河南省新野县第一高级中学2016-2017学年高二数学上学期第三次月考试题 文
数学-高二-河南省南阳市新野县第一高级中学高二上学期第一次月考数学试题
河南省南阳市新野县第一高级中学2016-2017学年高二上学期第一次月考数学试题一、选择题1.已知数列的前项和,则()A.-20B.-21C.20D.212.式子的值是()A.B.C.D.3.已知数列为等差数列,且,则的值为()A.B.C.D.4.已知等差数列前9项的和为27,,则()A.100B.99C.98D.975.已知正项等比数列中,其前项和为,若,则()A.B.C.D.6.等比数列中,,则数列的前8项和等于()A.6B.5C.4D.37.设等差数列的前项和为,已知,当取得最小值时,()A.5B.6C.7D.88.设等比数列满足,则的最大值为()A.61B.62C.63D.649.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为()A.24里B.12里C.6里D.3里10.已知函数的部分对应值如表所示,数列满足,且对任意,点都在函数的图象上,则的值为()A.1B.2C.3D.411.已知数列满足,则的前10项和等于()A.B.C.D.12.已知,则数列的通项公式为()A.B.C.D.二、填空题13.已知数列的前项和为,且满足数列是等比数列,若,则的值是_____________.14.已知数列列1,是等差数列,数列是等比数列,则的值为___________.15.等差数列中,若,____________.16.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列中,则_________;若,则数列的前2016项和是__________.(用表示).三、解答题17.已知在等差数列中,.(1)求;(2)令,证明数列是等比数列.18.已知是等差数列的前项和,.(1)求证:数列是等差数列;(2)若,求数列的通项公式.19.已知等比数列的前项和为.(1)求的通项公式;(2)设,求数列的前项和.20.某学校餐厅每天供应500名学生用餐,每星期一有两种菜可供选择.调查资料表明,凡是在星期一选种菜的学生,下星期一会有20%改选种菜;而选种菜的学生,下星期一会有30%改选种菜,用分别表示在第个星期的星期一选种菜和选种菜的学生人数,若,则(1)求的值;(2)判断数列是否常数数列,说明理由.21.已知数列为等差数列,为其前项和,且,数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.22.设数列是等差数列,数列的前项和满足且.(1)求数列和的通项公式;(2)设,设为的前项和,求.答案详解部分1.【解题过程】故答案为:A【答案】A2.【解题过程】故答案为:D【答案】D3.【解题过程】等差数列中,由得:所以故答案为:B【答案】B4.【解题过程】由题知:所以故答案为:C【答案】C5.【解题过程】正项等比数列中,所以故答案为:D【答案】D6.【解题过程】等比数列中,,数列的前8项和等于故答案为:C【答案】C【解题过程】由题得:所以所以当n=时,取得最小值。
河南省新野县第一高级中学2018学年高二上学期第三次月考数学理试题 含答案
2018~2018学年高二第三次月考数 学 试题(理)一、选择题(共12小题,每小题5分,满分60分)1.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∀n ∈N *,使得n <x2D .∃x ∈R ,∃n ∈N *,使得n <x 22.已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.设集合A ={x |x 2﹣4x +3<0},B ={x |2x ﹣3>0},则A ∩B =( ) A .(﹣3,﹣23) B .(﹣3,23) C .(1,23) D .(23,3) 4.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a =5,c =2,cosA =32,则b =( ) A .2 B .3 C .2 D .36.设F 为抛物线C :y 2=4x 的焦点,曲线y =xk(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A .21 B .1 C .23D .2 7.平面α过正方体ABCD ﹣A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m , α∩平面ABA 1B 1=n ,则m 、n 所成角的正弦值为( )A .23 B .22 C .33D .318.在△ABC 中,B =4,BC 边上的高等于31BC ,则sinA =( )A .103 B .1010 C .55 D .10103 9.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的41,则该椭圆的离心率为( ) A .31 B .21 C .32 D .4310.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .811.已知O 为坐标原点,F 是椭圆C :12222=+by a x (a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .31 B .21 C .32 D .4312.定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个二、填空题(本大题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥-+≥+-030301x y x y x ,则z =x ﹣2y 的最小值为 .14.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cosA =54,cosC =135,a =1, 则b = .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题(共6小题,满分70分)17.已知各项都为正数的数列{a n }满足a 1=1,a n 2﹣(2a n +1﹣1)a n ﹣2a n +1=0. (Ⅰ)求a 2,a 3; (Ⅱ)求{a n }的通项公式.18.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=7,△ABC的面积为233,求△ABC的周长.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明:MN∥平面PA B;(Ⅱ)求直线AN与平面PMN所成角的正弦值.20.如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,CD∥EF , AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角F﹣AD﹣B的余弦值.21.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.22.已知椭圆E :1322=+y t x 的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.高二理科数学 参考答案与试题解析一.CADC DDAD BBAC 二.13.5- 14. 64 15.132116.216000 三.17. 解:(1)根据题意,a n 2﹣(2a n +1﹣1)a n ﹣2a n +1=0,当n =1时,有a 12﹣(2a 2﹣1)a 1﹣2a 2=0,而a 1=1,则有1﹣(2a 2﹣1)﹣2a 2=0,得a 2=21, 当n =2时,有a 22﹣(2a 3﹣1)a 2﹣2a 3=0,由a 2=21,得a 3=41, 故a 2=21,a 3=41;……………5分 (2)根据题意,a n 2﹣(2a n+1﹣1)a n ﹣2a n +1=0,得(a n ﹣2a n +1)(a n +1)=0, 即有a n =2a n +1或a n =﹣1,又由数列{a n }各项都为正数,则有a n =2a n +1, 故数列{a n }是首项为a 1=1,公比为21的等比数列, 故a n =1)21(-n .…………10分18. 解:(Ⅰ)用正弦定理得:2cosC (sinAcosB +sinBcosA )=sinC , 整理得:2cosCsin (A +B )=sinC ,∵sinC ≠0,sin (A +B )=sinC ∴cos C=21, 又0<C <π,∴C=3π;……………6分 (Ⅱ)由余弦定理得7=a 2+b 2﹣2ab •21,∴(a +b )2﹣3ab =7,∵S =21absinC =43ab =233,∴ab =6,∴(a +b )2﹣18=7,∴a +b =5, ∴△ABC 的周长为5+7.……………12分19. (1)证明:如图,取PB 中点T ,连接AT ,NT , ∵N 为PC 的中点,∴NT ∥BC ,且NT =21BC , 又AM =32AD=2,BC=4,且AD ∥BC , ∴AM ∥BC ,且AM =21BC ,则NT ∥AM ,且NT =AM ,∴四边形AMNT 为平行四边形,则NM ∥AT ,∵AT ⊂平面PAB , MN ⊄平面PAB ,∴MN ∥平面PAB ;……………6分(Ⅱ)解:取BC 的中点E ,连结AE ,由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =5建系如图,P (0,0,4),M (0,2,0),C (5,2,0),N (25,1,2) )4,2,0(-=PM ,)2,1,25(-=PN ,)2,1,25(=AN 设),,(z y x n =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取)1,2,0(=,于是2558|||||,cos |==><AN n AN n . ∴直线AN 与平面PMN 所成角的正弦值为2558.……………12分 20.(Ⅰ)证明:∵ABEF 为正方形,∴AF ⊥EF . ∵∠AFD=90°,∴AF ⊥DF , ∵DF∩EF=F,∴AF ⊥平面EFDC ,∵AF ⊂平面ABEF ,∴平面ABEF ⊥平面EFDC ;………4分(Ⅱ)解:由AF ⊥DF ,AF ⊥EF ,可得∠DFE 为二面角D ﹣AF ﹣E 的平面角; 由CE ⊥BE ,BE ⊥EF ,可得∠CEF 为二面角C ﹣BE ﹣F 的平面角.可得∠DFE=∠CEF=60°.∴四边形EFDC 为等腰梯形.过D 作DG 垂直EF 于G. 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长,建立如图所示的空间直角坐标系G xyz -.可得()1,4,0A ,()3,4,0B -,)0,0,1(F,(D . )0,0,4(-=,)3,4,1(--=,)0,4,0(-=设),,(z y x n = 是平面ADF 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00n n 即⎩⎨⎧=-=+--04034y z y x可取)1,0,3(=n设),,(z y x m = 是平面ABCD 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00AB m m 即⎩⎨⎧=-=+--04034x z y x可取)3,43,0(=m设二面角E ﹣BC ﹣A 的大小为θ(钝角),则cos θ=n m n m ⋅⋅-=19192-,则二面角F ﹣AD ﹣B 的余弦值为19192-.……………12分 21. 解:(Ⅰ)F(0,21),A(11,y x ),B(22,y x ),P(1,21y -),Q(2,21y -),R(2,2121y y +-) 设AB 的方程:x =my +21代入x y 22=得0122=--my y ,121-=y y ,……3分 FQ AR K y y y y y y y x y y K =-==--=+-=21212121121112,所以AR ‖FQ . ……5分(Ⅱ)设A (x 1,y 1),B (x 2,y 2), F (21,0),准线为 x =﹣21, S △PQF =21|PQ|=21|y 1﹣y 2|,设直线AB 与x 轴交点为N ,∴S △ABF =21|FN||y 1﹣y 2|,∵△PQF 的面积是△ABF 的面积的两倍,∴2|FN|=1,∴x N =1,即N (1,0).……8分设AB 中点为M (x ,y ),由⎪⎩⎪⎨⎧==22212122x y x y 得2221y y -=2(x 1﹣x 2),又12121-=--x yx x y y ,∴y x y 11=-,即y 2=x ﹣1. ∴AB 中点轨迹方程为y 2=x ﹣1.……………12分 22.解:(Ⅰ)由|AM|=|AN|,可得M ,N 关于x 轴对称, 由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2,代入椭圆方程13422=+y x ,可得7x 2+16x +4=0, 解得x =﹣2或﹣72,M (﹣72,712),N (﹣72,﹣712), 则△AMN 的面积为49144)272(72421=+-⨯⨯;……………5分(Ⅱ)直线AM 的方程为y =k (x +t ),代入椭圆方程,可得(3+tk 2)x 2+2t t k 2x +t 2k 2﹣3t =0,解得x =﹣t 或x =﹣2233tk tk t t +-,即有|AM|=21k +•|2233tk t k t t +-﹣t |=21k +•236tkt +, |AN|=223611k t t k +∙+=21k +•kt k t +36, 由2|AM|=|AN|,可得221k +•236tk t +=21k +•kt k t +36, 整理得t =23632--k kk ,由椭圆的焦点在x 轴上,则t >3,即有23632--k k k >3,即有2)2)(1(32--+k k k <0, 可得32<k <2,即k 的取值范围是(32,2).……………12分。
河南省新野县第一高级中学高二英语上学期第三次月考试题
