五年级下奥数解决问题3
《小学奥数》小学五年级奥数讲义之精讲精练第9讲 一般应用题(三)含答案
第9讲一般应用题(三)一、知识要点解答一般应用题时,可以按下面的步骤进行:1.弄清题意,找出已知条件和所求问题;2.分析已知条件和所求问题之间的关系,找出解题的途径;3.拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。
二、精讲精练【例题1】甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?练习1:1.工厂里有2个锅炉,原来每月烧煤5.6吨。
进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?2.甲、乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?【例题2】把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。
求竹竿的长。
练习2:1.有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
这根铁丝原来长多少厘米?2.有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。
这根竹竿原来长多少厘米?【例题3】将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?练习3:1.某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米。
这段小坡路全长多少米?2.食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?【例题4】甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。
五年级奥数.应用题.工程问题(三)(C级).教师版
工程问题(三)知识框架工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.(1) 熟练掌握工程问题的基本数量关系与一般解法;(2) 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;(3) 根据题目中的实际情况能够正确进行单位“1”的统一和转换;(4) 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.一、工程问题【例 1】 一些工人做一项工程,如果能调来16人,那么10天可以完成;如果只调来4人,就要20天才能完成,那么调走2人后,完成这项工程需要 天.【考点】工程问题 【难度】2星 【题型】解答【解析】 设1个人做1天的量为1,设原来有x 人在做这项工程,得:()()1610420x x +⨯=+⨯,解得:8x =.如果调走2人,需要()()816108240+⨯÷-=(天).【答案】40天【巩固】 工厂生产一批产品,原计划15天完成,实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的多10件,结果提前4天完成了生产任务,则这批产品有 件。
五年级奥数题
五年级奥数题题目一:计算问题小明在一家商店看到了一件标价为299元的衣服,他手上的零钱正好是300元,他想知道他还剩下多少钱。
在这个问题中,我们可以通过299元减去300元来求得小明剩下的钱,即300 - 299 = 1 元。
所以小明还剩下1元。
题目二:图形问题在一个正方形花坛中,小明种了一些花。
他发现,两边的花比对边的花多2朵。
如果正方形花坛的对边上分别有x朵和x+2朵花,请问正方形花坛共有多少朵花?假设正方形花坛的对边上分别有x朵和x+2朵花,那么正方形花坛上共有四边的花的朵数之和为2x + 2(x+2) = 4x + 4。
而正方形有四条边,所以正方形花坛共有花的朵数为4(4x + 4) = 16x + 16。
题目三:逻辑问题小明和小红同时参加了一个小测验。
小明答对了70%的问题,而小红答对了75%的问题。
请问谁答对的问题更多?假设小测验中共有100个问题。
小明答对70%的问题,即70/100 * 100 = 70个问题。
小红答对75%的问题,即75/100 * 100 = 75个问题。
所以小红答对的问题更多,他答对了75个问题。
题目四:代数问题如果a = 3,b = 4,求a + b的平方。
我们知道,a + b的平方等于(a + b) * (a + b),所以(a + b)的平方就等于(3 + 4) * (3 + 4) = 7 * 7 = 49。
所以a + b的平方等于49。
题目五:几何问题小明画了一条5cm长的线段,他把这条线段按照一定规律分成了3段,其中一段是2cm长,另一段是x cm长,剩下的一段是什么长度?假设剩下的一段线段的长度为y cm。
根据题意,5cm = 2cm + x cm + y cm。
即y cm = 5cm - 2cm - x cm。
所以剩下的一段线段的长度为3cm - x cm。
这样写你就能得到一个长度是由x决定并以cm为单位的长度。
结论通过以上五个题目的解答可以发现,五年级的奥数题包括了计算问题、图形问题、逻辑问题、代数问题和几何问题。
小学五年级奥数第30讲 行程问题(三)(含答案分析)
第30讲行程问题(三)一、专题简析:很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。
列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。
因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程,方便解题。
二、精讲精练:例1 A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B地开往A地,每小时行42千米。
乙车开出几小时后和甲车相遇?练习一1、甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。
1小时后,货车从乙地开出,每小时行62千米。
货车开出几小时后与客车相遇?2、小军和小明分别从相距1860米的两处相向出发,小军出发5分钟后小明才出发。
已知小军每分钟行120米,小明骑车每分钟行300米。
求小军出发几分钟后与小明相遇?例2一辆汽车从甲地开往乙地,平均每小时行20千米。
到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。
求甲、乙两地间的路程。
练习二1、汽车从甲地开往乙地送货。
去时每小时行30千米,返回时每小时行40千米,往返一次共用8小时45分。
求甲、乙两地间的路程。
2、一架飞机所带的燃料最多可用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可飞1200千米。
这架飞机最多飞多少千米就要往回飞?例3 东、西两地相距5400米,甲、乙二人从东地、丙从西地同时出发,相向而行。
甲每分钟行55米,乙每分钟行60米,丙每分钟行70米。
多少分钟后乙正好走到甲、丙两人之间的中点处?练习三1、A、B、C三地在一条直线上,如图所示:A、B两地相距2千米,甲、乙两人分别从A、B两地同时向C地行走,甲每分钟走35米,乙每分钟走45米。
经过几分钟B地在甲、乙两人之间的中点处?2、东、西两镇相距60千米。
甲骑车行完全程要4小时,乙骑车行完全程要5小时。
奥数五年级消去问题
3水瓶+16茶杯=118元
例2、买3个篮球和5个足球共用去480元,买同样 的6个篮球和3个足球共用去519元。篮球和足球 的单价各是多少元?
3
+5
=480
6
+3
=519
食堂第一次运来6袋大米和4袋面粉,一共重
400千克;第二次又运来9袋大米和4袋面粉,一 共重550千克。每袋大米和每袋面粉各重多少千 克?
