( x ) 不存在绝对值不大于 1 的零点,与题设矛盾;综上, f ( x ) 所有零点的绝对值都不大于 1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答.如果多做,则按所做的第一题计分.[选修 4—4:坐标系与参数方程](10 分)⎧ x = 2 - t - t 222.在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨(t 为参数且 t ≠1),C 与坐标轴交于 A 、B 两 ⎩ y = 2 - 3t + t 2点.(1)求 | AB | ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.(0 - ( 0 .3 ( max{a, b , c } = a ,由题意得出 a > 0,b , c < 0 ,由 a 3 = a 2 ⋅ a = b + c【答案】 1) 4 10 (2)3ρ cos θ - ρ sin θ + 12 = 0【解析】【分析】(1)由参数方程得出 A, B 的坐标,最后由两点间距离公式,即可得出 AB 的值;(2)由 A, B 的坐标得出直线 AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令 x = 0 ,则 t 2 + t - 2 = 0 ,解得 t = -2 或 t =1(舍),则 y = 2 + 6 + 4 = 12 ,即 A(0,12) . 令 y = 0 ,则 t 2 - 3t + 2 = 0 ,解得 t = 2 或 t =1(舍),则 x = 2 - 2 - 4 = -4 ,即 B(-4,0) .∴ AB = (0 + 4)2 + (12 - 0)2 = 4 10 ;(2)由(1)可知 k AB = 12 - 4)= 3 ,则直线 AB 的方程为 y = 3(x + 4) ,即 3x - y + 12 = 0 .由 x = ρ cos θ, y = ρ sin θ 可得,直线 AB 的极坐标方程为 3ρ cos θ - ρ sin θ + 12 = 0 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题 [选修 4—5:不等式选讲](10 分)23.设 a ,b ,c ∈ R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用 max{a ,b ,c }表示 a ,b ,c 中的最大值,证明:max{a ,b ,c }≥ 4 . 【答案】 1)证明见解析(2)证明见解析.【解析】【分析】(1)由 (a + b + c)2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc = 0 结合不等式的性质,即可得出证明;(2)不妨设( bc)2 b 2 + c 2 + 2bc =bc,结合基本不等式,即可得出证明.【详解】(1)(a + b + c)2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc = 0 ,∴ a b + bc + ca = - 1 (a 2 + b 2 + c 2 ) 21(b + c )2b 2 +c 2 + 2bc2bc + 2bca = -b - c, a = ,∴ a 3 = a 2 ⋅ a ==≥= 4 .bc .abc = 1,∴ a, b , c 均不为 0 ,则 a 2 + b 2 + c 2 > 0 ,∴ a b + bc + ca = - 1 (a 2 + b 2 + c 2 )< 0 ; 2(2)不妨设 max{a, b , c } = a ,由 a + b + c = 0, a bc = 1可知, a > 0, b < 0, c < 0 ,bcbcbc当且仅当 b = c 时,取等号,∴ a ≥ 3 4 ,即 max{a, b , c } 3 4 .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题。

黄金卷02(解析版)

黄金卷02(解析版)

黄金卷02 备战2020年新高考全真模拟卷 数学试题注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}|1A x x =<,(){}|30B x x x =-<,则A B =U ( ) A. ()1,0- B. ()0,1C. ()1,3-D. ()1,3【答案】C【解析】由题意得:()1,1A =-,()0,3B =, ∴()1,3A B ⋃=-故选:C 2.若复数11iz ai+=+为纯虚数,则实数a 的值为( ) A. 1B. 0C. 12-D. -1【答案】D 【解析】设bi b R b 0z =∈≠,且1bi 1iai+=+,得到:1ab i +=-+ bi ,∴1ab =-,且1b =,解得:a 1=- 故选:D3.6本不同的书摆放在书架的同一层上,要求甲、乙两本书必须摆放在两端,丙、丁两本书必须相邻,则不同的摆放方法有( )种 A. 24B. 36C. 48D. 60【答案】A 【解析】第一步:甲、乙两本书必须摆放在两端,有22A 种排法;第二步:丙、丁两本书必须相邻视为整体与其它两本共三本,有2323A A 种排法;∴23223224A A A =故选:A.4.已知数列{}n a 中,12a=,111n n a a -=-(2n ≥),则2018a 等于 A.12 B.12- C.1- D.2 【答案】A5.已知∴ABC 的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,2b =,则∴ABC 面积的最大值是A. 1B.3C.2 D.4【答案】B 【解析】由题意知60B =︒,由余弦定理,262x ππ-=,故22424ac a c ac =+-≥-,有4ac ≤,故1sin 32ABC S ac B ∆=≤.故选:B 6.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行翻折,使BDC ∠为直角,则过A B C D ,,,四点的球的表面积为( )A. 3πB. 4πC. 5πD. 6π【答案】C 【解析】折后的图形可放到一个长方体中,其体对角线长为1+1+3=5, 故其外接球的半径为52,其表面积为5π.故选:D. 7.将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移()0a a >个单位得到函数()cos 24g x x π⎛⎫=+⎪⎝⎭的图象,则a 的值可以为( ) A.512π B.712π C.1924πD.4124π【答案】C 【解析】将函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图象向右平移a 个单位得到函数 ()()()sin 2a sin 22a cos 2334g x x x g x x πππ⎡⎤⎛⎫⎛⎫=-+=+-==+ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭∴cos 22a cos 264x x ππ⎛⎫⎛⎫--=+ ⎪ ⎪⎝⎭⎝⎭,∴2a 2k πk Z 46ππ=--+∈, 得到:5,24a k k Z ππ=-+∈.当k=1时,a = 1924π故选:C. 8.当直线10()kx y k k --+=∈R 和曲线E :325(0)3y ax bx ab =++≠交于112233()()()A x y B x y C x y ,,,,,123()x x x <<三点时,曲线E 在点A ,点C 处的切线总是平行的,则过点()b a ,可作曲线E 的切线的条数为( )A. 0B. 1C. 2D. 3【答案】C 【解析】直线()10kx y k k R --+=∈过定点()1,1 由题意可知:定点()1,1是曲线()325:03E y ax bx b =++≠的对称中心, 51313a b b a ⎧++=⎪⎪⎨⎪-=⎪⎩,解得131a b ⎧=⎪⎨⎪=-⎩,所以曲线3215:33E y x x =-+,()1,13b a ⎛⎫=- ⎪⎝⎭,f′(x )=22x x - ,设切点M (x 0,y 0),则M 纵坐标y 0=32001533x x -+,又f′(x 0)=2002x x -, ∴切线的方程为:()()322000015y 233x x x x x x ⎛⎫--+=--⎪⎝⎭又直线过定点113⎛⎫- ⎪⎝⎭,()()322000011521333x x x x x ⎛⎫∴--+=--- ⎪⎝⎭,得3x﹣03x -2=0,()()3000210x x x --+=,即()()2000120x x x +--=解得:021x =-或,故可做两条切线,故选:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。