2016-2017学年高二第三次月考英语试题第I卷(共100分)第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C、和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AThe Opening ofThe Book NookSaturday, October 4 10 a.m. to 10 p.m.You will not want to miss the opening of your new neighborhood bookstore! Located at 2289 Main Street, the Book Nook is within walking distance of schools and many homes and businesses. Come and check out the Book Nook on Saturday!Activities will include:• Live music by local musicians• One Book-of-the-Month Club membership giveawayWide SelectionThe Book Nook has three floors with books of all kinds — any kind you could want. If we do not have the book you are looking for, we can specially order it for you. You will have it in your hands within two days!Reading NooksWe are proud of our children’s reading area on the first floor, as well as our teenagers’ nook on the second floor. Come for the activities and stay a while! Settle in one of these inviting reading areas; take a seat with a good book and a free cup of hot chocolate. You will discover the perfect way to spend a few hours.Book EventsThe Book Nook will be featuring (以…为特色) monthly book signings by different authors, giving you a chance to meet and speak with well-known writers. Do not miss the experience of hearing these authors read aloud from their own books!The Book-of-the-Month ClubOur Book-of-the-Month Club will feature 12 books each year. As a member, you will be able to select one new book each month. The membership fee is only $10.00 per month. That is a great price for 12 books each year!So please join us on Saturday and learn about all that the Book Nook has to offer. You can come anytime between 10 a.m. and 10 p.m. — our activities last all day long! 1.According to “Reading Nooks”, a nook is _____.A.a club that children may join B.a space for a certain purposeC.a program for teenage readers D.a prize in a national competition2.What can we learn about the Book Nook?A.It is a well-located bookstore.B.Any book s can be found right there.C.It is open from 10 a.m. to 10 p.m. every day.D.The third floor is specially designed for children.3.As a member of the Book-of-the-Month Club, you _____.A.can buy any books in the Book Nook at a low priceB.may borrow as many as 12 books every weekC.need to pay 120 dollars every yearD.should be over the age of 124.The purpose of the text is to get more people to _____.A.give away books B.visit the bookstoreC.learn from famous writers D.read different kinds of booksBIt was an autumn morning shortly after my husband and I moved into our first house. Our children were upstairs unpacking, and I was looking out of the window at my father moving around mysteriously on the front lawn. “What are you doing out there?” I called to him.He looked up, smiling. “I’m making you a surprise.” I thought it could be just about anything. When we were kids, he always created something surprising for us. Today, however, Dad would say no more, and caught up in the busyness of our new life , I eventually forgot about his surprise.Until one gloomy day the next March when I glanced out of the window, I saw a dot of blue across the yard. I headed outside for a closer look. They were crocuses (番红花)throughout the front lawn 一 blue, yellow and my favorite pink,with little faces moving up and down in the cold wind. I remembered the things Dad secretly planted last autumn. He knew how the darkness and dullness of winter always got me down. What could have beenmore perfectly timely to my needs?My father’s crocuses bloomed each spring for the next five seasons, always bringing the same assurance: Hard times are almost over. Hold on, keep going, and light is coming soon.Then a spring came with the usual blooms but the next spring there were none. I missed the crocuses , so I would ask Dad to come over and plant new bulbs (植物球茎). But I never did. He died suddenly one October day. My family were in deep sorrow, leaning on our faith.On a spring afternoon four years later, I was driving back when I felt depressed. It was Dad’s birthday, and I found myself thinking about him. This was not unusual —my family often talked about him, remembering how he lived up to his faith. Suddenly I slowed as I turned into our driveway. I stopped and stared at the lawn. There on the muddy grass with small piles of melting snow , bravely waving in the wind, was one pink crocus.How could a flower bloom from a bulb more than 18 years ago, one that hadn’t bloomed in over a decade? But there was the crocus. Tears filled my eyes as I realized its significance.Hold on, keep going, and light is coming soon. The pink crocus bloomed for only a day, but it built my faith for a lifetime.5.Which of the following statements is NOT true according to the passage?A.The author usually felt depressed in the season of winter.B.The crocuses bloomed each spring before her father died.C.The author often thought about her father after he died.D.The author’s father planted the crocuses to lift her low spirits.6.According to the first three paragraphs, we learn that ______.A.it was not the first time that the author’s father had made a surpriseB.the author was unpacking when her father was making the surpriseC.it kept bothering the author not knowing what the surprise wasD.the author knew what the surprise was because she knew her father7.The author’s father should be best described as ______.A.a part-time worker who loved flowers B.a kind-hearted man who lived with faithC.a full-time gardener with skillful hands D.an ordinary man with doubts in his life8.What can be the best title for the passage?A.Crocuses — My Source of Faith B.Crocuses—Father’s SurpriseC.A Pink Crocus — My Memory D.Crocuses in Blossom — My FavoriteCA group of kids at McIntyre Elementary School, in Pittsburgh, Pennsylvania, have created a special bench to make sure their fellow classmates aren’t left out on the playground. Called the “Buddy Bench”, students can use the seat as a safe and supportive place to let others know they’d like to be included in p laytime, but may be too shy to ask.The concept of the Buddy Bench is simple: Students who want to partake in playground games and activities, but may feel hesitant, can take a seat, which signifies(表明)to other children on the playground that they may need something extra to encourage them to participate.The idea for the bench came about last year, when Farrell, school counselor at McIntyre Elementary, was conducting a leadership group to help students overcome shyness and gain confidence. Four fourth-grade students came up with the idea for the Buddy Bench in this workshop, and worked with Farrell to draft a letter to present to the Parent Teacher Staff Organization to make the bench a reality. The PTSO approved the students’ proposal a nd installed(安装)a bright metal bench with a cheerful sign that reads “Buddy Bench” on the school’s playground.Since it was installed on Nov.16, the bench has been effective. The simple concept has resonated with(引起共鸣)the students, and already has created a better environment within the school community.