11、甲有5盒糖,乙有4盒糕共值44元。如果甲、 乙两人对换一盒,则每人所有物品的价值相等。 一盒糖、一盒糕各值多少元?
2、2条床单和3条毛巾共280元。一条床单和一条 毛巾共( )元,2条床单和2条毛巾共( )元。
3、5盒铅笔和9盒钢笔共190支,同样的2盒铅笔和 6盒钢笔共100支。3盒铅笔和3盒钢笔共( ) 支,1盒铅笔和1支钢笔共( )支。
4、育才小学体育组第一次买了4个篮球和3个 排球,共用去了141元;第二次买了5个篮 球和4个排球,共用去180元。每个篮球和 每个排球各多少元?
8、2千克水果糖和5千克饼干共64元,同样 的3千克水果糖和4千克饼干共68元。每千 克水果糖和每千克饼干各多少元?
9、5包科技书和7包故事书共620本,6包科技书和 3包故事书共420本。每包科技书比每包故事书 少多少本?
10、3个水瓶和8个茶杯共92元,5个水瓶和6个茶 杯共102元。每个水瓶和每个茶杯各多少元?
5、3筐苹果和5筐梨共重138千克,5筐同样 的苹果和3筐同样的共重134千克。每筐苹 果和每筐梨各重多少千克?
6、某食堂第一次运进大米5袋,面粉7袋,共 重1350千克;第二次运进大米3袋,面粉 5袋,共重850千克。一袋大米和一袋面粉 各重多少千克?
五年级奥数之列方程解决问题
五年级奥数之列方程解决问题1、已知连续的5个奇数的和是45,求这5个连续奇数分别是多少?设这5个连续奇数的中间那个数为x,则它们分别为x-4,x-2,x,x+2,x+4.根据题意可列出方程:(x-4)+(x-2)+x+(x+2)+(x+4)=45,化简得5x=45,解得x=9.因此这5个连续奇数分别为5,7,9,11,13.2、两个城市相距255千米,甲乙两辆汽车,同时从两个城市出发相向而行。
甲车的速度是42千米/时,乙车的速度是43千米/时,两车几小时后还相距85千米?设两车相遇的时间为t,则根据题意可列出方程:42t+43t=255-85,化简得t=2.因此两车相遇的时间为2小时。
3、两块地一共100公顷,第一块地比第二块地的3倍多20公顷,这两块地各有多少公顷?设第二块地的面积为x公顷,则第一块地的面积为3x+20公顷。
根据题意可列出方程:x+3x+20=100,化简得x=20.因此第一块地的面积为80公顷,第二块地的面积为20公顷。
4、鸡兔同笼,数头有10只,数脚共有24只,鸡兔各有多少只?设鸡的数量为x,兔的数量为y,则根据题意可列出方程:x+y=10,2x+4y=24.化简第二个方程得x+2y=12,两式相减可得y=4,代入第一个方程得x=6.因此鸡有6只,兔有4只。
5、父亲今年的年龄是儿子年龄的4倍,8年后父亲年龄与儿子年龄的和是61,父亲和儿子今年各多少岁?设儿子今年的年龄为x岁,则父亲今年的年龄为4x岁。
根据题意可列出方程:4x+8+x+8=61,化简得x=5.因此儿子今年5岁,父亲今年20岁。
6、有黑白棋子一堆,其中黑子个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取了多少次后,XXX只剩下1个,而XXX还剩下18个?设白子的数量为x,黑子的数量为2x,则根据题意可列出方程:2x-18=4n,x-1=3n,其中n为取的次数。
化简得x=7,因此白子的数量为7个,黑子的数量为14个,取了4次。
小学五年级奥数题及答案3
小学五年级奥数题一、工程问题1.甲乙两个水管单独开,注满一池水,分别须要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时翻开甲乙两水管,5小时后,再翻开排水管丙,问水池注满还须要多少小时?2.修一条水渠,单独修,甲队须要20天完成,乙队须要30天完成。
假如两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的非常之九。
如今安排16天修完这条水渠,且要求两队合作的天数尽可能少,则两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
如今先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮番做,则恰好用整数天完工;假如第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮番做,则完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,假如分给男女生栽,平均每人栽6棵;假如单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
如今先翻开甲管,当水池水刚溢出时,翻开乙,丙两管用了18分钟放完,当翻开甲管注满水是,再翻开乙管,而不开丙管,多少分钟将水放完?8.某工程队须要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发觉粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2019这2019个自然数依次写下来得到一个多位数123456789.....2019,这个多位数除以9余数是多少2.A和B是小于100的两个非零的不同自然数。
奥数专题-消去法解决问题 假设法解决问题(竞赛试题)-2021-2022学年数学五年级下册全国通用
五年级奥数专题5消去法解决问题【同学们,这一讲我们要解决题目中含有两个或两个以上未知数量的应用题。
现在,就让我们一起进入这一讲的学习,开动脑筋,感受“消去法”的独特魅力吧!】例1:学校会议室第一次买了2个水壶和20个茶杯,共用去116 元;第二次又买了同样的2个水壶和16个茶杯,共用去100元。
