比和比例应用题 经典练习题

合集下载

六年级比和比例应用题

六年级比和比例应用题

六年级比和比例应用题1.一班和二班的人数比为5:6.将二班的10名同学调到一班后,一班和二班的人数比变为6:5.求两个班原来各有多少人?2.甲乙两校原有图书的比为7:5.如果甲校给乙校600本,那么甲乙两校图书之比变为1:2.甲校原有图书多少本?3.某工厂有甲乙两个车间,甲车间与乙车间的人数之比为3:5.从甲车间调150人去乙车间后,甲乙车间的人数之比变为3:7.原来两个车间各有多少人?4.XXX读一本书,已读和未读的页数之比为1:5.如果再读30页,则已读和未读的页数之比变为3:5.这本书共有多少页?5.甲乙两个学校原有篮球的个数比为2:1.如果甲校给乙校4个,甲乙两校的篮球个数比变为4:3.原来甲校有篮球多少个?6.修一条路,已修和未修的千米数的比为3:5.如果再修12千米,则已修和未修的千米数之比变为9:11.这条路长多少千米?7.甲乙两袋水果的重量比为4:1.从甲袋中取出130千克放入乙袋后,甲乙两袋水果的重量比变为7:5.两袋水果的重量和是多少千克?8.两个相同的瓶子装满酒精溶液,甲瓶中酒精与水的体积之比为3:1,乙瓶中酒精和水的体积之比为5:2.如果把两瓶酒精溶液混合,混合后的溶液中酒精和水的体积之比是多少?9.甲乙两班人数相同,甲班男女生人数之比为3:4,乙班男女生的人数之比为4:5.求甲乙两班总人数中男女生的人数之比是多少?10.两个同样的中各装满盐水,第一个中盐与水的比为2:3,第二个中盐与水的比为3:4.把两个中的盐水都倒入另一个大的中,求混合后的溶液中盐与水的比。

11.甲乙两车同时从A、B两地相向而行,当甲到达B时,乙距A还有10千米,当乙到达A时,甲超过B20千米。

A、B相距多少千米?12.师徒两人同时开始加工同样多的零件,当师傅完成任务时,徒弟还有30个没完成,当徒弟完成任务时,师傅可以超额完成50个。

这批零件共有多少个?13.甲乙丙三人同时从A向B跑,当甲跑到B时,乙离B还有25米,丙离B还有40米。

比和比例应用题 经典练习题

比和比例应用题    经典练习题

比和比例应用题经典练习题
例1.某市的第三纺织厂有252人,男职工和女职工的比是2:7,这个纺织厂男、女职工各有多少人?
例2.一种火药是由硫磺、硝石和木炭按照一定的比例配制而成,其中硫磺、硝石和木炭的比是2:3:4,。

现在要配制这种火药3600千克,三种原料各需要多少千克?如果现在有80千克木炭,需要硫磺和硝石各多少千克?
例3.某农场有水田102公顷,旱田54公顷,现在计划把一部分旱田改为水田,使两者的比是1:5,需要把多少公顷的旱田改为水田?
例4.在比例尺0 40 80 120千米的地图上,量得甲乙两地的距离是2.5厘米。

在另一幅地图上量得甲乙两地的距离是4厘米,两幅地图,哪一幅地图看得清晰一些?
例5.有840吨货物,分给甲乙两个运输队完成。

甲队友载重5吨的汽车12辆,乙队有载重3吨的汽车15辆,按两队的运输能力分配,甲乙两队各应运输多少吨?
例6.甲、乙、丙三个数的和是210.甲和乙的比是2:3,乙和丙的比是4:5,甲、乙、丙各是多少?
例7.如果一辆汽车从甲地开往乙地,每小时行驶60千米,4.5小时到达,画在一幅的地图上,甲乙两地画多少厘米?
例8.一批图书按4:5:6分配给甲、乙、丙三个班,结果甲班比丙班少分24本,这批图书共有多少本?
例9.为了减少不必要的开支,节约用纸,学校准备用单面A4纸装订练习本发给学生。