“Each day, I go to see the buddy bench working,” Farrell said. “The lessons they are learning now will benefit them their entire lives. It is simply a beautiful example of kids wanting to be kind and continue to be kin d every day.”9.Who is Buddy Bench created for?A.Students who love games and activities.B.Students who want and continue to be kind.C.Students who are left out on the playground.D.Students who are in Farrell’s leadership group.10.Who thought of the idea for the Buddy Bench?A.Farrell. B.Four students. C.The PTSO. D.Some parents.11.What does the word “they” in the last paragraph refer to?A.The PTSO. B.Buddy Bench users.C.The workshop members. D.Farrell and teachers.12.Which of the followin g statement can show “the bench has been effective”?A.More and more creative ideas have come up.B.The workshop kids have set a good example.C.The PTSO has decided to provide more buddy benches.D.Some shy students have found friends on the playground..DValerie Jarrett, 58, is serving as a top adviser to President Obama and has been close to the first family since the early 1990s. Joe Heim from WashingtonPost had an interview with her.Joe Heim: What do you think of a reporter who interviews you for 25 minutes, then later finds out his recorder stopped working and asks you to do the interview again?Valerie Jarrett: That he's human. You could have just tried to pretend that it didn't happen.Joe Heim: You're considered the pr esident's closest adviser. Have you ever given him bad advice since he became president?Valerie Jarrett: I'm sure that I have. I think one of the reasons why the president's management style is very effective is because all of his advisers feel very comfortable being open about their advice. Finally, there's only one decision-maker. And that's the president.Joe Heim: What misunderstandings are there of you?Valerie Jarrett: A little-known fact is that I started my life very shy and remained very shy well into adulthood. Painfully shy, I would c all it. And I often share this, particularly with young people, because it's something I really had to work hard to overcome. And for all the shy people out there I say, you, too, can overcome it. But it took a lot of hard work on my part, and I discovered along the way that just because you're nervous and you have butterflies in your stomach doesn't mean that it has to show. My point in sharing it with you is that part of life is pushing yourself outside of your comfort zone (舒适区). And if you're going to grow, you have to learn how to take on new challenges that you might not be good at.Joe Heim: Will you stay until the end of his term?Va lerie Jarrett: I serve at the pleasure of the president. If he wants me to stay, I will.13.From the underlined words “That he's human”, we can learn Valerie Jarrett is _____.A.warm-hearted B.broad-mindedC.well-educated D.strong-willed14.Why does Valerie Jarrett share her shyness?A.To show her hard way to success.B.To prove shy people can also be great.C.To show it is easy to overcome shyness.D.To ask people to face challenges bravely.15.In which part of a newspaper could we find this text?A.People. B.Society. C.World. D.Culture.第二节(共5小题;每小题2分,满分10分。
河南省新野县第一高级中学2016-2017学年高二下学期第
2016-2017年高二下期第一次月考数 学 试 题 (文)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z 满足(﹣3)(2﹣i )=5(i 为虚数单位),则z 为( )A .﹣2+iB .2﹣iC .5+iD .5﹣i2.已知△ABC 中,∠A=30°,∠B=60°,求证a <b .证明:∵∠A=30°,∠B=60°,∴∠A <∠B ,∴a <b ,画线部分是演绎推理的是( ) A .大前提B .小前提C .结论D .三段论3.学校成员、教师、后勤人员、理科教师、文科教师的结构图正确的是( )A .B .C .D .4.在对吸烟与患肺病这两个分类变量的独立性检验中,下列说法正确的是( )(参考数据:P (χ2≥6.635)=0.01)①若χ2的观测值满足χ2≥6.635,我们有99%的把握认为吸烟与患肺病有关系. ②若χ2的观测值满足χ2≥6.635,那么在100个吸烟的人中约有99人患有肺病. ③从独立性检验可知,如果有99%的把握认为吸烟与患肺病有关系时,那么我们就认为:每个吸烟的人有99%的可能性会患肺病.④从统计量中得知有99%的把握认为吸烟与患肺病有关系时,是指有1%的可能性使推断出现错误.A .①B .①④C .②③D .①②③④5.下面几种推理过程是演绎推理的是( ) A .两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A+∠B=180° B .由平面三角形的性质,推测空间四面体性质C .某校高二共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D .在数列{a n }中111111,()(2)2n n n a a a n a --==+≥,由此归纳出{a n }的通项公式 6.设凸k (k ≥3且k ∈N )边形的对角线的条数为f (k ),则凸k+1边形的对角线的条数为f(k+1)=f (k )+( )A .k ﹣1B .kC .k+1D .k 27.某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为=8.5x+7.5,则表中的m 的值为( )8.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A .512B .12C .712D .349.满足条件|z ﹣i|=|3+4i|复数z 在复平面上对应点的轨迹是( )A .椭圆B .圆C .一条直线D .两条直线10.给出一个如下图所示的流程图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是( )A .1B .2C .3D .411.执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x ,y 的值满足( )A .y=xB .y=2xC .y=3xD .y=4x12.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M=( )A .203B .158C .165D .72二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.) 13.如图所示,是某人在用火柴拼图时呈现的图形,其中第1个图象用了3根火柴,第2个图象用了9根火柴,第3个图形用了18根火柴,…,则第20个图形用的火柴根数为 .14.已知在等差数列{a n }中,11122012301030a a a a a a +++++=,则在等比数列{b n }中,类似的结论为 .15.已知复数z=x+yi (x ,y ∈R )满足条件|z ﹣4i|=|z+2|,则2x+4y的最小值是 . 16.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球, 3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 . ①P (B )=25; ②P (B|A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件.三、解答题(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤) 17.已知复数z=m 2﹣2m ﹣3+(m ﹣3)i ,其中m ∈R . (1)若m=2,求+|z|;(2)若z 为纯虚数,求实数m 的值.18.若0<x ,y ,z <1,求证:x (1﹣y ),y (1﹣z ),z (1﹣x )不可能都大于14.19.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5. (1)请将上面的列联表补充完整;(2)有多大的把握认为喜爱打篮球与性别有关?请说明你的理由;下面的临界值表供参考:(参考公式:2()()(c d)(a c)(b )n ad bc K a b d -=++++,其中n=a+b+c+d )20.对某产品1至6月份销售量及其价格进行调查,其售价x 和销售量y 之间的一组数据如表所示:(1)根据1至(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归方程是理想的,试问所得回归方程是否理想? 参考公式:回归直线的方程,其中.21.已知数学、英语的成绩分别有优、良、及格、不及格四个档次,某班共60人,在每个档次的人数如表:(2)在数学及格的条件下,英语良的概率;(3)若数学良与英语不及格是相互独立的,求a ,b 的值.22.设数列{a n}的前n项和为S n,且S n=2n﹣a n(n∈N*).(1)求a1,a2,a3,a4的值,并猜想a n的表达式;(2)证明(1)中猜想的a n的表达式.高二数学(文)第一次月考答案一、1.D 2.B 3.A 4.B 5.A 6.A 7.C 8.C 9.B 10.C 11.D 12.B 二、13. 630 14. 3012330b b b b b b =15..②④三、17.解:(1)m=2时,复数z=m 2﹣2m ﹣3+(m ﹣3)i=﹣3﹣i .∴=﹣3+i , ∴+|z|=﹣3+i . ( 5分) (2)∵z 为纯虚数,∴,解得m=﹣1. ( 10分)18.证明:假设三个式子都大于14,即(1﹣x )y >14,(1﹣y )z >14, (1﹣z )x >14,( 3分) 三个式子相乘得:(1﹣x )y •(1﹣y )z •(1﹣z )x >314① ( 7分) ∵0<x <1,∴x (1﹣x )≤(12x x +-)2=14同理:y (1﹣y )≤14,z (1﹣z )≤14, ∴(1﹣x )y •(1﹣y )z •(1﹣z )x ≤314② ( 10分) 显然①与②矛盾,所以假设是错误的,故原命题成立.( 12分)19.解:(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35,可得喜爱打篮球的学生为30人,故可得列联表补充如下:(6分)(2)∵(10分)∴有99.5%的把握认为喜爱打篮球与性别有关. (12分)20.解:(1)==10,=8.( 2分)=(﹣1)×3+(﹣0.5)×2+0+0.5×(﹣2)+1×(﹣3)=﹣8,=1+0.25+0+0.25+1=2.5. ∴==﹣3.2,( 6分)∴=8+3.2×10=40. ∴y 关于x 的回归直线方程为=﹣3.2x+40.( 8分)(2)当x=8时,=﹣3.2×8+40=14.4,( 10分)﹣y=14.4﹣14=0.4<0.5. ∴所得回归方程是理想的.(12分)21.解:(1)记数学及格且英语良为事件A ,由题中表格知数学及格且英语良的人数为7人,故P (A )=760…(3分) (2)数学及格的共有15人,其中英语良的7人,故数学及格的条件下,英语良的概率为715…(6分)(3)表中所有数字和为a+b+47=60, ∴a+b=13,记数学良为事件B ,英语不及格为事件C .则P (B )=760b +,P (C )=1260a b ++=512, P (BC )=60b,B 与C 独立,故m=﹣3, P (BC )=P (B )P (C ), 即760B +﹣512=60b, 得b=5,a=8…(12分) 22.解:(1)因为S n =2n ﹣a n ,S n =a 1+a 2+…+a n ,n ∈N *所以,当n=1时,有a 1=2﹣a 1,解得101122a ==-; 当n=2时,有a 1+a 2=2×2﹣a 2,解得2131222a ==-; 当n=3时,有a 1+a 2+a 3=2×3﹣a 3,解得3271242a ==-; 当n=4时,有a 1+a 2+a 3+a 4=2×4﹣a 4,解得43151282a ==-. (4分) 猜想1122n n a -=-(n ∈N *) (6分) (2)由S n =2n ﹣a n (n ∈N *),得S n ﹣1=2(n ﹣1)﹣a n ﹣1(n ≥2), 两式相减,得a n =2﹣a n +a n ﹣1,即1112n n a a -=+(n ≥2).(8分) 两边减2,得112(2)2n n a a --=-,所以{a n﹣2}是以﹣1为首项,为公比的等比数列,(10分)故,即(n∈N*).(12分)。
河南省南阳市新野三中2017-2018学年高三上学期第三次段考数学试卷(理科) Word版含解析