水壶和茶杯的单价各是多少?【举一反三】:云云买了4本练习本和2支钢笔,共用去12元;小华买了同样的4本练习本和3支钢笔,一共用去17元。
练习本和钢笔的单价各是多少?例2:红红买了5本练习本和3支铅笔共花了18元,若买同样的3本练习本和5支铅笔需要花14元,练习本和铅笔的单价各是多少?【举一反三】:3个足球和2个篮球共140元,同祥的2个足球和3个篮球共135元。
足球和篮球的単价各是多少?例3:买9张桌子和3把椅子共花了780 元,5张桌子的价钱比3把椅子的价钱多340元。
桌子和椅子的单价各是多少?【举一反三】:3包味精和6包糖共重3000克.7包糖比3包味精重3000克。
1包味精和1包糖各重多少克?例4:某商店有篮球、足球和排球三种球。
1个篮球、1个足球和2个排球共60元;1个篮球、2个足球和1个排球共75元;2个篮球、1个足球和1个排球共65元。
每种球的单价各是多少?【举一反三】:买1支钢笔、2支圆珠笔和1个文具盒其花了31元;买同样的2支钢笔、1支圆珠笔和1个文具盒共花了38元;买同样的1支钢笔、1支圆珠笔和2个文具盒共花了43元。
求钢笔、圆珠笔和文具盒的单价。
例5:王航准备购买练习本铅笔和橡皮三种学习用品。
如果购买3支铅笔、7本练习本和1块橡皮要花6.9元;如果购买4支铅笔、10本练习本和1块橡皮要花9.5元。
那么购买1支铅笔、1本练习本和1块橡皮要花多少钱?【举一反三】:美术小组第一天买了3盒彩笔、1支毛笔和2盒油画棒,一-共用去84.4元;第二天买了同样的5盒彩笔、1支毛笔和3盒油画棒,一共用去131.2 元。
小学五年级奥数第9讲 一般应用题(三)(含答案分析)
第9讲一般应用题(三)一、知识要点解答一般应用题时,可以按下面的步骤进行:1.弄清题意,找出已知条件和所求问题;2.分析已知条件和所求问题之间的关系,找出解题的途径;3.拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。
二、精讲精练【例题1】甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?练习1:1.工厂里有2个锅炉,原来每月烧煤5.6吨。
进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?2.甲、乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?【例题2】把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。
求竹竿的长。
练习2:1.有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
这根铁丝原来长多少厘米?2.有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。
这根竹竿原来长多少厘米?【例题3】将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?练习3:1.某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。
上坡路比下坡路少220米。
这段小坡路全长多少米?2.食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。
已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?【例题4】甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。
高斯小学奥数五年级下册含答案第03讲_行程问题综合提高
第三讲行程问题综合提高漫画第一幅图,一个主席台,上面有横幅,写着“高思运动会”左图,100米跑比赛的现场,直线跑道,小高和墨莫在比赛;右图,3000米跑比赛的现场,环形跑道,萱萱和卡莉娅在比赛赛艇比赛的现场,阿呆和阿瓜在比赛在小学数学中,行程问题占了很大的分量.行程问题主要考查学生对于运动三要素:速度、时间和路程的认识.学习行程问题对于学生认识世界,以及以后理科课程的学习都有很大的帮助.行程问题中最基本的内容是相遇和追及.在与相遇追及相关的行程问题中,找出“路程和”与“路程差”是解题的关键.练一练1.东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,那么甲、乙两人的速度分别是多少/千米时?2.甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地.2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地.那么两车相遇的时刻是多少?例题1.甲、乙两人从A、B两地同时出发相向而行,相遇地点距离AB的中点10千米.已知甲每小时走4千米,乙每小时走6千米.则AB两地相距多少千米?练习1.甲、乙两人从A、B两地同时出发相向而行,相遇地点距离AB的中点2千米.已知甲每小时走5千米,乙每小时走4千米.则AB两地相距多少千米?例题2.一列火车于中午12时离开A地驶往B地,另一列火车则于40分钟后离开B地驶往A地.若两列火车以相同的均速在同一路线上行驶,全程各需要3.5小时.则这两列火车在几点几分相遇?练习2.一列火车于下午4点离开A地驶往B地,1个小时后另一列火车离开B地驶往A 地.已知两车速度相同,且下午6点20分时两车相遇.那么火车走完全程需要多长时间?大部分行程问题中,人或车都是在笔直的平路上运动.不过在有些问题中,运动的场所会比较特殊,有时候会在水上,有时候运动的路线会是环形的.练一练1.甲、乙两地相距160千米,一只小船在静水中的速度为每小时24千米.它从乙地逆水航行到甲地用了8小时,在从甲地返回到乙地时,由于涨水,水速变为原来的2倍,则返回时需用多少小时?2.