2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析

2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析

2020年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}解析:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.答案:C2.(1+i)(2﹣i)=( )A.﹣3﹣iB.﹣3+iC.3﹣iD.3+i解析:(1+i)(2﹣i)=3+i.答案:D3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A.B.C.D.解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.答案:A4.若sinα=13,则cos2α=( ) A.89 B.79C.﹣79D.﹣89解析:∵sinα=13,∴cos2α=1﹣2sin 2α=192719-⨯=. 答案:B5.(x 2+2x )5的展开式中x 4的系数为( )A.10B.20C.40D.80解析:由二项式定理得(x 2+2x )5的展开式的通项为:()()5210315522rrr rr rr xT Cx C x--+==,由10﹣3r=4,解得r=2,∴(x 2+2x )5的展开式中x 4的系数为5222C =40.答案:C6.直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x ﹣2)2+y 2=2上,则△ABP 面积的取值范围是( ) A.[2,6] B.[4,8]232,D.[2232,] 解析:∵直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点, ∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),4+4=22∵点P 在圆(x ﹣2)2+y 2=2上,∴设P ()2co 2s sin 2θθ+,,∴点P 到直线x+y+2=0的距离:()2sin 42cos sin 242222d πθθθ+++++==,∵()sin 4πθ+∈[﹣1,1],∴d= ()22sin 44πθ++∈[232,], ∴△ABP 面积的取值范围是:[11222223222⨯⨯⨯⨯,,6].答案:A7.函数y=﹣x 4+x 2+2的图象大致为( )A.B.C.D.解析:函数过定点(0,2),排除A ,B.函数的导数f′(x)=﹣4x 3+2x=﹣2x(2x 2﹣1),由f′(x)>0得2x(2x 2﹣1)<0,得x <﹣或0<x <,此时函数单调递增,排除C.答案:D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 解析:某群体中的每位成员使用移动支付的概率都为p ,看做是独立重复事件,满足X ~B(10,p),P(x=4)<P(X=6),可得()()644466101011C p p C p p --<,可得1﹣2p <0.即12p >. 因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去). 答案:B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为2224a b c +-,则C=( )A.2πB.3πC.4πD.6π解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.△ABC 的面积为2224a b c +-,∴S △ABC =222s 1in 42a b c ab C +-=,∴sinC=2222a b c bc +-=cosC ,∵0<C <π,∴C=4π.答案:C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为则三棱锥D ﹣ABC 体积的最大值为( )A.B.C.D.543解析:△ABC 为等边三角形且面积为93,可得2393AB ⨯=,解得AB=6,球心为O ,三角形ABC 的外心为O′,显然D 在O′O 的延长线与球的交点如图:()222362342323O C OO '=='=-=,,则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:31361833=答案:B11.设F 1,F 2是双曲线C :22221y x a b -=(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C的一条渐近线的垂线,垂足为P ,若|PF 1|=6|OP|,则C 的离心率为( )A.5B.2C.3D.2解析:双曲线C :22221y x a b -=(a >0.b >0)的一条渐近线方程为b y x a =, ∴点F 2到渐近线的距离22bcd b a b ==+,即|PF 2|=b ,∴2222222cos bOP OF PF c b a PF O c =-=-=∠=,, ∵|PF 16|OP|,∴|PF 16a ,在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2﹣2|PF 2|·|F 1F 2|COS ∠PF 2O ,∴6a 2=b 2+4c 2﹣2×b ×2c ×bc =4c 2﹣3b 2=4c 2﹣3(c 2﹣a 2),即3a 2=c 2, 即3a=c ,∴3c e a ==.答案:C12.设a=log 0.20.3,b=log 20.3,则( ) A.a+b <ab <0 B.ab <a+b <0 C.a+b <0<ab D.ab <0<a+b解析:∵a=log 0.20.3=lg 0.3lg 5-,b=log 20.3=lg 0.3lg 2,∴()5lg 0.3lg lg 0.3lg 5lg 2lg 0.3lg 0.32lg 2lg 5lg 2lg 5lg 2lg 5a b -+-===,10lg 0.3lg lg 0.3lg 0.33lg 2lg 5lg 2lg 5ab ⋅-⋅==,∵105lg lg 32>,lg 0.3lg 2lg 5<,∴ab <a+b <0.答案:B二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,2),b =(2,﹣2),c =(1,λ).若c ∥(2a b +),则λ=____. 解析:∵向量a =(1,2),b =(2,﹣2), ∴2a b +=(4,2),∵c =(1,λ),c ∥(2a b +),∴142λ=, 解得λ=12.答案: 1214.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=____.解析:曲线y=(ax+1)e x ,可得y′=ae x +(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 答案:﹣315.函数f(x)=cos(3x+6π)在[0,π]的零点个数为____.解析:∵f(x)=cos(3x+6π)=0, ∴362x k πππ+=+,k ∈Z ,∴x=193k ππ+,k ∈Z ,当k=0时,x=9π,当k=1时,x=49π,当k=2时,x=79π,当k=3时,x=109π,∵x ∈[0,π],∴x=9π,或x=49π,或x=79π,故零点的个数为3. 答案:316.已知点M(﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k=____.解析:∵抛物线C :y 2=4x 的焦点F(1,0), ∴过A ,B 两点的直线方程为y=k(x ﹣1),联立()241y x y k x ⎪-⎧⎪⎨⎩==可得,k 2x 2﹣2(2+k 2)x+k 2=0, 设A(x 1,y 1),B(x 2,y 2),则212242k x x k ++=,x 1x 2=1, ∴y 1+y 2=k(x 1+x 2﹣2)=4k ,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4,∵M(﹣1,1),∴MA =(x 1+1,y 1﹣1),MB =(x 2+1,y 2﹣1), ∵∠AMB=90°=0,∴0MA MB ⋅= ∴(x 1+1)(x 2+1)+(y 1﹣1)(y 2﹣1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2﹣(y 1+y 2)+2=0,∴24124420k k ++--+=,即k 2﹣4k+4=0,∴k=2. 答案:2三、解答题:共70分。