河南省南阳市新野三中2017-2018学年高三上学期第三次段考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集为R,集合A={x|()x≤1},B={x|x≥2},A∩∁R B=( )A.[0,2)B.[0,2]C.(1,2)D.(1,2]考点:交、并、补集的混合运算.专题:集合.分析:求出A中不等式的解集确定出A,根据全集U=R,求出B的补集,找出A与B补集的交集即可.解答:解:由A中的不等式变形得:()x≤1=()0,得到x≥0,∴A=[0,+∞),∵B=[2,+∞),全集U=R,∴∁R B=(﹣∞,2),则A∩(∁R B)=[0,2).故选:A.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.如果复数z=,则( )A.|z|=2 B.z的实部为1C.z的虚部为﹣1 D.z的共轭复数为1+i考点:复数代数形式的乘除运算;复数的基本概念.专题:计算题.分析:直接利用复数的除法运算化简,求出复数的模,然后逐一核对选项即可得到答案.解答:解:由z==,所以,z的实部为﹣1,z的虚部为﹣1,z的共轭复数为﹣1+i,故选C.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.已知向量,=(3,m),m∈R,则“m=﹣6”是“”的( ) A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:由⇔﹣1×(2+m)﹣2×2=0,即可得出.解答:解:=(﹣1,2)+(3,m)=(2,2+m).由⇔﹣1×(2+m)﹣2×2=0,⇔m=﹣6.因此“m=﹣6”是“”的充要条件.故选:A.点评:本题考查了向量的共线定理、充要条件,属于基础题.4.在等差数列{a n}中,已知a3+a8=10,则3a5+a7=( )A.10 B.18 C.20 D.28考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:根据等差数列性质可得:3a5+a7=2(a5+a6)=2(a3+a8).即可得到结论.解答:解:由等差数列的性质得:3a5+a7=2a5+(a5+a7)=2a5+(2a6)=2(a5+a6)=2(a3+a8)=20,故选C.点评:本题考查等差数列的性质及其应用,属基础题,准确理解有关性质是解决问题的关键.5.设角θ为第四象限角,并且角θ的终边与单位圆交于点P(x0,y0),若x0+y0=﹣,则cos2θ=( )A.B.C.D.考点:二倍角的余弦;同角三角函数基本关系的运用.专题:计算题;三角函数的求值.分析:根据三角函数的定义得x0=cosθ,y0=sinθ,利用平方关系式及二倍角公式求出cos2θ,注意根据角所在的象限判断符号.解答:解析:由三角函数定义,x0=cosθ,y0=sinθ,则,两边平方得,∴,∵θ为第四象限角,∴sinθ<0,cosθ>0,cosθ+sinθ<0,∴|sinθ|>|cosθ|,∴cos2θ=|cosθ|2﹣|sinθ|2<0,∴.故选D.点评:本题主要是同角三角函数基本关系式及二倍角公式的应用,在应用平方关系式时要注意判断符号.6.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是( )A.一个対称中心为B.是其一个对称轴C.减区间为D.增区间为考点:函数y=Asin(ωx+φ)的图象变换.专题:常规题型;三角函数的图像与性质.分析:先根据图象平移得到函数g(x)的图象,然后结合正弦函数的性质研究g(x)的对称性与单调性.解答:解:函数f(x)=sin2x向左平移个单位后,得到函数,即,令,得,A不正确;令,得,B不正确;由,得,即函数的增区间为,减区间为,故选C.点评:本题的易错点是函数f(x)=sin2x向左平移个单位后,得到函数,即的图象,而不是得到函数y=sin(2x+)的图象.7.下列四个图中,函数y=的图象可能是( )A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据四个选择项判断函数值的符号即可选择正确选项.解答:解:当x>0时,y>0,排除A、B两项;当﹣2<x<﹣1时,y>0,排除D项.故选:C.点评:本题考查函数的性质与识图能力,属中档题,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项.8.设M是△ABC边BC上任意一点,且,若,则λ+μ的值为( ) A.B.C.D.1考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:利用平面向量基本定理可得,设,又,即可解得结论.解答:解:因为M是△ABC边BC上任意一点,设,又,所以.故选B.点评:本题主要考查平面向量基本定理的应用,属于基础题.9.如图,点P是函数y=2sin(ωx+ϕ)(其中x∈R,的图象上的最高点,M、N是图象与x轴的交点,若,则函数y=2sin(ωx+ϕ)的最小正周期是( )A.4 B.8 C.4πD.8π考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的周期性及其求法.专题:计算题.分析:利用函数的图象,结合,推出函数的周期与指正的关系,求出函数的周期即可.解答:解:由题意以及,∠PMN=45°,可知函数的最大值就是函数的,因为最大值为:2,所以T=8;故选B.点评:本题考查学生对函数的图象的认识情况,分析问题解决问题的能力,注意向量的数量积为0,是解题的关键.10.已知,,若与的夹角为,则t的值为( ) A.1 B.C.2 D.3考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的夹角公式cos=,即可解得结论.解答:解:∵,,∴||=,∴+=,∴=(t2﹣1),∴cos==,∴=,解得t=2.故选C.点评:本题主要考查向量数量积的运算及夹角公式的应用,属于基础题.11.函数在[﹣2,2]上的最大值为2,则a的范围是( ) A.B.C.(﹣∞,0]D.考点:函数最值的应用.专题:常规题型.分析:先画出分段函数f(x)的图象,如图.当x∈[﹣2,0]上的最大值为2;欲使得函数在[﹣2,2]上的最大值为2,则当x=2时,e2a的值必须小于等于2,从而解得a的范围.解答:解:先画出分段函数f(x)的图象,如图.当x∈[﹣2,0]上的最大值为2;欲使得函数在[﹣2,2]上的最大值为2,则当x=2时,e2a的值必须小于等于2,即e2a≤2,解得:a故选D.点评:本小题主要考查函数单调性的应用、函数最值的应用的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.12.已知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在(8,10)内满足方程f(x)+1=f(1)的实数x为( )A.B.9 C.D.考点:根的存在性及根的个数判断;函数奇偶性的性质.专题:函数的性质及应用.分析:由f(x+1)为奇函数,可得f(x)=﹣f(2﹣x).由f(x)为偶函数可得f(x)=f(x+4),故f(x)是以4为周期的函数.当8<x≤9时,求得f(x)=f(x﹣8)=log2(x﹣8).由log2(x﹣8)+1=0,得x的值.当9<x<10时,求得x无解,从而得出结论.解答:解:∵f(x+1)为奇函数,即f(x+1)=﹣f(﹣x+1),即f(x)=﹣f(2﹣x).当x∈(1,2)时,2﹣x∈(0,1),∴f(x)=﹣f(2﹣x)=﹣log2(2﹣x).又f(x)为偶函数,即f(x)=f(﹣x),于是f(﹣x)=﹣f(﹣x+2),即f(x)=﹣f(x+2)=f(x+4),故f(x)是以4为周期的函数.∵f(1)=0,∴当8<x≤9时,0<x﹣8≤1,f(x)=f(x﹣8)=log2(x﹣8).由log2(x﹣8)+1=0,得x=.当9<x<10时,1<x﹣8<2,f(x)=f(x﹣8)=﹣log2[2﹣(x﹣8)]=﹣log2(10﹣x),﹣log2(10﹣x)+1=0,得10﹣x=2,x=8<9(舍).综上x=,故选C.点评:本题主要考查方程的根的存在性及个数判断,函数的奇偶性与周期性的应用,抽象函数的应用,体现了化归与转化的数学思想,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.由函数y=sinx(0≤x≤π)的图象与y轴及y=﹣1所围成的一个封闭图形的面积是.考点:定积分.专题:导数的概念及应用.分析:按照定积分的几何意义,只要计算S=即可.解答:解:画图可知封闭图形的面积为S===;故答案:.点评:本题考查了定积分的几何意义,利用定积分求曲边梯形的面积,属于基础题.14.若向量=(sin(α+),1),=(4,4cosα﹣),且⊥,则sin(α+)等于﹣.考点:两角和与差的正弦函数;数量积判断两个平面向量的垂直关系.专题:计算题;三角函数的求值.分析:利用向量垂直的坐标运算可求得sin(α+)=,再利用诱导公式即可求得sin(α+).解答:解:∵向量=(sin(α+),1),=(4,4cosα﹣),且⊥,∴4sin(α+)+4cosα﹣=0,∴4(sinα+cosα)+)+4cosα=,∴2sinα+6cosα=,∴4(sinα+cosα)=,∴sin(α+)=,∴sin(α+)=sin[(α+)+π]=﹣sin(α+)=﹣,故答案为:﹣.点评:本题考查数量积判断两个平面向量的垂直关系,考查两角和与差的正弦函数及诱导公式,属于中档题.15.已知△ABC中,角A、B、C所对的边长分别为a,b,c且角A,B、C成等差数列,△ABC的面积S=,则实数k的值为.考点:余弦定理;等差数列的通项公式.专题:解三角形.分析:由题意求得B=,根据△ABC的面积S==ac•sinB=ac ①,而由余弦定理可得b2=a2+c2﹣ac,代入①可得=ac,由此解方程求得k的值.解答:解:△ABC中,∵角A,B、C成等差数列,∴2B=A+C,再由三角形内角和公式可得B=,A+C=.由于△ABC的面积S==ac•sinB=ac ①,而由余弦定理可得b2=a2+c2﹣2ac•cosB=a2+c2﹣ac,代入①可得=ac,解得k=,故答案为点评:本题主要考查余弦定理、三角形的面积公式,属于中档题.16.若函数在上有两个不同的零点,则实数a的取值范围为(﹣2,﹣1].考点:两角和与差的正弦函数;函数零点的判定定理.专题:函数的性质及应用;三角函数的图像与性质.分析:由题意可得函数g(x)=sin2x+cos2x 与直线y=﹣a在[0,]上两个交点,数形结合可得a的取值范围.解答:解:由题意可得函数g(x)=sin2x+cos2x=2sin(2x+)与直线y=﹣a在[0,]上两个交点.由于x∈[0,],故2x+∈[,],故g(x)∈[﹣1,2].令2x+=t,则t∈[,],函数y=h(t)=2sint 与直线y=m在[,]上有两个交点,如图:要使的两个函数图形有两个交点必须使得1≤﹣a<2,a∈(﹣2,﹣1]故答案为:(﹣2,﹣1].点评:本题主要考查方程根的存在性及个数判断,两角和差的正弦公式,体现了转化与数形结合的数学思想,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设数列{a n}的前n项和为S n,满足S n=a n+1﹣2n+1+1,(n∈N*),且a1=1.证明:数列为等差数列,并求数列{a n}的通项公式.考点:等差关系的确定;等差数列的性质.专题:等差数列与等比数列.分析:充分利用S n=a n+1﹣2n+1+1,(n∈N*),且a1=1结合数列的S n与a n的关系得到数列{a n}的递推公式,通过构造新数列得到数列是以1为首项,1为公差的等差数列,求出此数列的通项公式,从而求得数列{a n}的通项公式.解答:证明∵,∴=1,解得a2=4由两式相减整理得﹣﹣﹣﹣﹣﹣﹣检验知a1=1,a2=4满足∴变形可得∴数列是以1为首项,1为公差的等差数列,﹣﹣﹣﹣﹣﹣﹣﹣所以,解得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣点评:本题考查了等差数列的证明;关键利用已知得到数列{a n}的递推公式,变形后得到新的数列是以1为首项,1为公差的等差数列,属于中档题.18.设函数f(x)=2cos2x+sin2x+a(a∈R).(1)求函数f(x)的最小正周期和单调递增区间;(2)当时,f(x)的最大值为2,求a的值,并求出y=f(x)(x∈R)的对称轴方程.考点:二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的图像与性质.分析:(1)函数f(x)解析式第一项利用二倍角的余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值代入周期公式即可求出函数的最小正周期;由正弦函数的单调递增区间为[2kπ﹣,2kπ+](k∈Z)求出x的范围即为函数的递增区间;(2)由x的范围求出这个角的范围,利用正弦函数的单调性求出正弦函数的最大值,表示出函数的最大值,由已知最大值求出a的值即可,令这个角等于kπ+(k∈Z),求出x的值,即可确定出对称轴方程.解答:解:(1)f(x)=1+cos2x+sin2x+a=sin(2x+)+1+a,∵ω=2,∴T=π,∴f(x)的最小正周期π;当2kπ﹣≤2x+≤2kπ+(k∈Z)时f(x)单调递增,解得:kπ﹣≤x≤kπ+(k∈Z),则x∈[kπ﹣,kπ+](k∈Z)为f(x)的单调递增区间;(2)当x∈[0,]时,≤2x+≤,当2x+=,即x=时,sin(2x+)=1,则f(x)max=+1+a=2,解得:a=1﹣,令2x+=kπ+(k∈Z),得到x=+(k∈Z)为f(x)的对称轴.点评:此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,三角函数的周期性及其求法,以及正弦函数的单调性,熟练掌握公式是解本题的关键.19.在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC﹣1)=1.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.考点:余弦定理;三角函数中的恒等变换应用;正弦定理.专题:三角函数的求值.分析:(Ⅰ)已知等式括号中利用同角三角函数间基本关系切化弦,去括号后利用两角和与差的余弦函数公式化简,再由诱导公式变形求出cosB的值,即可确定出B的大小;(Ⅱ)由cosB,b的值,利用余弦定理列出关系式,再利用完全平方公式变形,将a+b以及b的值代入求出ac的值,再由cosB的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:(Ⅰ)由2cosAcosC(tanAtanC﹣1)=1得:2cosAcosC(﹣1)=1,∴2(sinAsinC﹣cosAcosC)=1,即cos(A+C)=﹣,∴cosB=﹣cos(A+C)=,又0<B<π,∴B=;(Ⅱ)由余弦定理得:cosB==,∴=,又a+c=,b=,∴﹣2ac﹣3=ac,即ac=,∴S△ABC=acsinB=××=.点评:此题考查了余弦定理,三角形面积公式,两角和与差的余弦函数公式,熟练掌握余弦定理是解本题的关键.20.已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.考点:平面向量数量积的运算;向量的模;同角三角函数间的基本关系;两角和与差的余弦函数;两角和与差的正弦函数.专题:平面向量及应用.分析:(1)由给出的向量的坐标,求出的坐标,由模等于列式得到cosαcosβ+sinαsinβ=0,由此得到结论;(2)由向量坐标的加法运算求出+,由+=(0,1)列式整理得到,结合给出的角的范围即可求得α,β的值.解答:解:(1)由=(cosα,sinα),=(cosβ,sinβ),则=(cosα﹣cosβ,sinα﹣sinβ),由=2﹣2(cosαcosβ+sinαsinβ)=2,得cosαcosβ+sinαsinβ=0.所以.即;(2)由得,①2+②2得:.因为0<β<α<π,所以0<α﹣β<π.所以,,代入②得:.因为.所以.所以,.点评:本题考查了平面向量的数量积运算,考查了向量的模,考查了同角三角函数的基本关系式和两角和与差的三角函数,解答的关键是注意角的范围,是基础的运算题.21.已知函数f(x)=kx,g(x)=.(Ⅰ)求函数g(x)=的单调区间;(Ⅱ)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求实数k的取值范围.