有一个周长是80米的圆形水池.甲沿着水池散步,速度为1/米秒;乙沿着水池跑步,速度为2.2/米秒,并且与甲的方向相反.如果他俩从同一点同时出发,那么当乙第8次遇到甲时,还要跑多少米才能回到出发点?例题3.甲、乙两船分别从距离120千米的A、B两码头同时出发,在A、B之间往返,A 在B的上游.两船在静水中的速度为每小时25千米,水流速度为每小时5千米.那么甲、乙两船第二次相遇的地点距离A多少千米?练习3.甲、乙两船分别从距离120千米的A、B两码头同时出发,在A、B之间往返,A 在B的上游.两船在静水中的速度为每小时16千米,水流速度为每小时4千米.那么甲、乙两船第二次相遇的地点距离A多少千米?例题4.甲乙二人在一个环形跑道的起点同时开始跑步.结果发现:若甲沿顺时针方向,乙沿逆时针方向,从出发到第一次迎面相遇需要2分钟;若甲乙都沿逆时针方向,则从出发到甲第一次追上乙要用9分钟.已知相遇地点与追及地点相距130米,那么整条环形跑道的长度是多少?练习4.甲乙二人在一个环形跑道的起点同时开始跑步.结果发现:若甲沿顺时针方向,乙沿逆时针方向,从出发到第一次迎面相遇需要3分钟;若甲乙都沿逆时针方向,则从出发到甲第一次追上乙要用5分钟.已知相遇地点与追及地点相距100米,那么整条环形跑道的长度是多少?多次往返问题是一类很重要的行程问题.多次往返问题有很强的周期性,解决这类问题时一定要注意.例题5.小明和小刚的速度分别为每分钟90米和每分钟70米.早上8:00他们分别从A、B 两站同时出发,相向而行,第一次迎面相遇后两人继续前进,分别到达B、A后返回并在途中第二次迎面相遇.第二次迎面相遇地点距离A、B两站的中点450米.从两人同时出发到第二次迎面相遇总共经历了多少分钟?A、B两站的距离为多少米?他们第一次迎面相遇是在几点几分?例题6.甲、乙二人同时从A、B两地相向出发,在AB之间折返而行,甲的速度比乙快.已知两人第一次迎面相遇点距AB中点2千米,第二次迎面相遇点距A地4千米.那么AB之间的距离是多少?长征长征,指中国工农红军主力从长江以南各革命根据地向陕甘革命根据地会合的战略转移.1934年10月,中央红军主力开始长征.同年11月和次年4月,在鄂豫皖革命根据地的红二十五军和川陕革命根据地的红四方面军分别开始长征.1935年11月,在湘鄂西革命根据地的红二、六军团也离开根据地开始长征.1936年6月,第二、六军团组成第二方面军.同年10月,红军第一、二、四方面军在甘肃会宁胜利会合,结束了长征.参加长征的红军有以下四支:第一支是中央红军(后改称红一方面军),于1934年10月10日由江西的瑞金等地出发,1935年10月19日到达陕西的吴起镇(今吴旗县),行程达二万五千里;第二支是红二十五军(后编入红一方面军),于1934年11月16日由河南罗山何家冲出发,1935年9月15日到达陕西延川永坪镇,同陕甘红军会师,合编为红十五军团,行程近万里;第三支是红四方面军,于1935年5月初放弃川陕苏区,由彰明、中坝、青川、平武等地出发,向岷江地区西进,1936年10月9日到达甘肃会宁,与红一方面军会师,行程一万余里;第四支是红二、红六军团(后同红一方面军第三十二军合编为红二方面军),于1935年11月19日由湖南桑植刘家坪等地出发,1936年10月22日到达会宁以东的将台堡,同红一方面军会师,行程两万余里.长征粉碎了国民党反动派扼杀中国工农红军的罪恶计划,它的胜利表明中国共产党和中国工农红军是一支不可战胜的力量.作业1.甲、乙两船分别从A、B两港口出发相向而行,在AB的中点相遇.已知甲船的静水速度是乙船静水速度的2倍,那么甲船静水速度与水速之比是多少?作业2.上午10:20,甲、乙两辆汽车同时分别从A、B两地相对开出,在AB之间折返前进,甲车每小时行42千米,乙车每小时行45千米.下午1:20时两车第二次迎面相遇,那么AB之间的距离是多少千米?作业3.东西两镇相距240千米,一辆客车在上午8点从东镇开往西镇,一辆货车在上午9点从西镇开往东镇.到正午12点,两车正好在两镇间的中点相遇.如果两车上午8点同时分别由两镇出发相向而行,那么上午10点时两车相距多少千米?作业4.甲车的速度是40千米/时,乙车的速度是60千米/时.甲车从A地、乙车从B地同时出发相向而行.两车相遇4.5小时后,甲车到达B地.A、B两地相距多少千米?作业5.甲、乙两人从400米的环形跑道上的同一点同时出发相背而行,8分钟后两人第三次相遇.已知甲每秒钟比乙每秒钟多行0.1米,那么两人第三次相遇的地点与出发点之间的距离是多少?第三讲 行程问题综合提高例题1. 答案:100详解:由“相遇地点距离AB 的中点10千米”可知,乙比甲多走了20千米.两人共走了206410÷-=()小时.A 、B 两地相距4610100+⨯=()千米.例题2. 答案:14点05分详解:3.5小时是210分钟.第一列火车出发40分钟后,即12点40分时,第二列火车出发.可知这时两车间的路程需要走170分钟.因为两车速度相同,可知两车相遇需要85分钟,那么相遇的时刻是14点05分.例题3. 答案:48详解:如图,甲、乙在到达码头后各自返回第二次相遇.乙从B 到A 逆流而行,共用120255)6÷-=(小时.在这6小时中,甲顺流而行120255)4÷+=(小时,逆流而行2小时,行了2(255)40⨯-=千米,甲、乙还相距80千米,880(3020)5÷+=小时后第二次相遇.此时距离A 地830485⨯=千米.例题4. 答案:360详解:可知跑道的周长既是2的倍数,也是9的倍数.那么设周长为36米,两人速度和为18米/分,速度差为4米/分.甲的速度为11米/分,乙的速度是7米/分.相遇时乙沿逆时针方向跑了14米,追及时沿逆时针方向跑了63米,即跑了1圈后又跑了27米.可知相遇地点与追及地点相距13米.所以跑道的长度应该是1301336360÷⨯=米.