2020新高考模拟卷数学山东、海南地区黄金卷03(原卷版)

2020新高考模拟卷数学山东、海南地区黄金卷03(原卷版)

黄金卷03 备战2020年新高考全真模拟卷数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|1213A x x =-≤+≤,{}2|log B x y x ==,则A B =I () A .(]0,1 B .[]1,0-C .[)1,0-D .[]0,12.已知复数3z i=-,则复数z 的共轭复数z =( ) A .312i - B .132i - C .312i + D .132i + 3.如图是2018年第一季度五省GDP 情况图,则下列陈述中不正确的是A .2018年第一季度GDP 增速由高到低排位第5的是浙江省B .与2017年同期相比,各省2018年第一季度的GDP 总量实现了增长C .2017年同期河南省的GDP 总量不超过4000亿元D .2018年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个4.将余弦函数y =cos x 的图象向右至少平移m 个单位,可以得到函数y =-sin x 的图象,则m =( ) A .2πB .πC .32πD .34π 5.如图,已知AP u u u r=43AB u u ur ,用OA u u u r ,OB uuu r 表示OP uuu r ,则OP uuu r 等于( )A .13OA u u u r -43OB uuu r B .13OA u u u r +43OB uuu r C .-13OA u u u r +43OB uuu r D .-13OA u u ur -43OB uuu r 6.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)- B .(,8)(1,)-∞-⋃+∞ C .(,1)(8,)-∞-⋃+∞ D .(1,8)- 7.已知函数22()1log log (4)=+--f x x x ,则( ) A .()y f x =的图像关于直线2x =对称 B .()y f x =的图像关于点(2,1)对称 C .()f x 在(0,4)单调递减D .()f x 在(0,4)上不单调8.已知双曲线C : 22221(0,0)x y a b a b-=>>的右焦点为F ,点B 是虚轴上的一个顶点,线段BF 与双曲线C 的右支交于点A ,若2BA AF =u u u r u u u r,且4BF =u u u r ,则双曲线C 的方程为( ) A .22165x y -= B .221812x y -= C .22184x y -= D .22146x y -= 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。

2020年新高考数学自学检测黄金卷07(解析版)

2020年新高考数学自学检测黄金卷07(解析版)

2020年新高考数学自学检测黄金(07)卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={}{}|1,,2,.x x a x R B x x b x R -<∈=-∈若A ⊆B,则实数a,b 必满足A .3a b +≤B .3a b +≥C .3a b -≤D .3a b -≥【答案】D【解析】{}{}|1,|11A x x a x R x a x a =-<∈=-<<+,{}{}222B x x b x x b x b =-=+<-或,若A ⊆B ,则有21b a +≤-或21b a -≥+3a b ∴-≥2.已知向量(,1)m a =-u r ,(21,3)n b =-r (0,0)a b >>,若m n u r r P ,则21a b+的最小值为( )A .12B .8+C .15D .10+【答案】B【解析】∵m =r (a ,﹣1),n =r (2b ﹣1,3)(a >0,b >0),m r ∵n r, ∵3a +2b ﹣1=0,即3a +2b =1, ∵21a b +=(21a b+)(3a +2b ) =843b aa b++≥8+=8+当且仅当43b a a b =,即a =b =,时取等号,∵21a b+的最小值为:8+ 故选:B .3.在数列{}n a 中,11a =,12n n a a +⋅=-(123)n =L ,,,,那么8a =( ) A .2- B .12-C .1D .2【答案】A【解析】由11a =,12n n a a +⋅=-可得,22a =-,31a =,42a =-,故数列是以2周期的数列,所以82a =-. 故选:A4.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∵当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∵以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∵用丙车比用乙车更省油,故D正确故选D.5.方程sin()lg 3x x π+=的实数根个数为( )A .3个B .5个C .7个D .9个【答案】A【解析】解:方程sin()lg 3x x π+=的实数根个数等价于函数sin()3y x π=+与函数lg y x =的图像的交点个数,在同一直角坐标系中,函数sin()3y x π=+与函数lg y x =的图像如图所示,由图可知,函数sin()3y x π=+与函数lg y x =的图像的交点个数为3个,则方程sin()lg 3x x π+=的实数根个数为3个,故选:A.6.已知奇函数()f x 满足()(4)f x f x =+,当(0,1)x ∈时,()2x f x =,则()2log 12f =( )A .43-B .2332 C .34D .38-【答案】A【解析】由题意()(4)f x f x =+,故函数()f x 是周期为4的函数,由23log 124<<,则21log 1240-<-<,即204log 121<-<, 又函数()f x 是定义在R 上的奇函数,则()()()2244log 12222log 1224log 12log 1244log 12223f f f -=-=--=-=-=-,故选:A.7.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC ∆是边长为PA PB == )A .16πB .654πC .6516πD .494π【答案】B 【解析】如图所示,取AB 中点D ,连接,PD CD ,三角形的中心E 在CD 上, 过点E 作平面ABC 垂线.在垂线上取一点O ,使得PO OC =,因为三棱锥底面是一个边长为E 为三角形的中心,,OA OB OC ∴== O ∴点即为球心,因为,PA PB D =为AB 中点,所以PD AB ⊥,因为平面PAB⊥平面,ABCPD∴⊥平面ABC,则//OE PD,23,2,13CD CE CD DE CD CE======-=,2PD=,设球的半径为r,则有,PO OC r OE===,作OG PD⊥于G,则OEDG为矩形,222()PD DG OG PO-+=,即(22221r+=,解得26516r=,故表面积为26544S rππ==,故选B .8.已知双曲线2222:1(0,0)x yC a ba b-=>>的左焦点为F,以OF为直径的圆与双曲线C的渐近线交于不同原点O的A B,两点,若四边形AOBF的面积为()2212a b+,则双曲线C的渐近线方程为()A.2y x=±B.y=C.y x=±D.2y x=±【答案】C【解析】根据题意,OA AF⊥,双曲线C的焦点F到C的一条渐近线by xa=±的距离为b=,则||AF b=,所以||OA a=,所以()2212ab a b=+,所以1ba=,所以双曲线C的渐近线方程为y x=±.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。