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:综合题.分析:(Ⅰ)由g(x)=,知,由此能求出函数的单调区间.(Ⅱ)由,知k,令,知,由此能求出实数k的取值范围.解答:(本题满分12分)解:(Ⅰ)∵g(x)=,x>0,故其定义域为(0,+∞),∴,令g′(x)>0,得0<x<e,令g′(x)<0,得x>e,故函数的单调递增区间为(0,e),单调递减区间为(e,+∞).(Ⅱ)∵,∴k,令,又,令h′(x)=0,解得,当x在(0,+∞)内变化时,h′(x),h(x)变化如下表xh′(x)+ 0 ﹣h(x)↗↘由表知,当时函数h(x)有最大值,且最大值为,所以.点评:本题考查利用导数求闭区间上函数的最值的应用,考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是2015届高考的重点.解题时要认真审题,仔细解答.22.已知函数f(x)=xe x.(I)求f(x)的单调区间与极值;(II)是否存在实数a使得对于任意的x1,x2∈(a,+∞),且x1<x2,恒有成立?若存在,求a的范围,若不存在,说明理由.考点:利用导数研究函数的极值;函数恒成立问题;利用导数研究函数的单调性.专题:计算题.分析:(I)利用函数的求导公式求出函数的导数,根据导数求函数的单调性和极值.(II)构造函数g(x)=[f(x)﹣f(a)]/(x﹣a)=(xe x﹣ae a)/(x﹣a),x>a,求出函数导数,判断函数导函数的值与0的关系,根据导函数的单调性,求a的取值范围.解答:解:(I)由f′(x)=e x(x+1)=0,得x=﹣1;当变化时的变化情况如下表:可知f(x)的单调递减区间为(﹣∞,﹣1),递增区间为(﹣1,+∞),f(x)有极小值为f(﹣1)=﹣,但没有极大值.(II)令g(x)=[f(x)﹣f(a)]/(x﹣a)=(xe x﹣ae a)/(x﹣a),x>a,则[f(x2)﹣f(a)]/(x2﹣a)>[f(x1)﹣f(a)]/(x1﹣a)恒成立,即g(x)在(a,+∞)内单调递增这只需g′(x)>0.而g′(x)=[e x(x2﹣ax﹣a)+ae a]/(x﹣a)2记h(x)=e x(x2﹣ax﹣a)+ae a,则h′(x)=e x[x2+(2﹣a)x﹣2a]=e x(x+2)(x﹣a)故当a≥﹣2,且x>a时,h′(x)>0,h(x)在[a,+∞)上单调递增.故h(x)>h(a)=0,从而g′(x)>0,不等式(*)恒成立另一方面,当a<﹣2,且a<x<﹣2时,h′(x)<0,h(x)在[a,﹣2]上单调递减又h(a)=0,所以h(x)<0,即g′(x)<0,g′(x)在(a,﹣2)上单调递减.从而存在x1x2,a<x1<x2<﹣2,使得g(x2)<g(x1)∴a存在,其取值范围为[﹣2,+∞)点评:该题考查函数的求导,以及在解答过程中构造函数,注意第二问中自变量x的取值范围.。
河南省新野县第三高级中学高二上学期第三次月考数学(文)试题
第Ⅰ卷一、选择题(每小题5分,共60分) 1.设a ∈R ,则“a >1”是“1a<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.有下列四个命题①“若b =3,则b 2=9”的逆命题;②“全等三角形的面积相等”的否命题; ③“若c ≤1,则x 2+2x +c =0有实根”; ④“若A ∪B =A ,则A ⊆B ”的逆否命题. 其中真命题的个数是( )A .1B .2C .3D .4 3.“B =60°”是“△ABC 三个内角A 、B 、C 成等差数列”的( )A .充分而不必要条件B .充要条件C .必要而不充分条件D .既不充分也不必要条件 4.下列命题错误的是( )A .命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题为“若方程x 2+x -m =0无实根,则m ≤0”B .对于命题p :“∃x ∈R ,使得x 2+x +1<0”,则¬p :“∀x ∈R ,均有x 2+x +1≥0”C .若p 且q 为假命题,则p 、q 均为假命题D .“x =1”是“x 2-3x +2=0”的充分不必要条件5.点M 与点F (3,0)的距离比它到直线x +5=0的距离小2,则点M 的轨迹方程为( )A .y 2=-12xB .y 2=6xC .y 2=12xD .y 2=-6x6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的斜率为2,且右焦点与抛物线y 2=43x 的焦点重合,则该双曲线的离心率等于( )A.2B.3 C .2 D .2 3 7.过点P (0,1)与抛物线y 2=x 有且只有一个交点的直线有( )A .4条B .3条C .2条D .1条8.F 1、F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,P 是椭圆上任一点,从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线 9.已知f ′(x 0)=a ,则lim Δx →f (x 0+Δx )-f (x 0-3Δx )2Δx的值为( )A .-2aB .2aC .aD .-a 10.f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值是( )A .-43 B .-3 C .-1 D .311.曲线y =x 3在点P 处的切线的斜率为k ,当k =3时,P 点坐标为( )A .(-8,-2)B .(-1,-1)或(1,1)C .(2,8)D .(-12,-18)12.若可导函数f (x )的图像过原点,且满足lim Δx →f (Δx )Δx=-1,则f ′ (0)=( ) A .-2 B .-1 C .1 D .2 二、填空题(每小题5分,共20分)13.命题“∀x ∈[-2,3],-1<x <3”的否定是________.14.已知双曲线x 216-y 29=1的左、右焦点分别为F 1,F 2,过F 2的直线与该双曲线的右支交于A ,B两点,若|AB |=5,则△ABF 1的周长为________. 15.设f (x 0)=0,f ′(x 0)=12,则lim Δx →0f (x 0+3Δx )Δx =________.16.已知函数f (x )的导函数f ′(x ),且满足f (x )=3x 2+2xf ′(2),则f ′(5)=____________. 三、计算题(共70分)17.(10分)求下列函数的导数.(1)y =e x +x ln x ; (2)y =sin x -xx .18.(12分)求曲线y =f (x )=12x 2-3x +2ln x 在(3,f (3))处切线的斜率及切线方程.19.(12分)求过原点作曲线C :y =x 3-3x 2+2x -1的切线方程.20.(12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若¬p 是¬q 的充分而不必要条件,求实数m 的取值范围.21.(12分)已知点M (0,-1),F (0,1),过点M 的直线l 与曲线y =13x 3-4x +4在x =2处的切线平行,(1)求直线l 的方程;(2)求以F 为焦点,l 为准线的抛物线C 的方程.22.(12分)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存在常数k ,使得向量OP →+OQ →与AB →共线?如果存在,求k 值;如果不存在,请说明理由.高二数学(文)第三次阶段性考试答案5、[答案] C[解析] 由抛物线的定义知,点M 的轨迹是F 为焦点,直线x +3=0为准线的抛物线,其方程为y 2=12x . 6、[答案] B[解析] ∵抛物线y 2=43x 的焦点(3,0)为双曲线的右焦点,∴c =3, 又ba =2,结合a 2-b 2=c 2,得a =1,∴e =3,故选B. 7、[答案] B[解析] 过P 与x 轴平行的直线y =1与抛物线只有一个交点;过P 与抛物线相切的直线x =0,y =14x +1与抛物线只有一个交点.10、[答案] D[解析] 因为f ′(x )=x 2+2,所以f ′(-1)=(-1)2+2=3.11、[答案] B[解析] 设点P 的坐标为(x 0,y 0),∴k =3x 20=3,∴x 0=±1,∴P 点坐标为(-1,-1)或(1,1). 12、[答案] B[解析] ∵f (x )图像过原点,∴f (0)=0, ∴f ′(0)=lim Δx →f (0+Δx )-f (0)Δx =lim Δx →0 f (Δx )Δx=-1,∴选B.13、[答案] ∃x ∈[-2,3],x ≤-1或x ≥3[解析] 全称命题的否定是特称命题,将“∀”改为“∃”,将“-1<x <3”改为“x ≤-1或x ≥3”.14、[答案] 26[解析] 由双曲线的定义,知|AF 1|-|AF 2|=2a =8,|BF 1|-|BF 2|=8, ∴|AF 1|+|BF 1|-(|AF 2|+|BF 2|)=16. 又∵|AF 2|+|BF 2|=|AB |=5, ∴|AF 1|+|BF 1|=16+5=21.∴△ABF 1的周长为|AF 1|+|BF 1|+|AB |=21+5=26.18、[答案] 斜率23 切线方程y =23x -132+2ln3[解析] 由已知x >0, ∴f ′(x )=x -3+2x.曲线y =f (x )在(3,f (3))处切线的斜率为f ′(3)=23.又f (3)=92-9+2ln3=-92+2ln3.∴方程为y -(-92+2ln3)=23(x -3),即y =23x -132+2ln3.19、[答案] x +y =0或23x -4y =0[解析] 设切点为(x 0,y 0), ∵y ′=3x 2-6x +2,∴切线斜率为3x 20-6x 0+2,∴切线方程为y -y 0=(3x 20-6x 0+2)(x -x 0)∵切点在曲线C ,∴y 0=x 30-3x 20+2x 0-1,①又切线过原点,∴-y 0=(3x 20-6x 0+2)(-x 0),②由①②得0=-2x 30+3x 20-1, ∴2x 30-3x 20+1=0,因式分解得:(x 0-1)2(2x 0+1)=0,∴x 0=1或x 0=-12,∴两个切点为(1,-1),(-12,-238)∴两条切线方程为y +1=-1(x -1)和y +238=234(x +12)即x +y =0或23x -4y =0.22、[答案] (1)⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞ (2)k 值不存在[解析] (1)由已知条件,直线l 的方程为y =kx +2,代入椭圆方程整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.①∵直线l 与椭圆有两个不同的交点,∴Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0, 解得k <-22或k >22. 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.(2)设P (x 1,y 1)、Q (x 2,y 2), 则OP →+OQ →=(x 1+x 2,y 1+y 2), 由方程①,x 1+x 2=-42k1+2k 2.② 又y 1+y 2=k (x 1+x 2)+22=221+2k 2.③又A (2,0),B (0,1),∴AB →=(-2,1). ∵OP →+OQ →与AB →共线, ∴x 1+x 2=-2(y 1+y 2),④将②③代入④式,解得k =22. 由(1)知k <-22或k >22,故没有符合题意的常数k .。
河南省新野县第三高级中学高二上学期第三次月考数学(
第Ⅰ卷一、选择题(每题四个选项只有一个正确,每小题5分,共60分)1.命题“对任意x∈R,都有x2≥0”的否定为( )2.等差数列{a n}的前n项和为S n,若S17为一确定常数,则下列各式也为确定常数的是( ) A.a2+a15B.a2·a15 C.a2+a9+a16D.a2·a9·a163.若向量的起点M和终点A,B,C、,互不重合,且无三点共线,则能使向量成为空间一个基底的关系式是( ).4.已知方程表示焦点在y轴上的椭圆,则m的取值范围是()5.不等式≤0的解集为()6.已知命题p:若x>y,则—x<一y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(q);④(p) ∨q中,真命题是( )A.①③B.①③C.②③D.②④7.设O—ABC是四面体,G1是的重心,G是OG1上的一点,且OG=3GG1,若+=,则x,y,z分别为()yzx+8.以椭圆上一点和椭圆两焦点为顶点的三角形面积的最大值为1时,椭圆长轴长的最小值是( ).9.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为A 1B 1,BB 1的中点,那么直线AM 与直线BN 夹角的余弦值为( ).10.若椭圆上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8D .11.已知点P 为椭圆)0(12222>>=+b a by a x 上的点(非x 轴上的两端点),F 1,F 2为焦点,A 为△PF 1F 2的内心,PA 的延长线交F 1F 2于点B ,那么|BA |:|AP |的值为( ).12.设正实数x ,y ,z 满足04322=-+-z y xy x .则当取得最大值时,的最大值为( )A .0B .1C .D .3 二、填空题(每小题5分,共20分)13.已知0)2)(2(22=+-+-n x x m x x 的4个根组成首项为的等差数列,则|m —n |=.14.已知a >0,x ,y 满足约束条件 若z=2x+y 的最小值为1,则a =.15.如图,正方体ABCD —A 1B 1C 1D 1的棱长为4,M ,N ,E ,F 分别为A 1D 1,A 1B 1,C 1D 1,B 1C 1的中点,平面AMN 与平面EFBD 间的距离为 .16.已知椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连结AF ,BF .若|AB |=10,|AF |=6,,则椭圆C 的离心率e=.三、解答题(共70分)17.(10分)已知命题p :关于x 的方程052242=++-a ax x 的解集至多有两个子集,命题q :≤x ≤1+m ,m >0,若是的必要不充分条件,求实数m 的取值范围.18.(12分)在直三棱柱中,AA 1=AB=BC=3,AC=2,D 是AC 的中点.(1)求证:B 1C ∥平面A 1BD ;(2)求点B 1到平面A 1BD 的距离;(3)求二面角A 1-DB-B 1夹角的余弦值.19.(12分)的内角A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求B ;(2)若b=2,求面积的最大值.20.(12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,.(1)求数列{a n }的通项公式;(2)设n n a a a b 32313log log log +++= ,求数列的前n 项和.21.(12分)如图,已知矩形ABCD 中,AB=2AD=2,O 为CD 的中点,沿AO 将三角形AOD 折起,使DB=.(1)求证:平面AOD ⊥平面ABCO ;(2)求直线BC 与平面ABD 所成角的正弦值.22.(12分)已知椭圆C 1:,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,,求直线AB 的方程.高二数学(理)第三次阶段性考试答案二、13、14、15、16、三、17、18、19、20、21、22、。
【数学】河南省新野县第一高级中学2019-2020学年高二上学期第一次月考试题
所以
所以
所以
所以 .………………6分
(2)因为数列 是首项为1,公比为2的等比数列,
所以
因为 ,
所以 .