例题5. 答案:45分钟,2400米,8点15分 详解:第二次相遇时甲共比乙多行了4502900⨯=米,可求出两人共用时()900907045÷-=分钟.又知两人共走了3个全程,A 、B 两站距离为()90704532400+⨯÷=米.第一次相遇用时()2400907015÷+=分钟.因此第一次相遇时是8点15分.例题6. 答案:20千米详解:这道题目分两种情况.第一种,第二次相遇时乙尚未到达A 点.第二次相遇所用时间是第一次相遇所用时间的3倍.第一次相遇时甲比乙多行4千米,那么第二次相遇时甲应比乙多行12千米.对照线段图,发现如果这样的话,第一次相遇时甲走4千米,乙走0千米.甲的速度是无穷大!! 第二种情况,第二次相遇时乙已经到达A 点.同样第二次相遇时甲比乙多行12千米.对照线段图可知全程为20千米.练习1. 答案:36简答:相遇点距离中点2千米,说明相遇时甲比乙多走了4千米.()4544÷-=,()45436⨯+=千米.练习2.答案:200分 简答:5点钟第二列火车出发,到相遇需要80分钟,那么第一列火车走完全程需要60802200+⨯=分钟.练习3. 答案:45简答:甲、乙在到达码头后各自返回第二次相遇.乙从B 到A 逆流而行,共用120164)10÷-=(小时.在这10小时中,甲顺流而行120164)6÷+=(小时,逆流而行4小时,行了4(164)48⨯-=千米,甲、乙还相距72千米,972(20+12)=4÷小时后第二次相遇.此时距离A 地920454⨯=千米.练习4.答案:750 简答:设跑道周长为15米,然后计算出两人的速度即可.作业1. 答案:4:1 简答:可知甲船逆水,乙船顺水.甲逆:乙顺=1:1,甲静:乙静=2:1.因为甲逆与乙顺的和等于甲静与乙静的和,这就是一个比例中的“和不变”问题.甲逆:乙顺=3:3,甲静:乙静=4:2,可求出水速是1份,所以甲静和水速的比是4:1.作业2. 答案:87简答:从出发到两车第二次迎面相遇,两车共行驶了()42453261+⨯=千米,正好是3个全长.所以AB 之间的距离是87千米.作业3. 答案:100简答:客车的速度是30千米/时,货车的速度是40千米/时.如果两车同时出发,到10点时共行140千米,相距100千米.作业4. 答案:300简答:因为两车的速度比是2:3,那么相遇点距A 、B 两地的距离之比也是2:3.那么甲车在这两段路程上所用的时间之比也是2:3.而甲车在后一段路程行驶了 4.5小时,所以甲车一共行驶了234.5=7.53+⨯小时.AB 两地相距300千米. 作业5. 答案:176米简答:8分钟后两人一共走了3圈即1200米,则两人的速度之和是2.5米/秒.又因为甲比乙每秒多行0.1米,可求出甲的速度是1.3米/秒,乙的速度是1.2米/秒.到第三次相遇时,甲走了480 1.3624⨯=米,与出发点的距离是400224176-=米.。
五年级下册奥数思维训练:问题解决 全国通用
问题解决(一)知识讲解一、探究解决方案1、解决问题14辆汽车在5个生产厂之间循环运输零配件,每个站点所需装卸工如下:将工人全部安排站内,一共要31人。
人手不够可以让随车工人去各站装卸。
列表分析如下:解决这道题的过程中,你还想到了什么?选择下面的问题或自己编出类似的问题进行研究。
并在小组内交流自己的想法。
(1)如果在线路上增加一个需要10名装卸工人的站点,车的辆数保持不变,最少需要多少名工人。
(2)如果线路上的站点不变,车的辆数减少1辆,最少需要多少名工人? 学生互相讨论、交流出示交流结果,并说出解题思路。
2、模仿练习五辆汽车在7个站点之间循环运输,每个站点所需装卸工人如图所示。
怎样安排可以使运输工人人数最少?最少需要多少人?A B CGFE D 3、解决问题2AB 两地相距4a 千米,中间是荒无人烟的戈壁,只有一条公路连接,现有50辆卡车要从A 地到B 地,然后再返回A 地,已知卡车自身携带的汽油只能走3a 千米,为完成任务配备了运油车(耗油量与卡车相同),保证供油。
运油车一次● ● ● ●●●能运送一辆卡车行150a千米的汽车。
请你设计一个方案,用若干辆运油车保证任务完成?解题方案:卡车自身携带的汽油可以行3a千米,卡车从A地到B地,然后再返回A地,一共需要行8a千米的汽油,还需要性5a千米的汽油,50辆卡车一共需要行5a×50=250a千米的汽油。
要使整个任务的耗油量最少,必须使运油车的耗油量最少;要使运油车的耗油量最少,必须使运油车行尽可能少的路,尽可能利用卡车的载油量,使加油地点到B地往返的距离等于3a,因此加油地点在离B地1.5a处。
运油车携带能行150a千米的汽车,运到从A地到B地2.5a千米处停下,它为维持自身往返需要行5a千米的汽油,能为卡车提供145a千米的汽油。
一共需要行250a千米的汽油,因此,至少需要2辆运油车:一辆满载,另一辆至少载行250a -145a+5a=110a千米汽油。
五年级下册奥数一般应用题(人教版)
答:两根蜡烛都燃掉5厘米。
即学即练
妈妈今年30岁,儿子今年8岁,多少年之后,妈妈的年龄是 儿子年龄的3倍?
年龄差:30-8=22(岁) 22÷(3-1)=11(岁) 11-8=3(年)
答: 3年之后,妈妈的年龄是儿子年龄的3倍。
今天你学到了什么?
解答应用题的一般步骤: 1.审题; 2.分析数量关系; 3.列式解答; 4.验算并写出答案。
答: 甲原计划每天生产20个,乙原计划每天生产60个。
例4:某班三名同学,在一次考试中三人平均分为92分,可 是,其中一名同学在抄分时把自己的分数错抄成88分,因此, 三人的平均分变为90分。这名同学在这次考试中得了多少分?
平均分变了几分就是错抄了几分吗?
例4:某班三名同学,在一次考试中三人平均分为92分,可 是,其中一名同学在抄分时把自己的分数错抄成88分,因此, 三人的平均分变为90分。这名同学在这次考试中得了多少分?