2024年辽宁省高考数学模拟试题03(解析版)

2024年辽宁省高考数学模拟试题03(解析版)

【详解】因为
3i 2i
3 i2
5
i
1
i ,
所以该复数的实部与虚部之和为11 2 .
故选:A.
3.已知
x
2 x
n
的展开式二项式系数和为
256,则展开式中系数最大的项为(

A.第 5 项
B.第 6 项
C.第 7 项
D.第 8 项
【答案】C
【分析】根据二项式系数和可得 n 8 ,即可根据通项特征,列举比较可得最大值.
A.在参与调查的总人数中父母参与过的亲子活动最多的是亲子阅读 B.在参与调查的总人数中同时参与过亲子阅读与亲子运动会的父母不少于 20% C.图中各类亲子活动占比的中位数为 40.14% D.图中 10 类亲子活动占比的极差为 57.70% 【答案】AB 【分析】根据给定的扇形图,结合中位数、极差的意义逐项分析判断即得. 【详解】对于 A,亲子阅读阅读占比 71.08% ,为最大,A 正确; 对于 B,由于 71.08% 52.66% 1 23.74% 20% ,B 正确; 对于 C,图中各类亲子活动占比的中位数为 27.77% 40.14% 33.955% ,C 错误;
【详解】因为 tan
5 tan
,即
sin cos
5sin cos
,可得 sin
cos
5 cos
sin

又因为 sin sin cos cos sin 6 cos sin 1 ,可得 cos sin 1 ,
2
12
所以 sin sin cos cos sin 4 cos sin 1 .
【详解】由已知 2n
256 ,故 n 8 ,故通项为 Tk1
C8k x8k

2020年新高考数学自学检测黄金卷03(解析版)

2020年新高考数学自学检测黄金卷03(解析版)

2020年新高考数学自学检测黄金卷 (03)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x x a =≤,()21221{|log 4log }5B x x x =-≥,若A B =∅I ,则实数a 的取值范围为 A .()1,5- B .[]0,4 C .(],1-∞- D .(),1-∞-【答案】D【解析】由()21221{|log 4log 5B x x x =-≥},得[)(]22401,04,545x x x x x ⎧->⇒∈-⋃⎨-≤⎩, 若A B ⋂=∅,则 1.a <-故答案为D .2.“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】由题意知点(2,1)到直线340x y C ++=的距离为3等价于223241334C⨯+⨯+=+,解得5C =或25C =-,所以“5C =”是“点(2,1)到直线340x y C ++=的距离为3”的充分不必要条件,故选B.3.已知随机变量ξ服从正态分布)49,1(N ,则=≥)4(ξP ( ) A .0013.0 B .0026.0 C .0228.0 D .0456.0 【答案】C【解析】正态曲线的对称轴是1=x ,()5.01=>ξP ,231==σμ,若X ~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4.,所以()9544.042=<<-ξP ,所以()0228.09544.0215.04=⨯-=≥ξP ,故选C .4.一个物体的位移s (米)与时间t (秒)的关系为22+10s t t =-,则该物体在3秒末的瞬时速度是( ) A .6米/秒 B .5米/秒 C .4米/秒 D .3米/秒【答案】C【解析】由题意,物体的位移s (米)与时间t (秒)的关系为22+10s t t =-,则102s t '=-, 当3t =时,10234s '=-⨯=,即3秒末的瞬时速度为4米/秒,故选C . 5.将函数()()2sin 2f x x ϕ=+的图象沿x 轴向右平移6π个单位后,得到的函数图象关于y 轴对称,则ϕ的值可以是( ) A .3π B .6π C .56π D .23π【答案】C【解析】函数()()2sin 2f x x ϕ=+的图象沿x 轴向右平移6π个单位后的解析式是2sin 26y x πϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,若函数图象关于y 轴对称,当0x =时,,32k k Z ππϕπ-+=+∈,解得:56k πϕπ=+ ,k Z ∈ 当0k =时,56πϕ=. 故选:C6.已知函数()xe f x a x=-.若()f x 没有零点,则实数a 的取值范围是()A .[0,)eB .(0,1)C .(0,)eD .(0,1)【答案】A【解析】当0a =时,()x e f x x =,令=0x e x,则>=00x xe e Q ,恒成立,=0x e x ∴无解,即()x ef x x =无零点。

2020年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2020年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

【解答】解:由 2tanθ﹣tan(θ+ )=7,得 2tanθ﹣ 即 2tanθ﹣2tan2θ﹣tanθ﹣1=7﹣7tanθ, 得 2tan2θ﹣8tanθ+8=0,
制疫情,则 t*约为( )(ln19≈3)
A.60
B.63
C.66
D.69
5.(5 分)设 O 为坐标原点,直线 x=2 与抛物线 C:y2=2px(p>0)交于 D,E 两点,若
OD⊥OE,则 C 的焦点坐标为( )
A.( ,0)
B.( ,0)
C.(1,0)
D.(2,0)
6.(5 分)已知向量 , 满足| |=5,| |=6, • =﹣6,则 cos< , + >=( )
(1)计算 a2,a3,猜想{an}的通项公式并加以证明; (2)求数列{2nan}的前 n 项和 Sn.
18.(12 分)某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园
锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级
[0,200]
(200,400]
(400,600]
则下面四种情形中,对应样本的标准差最大的一组是( )
A.p1=p4=0.1,p2=p3=0.4
B.p1=p4=0.4,p2=p3=0.1
第7页(共23页)
C.p1=p4=0.2,p2=p3=0.3
D.p1=p4=0.3,p2=p3=0.2
【分析】根据题意,求出各组数据的方差,方差大的对应的标准差也大.
【点评】本题考查函数模型的实际应用,考查学生计算能力,属于中档题 5.(5 分)设 O 为坐标原点,直线 x=2 与抛物线 C:y2=2px(p>0)交于 D,E 两点,若