设数列 的前 项和为 ,
则
所以数列 的前 项和为 ………………12分
19.
【详解】(1)设等差数列 的公差为 ,则 ,
由 成等比数列,可得 ,即 ,
整理,可得 .
由 ,可得 ,
∴ .………………6分
(1)求{an}和{bn}的通项公式;
(2)设 ,求数列{cn}的前n项和.
22.(满分12分)已知数列{an}的前n项和为Sn,且 成等差数列.
(1)求 , ;
(2)证明: .
参考答案
三、选择题:
1.C 2.A 3.D 4.C 5. D6.D7. C 8.B 9.C 10.C 11.D 12.C
四、填空题:
(2)设 ,求数列{bn}的前n项和Tn.
20.(满分12分)已知各项都是正数的数列{an}的前n项Байду номын сангаас为 , , .
(1)求数列{an}的通项公式;
(2)设数列{bn}满足: ,数列 的前n项和 ,求证: .
(3)若 对任意 恒成立,求 的取值范围.
21.(满分12分)设数列{an}的前n项和为Sn,且 ,在正项等比数列{bn}中 ,
所以 ,
于是 ,解得 或 (舍)
所以 = 。………………6分
(2)由以上结论可得,
所以其前n项和
=
=
- 得, =
=
所以 = 。………………12分
22.
【详解】(1)由1, , 成等差数列,得 ,①
特殊地,当n=1时, ,得 =1.
河南省新野县第一高级中学2016-2017学年高二下学期第一次月考英语试题
2016-2017年高二下期第一次月考英语试题第I卷(共100分)第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C、和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AHiking can be a pleasant as well as a not so pleasant adventure. You will have to take a number of measures so that your hike is a pleasant experience.Hiking Tip 1 — Start EarlyMost hiking experts hold the opinion that it is rather sensible to start hiking at 3 or 4 in the morning, even if it is a full-day hike. Since most hikes are conducted at high altitudes, starting off early will make sure that you are back down during the afternoon hours.Hiking Tip 2 — Be LightSince we are anyway talking about the load you will carry, another important hiking tip is to carry fewer loads. If you are going on a hiking trail on a familiar path, you will need reduced survival items, as chance that you will get lost or hurt yourself on these hiking trails is little.Hiking Tip 3 — Reduce the Number of BreaksOnce you start your hike, you should make sure you do not take too many breaks. You will need to maintain a consistent speed and minimize the number of stops which you take. Speed and rest stops help distinguish an inexperienced hiker from an expert hiker. An inexperienced hiker will have bursts of speed and energy and it will be followed by rest stops. This results in slowing down the general speed.Hiking Tip 4 — Tip for ChildrenDo you plan to take your kids along with you on the hiking trail? Well, then you must be looking for hiking tips for kids! You will have to educate them about nature and also get them into an exercise routine before taking them on a hike. Kids have a tendency to run in the beginning. This exhausts them and they have to be carried, which is certainly not the best of ideas.1.You are advised to start hiking early in order to ______.A.finish your hiking in a day B.enjoy your hiking completelyC.avoid getting tired D.get back down early2.What should you do if you are going hiking on an unfamiliar trail?A.carry enough survival items. B.keep a high speed.C.start hiking in the afternoon. D.carry fewer loads. 3.According to the text, inexperienced hikers ______.A.don’t keep a consistent speed B.will easily get lostC.choose well-established paths D.d on’t stop to rest4.If you want to take a kid for hiking, you should ______.A.make sure of his safety B.prepare him for itC.educate him about hiking D.give him some tipsBMy 16-year-old son, Anton, had gone to the local swimming hole.Most of the kids swim there, and there are plenty of rocks for them to use as safe harbors, so I had no fears for his safety.Still, the firefighter's first words "You need to come up here to the Stillwater River" made me catch my breath, and his follow-up words gave me relief: “ Your son is OK.”When I got to the river, I immediately saw the fire truck, ambulance and Anton, wrapped with a towel about his shoulders, sitting quietly on a low platform of the fire engine. I hurried over to him."You OK?"I asked.”Ye ah," was all he said. But my eyes begged for an explanation, I didn't get it from my son, however, who tends to play his cards close to his vest.The story was this: A woman was being swept under water. Hearing the cries, Anton and his friend Tyler, without hesitation, swam out to her, and brought her safely to shore.In an age in which the word "hero" is broadcast with abandon and seemingly applied to anyone who make it through the day, I realized the real thing in my son. The teens are stubborn and self-centred, but that didn't mean they have no desire to do good. Still shocked by my son's daring, I drove him home. Along the way, I tried to dig out some more information from him—but he had precious little to say. The only words he said were,“What's for supper?”I spent some time alone that evening, thinking about the tragedy that might have been. The next morning, when Anton got up, I half expected him to tell me thestory.But all he did was toast some bread, pull himself together, and head for the door to start a new day. Watching from the window,1 was reminded that still water often runs deep.5.Why did the mother allow her son to swim there?A.He was an excellent swimmer.B.The water of the river is shallow.C.He was old enough to swim.D.The rocks can be of help if there's danger.6.The underlined part "who tends to play his cards close to his vest" probably means________.A.Anton is a boy fond of swimming with other kidsB.Anton is unwilling to tell others what he thinksC.Anton always has a desire to help othersD.Anton seldom changes his mind7.In the mother's eyes, what her son did was________.A.dangerous but interesting B.unexpected and courageousC.meaningful but difficult D.awful and absurd8.What might be the best title for the passage?A.My Son, My Hero B.Anton, A Silent BoyC.A Good Deed D.A Proud MotherCThere are an extremely large number of ants worldwide. Each individual (个体的) ant hardly weigh anything, but put together they weigh roughly the same as all of mankind. They also live nearly everywhere, except on frozen mountain tops and around the poles. For animals their size, ants have been astonishingly successful, largely due to their wonderful social behavior.In colonies (群体) that range in size from a few hundred to tens of millions, they organize their lives with a clear division of labor. Even more amazing is how they achieve this level of organization. Where we use sound and sight to communicate, ants depend primarily on pheromone (外激素), chemicals sent out by individuals and smelled or tasted by fellow members of their colony. When an ant finds food, it produces a pheromone that will lead others straight to where the food is. When an individual ant comes under attack or is dying, it sends out an alarm pheromone to warn the colony to prepare for a conflict as a defense unit.In fact, when it comes to the art of war, ants have no equal. They are completely fearless and will readily take on a creature much larger than themselves, attacking in large groups and overcoming their target. Such is their devotion to the common good of the colony that not only soldier ants but also worker ants will sacrifice their lives to help defeat an enemy.Behaving in this selfless and devoted manner, these little creatures have survived on Earth, for more than 140 million years, far longer than dinosaurs. Because they think as one, they have a collective (集体的) intelligence greater than you would expect from its individual parts.9.We can learn from the passage that ants are ____________.A.not willing to share foodB.not found around the polesC.more successful than all other animalsD.too many to achieve any level of organization10.Ants can use pheromones for______.A.escape B.communicationC.warning enemies D.arranging labor11.What does the underlined expression "take on" in Paragraph 3 mean?A.Accept. B.Employ. C.Play with. D.Fight against.DWe all know what a brain is. A doctor will tell you that the brain is the organ of the body in the head. It controls our body’s functions, movements, emotions and thoughts. But a brain can mean so much more.A brain can also simply be a smart person. If a person is called brainy, she is smart and intelligent. If a family has many children but one of them is super smart, you could say “She’s the brains in the family.” And if you are the brains behind something, you are responsible for developing or organizing it. For example, Bill Gates is the brains behind Microsoft.Brain