答: 甲在这次考试中得了95分。
例5:有两根蜡烛,一根长8厘米,另一根长6厘米,把两 根都燃掉同样长的一部分后,长的一根剩下的长度是短的一 根剩下的3倍。两根蜡烛各燃掉多少厘米?
差不变:8-6=2(厘米)
这是差倍问题 。
剩下的短蜡烛:2÷(3-1)=1(厘米)
剩下的长蜡烛:1×3=3(厘米)
燃掉的长度:8-3=5(厘米)
88+6=94(分)
答:这名同学这次考试得了94分。
即学即练
甲、乙、丙、丁四位同学,在一次考试中四人平均分为90分, 可是,甲在抄分时把自己的分数错抄成87分,因此,四人的平均 分变为88分。甲在这次考试中得了多少分?
90×4=360(分) 88×4=352(分) 360-352=8(分) 87+8=95(分)
五年级小学生奥数应用题三篇
【导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、⾯、图、表将奥数问题直观形象的展⽰出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
以下是整理的《五年级⼩学⽣奥数应⽤题三篇》,希望帮助到您。
五年级⼩学⽣奥数应⽤题篇⼀ 1、甲⼄两⼈同时分别从两地骑车相向⽽⾏,甲每⼩时⾏20千⽶,⼄每⼩时⾏18千⽶,两⼈相遇时距全程中点3千⽶,求全程长多少千⽶? 2、甲⼄两站相距3。
5千⽶,A车速为每分钟180⽶,B车速为分钟170⽶,A、B两车分别从甲、⼄两站相向开出,两车到站后都要停留7分钟,他们第⼀次相遇后要经过多少时间第⼆次相遇? 3、甲每分钟⾛50⽶,⼄每分钟⾛60⽶,丙每分钟⾛70⽶,甲、⼄两⼈从A地,丙从B地三⼈同时相向出发。
丙先遇⼄,再经过2分钟后遇到甲,问A,B两地相距多远? 4、果园⾥有梨树、苹果和桃树共1200棵,其中梨树的棵数是苹果树棵数的3倍,桃树的棵数是苹果棵数的2倍。
求梨树、苹果树和桃树各有的棵数。
5、两数相除商3余2,已知被除数、除数、商与余数的和是179,被除数是多少? 6、两艘渡船从南岸开往北岸,第⼀艘以每⼩时30千⽶的速度先开,第⼆艘船晚开12分钟,速度为每⼩时40千⽶,结果两船同时到达,求南北两岸相距多远? 7、甲、⼄两⼈环绕周长400⽶的跑道跑步,两⼈若同⼀地点背向⽽⾏,经2分钟迎⾯相遇,俩⼈若从同⼀地点同向⽽⾏,经20分钟追及相遇,求甲、⼄各⾃的速度? 8、龟兔赛跑,它们同时出发,全程7000⽶,乌龟以每分钟30⽶的速度爬⾏,兔⼦每分钟330⽶,兔⼦跑了10分钟就停下来睡了200分钟,醒来后发现龟已超过它,⽴即以原来速度向前追赶,当兔⼦追上乌龟,离终点多少⽶? 9、10元钱买1元的邮票和5⾓的邮票,共买了13张,问两种邮票各买了多少张? 10、松⿏妈妈采松⼦。
晴天每天可以采20个,⾬天每天只能采12个,它⼀连采了112个松⼦,平均每天采14个,问这⼏天中有⼏个⾬天?五年级⼩学⽣奥数应⽤题篇⼆ 1、甲、⼄两个⼈从A、B两地步⾏相向⽽⾏,甲每⼩时⾛3千⽶,⼄每⼩时⾛2千⽶,两⼈相遇时距离中点3千⽶,问A、B 两地相距多远? 2、甲、⼄两⼈从A、B两地相向骑车⽽⾏,2⼩时后相遇,相遇后,⼄继续向A地前进,⽽甲则返回,当甲到达A地时,⼄距离A地还有4千⽶,已知A。
五年级奥数综合问题 第三讲 方阵问题
五年级奥数综合问题 第三讲 方阵问题知识导航学生排队,士兵列队,横着排叫做行,竖着排叫做列。
如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:1.总人数=最外层每边人数的平方(方阵问题的核心)2.外一层每边人数比内一层每边人数多2相邻两层之间,每层的总数相差8 3.最外层每边人数=(最外层总人数÷4)+1 最外层总人数 = (最外层每边人数-1) ×4 4.去掉一行、一列的总人数=去掉的每边人数×2-1 5. 中空方阵总个数=(每边个数一层数)×层数×4 例1:学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人? 解析:方阵问题的核心是求最外层每边人数。
根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列 的总人数就可以求了。
方阵最外层每边人数:60÷4+1=16(人)整个方阵共有学生人数:16×16=256(人)。
【巩固1】某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?【巩固2】晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?【巩固3】一个正方形的队列横竖各减少一排共27人,求这个正方形队列原来有多少人?【巩固4】小红摆成一个正方形实心方阵用棋子100枚,最外边的一层共多少枚棋子?例2:参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这 个正方形队列减少一行和一列,则要减少33人。
问参加团体操表演的运动员有多少人?解析:从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:去掉一行、一列的总人数=去掉的每边人数×2-1解 :方阵问题的核心是求最外层每边人数。
五年级下册数学试题-奥数专题练习:03 分数问题(解析版)全国通用
三、分数问题1. 已知=⨯÷⨯=⨯⨯154332991115B A ..D .C 747381454215⨯⨯=÷⨯A 、B 、C 、D 四个数中最大的是 。
答案:B 。
解析:从题目看,A 、B 、C 、D 中最大的,即为991115⨯与154332⨯÷与15.2÷54与14.8⨯7473中最小的,容易求出,与B 相乘的154332⨯÷最小,所以B 最大。
2.所有分子为11,而且不能化成有限小数的假分数共有 个。
答案:4。
解析:符合题意的假分数有311、611、711和911共4个。