卷9-备战2020年新高考数学自学检测黄金10卷(原卷版)

卷9-备战2020年新高考数学自学检测黄金10卷(原卷版)

黄金卷05 备战2020年新高考数学全真模拟卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1x y +-=D .22(+1)1y x +=2.已知,R a b ∈则33log log a b >是“1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.新高考的改革方案开始实施后,某地学生需要从化学,生物,政治,地理四门学科中选课,每名同学都要选择其中的两门课程.已知甲同学选了化学,乙与甲没有相同的课程,丙与甲恰有一门课相同,丁与丙也没有相同课程.则以下说法正确的是() A .丙没有选化学 B .丁没有选化学C .乙丁可以两门课都相同D .这四个人里恰有2个人选化学4.已知函数()f x 在R 上有导函数,()f x 图象如图所示,则下列不等式正确的是( )A .()()()f a f b f c <''<'B .()()()f b f c f a <''<'C .()()()f a f c f b <''<'D .()()()f c f a f b <''<'5.如图,已知三棱锥O ABC -,点,M N 分别是,OA BC 的中点,点G 为线段MN 上一点,且2MG GN =,若记,,OA a OB b OC c ===,则OG =( )A .111333a b c ++B .111336a b c ++C .111633a b c ++ D .111663a b c ++6.若函数()2sin 314f x x π⎛⎫=++ ⎪⎝⎭,将函数()f x 的图像向左平移( )个单位后关于y 轴对称. A .12π B .4π C .6π D .2π 7.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的。

2020年全国卷Ⅲ数学(理科)(解析版)

2020年全国卷Ⅲ数学(理科)(解析版)