每本24页,每人一本可以发给216名同
学,还有72名同学没有领到,学校要求必须每人一本,则每
本应该装订多少页纸?
例10.某修路队修一条公路,用边长4分米的方砖来铺,需要900块,如果改用边长为5分米的方砖需要多少块?
(待续)。

比和比例应用题典型题练习(春霞)

比和比例应用题典型题练习(春霞)

比和比例应用题典型题练习青年巷小学李春霞一、判断。

1.某班男生有8人,女生有10人,男生与女生人数之比是0.8。

()2.甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。

()3.在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。

()4.两个圆的周长比是2∶3,面积之比是4∶9。

()二、选择题1、固定电话先收座机费24元,以后按一定标准时间加收通话费,则每月应交电话费与通话时间() A.成正比例 B.成反比例 C. 不成比例三、解答应用题。

1、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。

2、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。

若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?3、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。

现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?4、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?5、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?6、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方砖,需要多用几块?7、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?8、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?9、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?10、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。

三个车间各有多少人?11、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。

小学数学比和比例应用题典型题库

小学数学比和比例应用题典型题库

小学数学比和比例应用题典型题库一、判断。

1.某班男生有8人,女生有10人,男生与女生人数之比是0.8。

()2.甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。

()3.在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。

()4.两个圆的周长比是2∶3,面积之比是4∶9。

()5、长方形的长一定,它的面积和宽成正比例。

()( 2013年判断题第2题)二、解答应用题。

1.在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。

2.在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。

4.混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。

现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?5.一批零件,每天做56个,28天完成,如果提前12天完成,每天应做多少个?6.某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?7.一间大厅,用边长4分米的方砖铺地,需用324块;若改铺边长3分米的方砖,需要多用几块?8.一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?9.一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?10.一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?11.羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。

三个车间各有多少人?13.学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。

已知六年级分得56本,学校共购进图书多少本?14.小明居住的院内有4家,上月付水费9.8元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?15.某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?16、两个城市相距225千米,一辆客车和一辆货车同时从这个城市相对开出,2.5小时后相遇。

比和比例应用题同步训练

比和比例应用题同步训练

比和比例应用题同步训练1、周末小王约朋友小张、小黎去水库钓鱼。

一天下来他们数了数,共钓了21条鱼,称一称共重42千克。

如果依据钓鱼的时间及钓鱼的收获,小王、小张、小黎该分得的比为111 365︰︰。

那么他们三人会怎样分这些鱼?2、某农场把61600公亩耕地划归为粮田与棉田,它们之间的面积比是7︰2,棉田与其他作物面积的比是6︰1。

每种作物各是多少公亩?3、某小学六年级的同学分三组参加植树。

第一组与第二组人数比是5︰4,第二组与第三组人数比是3︰2。

已知第一组的人数比二、三两组人数的总和少15人。

六年级参加植树的共有多少人?4、科技组与作文组人数比是9︰10,作文组与数学组人数比是5︰7,已知数学组与科技组共有69人。

数学组比作文组多多少人?5、小明读一本书,已读和未读的页数比是1︰5。

如果再读30页,则已读和未读的页数比是3︰5。

这本书共有多少页?6、甲、乙两包糖的重量比是4︰1。

从甲包取出130克放入乙包后,甲、乙两包糖的重量比是7︰5,原来甲包有多少克糖?7、五年级三个班举行数学竞赛,一班参加比赛的占全年级参赛总人数的13,二班与三班参加比赛人数比是11︰13,二班比三班少8人。

一班有多少人参加了比赛?8、甲、乙两车同时从A、B两地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米。