3.在等式b a =⨯431中,a ,b 都是由三个数字1,4,7组成的带分数,这两个带分数的和是 。
答案:281111。
解析:由1,4,7三个数字组成的带分数有741,714,417,经验算,只有a =714,b =417符合条件.a +b =281111。
4.小林写了八个分数,已知其中的五个分数是778、31733、22223、293、18319,如果这八个分数从小到大排列的第四个分数是293,那么按从大到小排列的第三个分数是 。
答案:18319。
提示:已知的五个分数从大到小排列依次为31733、778、18319、22223、293,因此未知的三个分数都小于293。
5. 在分母小于15的最简分数中,比52大并且最接近52的是哪一个? 解析:设所求的分数为nm ,(m ,n )=1,n <15。
因为n m -52=n n m 525-,。
五年级下册数学试题 -奥数第03讲:质数与合数 人教版 (含答案)
第3讲质数与合数内容概述:掌握质数与合数的概念;熟悉常用的质数,并掌握质数的判定方法;能够利用分解质因数的方法解决相关的整数问题;学会计算末尾零的个数。
典型问题:兴趣篇1.(1)如果两个质数相加等于16,这两个质数有可能等于多少?(2)如果两个质数相加等于25,这两个质数有可能等于多少?(3)如果两个质数相加等于29,这样的两个质数存在吗?【分析】(1)因为16是个偶数,偶等于偶+偶或是奇+奇,但是质数中只有2是偶数,所以只能是奇+奇,所以是3+13或是5+11(2)因为25是个奇数,奇等于偶+奇,但是质数中只有2是偶数,所以另一个是25-2=23 (3)因为29是个奇数,奇等于偶+奇,但是质数中只有2是偶数,所以另一个只能是29-2=27,但是27不是质数,所以不存在!(第1届华罗庚金杯数学邀请赛决赛二试试题)2.有个人说:“任何7个连续数中一定有质数”。
请你举一个例子,说明这句话是错的。
【分析】方法一:例100以内:90-96,100以上很多,例114-126。
方法二:又例如连续的7个整数:842、843、844、845、846、847、848分别能被2、3、4、5、6、7、8整除,也就是说它们都不是质数.评注:有些同学可能会说这是怎么找出来的,翻质数表还是……,我们注意到(n+1)!+2,(n+1)!+3,(n+1)!+4,…,(n+1)!+(n+1)这n个数分别能被2、3、4、…、(n+1)整除,它们是连续的n 个合数.其中n !表示从1一直乘到n 的积,即1×2×3×…×n .3. 请写出5个质数,使得它们正好构成一个公差为12的等差数列。
【分析】10以上质数的末位只能是1,3,7,9.,一个数的末位+2只能出现1,3,7,9,那么这个数最小不能是偶数,不能是3,所以可以试验5,5+12=17,17+12=29,29+12=41,41+12=53,即可满足要求。
五年级奥数举一反三专题 第9周一般应用题(三)
第9周一般应用题(三)专题简析解答一般应用题时,可以按下面的步骤进行:1,弄清题意,找出已知条件和所求问题;2,分析已知条件和所求问题之间的关系,找出解题的途径;3,拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。
例1 甲、乙两工人生产同样的零件,原计划每天共生产700个。
由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。
甲、乙原计划每天各生产多少个零件?分析二人实际每天比原计划多生产1020-700=320(个)。
这320个零件中,有100个是甲多生产的,那么320-100=220(个)就是乙日产量的1倍,即乙原来的日产量,甲原来每天生产700-220=480(个)。
练习一1,工厂里有2个锅炉,原来每月烧煤5.6吨。
进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。
原来两个锅炉每月各烧煤多少吨?2,甲、乙两人生产同样的零件,原计划每天共生产80个。
由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。
甲、乙原计划每天各生产多少个零件?3,甲、乙两队合挖一条水渠,原计划两队每天共挖100米,实际甲队因有人请假,每天比计划少挖15米,而乙队由于增加了人,每天挖的是原计划的2倍,这样两队每天一共挖了150米。
求两队原计划每天各挖多少米?例2 把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。
求竹竿的长。
分析因为竹竿先插了一次,湿了40厘米,倒转过来再插一次又湿了40厘米,所以湿了的部分是40×2=80(厘米)。
这时,湿的部分比它的一半长13厘米,说明竹竿的长度是(80-13)×2=134(厘米)。
练习二1,有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。
五年级奥数差倍问题(三)教师版
1.五年级奥数差倍问题(wèntí)(三)教师版2.熟练应用通过图示来表示(biǎoshì)数量关系. 差倍问题就是(jiùshì)已知大小两数的差,以及大小两数的倍数(bèishù)关系,求大小(dàxiǎo)两数的问题.差倍问题的特点与和倍问题类似。
解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到。
解题思路:首先要在题目中找到1倍量,然后画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量差倍问题的基本关系式:差÷(倍数-)=1倍数(较小数)倍数×几倍=几倍数(较大数)或较小数+差=较大数解决差倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系.年龄问题的和差问题主要利用的年龄差不变。