2020年全国卷Ⅲ数学(理科)(解析版)本试卷共23题(含选考题).全卷满分150分.考试用时120分钟.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6解析 选C.A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)}.故选C. 2.复数11-3i 的虚部是( )A .-310B .-110C.110D .310解析 选D.z =11-3i=1+3i 10=110+310i ,虚部为310.故选D.3.在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i =14p i =1,则下面四种情形中,对应样本的标准差最大的一组是( ) A .p 1=p 4=0.1,p 2=p 3=0.4 B .p 1=p 4=0.4,p 2=p 3=0.1 C .p 1=p 4=0.2,p 2=p 3=0.3 D .p 1=p 4=0.3,p 2=p 3=0.2解析 选B.X 的可能取值为1,2,3,4,四种情形的数学期望E (X )=1×p 1+2×p 2+3×p 3+4×p 4都为2.5,方差D (X )=[1-E (X )]2×p 1+[2-E (X )]2×p 2+[3-E (X )]2×p 3+[4-E (X )]2×p 4,标准差为D (X ).A 选项的方差D (X )=0.65;B 选项的方差D (X )=1.85;C 选项的方差D (X )=1.05;D 选项的方差D (X )=1.45.可知选项B 的情形对应样本的标准差最大.故选B.4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A .60 B .63 C .66D .69解析 选C.因为I (t )=K 1+e -0.23(t -53),所以当I (t *)=0.95K 时,K 1+e -0.23(t *-53)=0.95K ⇒11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19⇒0.23(t *-53)=ln 19⇒t *=ln 190.23+53≈30.23+53≈66.故选C. 5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.⎝⎛⎭⎫14,0 B .⎝⎛⎭⎫12,0 C .(1,0)D .(2,0)解析 选B.方法1:∵抛物线C 关于x 轴对称,∴D ,E 两点关于x 轴对称.可得出直线x =2与抛物线的两交点的坐标分别为(2,2p ),(2,-2p ).不妨设D (2,2p ),E (2,-2p ),则OD →=(2,2p ),OE →=(2,-2p ).又∵OD ⊥OE ,∴OD →·OE →=4-4p =0,解得p =1,∴C 的焦点坐标为⎝⎛⎭⎫12,0.故选B.方法2:∵抛物线C 关于x 轴对称,∴D ,E 两点关于x 轴对称.∵OD ⊥OE ,∴D ,E 两点横、纵坐标的绝对值相等.不妨设点D (2,2),将点D 的坐标代入C :y 2=2px ,得4=4p ,解得p =1,故C 的焦点坐标为⎝⎛⎭⎫12,0.故选B.6.已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉=( ) A .-3135B .-1935C.1735D .1935解析 选D.∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49,∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·(a +b )|a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935.故选D.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A.19 B .13C.12D .23解析 选A.由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.故选A.8.右图为某几何体的三视图,则该几何体的表面积是( ) A .6+42 B .4+42 C .6+23 D .4+23解析 选C.如图,该几何体为其中三个面是腰长为2的等腰直角三角形、第四个面是边长为22的等边三角形的三棱锥,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.故选C.9.已知2tan θ-tan ⎝⎛⎭⎫θ+π4=7,则tan θ=( ) A .-2 B .-1 C .1D .2解析 选D.2tan θ-tan ⎝⎛⎭⎫θ+π4=2tan θ-1+tan θ1-tan θ=7, 解得tan θ=2.故选D.10.若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12解析 选D.圆x 2+y 2=15的圆心为原点,半径为55,经检验原点与选项A ,D 中的直线y =2x +1,y =12x +12的距离均为55,即两直线与圆x 2+y 2=15均相切,原点与选项B ,C 中的直线y =2x +12,y =12x +1的距离均不是55,即两直线与圆x 2+y 2=15均不相切,所以排除B ,C.将直线方程y =2x +1代入y =x ,得2(x )2-x +1=0,判别式Δ<0,所以直线y =2x +1与曲线y =x 不相切,所以排除A.故选D.11.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为 5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A .1B .2C .4D .8解析 选A.由⎩⎪⎨⎪⎧c a =5,c 2=a 2+b 2,得⎩⎨⎧c =5a ,b =2a ,∴|F 1F 2|=2c =2 5 a .∵△PF 1F 2中,F 1P ⊥F 2P ,∴|F 1P |2+|F 2P |2=|F 1F 2|2=4c 2=20a 2.不妨设P 在C 的右支上,则|F 1P |-|F 2P |=2a . ∵△PF 1F 2的面积为4,∴12|F 1P ||F 2P |=4,即|F 1P |·|F 2P |=8.∴(|F 1P |-|F 2P |)2=|F 1P |2+|F 2P |2-2|F 1P ||F 2P |=20a 2-2×8=4a 2,解得a =1.故选A.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <aD .c <a <b解析 选A.∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝⎛⎭⎫log 53+log 5822-1log 58=⎝⎛⎭⎫log 52422-1log 58<⎝⎛⎭⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4,4<5log 138,∴log 85<log 138,∴log 53<log 85<log 138,即a <b <c .故选A.二、填空题(本题共4小题,每小题5分,共20分) 13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,2x -y ≥0,x ≤1,则z =3x +2y 的最大值为__________.解析 作出不等式组所表示的可行域,如图中阴影部分(含边界)所示.z =3x +2y 可化为y =-32x +12z .作直线y =-32x ,并平移该直线,易知当直线经过点A (1,2)时,z 最大,z max =7. 答案 714.⎝⎛⎭⎫x 2+2x 6的展开式中常数项是__________(用数字作答). 解析 ⎝⎛⎭⎫x 2+2x 6的展开式的通项为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫2x r =C r 62r x 12-3r ,令12-3r =0,解得r =4,得常数项为C 4624=240.答案 24015.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为__________.解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22,故内切球的体积为43π⎝⎛⎭⎫223=23π. 答案23π 16.关于函数f (x )=sin x +1sin x 有如下四个命题:①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =π2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.解析 ∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-f (x ),而f (-x )≠f (x ),∴f (x )为奇函数,不是偶函数,①错误,②正确.∵f ⎝⎛⎭⎫π2-x =cos x +1cos x ,f ⎝⎛⎭⎫π2+x =cos x +1cos x ,∴f ⎝⎛⎭⎫π2-x =f ⎝⎛⎭⎫π2+x ,∴f (x )的图象关于直线x =π2对称,③正确. 当x ∈⎝⎛⎭⎫-π2,0时,f (x )<0,④错误.故选②③. 答案 ②③三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答) (一)必考题:共60分.17.(12分)设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .解析 (1)解:a 2=5,a 3=7.猜想a n =2n +1. 证明:由已知可得a n +1-(2n +3)=3[a n -(2n +1)], a n -(2n +1)=3[a n -1-(2n -1)], …,a 2-5=3(a 1-3).