A、B两地相距几千米?9、小刚和小明进行了100米短跑比赛(假定二人的速度均不变)。

当小刚跑了90米时,小明距终点还有25米,那么当小刚到达终时,小明距终点还有几米?10、甲、乙两人各加工同样多的零件,同时加工,当甲完成任务时,乙还有150个没有完成,当乙完成任务时,甲可以超额完成250个,这批零件总数共有几个?11、两块一样重的合金,一块合金中铜与锌的比是2︰5,另一块合金中铜与锌的比是1︰3。

现将两块合金合成一块。

求新合金中铜与锌的比。

12、将一条公路平均分给甲、乙二个工程队修筑。

比和比例应用题

比和比例应用题

比和比例应用题例1 加王一个零件,甲、乙、丙所需时间比为6:7:8。

现有3650个零件要加工,如果规定3人用同祥的时间完成任务,各应加王多少个?例2 一块合金,铜与锌的比是2:3,现在加入铜120克,锌40克,可得合金660克,求新合金中铜与锌的比?例3 两块一样重的合金,一块合金中铜与锌的比是2:5,另一块合金中铜与锌的比是1:3,现将两块合金合成一块。

求新的合金中铜与锌的比。

例4 甲、乙两工人上班,甲比乙多走51的路程,币乙比甲走的时间少111。

求甲、乙两人的逮庋比是多少?例5 分数529,分子、分母加上m 以后,分子与分母的比为19:7,求m 是多少?例7 硬糖每千克5.1元,软糖每千克8.9元,现要求混合后的糖价为每千克5。

4元,求硬、软两种糖应取怎样的重量比才合适?例8 新光村1989年早田与水田的比是5:3,去年将2800公亩早田改成水田后,旱田与水田的比是1:2,新光村共有水旱田多少公亩?例9一枇零件按5:3分给师、徒两人加工,结果师傅加工了1440只,超额完成20%,徒弟只完成了80%,徒弟加工了多少只?1.长方体棱长的和是216厘米,长、宽、高的比是4:3:2,长组体的表面积和体积各是多少?2.科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7,已知数学组与科技组共有69人,求数学组比作文组多几人?3.乙的年龄是甲的65,丙与乙的比是3:5,丙年龄的31等于丁的21,己知乙今年20岁,甲、丙、丁各几岁?5。

甲、乙两仓库有水泥袋数比是4:3,甲用了48袋后,甲、乙两仓庠水泥袋数的比是2:3,问两仓库原有水泥各多少袋?6.某商店运来梨和苹果共275千克,卖出苹果总数的95,梨总数的74后,余下的苹果和梨的重量正好相等。

运来的梨子有多少千克?7。

两个瓶子里共装有药片260片。

如果将甲瓶药片的81装入乙瓶里,甲、乙两瓶药片数的比走7:6。

原来两个瓶里各装有多少药片?8。

直角梯形周长是48厘米,两底的和与两腰和的比是2:1, 一条腰与另一条腰的比是3:5。

苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】

苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】

苏教版数学六年级下册应用题特训:比和比例(专项训练)1.在比例尺是1∶500的一幅地图上,量得一块长方形菜地的周长是28厘米,已知这块菜地的长和(1)第一天和第二天行驶的路程分别与时间的比能组成比例吗?为什么?如能组成比例,请写出来.(2)两天行驶路程的比和两天行驶时间的比能组成比例吗?为什么?如能,把组成的比例写出来.9.按要求完成问题.比例尺1:20000(1)如果要从小区修一条通向学校和医院之间的公路的小路,怎样修才能使小路最短?请在途中用线段画出来.(2)医院大约在学校的()方向,它们之间的实际距离约是()米.10.甲、乙、丙三人进行200米的赛跑,甲跑到终点时,乙还剩20米未跑完,丙还剩25米未跑完.问,当乙跑到终点时,丙还剩多少米未跑完?11.在1:1800000的地图上一段6cm长的公路,在另外一幅地图上同样的这条公路长8cm,求另外这幅地图的比例尺.12.张老师到京东文具店买28支同样的钢笔,要付448元.照这样计算,如果陈老师想再多买同样的钢笔30支,他一共带了900元,够吗?13.在比例尺是1∶25000000的地图上标出甲、乙两地.已知甲、乙两地的实际距离是4500千米,图上两地相距多少厘米?14.把左边的长方形按比放大后得到右边的长方形,请写出比例,并求出x的值。