模块一、年龄与差倍问题【例 1】爸爸妈妈现在的年龄和是岁;五年后,爸爸比妈妈大岁.今年爸爸妈妈二人各多少岁? 【考点】差倍问题 【难度】2星 【题型】解答【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”的和差问题. 爸爸的年龄:(岁) 妈妈的年龄:(岁) 【答案】爸爸,妈妈岁【巩固】 爸爸妈妈现在的年龄和是72岁;六年后,爸爸比妈妈大4岁.今年爸爸妈妈二人各多少岁?【考点】差倍问题 【难度】2星 【题型】解答例题精讲知识精讲 教学目标6-1-6.差倍问题(三)【解析】六年后,爸比妈大4岁,即爸妈的年龄差是4岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然(réngrán)是4岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们(tā men)的年龄差是4岁,求二人各是几岁”的和差问题(wèntí).爸爸年龄:(岁),妈妈(mā mā)的年龄:(岁)所以(suǒyǐ),爸爸的年龄是38岁,妈妈的年龄是34岁.【答案】爸爸岁,妈妈岁【例 2】爸爸今年38岁,佳佳今年2岁,问:几年后,父亲的年龄是佳佳的5倍?【考点】差倍问题【难度】3星【题型】解答【解析】父女年龄差是:(岁),这个数量是不会变化的,这一点很关键.当父亲的年龄恰好是女儿年龄的5倍时,父亲仍比女儿大36岁,这36岁是父亲比女儿多的倍所对应的年龄.(岁),(年),即7年后,父亲的年龄是佳佳的5倍【答案】年后【例 1】姐姐今年13岁,弟弟今年9岁,几年后姐弟俩岁数和是40岁?姐姐到时多少岁了? 【考点】差倍问题【难度】3星【题型】解答【解析】由题意,姐弟俩今年的年龄和是(岁),用几年后姐弟俩的岁数和40岁减去今年姐弟俩的年龄和22岁,就得到姐弟俩经过的年数和,即为(年),最后再除以2,就求出姐弟俩每人经过的年数.经过的年数都是:(年).可以求出姐姐的年龄是13922+=用线段图显示数量关系.姐弟俩的年龄差总是(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.弟弟的年龄:(岁),姐姐的年龄:(岁).【答案】年后姐弟两个的岁数和是岁,姐姐到时岁。
小学五年级五年级奥数题
小学五年级五年级奥数题在小学五年级时,学生们已经开始接触奥数了。
随着年级的升高,奥数的难度也逐渐加大。
下面就来看一些小学五年级的奥数题。
1. 鸡兔同笼问题一个笼子里关着鸡和兔,它们的头和脚的数量加起来共有50个。
问笼子里有几只兔子,几只鸡?解析:设兔子的数量为x,鸡的数量为y。
由题可知,2x+4y=50,化简可得x+2y=25。
因为一定存在整数解,所以我们可以从0开始枚举y的值,然后求解x的值,如果x是整数,那么就是一个解。
例如,当y=1时,x=23,此时笼子里有1只兔子,23只鸡。
当y=2时,x=21,此时笼子里有2只兔子,21只鸡。
当y=3时,x=19,此时笼子里有3只兔子,19只鸡……以此类推,直到找到所有的解。
2. 工程问题两个工人一起修路,需要5天时间才能修完;其中一个工人单独修路需要10天时间,问另一个工人单独修路需要多少天?解析:设两个工人单独修路所需要的时间分别为x和y,由题意可知,两个工人一起修路的效率是一样的。
所以可以列出下面的方程式:5/(1/x+1/y) = 5化简可得2x+2y=xy,移项可得xy-2x-2y=0,变形可得(x-2)(y-2)=4,因为要求的是整数解,所以只需枚举4的因数即可求解。
当4=1*4时,可得x=6,y=3;当4=2*2时,可得x=4,y=4。
所以另一位工人单独修路需要4天的时间。
3. 蒙提霍尔问题蒙提霍尔问题又称“三门问题”,是一个经典的悖论。
题目如下:有三扇门,其中一扇门后面是一辆汽车,另外两扇门后面是山羊。
你选择其中一扇门,然后主持人打开其中一扇门,露出其后面的山羊,问你是否要更换选择,以获得汽车的机会更大。
解析:这个问题的解法有两种,一种是基于概率的统计学方法,另一种是基于直觉的感性理解。
基于概率的统计学方法:首先,根据条件概率公式,汽车出现在你选择的门后面的概率是1/3。
而有两扇门没被选择,每扇门后面都是山羊的概率是2/3。
而当主持人打开一扇门,露出其中的山羊后,这个条件发生时,未被选择的门后面山羊的概率不变,仍然是2/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级解决问题(五)
1、光明小学五年级学生,分为7人一组、8人一组或6人一组排队做操,都恰好分完,五年级至少有多少学生?
2、一个长方体沙坑,长4米,宽1.8米,深0.5米,如果每立方米黄沙重1.4吨,这黄沙重多少吨?
3、我们学校要粉刷教室,教室长8米,宽7米,高3.5米,扣除门窗、黑板的面积13.8平方米,已知每平方米需要5元涂料费。
粉刷一个教室需要多少钱?
4、胜利小学五年级3班体育达标人数是24人,没达标人数是12人,达标人数占全班人数的几分之几?
5、一个长方体油桶的容积是18升。
它的长是25厘米,宽是16厘米。
这个油桶的高是多少厘米?
6、三筐苹果共重110.5千克,如果从第一筐取出18.6千克,从第二筐取出23.5千克,从第三筐取出20.4千克,则三筐所剩的苹果重量相同,原来三筐苹果各有多少千克?
7、第一小组有6个人,其中5个人语文考试的平均分是85分,加上王刚的分数后,平均成绩是87分,王刚的考试成绩是多少分?
8、一个长方形铁皮长30cm,宽25cm,从四个角各切掉一个长为5cm 的正方形,然后做成一个无盖的盒子,这个盒子用了多少铁皮?它的容积是多少?
9、把一块长是3.6m,宽2.4m的木板锯开,钉成棱长是3dm的正方体木盒,最多能钉多少个?
10、一个底面为正方形的长方体,高减少4厘米就成正方体,表面积比原来减少80平方厘米,长方体体积是多少?。