因为a 1=3,所以a n =2n +1. (2)解:由(1)得2n a n =(2n +1)2n ,所以S n=3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1,所以S n=(2n-1)2n+1+2.18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),.解析(1)解:由所给数据,得该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)1100(100×20+300×35+500×45)=350.(3)解:根据所给数据,可得2×2列联表:人次≤400人次>400空气质量好 33 37 空气质量不好228根据列联表得 K 2的观测值k =100×(33×8-22×37)255×45×70×30≈5.820.由于5.820>3.841,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.(12分)如图,在长方体ABCD ­A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1. (1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A ­EF ­A 1的正弦值.解析 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1→的方向为x 轴正方向,建立空间直角坐标系C 1­xyz .(1)证明:连接C 1F .C 1(0,0,0),A (a ,b ,c ),E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c ,EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c ,得EA →=C 1F →,因为EA ∥C 1F ,即A ,E ,F ,C 1四点共面,所以点C 1在平面AEF 内.(2)解:由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0),AE →=(0,-1,-1),AF →=(-2,0,-2),A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x ,y ,z )为平面AEF 的法向量,则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y -z =0,-2x -2z =0,可取n 1=(-1,-1,1).设n 2为平面A 1EF 的法向量,则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A ­EF ­A 1的正弦值为427. 20.(12分)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积. 解析 (1)解:由题设可得25-m 25=154,得m 2=2516,所以C 的方程为x 225+y 22516=1.(2)解:设P (x P ,y P ),Q (6,y Q ),根据对称性可设y Q >0, 由题意知y P >0.由已知可得B (5,0),直线BP 的方程为y =-1y Q(x -5),所以|BP |=y P 1+y 2Q ,|BQ |=1+y 2Q .因为|BP |=|BQ |,所以y P =1.将y P =1代入C 的方程,解得x P =3或-3.由直线BP 的方程得y Q =2或8,所以点P ,Q 的坐标分别为P 1(3,1),Q 1(6,2);P 2(-3,1),Q 2(6,8).所以|P 1Q 1|=10,直线P 1Q 1的方程为y =13x ,点A (-5,0)到直线P 1Q 1的距离为102, 故△AP 1Q 1的面积为12×102×10=52;|P 2Q 2|=130,直线P 2Q 2的方程为y =79x +103,点A 到直线P 2Q 2的距离为13026, 故△AP 2Q 2的面积为12×13026×130=52.综上,△APQ 的面积为52.21.(12分)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线与y 轴垂直.(1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1. 解析 (1)解:f ′(x )=3x 2+b .依题意得f ′⎝⎛⎭⎫12=0,即34+b =0,故b =-34. (2)证明:由(1)知f (x )=x 3-34x +c ,f ′(x )=3x 2-34.令f ′(x )=0,解得x =-12或x =12.f ′(x )与f (x )的情况为:因为f (1)=f ⎝⎛⎭⎫-12=c +14, 所以当c <-14时,f (x )只有大于1的零点.因为f (-1)=f ⎝⎛⎭⎫12=c -14, 所以当c >14时,f (x )只有小于-1的零点.由题设可知-14≤c ≤14.当c =-14时,f (x )只有两个零点-12和1.当c =14时,f (x )只有两个零点-1和12.当-14<c <14时,f (x )有三个零点x 1,x 2,x 3,且x 1∈⎝⎛⎭⎫-1,-12,x 2∈⎝⎛⎭⎫-12,12,x 3∈⎝⎛⎭⎫12,1. 综上,若f (x )有一个绝对值不大于1的零点,则f (x )所有零点的绝对值都不大于1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2-t -t 2,y =2-3t +t 2(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 解析 (1)解:因为t ≠1,由2-t -t 2=0得t =-2,所以C 与y 轴的交点为(0,12).由2-3t +t 2=0得t =2,所以C 与x 轴的交点为(-4,0).故|AB |=410.(2)解:由(1)可知,直线AB 的直角坐标方程为x -4+y12=1,将x =ρcos θ,y =ρsin θ代入,得直线AB 的极坐标方程为3ρcos θ-ρsin θ+12=0. 23.[选修4-5:不等式选讲](10分) 设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 的最大值,证明:max{a ,b ,c }≥34. 解析 (1)证明:由题设可知a ,b ,c 均不为零,所以ab +bc +ca =12[(a +b +c )2-(a 2+b 2+c 2)]=-12(a 2+b 2+c 2)<0.(2)证明:不妨设max{a ,b ,c }=a .因为abc =1,a =-(b +c ),所以a >0,b <0,c <0. 由bc ≤(b +c )24,可得abc ≤a 34,当且仅当b =c =-a 2时取等号,故a ≥34,所以max{a ,b ,c }≥34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年新高考数学自学检测黄金(03)卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x x a =≤,()21221{|log 4log }5B x x x =-≥,若A B =∅I ,则实数a 的取值范围为 A .()1,5- B .[]0,4 C .(],1-∞- D .(),1-∞-【答案】D【解析】由()21221{|log 4log 5B x x x =-≥},得[)(]22401,04,545x x x x x ⎧->⇒∈-⋃⎨-≤⎩, 若A B ⋂=∅,则 1.a <-故答案为D .2.“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】由题意知点(2,1)到直线340x y C ++=的距离为33=,解得5C =或25C =-,所以“5C =”是“点(2,1)到直线340x y C ++=的距离为3”的充分不必要条件,故选B.3.已知随机变量ξ服从正态分布)49,1(N ,则=≥)4(ξP ( ) A .0013.0 B .0026.0 C .0228.0 D .0456.0 【答案】C【解析】正态曲线的对称轴是1=x ,()5.01=>ξP ,231==σμ,若X ~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4.,所以()9544.042=<<-ξP ,所以()0228.09544.0215.04=⨯-=≥ξP ,故选C .4.一个物体的位移s (米)与时间t (秒)的关系为22+10s t t =-,则该物体在3秒末的瞬时速度是( ) A .6米/秒 B .5米/秒C .4米/秒D .3米/秒【答案】C【解析】由题意,物体的位移s (米)与时间t (秒)的关系为22+10s t t =-,则102s t '=-, 当3t =时,10234s '=-⨯=,即3秒末的瞬时速度为4米/秒,故选C . 5.将函数()()2sin 2f x x ϕ=+的图象沿x 轴向右平移6π个单位后,得到的函数图象关于y 轴对称,则ϕ的值可以是( ) A .3π B .6π C .56π D .23π【答案】C【解析】函数()()2sin 2f x x ϕ=+的图象沿x 轴向右平移6π个单位后的解析式是2sin 26y x πϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,若函数图象关于y 轴对称,当0x =时,,32k k Z ππϕπ-+=+∈,解得:56k πϕπ=+ ,k Z ∈ 当0k =时,56πϕ=. 故选:C6.已知函数()xe f x a x=-.若()f x 没有零点,则实数a 的取值范围是()A .[0,)eB .(0,1)C .(0,)eD .(0,1)【答案】A【解析】当0a =时,()x e f x x =,令=0x e x,则>=00x xe e Q ,恒成立,=0x e x ∴无解,即()x ef x x =无零点。