trust is a group of experts who give advice. Word experts say the phrase “brain trust” became popular when Franklin D. Roosevelt first ran for president in 1932. Several professors gave him advice on social and political issues facing the U.S. These professors were called his “brain trust.”These ways we use the word “brain” all make sense. But other ways we use the word are not so easy to understand. For example, to understand the next brainexpression, you first need to know the word “d r ain”. As a verb, to drain means to remove something by letting it flow away. So a brain drain may sound like a disease where the brain flows out the ears. But, a brain drain is when a countr y’s most educated people leave their countries to live in another. The brains are, sort of, draining out of the country.However, if people are responsible for a great idea, you could say they brainstormed it. Here, brainstorm is not an act of weather. It is a process of thinking creatively about a complex topic. For example, business leaders may use brainstorming to create new products, and government leaders may brainstorm to solve problems.If people are brainwashed, it does not mean their brains are nice and clean. To brainwash means to make someone accept new beliefs by using repeated pressure in a forceful or tricky way. Keep in mind that brainwash is never used in a positive way.12.Why did Roosevelt successfully win the election according to the passage?A.Because word experts were popular.B.Because he got his brain trust.C.Because he was smart at giving advice.D.Because he was the brains behind Americans.13.According to the text, if you’re the CEO of Bai Du you can b e called_______ . A.the organ of Bai Du B.the brain drain of Bai DuC.the brains behind Bai Du D.Bai Du’s brain trust14.Which of the following expressions is always used in a negative way?A.Brainstorm B.Brain trust C.Brainwash D.Brain drain15.What’s the main idea of this article?A.The origin of the word “brain”.B.The word “brain” and its stories.C.What is the brain. D.The difference between “brain trust” and “brainwash”.第二节(共5小题;每小题2分,满分10分。
河南省新野县第一高级中学2016_2017学年高二数学下学期第一次周测习题理
2016—2017学年高二下期第一次周考数学(理科)一、选择题:(本大题共12小题,每小题5分,共60分)1.下列表述正确的是 ( ) ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A .①②③;B .②③④;C .②④⑤;D .①③⑤.2.某汽车启动阶段的位移函数为s(t)=3225t t -,则汽车在t=2时的瞬时速度为 ( ) A .-4B .2C .4D .-23.已知函数αsin cos +=x x f ,(α为常数)求)(1f ' ( )A. 1sin -1cosB. 1sin 1cos --C. 1sin -D.1cos 1sin +4.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )(A)假设三内角都不大于60度; (B) 假设三内角都大于60度; (C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。
A.)(20x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f ' 6.过点(-1,0)作抛物线21y x x =++的切线,则其中一条切线为 ( ) A. 220x y ++= B. 330x y -+= C. 10x y ++=D. 10x y -+=7.某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时 命题也成立. 现已知当7=n 时该命题不成立,那么可推 ( ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立D .当n=8时该命题成立8.用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n”(+∈N n ) 时,从 “1+==k n k n 到”时,左边应增添的式子是 ( )A .12+kB .)12(2+kC .112++k k D .122++k k 9.P 为双曲线22221(0)x y a b a b=>-、上一点,21,F F 为焦点,如果 01202115,75=∠=∠F PF F PF ,则双曲线的离心率为 ( )C. 10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A B C .2 D 1 11. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( )A .(315,315-) B.(315,0) C.(0,315-) D.(1,315--)13.已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,则点M 的坐标为 .14.已知点P 是抛物线2y = 4x 上的动点,A(1,0),B(4,2),则| PA|+| PB|的最小值是________. 15.曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 . 16.设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ;当n>4时,()f n = (用含n 的数学表达式表示)三、解答题:(本大题共6题,共70分。
河南省新野县第一高级中学高二上学期第三次月考生物试
2016—2017学年高二第三次月考生物试题第Ⅰ卷(选择题共60分)一、选择题(共40题,每题1.5分,共60分)1.右图是肌细胞与内环境的物质交换关系。
X、Y、Z表示三种细胞外液,下列叙述错误的是()A.Y中O2进入肌细胞至少要经过3层细胞膜结构B.肌细胞的代谢产物可能导致X的pH降低C.毛细血管壁细胞的内环境是X和YD.X、Y、Z理化性质的稳定只依赖于神经调节2.下列有关内环境的说法中不正确的是()A.溶液浓度越大,渗透压越高,反过来,溶液浓度越小,渗透压越低B.正常人血浆的PH维持在7.35-7.45之间C.人体的温度一般维持在37℃左右D.血浆中含量最多的成分是蛋白质3.肌肉注射时,药液进人人体后经过的一般途径是( )A.血浆→组织液→淋巴→血浆→靶细胞B.淋巴→血浆→组织液→血浆→靶细胞血浆→组织液→靶细胞C.组织液淋巴D.组织液→血浆→组织液→靶细胞4.稳态被破坏后,细胞新陈代谢会紊乱的根本原因是( )A.温度条件不能满足细胞新陈代谢的正常要求B.渗透压条件不能满足细胞新陈代谢的正常要求C.细胞内复杂的酶促反应受严重影响D.酸碱度条件不能满足细胞新陈代谢的正常要求5.下列各组化合物中,全是内环境成分的一组是( )A.CO2、麦芽糖、H+、尿素B.呼吸氧化酶、抗体、激素、H2OC.Na+、O2、葡萄糖、血浆蛋白D.Ca2+、载体、氨基酸6.在一条离体神经纤维的中段施加电刺激,使其兴奋。
下图表示刺激时膜内外电位变化和所产生的神经冲动传导方向(横向箭头表示传导方向),其中正确的是( )7.图中箭头表示神经冲动的传导方向,其中表示不准确的是( )8.美国研究人员发现了一个有趣的现象,肥胖可能与大脑中多巴胺有关。
多巴胺是一种重要的神经递质,在兴奋传导中起着重要的作用。
下列有关兴奋传导的叙述中,正确的是( )A .兴奋只能以局部电流的形式在多个神经元之间单向传递B .静息电位的产生和维持是由于Na+内流引起的C .神经递质作用于突触后膜后,将使下一个神经元兴奋D .突触前膜释放多巴胺与高尔基体、线粒体有关 9.切除某动物的垂体后,血液中( ) A .生长激素增加,甲状腺激素也增加B .生长激素减少,甲状腺激素增加C .生长激素增加,甲状腺激素减少D .生长激素减少,甲状腺激素也减少10.下列各组病症中,由同一种激素分泌紊乱所引起的病症是( ) A .糖尿病和色盲症 B .侏儒症和巨人症C .呆小症和侏儒症D .巨人症和大脖子病11.与神经调节相比,体液调节的特点是( ) A .调节准确、快速B .调节因子都由内分泌腺产生的C .通过体液运送调节信息物质D .调节作用范围局限12.遇海难而漂浮在海面的人,因缺乏淡水,此人( )A .血浆渗透压降低,抗利尿激素减少B .血浆渗透压升高,抗利尿激素减少C .血浆渗透压降低,抗利尿激素增加D .血浆渗透压升高,抗利尿激素增加13.下列关于抗利尿激素分泌的叙述中,正确的是( )A .喝水多,抗利尿激素释放多B .喝水少,抗利尿激素释放多C .喝水少,抗利尿激素释放少D .出汗多,抗利尿激素释放少+ + + + + + + + + - - - - + + +- - - + + +- - - + + ++ + + - - - + + +- - - + + + - - - - - - + + + - - - - - - + + + - - - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + +- - - + + + - - -ABCD14.类风湿性关节炎、风湿性心脏病、系统性红斑狼疮等一类疾病是 ( ) A.病原体感染机体而引发的疾病,有传染性B.机体免疫功能不足或缺乏而引发的疾病,无传染性C.人体免疫系统对自身的组织和器官造成损伤而引发的疾病D.已免疫的机体再次接受相同物质的刺激而引发的过敏反应15.接种卡介苗一段时间后,血液中就会出现结核杆菌抗体,这种抗体的结构单位和产生抗体的细胞及细胞器依次是 ( )A.氨基酸、浆细胞、核糖体B.葡萄糖、效应T细胞、高尔基体C.氨基酸、效应T细胞、高尔基体D.核苷酸、浆细胞、核糖体16.右图是细胞免疫中x细胞与靶细胞密切接触后的杀伤作用过程示意图,则下列细胞中可以产生x细胞是( )A.B细胞B.T细胞C.浆细胞D.效应T细胞17.下列选项中(用燕麦胚芽鞘做实验),可使其发生向右侧弯曲生长的是( )18.棉花植株长到一定高度时,棉农进行去除顶芽处理,以提高棉花产量。
「精品」高二数学上学期第三次月考试题理(含解析)
河南省南阳市第一中学2017-2018学年高二上学期第三次月考数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若抛物线的准线的方程是,则实数的值是()A. B. C. 8 D.【答案】B【解析】抛物线的标准方程是,则其准线方程为,所以,故选A.2. 不等式的解集是()A. B. C. D.【答案】D【解析】不等式等价于故答案为:D。
3. 夏季高山上气温从山脚起每升高100米降低0.7℃,已知山顶的气温是14.1℃,山脚的气温是26℃.那么,此山相对于山脚的高度是()A. 1500米B. 1600米C. 1700米D. 1800米【答案】C..................4. 等差数列共有项,若前项的和为200,前项的和为225,则中间项的和为()A. 50B. 75C. 100D. 125【答案】B【解析】设等差数列前m项的和为x,由等差数列的性质可得,中间的m项的和可设为x+d,后m项的和设为x+2d,由题意得2x+d=200,3x+3d=225,解得x=125,d=﹣50,故中间的m项的和为75,故选B.5. 满足的恰有一个,则的取值范围是()A. B. C. D. 或【答案】B【解析】根据正弦定理得到画出和的图像,使得两个函数图象有一个交点即可;此时的取值范围是。
故选B.6. 已知等比数列中,,,则的值为()A. 2B. 4C. 8D. 16【答案】A【解析】由等比数列的性质得到又因为故得到原式等于代入上式得到故答案为:A。
7. 设满足约束条件且的最小值为7,则()A. B. 3 C. 或3 D. 5或【答案】B【解析】试题分析:根据题中约束条件可画出可行域如下图所示,两直线交点坐标为:,又由题中可知,当时,z有最小值:,则,解得:;当时,z无最小值.故选B考点:线性规划的应用8. 已知为坐标原点,是椭圆的左焦点,分别为的左、右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为()A. B. C. D.【答案】A【解析】试题分析:如图取与重合,则由直线同理由,故选A.考点:1、椭圆及其性质;2、直线与椭圆.【方法点晴】本题考查椭圆及其性质、直线与椭圆,涉及特殊与一般思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 如图取与重合,则由直线同理由.9. 钝角三角形的三边为,其最大角不超过,则的取值范围是()A. B. C. D.【答案】B【解析】钝角三角形的三边分别是a,a+1,a+2,其最大内角不超过120°,∴,解得,故选B.点睛:在判断三角形的形状时,若三边长均含有参数,一定要考虑构成三角形的条件,即任意两边之和大于第三边,这也是本题的易错点.10. 已知四边形的对角线与相交于点,若,则四边形面积的最小值为()A. 21B. 25C. 26D. 36【答案】B【解析】设点A到边BD的距离为h.任意四边形ABCD中,S△AOB=4,S△COD=9;∵S△AOD=OD•h,S△AOB=OB•h=4,∴S△AOD=OD•=4×,S△BOC=OB•=9×;设=x,则S△AOD=4x,S△BOC=;∴S四边形ABCD=4x++13≥2•+13=12+13=25;故四边形ABCD的最小面积为25.故选B.11. 已知为抛物线上一个动点,直线,则到直线的距离之和的最小值为()A. B. 4 C. D.【答案】A【解析】试题分析:将P点到直线l1:x=-1的距离转化为P到焦点F(1,0)的距离,过点F作直线l2垂线,交抛物线于点P,此即为所求最小值点,∴P到两直线的距离之和的最小值为=,故选A.考点:本题考查了直线和圆锥曲线的位置关系点评:解题时要认真审题,注意抛物线定义及点到直线距离公式的灵活运用.12. 已知等差数列有无穷项,且每一项均为自然数,若75,99,235为中的项,则下列自然数中一定是中的项的是()A. 2017B. 2019C. 2021D. 2023【答案】B【解析】因为数列是等差数列,而75,99,235,是数列中的三项,故得到每两项的差一定是公差的整数倍,99-75=24,235-75=160,235-99=136.即24,160,136,均是公差的整数倍,可求这三个的最大公约数8,故得到公差为8.首项为3,2019-3=2016,2016是8的252倍,而其它选项减去3之后均不是8的倍数.故答案为:2019.故答案为:B。
河南省新野县高二数学上学期第三次月考试题文
y ,整理得 k2x2﹣( 2k2+4)
由抛物线的定义可知, |AB|=x 1+x2+p=4+ =5,解得 k=± 2;
7/8
( 3)设 P( x, y),则 P 到直线 2x﹣ y+4=0 距离为
d=
=
=
∴ y=1 时, P 到直线 2x﹣ y+4=0 距离的最小值为
,此时 P( 0.25 , 1).
.
14.过点 (2,0) 且与曲线
相切的直线方程为
.
15.记不等式组
所表示的平面区域为 D.若直线 y=a( x+1)与 D 有公共点,则 a 的取值
范围是
.
16.双曲线
(a> 0, b> 0)的渐近线为正方形 OABC的边 OA, OC所在的直线,点 B 为
该双曲线的焦点.若正方形 OABC的边长为 2,则 a=
22.解: (Ⅰ)∵点 M到
,
的距离之和是 4,
∴M的轨迹 C 是长轴长为 4,焦点在 x 轴上焦距为
的椭圆,其方程为
(Ⅱ)将 整理得
,代入曲线 C的方程, .①
设 P( x 1, y 1), Q( x2, y2),由方程①,得
,
又
若
,则 x1x2+y1y 2=0,
将②、③代入上式,解得
.
又因 k 的取值应满足△> 0,即 4k2﹣ 1> 0( * ),
3/8
21.(本小题满分 12 分) 已知直线 l 经过抛物线 y2=4x 的焦点 F,且与抛物线相交于
A、 B 两点.