故选:A 。

7.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( )A .2B .1CD .2【答案】C【解析】因为点P 是曲线y =x 2-ln x 上任意一点,所以当点P 处的切线和直线y =x -2平行时,点P 到直线y =x -2的距离最小.因为直线y =x -2的斜率等于1,曲线y =x 2-ln x 的导数y ′=2x -1x, 令y ′=1,可得x =1或x =-12(舍去),所以在曲线y =x 2-ln x 上与直线y =x -2平行的切线经过的切点坐标为(1,1),所以点P 到直线y =x -2=故选:C.8.已知函数,若,则实数a 的取值范围是( )A .B .C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】A【解析】函数1()xxf x ee -⎛⎫== ⎪⎝⎭在(,0]-∞上为减函数, 函数221y xx =--+的图像开口向下,对称轴为1x =-,所以函数()221f x x x =--+在区间(0,)+∞上为减函数, 且020201e -=--⨯+.所以函数()f x 在(,)-∞+∞上为减函数.由(1)()f a f a -≥-得1a a -≤-.解得12a ≤. 故选A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。

9.四边形ABCD 内接于圆O ,5,3,60AB CD AD BCD ===∠=o ,下列结论正确的有( ) A .四边形ABCD 为梯形B .圆O 的直径为7C .四边形ABCD D .ABD ∆的三边长度可以构成一个等差数列【答案】ACD【解析】5,3,60AB CD AD BCD ===∠=o Q120BAD ∴∠=o可证BAD CDA ∆≅∆120BAD CDA ∴∠=∠=︒ 180BCD CDA ∴∠+∠=︒ //BC DA ∴显然AB 不平行CD即四边形ABCD 为梯形,故A 正确;在BAD ∆中由余弦定理可得2222cos BD AB AD AB AD BAD =+-⋅∠22253253cos12049BD ∴=+-⨯⨯︒=7BD ∴=∴圆的直径不可能是7,故B 错误;在BCD ∆中由余弦定理可得2222cos BD CB CD CB CD BCD =+-⋅∠2227525cos60CB CB ∴=+-⨯⨯︒解得8CB =或3CB =-(舍去)11sin1205322BAD S AB AD ∆∴=⋅︒=⨯⨯=11sin 60582224BCD S CB CD ∆∴=⋅︒=⨯⨯⨯=ABCD BCD BAD S S S ∆∆∴=+=+=故C 正确;在ABD ∆中,3AD =,5AB =,7BD =,满足2AD BD AB +=ABD ∴∆的三边长度可以构成一个等差数列,故D 正确;故选:ACD10.我们通常称离心率为12的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b +=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 【答案】BD【解析】2222:1(0)x y C a b a b+=>>Q()()()()1212,0,,0,0,,0,A a A a B b B b ∴--,()()12,0,,0F c F c -对于A :111222||,||,||A F F F F A 为等比数列则2112212||||||A F F A F F ⋅=()()222a c c ∴-=2a c c ∴-= 13e ∴=不满足条件,故A 错误; 对于B :11290F B A ∠=︒222211112A F B F B A ∴=+()2222a c a a b ∴+=++220c ac a ∴+-=即210e e ∴+-=解得e =或e =(舍去)满足条件 故B 正确;对于C :1PF x ⊥ 轴,且21//PO A B2,b P c a ⎛⎫∴- ⎪⎝⎭21POA B k k =Q 即2b c ab a =--解得bc =222a b c =+Q2c e a ∴===不满足题意,故C 错误; 对于D :四边形1221A B A B 的内切圆过焦点12,F F 即四边形1221A B A B 的内切圆的半径为c ,ab ∴=422430c a c a ∴-+=42310e e ∴-+=解得2e =(舍去)或2e =e ∴=故D 正确故选:BD11.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则 ( )A .直线1BD ⊥平面11AC DB .三棱锥11P ACD -的体积为定值C .异面直线AP 与1AD 所成角的取值范围是[]45,90︒︒D .直线1C P 与平面11AC D 【答案】ABD【解析】对于选项A,连接11B D ,由正方体可得1111AC B D ⊥,且1BB ⊥平面1111D C B A ,则111BB A C ⊥,所以11A C ⊥平面11BD B ,故111AC BD ⊥;同理,连接1AD ,易证得11A D BD ⊥,则1BD ⊥平面11AC D ,故A 正确;对于选项B,1111P A C D C A PD V V --=,因为点P 在线段1B C 上运动,所以1112A DP S A D AB =⋅,面积为定值,且1C 到平面11A PD 的距离即为1C 到平面11A B CD 的距离,也为定值,故体积为定值,故B 正确;对于选项C,当点P 与线段1B C 的端点重合时,AP 与1A D 所成角取得最小值为60︒,故C 错误;对于选项D,因为直线1BD ⊥平面11AC D ,所以若直线1C P 与平面11AC D 所成角的正弦值最大,则直线1C P 与直线1BD 所成角的余弦值最大,则P 运动到1B C 中点处,即所成角为11C BD ∠,设棱长为1,在11Rt D C B V 中,1111cos 3C B C BD BD ∠===,故D 正确 故选:ABD12.已知函数()f x 是偶函数,且(5)(5)f x f x -=+,若()()sin g x f x x π=,()()cos h x f x x π=,则下列说法正确的是( ) A .函数()y g x =是偶函数 B .10是函数()f x 的一个周期C .对任意的x ∈R ,都有(5)(5)g x g x +=-D .函数()y h x =的图象关于直线5x =对称 【答案】BCD【解析】∵函数()f x 是偶函数,且(5)(5)f x f x -=+,∵(5)(5)(5)f x f x f x -=-=+,∵[][](5)5(5)5f x f x +-=++,即()(10)f x f x =+, ∵10是函数()f x 的一个周期,B 对; 又∵()f x 是偶函数,且()()sin g x f x x π=,∵()()()sin g x f x x π-=--()()sin f x x g π=-()sin ()f x x g x π=-=-, ∵函数()y g x =是奇函数,A 错;∵(5)g x +=(5)sin (5)f x x π++(5)sin(5)f x x ππ=++(5)sin f x x π=-+,(5)g x -=(5)sin (5)f x x π--(5)sin(5)f x x ππ=--+(5)sin f x x π=--,又(5)(5)f x f x -=+,∵(5)(5)g x g x +=-,故C 对;∵()f x 是偶函数,且()()cos h x f x x π=,∵(5)h x +=(5)cos (5)f x x π++(5)cos(5)f x x ππ=++(5)cos f x x π=-+,(5)h x -=(5)cos (5)f x x π--(5)cos(5)f x x ππ=--(5)cos f x x π=--,∵(5)h x +=(5)cos (5)f x x π++(5)cos(5)f x x ππ=++(5)cos f x x π=-+,又(5)(5)f x f x -=+,∵(5)h x +=(5)h x -,∵函数()y h x =的图象关于直线5x =对称,D 对; 故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13.在三角形ABC 中,点M 是线段BC 的中点,220,||||BC AB AC AB AC =+=-u u u r u u u r u u u r u u u r,则AM =u u u u r ______.【解析】因为||||AB AC AB AC +=-u u u r u u u r u u u r u u u r ,故22||||AB AC AB AC +=-u u u r u u u r u u u r u u u r ,化简得到·0AB AC =u u u r u u u r,故ABC ∆为直角三角形且BC 为斜边.又220BC =u u u r ,故BC =u u u r ,因为AM 为斜边上的中线,故AM =u u u u r14.已知数列{}n a 满足212log log 1n n a a +-=,则5331a a a a ++=________.【答案】4【解析】因为12122log log log 1n n n n a a a a ++-==,所以12n naa +=,即数列{}n a 是以2为公比的等比数列,所以222533131314a a a q a q q a a a a ++===++. 故答案为:4.15.在直角三角形ABC 中,点D 是斜边AB 上的点,且满足ACD 4545BCD ∠=∠=o o ,,设AC ,x BC y DC ===,则x ,y 满足的相等关系式是____________ ;三角形ABC 面积的最小值是______.【答案】111x y+=, 2 【解析】作,DE AC DF BC ⊥⊥1DF DE ∴==1111,1BD AD x AB y AB x y∴==∴+=111x y ∴+=≥ 1422xy S xy ∴≥∴=≥,面积最小值为2 16.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.【答案】2 729【解析】(1)因为16(12S =⨯⨯=. (2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,2倍,所以六面体体积是6. 由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥,设球的半径为R ,所以16()6349R R =⨯⨯⇒=,所以球的体积3344(393297V R ππ===.故答案为:. 四、解答题:本小题共6小题,共70分。

相关文档
最新文档