( 1)若 |AF|=4 ,求点 A 的坐标;
( 2)设直线 l 的斜率为 k,当线段 AB的长等于 5 时,求 k 的值. ( 3)求抛物线 y2=4x 上一点 P 到直线 2x﹣ y+4=0 的距离的最小值.并求此时点
河南省南阳市新野县第一高级中学2016-2017学年高二上学期第一次月考数学试题 含答案
数学试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知数列{}na 的前n 项和()()1159131721143n nSn -=-+-+-++--,则10S =( )A .-20B .-21C .20D .212.式子111112233420152016++++⨯⨯⨯⨯的值是( ) A .12015 B .12016 C .20142015 D .201520163.已知数列{}na 为等差数列,且1713a aa π++=,则()212tan a a +的值为()A 3B .3-C .3±D .34.已知等差数列{}na 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .975.已知正项等比数列{}na 中,其前n 项和为nS ,若262,32aa ==,则100S =( )A .9921- B .10021+C .10121- D .10021-6.等比数列{}na 中,452,5aa ==,则数列{}lg n a 的前8项和等于( )A .6B .5C .4D .37。
设等差数列{}na 的前n 项和为nS ,已知1289,2aa a =-+=-,当n S 取得最小值时,n =( )A .5B .6C .7D .8 8。
设等比数列{}na 满足132410,5a aa a +=+=,则12n a a a 的最大值为( )A .61B .62C .63D .649。
中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地."则该人最后一天走的路程为( ) A .24里 B .12里 C .6里 D .3里10.已知函数()f x 的部分对应值如表所示,数列{}na 满足11a=,且对任意*n N ∈,点()1,n n a a +都在函数()f x 的图象上,则2016a 的值为()A .1B .2C .3D .4 11.已知数列{}na 满足12430,3n n aa a ++==-,则{}n a 的前10项和等于( )A .()10613--- B .()101139-- C .()10313-- D .()10313-+12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016~2017学年高二第三次月考数 学 试 题 (文)一、选择题(共12小题,每小题5分,满分60分)1.函数y =x 2+x 在x =1到x =1+△x 之间的平均变化率为( )A .△x +2B .2△x +(△x )2C .△x +3D .3△x +(△x )22.在△ABC 中,若(a +c )(a ﹣c )=b (b +c ),则∠A=( )A .150°B .120°C .90°D .60°3.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .97B .98C .99D .1004.若()f x =2'(1)xf +x 2,则'(0)f 等于( )A .2B .0C .﹣2D .﹣45.已知曲线C 的方程为122=+by a x ,则“a >b ”是“曲线C 为焦点在x 轴上的椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域上运动,则z =y ﹣x 的取值范围是( )A .[﹣2,﹣1]B .[﹣2,1]C .[﹣1,2]D .[1,2]7.不等式x 2﹣2x +m >0在R 上恒成立的必要不充分条件是( )A .m >2B .0<m <1C .m >0D .m >18.在锐角△ABC 中,角A , B ,C 所对的边分别为a ,b ,c ,若322sin =A ,a =2,2=∆ABC S ,则b 的值为( )A .3B .223 C .22 D .329.在平面直角坐标系中,若不等式组⎪⎩⎪⎨⎧≥+-≤≤≥+012122y ax x y x (a 为常数)表示的区域面积等于1,则抛物线y =ax 2的准线方程为( )A .y =﹣B .x =﹣C .x =﹣D .y =﹣10.设F 为抛物线C :y 2=4x 的焦点,曲线y =xk(k >0)与C 交于点P ,PF ⊥x 轴,则k=( )A .B .1C .D .211.设F 1和F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则△F 1PF 2的面积是( )A .1B .C .2D .12.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(﹣1,3)B .(﹣1,)C .(0,3)D .(0,)二.选择题(共4小题,每题5分)13.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 14.过点(2,0)且与曲线1y x=相切的直线方程为 . 15.记不等式组⎪⎩⎪⎨⎧≤+≥+≥43430y x y x x 所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是 .16.双曲线12222=-by a x (a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a = . 三.解答题(共6小题) 17.(本小题满分10分)已知命题p :方程012=++mx x 有两个不相等的负实根,命题q :方程01)2(442=+-+x m x 无实根,(1)若命题p 为真命题,求实数m 的取值范围;(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m 的取值范围.18.(本小题满分12分)已知f (x )=.(1)若f (x )>k 的解集为{x |x <﹣3或x >﹣2},求k 的值; (2)若对任意x >0,f (x )≤t 恒成立,求实数t 的取值范围.19.(本小题满分12分)等差数列{a n }中,已知前n 项和为n S ,且a 2=8,S 6=66 (1)求数列{a n }的通项公式a n ; (2)设b n =,T n =b 1+b 2+b 3+…+b n ,求T n .(3)设n n n a c 2=,求数列{}n c 的前n 项和n P .20.(本小题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b+c=2acosB . (Ⅰ)证明:A=2B (Ⅱ)若△ABC 的面积S=,求角A 的大小.21.(本小题满分12分)已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)设直线l的斜率为k,当线段AB的长等于5时,求k的值.(3)求抛物线y2=4x上一点P到直线2x﹣y+4=0的距离的最小值.并求此时点P的坐标.22.(本小题满分12分)在直角坐标系x O y中,点M到点F1、F2的距离之和是4,点M的轨迹是C,直线l:与轨迹C交于不同的两点P和Q.(Ⅰ)求轨迹C的方程;(Ⅱ)是否存在常数k,使?若存在,求出k的值;若不存在,请说明理由.高二数学(文科)参考答案1-5 CBBDC 6-10 BCADD 11-12 AA 8.【解答】∵在锐角△ABC 中,sinA=,S △ABC =,∴bcsinA=bc =,∴bc=3,①又a=2,A 是锐角, ∴cosA==,∴由余弦定理得:a 2=b 2+c 2﹣2bccosA ,即(b+c )2=a 2+2bc (1+cosA )=4+6(1+)=12, ∴b+c=2②由①②得:,解得b=c=.故选A .12.【解答】∵双曲线两焦点间的距离为4,∴c=2,当焦点在x 轴上时,可得:4=(m 2+n )+(3m 2﹣n ),解得:m 2=1,∵方程﹣=1表示双曲线,∴(m 2+n )(3m 2﹣n )>0,可得:(n+1)(3﹣n )>0, 解得:﹣1<n <3,即n 的取值范围是:(﹣1,3). 当焦点在y 轴上时,可得:﹣4=(m 2+n )+(3m 2﹣n ),解得:m 2=﹣1, 无解. 故选:A二.填空题13. 64 14.20x y +-=. 15. [,4] 16. 216.【解答】∵双曲线的渐近线为正方形OABC 的边OA ,OC 所在的直线,∴渐近线互相垂直,则双曲线为等轴双曲线,即渐近线方程为y=±x , 即a=b ,∵正方形OABC 的边长为2,∴OB=2,即c=2,则a 2+b 2=c 2=8,即2a 2=8,则a 2=4,a=2, 故答案为:217.解:(1)若命题p 为真,则⎪⎩⎪⎨⎧>=<-=+>∆010021211x x m x x ,解得2>m∴若命题p 为真命题,求实数m 的取值范围是()+∞,2; (2)若“p∧q”为假命题,“p∨q”为真命题,则p ,q 为一个真命题,一个假命题,若关于x 的方程4x 2+4(m-2)x+1=0无实根,则判别式△2=16(m-2)2﹣4×4×1<0, 即解得1<m <3.若p 真q 假,则⎩⎨⎧≥≤>312m m m 或,解得3≥m ,若p 假q 真,则⎩⎨⎧<<≤312m m ,得1<m ≤2,综上,实数m 的取值范围是(][)+∞,32,1 .18.解:(1)∵f (x )>k ,∴>k ;整理得kx 2﹣2x+6k <0,∵不等式的解集为{x|x <﹣3或x >﹣2},∴方程kx 2﹣2x+6k=0的两根是﹣3,﹣2; 由根与系数的关系知, ﹣3+(﹣2)=, 即k=﹣; (2)∵x >0,∴f (x )==≤=,当且仅当x=时取等号;又∵f (x )≤t 对任意x >0恒成立, ∴t ≥,即t 的取值范围是[,+∞).19.解:(1)设等差数列{a n }的公差为d ,则有 解得:a 1=6,d=2∴a n =a 1+d (n ﹣1)=6+2(n ﹣1)=2n+4 …(3分) (2)b n ===﹣∴T n =b 1+b 2+b 3+…+b n =﹣+﹣+…+﹣=﹣=(7分)(3))42(22+==n a c nn n n ,则n n n n c c c c P 2)42(210282632321++⋯⋯+⨯+⨯+⨯=+⋯⋯+++= ① 14322)42(21028262+++⋯⋯+⨯+⨯+⨯=n n n P ②①-②得4)1(22)2(82122)2()12(2122)42(2122122)42(222222122222131)21(21321+--=+--+=+--+=+--⨯+=+-⨯+⋯⋯+⨯+⨯+=-++++-+-+-n n n n n P n n n n n n n n n n4)1(22-+=+n P n n …(12分)20.(Ⅰ)证明:∵b+c=2acosB ,∴sinB+sinC=2sinAcosB , ∴sinB+sin (A+B )=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB ∴sinB=sinAcosB ﹣cosAsinB=sin (A ﹣B ) ∵A ,B 是三角形的内角, ∴B=A ﹣B , ∴A=2B ; (Ⅱ)解:∵△ABC 的面积S=,∴bcsinA=,∴2bcsinA=a 2,∴2sinBsinC=sinA=sin2B , ∴sinC=cosB ,∴B+C=90°,或C=B+90°, ∴A=90°或A=45°. 21.解:由y 2=4x ,得p=2,其准线方程为x=﹣1,焦点F (1,0).设A (x 1,y 1),B (x 2,y 2). (1)|AF|=x 1+,从而x 1=4﹣1=3.代入y 2=4x ,得y=±2.所以点A 为(3,2)或(3,﹣2)(2)直线l 的方程为y=k (x ﹣1),与抛物线方程联立,消去y ,整理得k 2x 2﹣(2k 2+4)x+k 2=0(*),因为直线与抛物线相交于A 、B 两点,则k ≠0,设其两根为x 1,x 2,则x 1+x 2=2+.由抛物线的定义可知,|AB|=x 1+x 2+p=4+=5,解得k=±2;(3)设P (x ,y ),则P 到直线2x ﹣y+4=0距离为d===∴y=1时,P 到直线2x ﹣y+4=0距离的最小值为,此时P (0.25,1).22.解:(Ⅰ)∵点M到,的距离之和是4,∴M的轨迹C是长轴长为4,焦点在x轴上焦距为的椭圆,其方程为.(Ⅱ)将,代入曲线C的方程,整理得.①设P(x1,y1),Q(x2,y2),由方程①,得,.②又.③若,则x1x2+y1y2=0,将②、③代入上式,解得.又因k的取值应满足△>0,即4k2﹣1>0(*),将代入(*)式知符合题意.。