(单位:cm)15.淘气和笑笑收集的邮票张数的比是3∶5,淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】16.学校图书馆科技书本数与故事书本数的比是3∶2,故事书有180本,科技书有多少本?(用比例方法解)17.在标有的地图上,量得甲、乙两地相距9厘米.一参考答案:9.(1);(2)18【详解】圆内正方形图上对角线表示6cm,则实际长度为6m,实际面积为18m2.19.2.5小时【详解】略20.12天【详解】解:设x天可以完成任务.10x=8×15解得x=12答:12天可以修完.。

六年级数学比和比例应用题专项

六年级数学比和比例应用题专项

比和比例應用題1、房產博覽會上,某樓盤的模型是按照1:500的比例尺制作的,該樓盤1號樓模型高7厘米,它的實際高度是多少?2、蘭州到烏魯木齊的鐵路長約1900千米,在比例尺是1:40000000的地圖上,它的長是多少?3、修一條長12千米的公路,開工3天修了1.5千米。

照這樣計算,修完這條路還要多少天?4、專業戶劉大伯家養雞、鴨、鵝共1800只,這三種家禽的只數比是5:3:1。

劉大伯家養雞、鴨、鵝各多少只?5、把一批書按4:5:6的比例分給甲、乙、丙三個班,已知甲班比丙班少分到24本,三個班各分到多少本書?6、亮亮家造了新房,準備用邊長是0.4米的正方形地磚裝飾客廳地面,這樣需要180塊,裝修老師建議改用邊長0.6米的正方形地磚鋪地。

請你算一算需要多少塊?7.一艘輪船以每小時40千米的速度從甲港開往乙港,行了全程的20 后,又行駛了1小時,這時未行路程與已行路程的比是3:1。

甲乙兩港相距多少千米?GAGGAGAGGAFFFFAFAF8.建筑工人用水泥、沙子、石子按2:3:5配制成96噸的混凝土,需要水泥、沙子、石子各多少噸?1.2.一個縣共有拖拉機550臺,其中大型拖拉機臺數和手扶拖拉機臺數的比是3:8,這兩種拖拉機各有多少臺?3.用84厘米長的銅絲圍成一個三角形,這個三角形三條邊長度的比是3:4:5。

這個三角形的三條邊各是多少厘米?4.甲、乙、丙三個數的平均數是84,甲、乙、丙三個數的比是3:4:5,甲、乙、丙三個數各是多少?5.乙兩個數的平均數是25,甲數與乙數的比是3:4,甲、乙兩數各是多少?6.一個直角三角形的兩個銳角的度數比是1:5,這兩個銳角各是多少度?7.一塊長方形試驗田的周長是120米,已知長與寬的比是2:1,這塊試驗田的面積是多少平方米?8.一種藥水是用藥物和水按3:400配制成的。

GAGGAGAGGAFFFFAFAF(1)要配制這種藥水1612千克,需要藥粉多少千克?(2)用水60千克,需要藥粉多少千克?(3)用48千克藥粉,可配制成多少千克的藥水?9.商店運來一批電冰箱,賣了18臺,賣出的臺數與剩下的臺數比是3:2,求運來電冰箱多少臺?10.紙箱里有紅綠黃三色球,紅色球的個數是綠色球的43,綠色球的個數與黃色球個數的比是4:5,已知綠色球與黃色球共81個,問三色球各有多少個?11.一幅地圖,圖上20厘米表示實際距離10千米,求這幅地圖的比例尺?12.甲地到乙地的實際距離是120千米,在一幅比例尺是1:6000000的地圖上,應畫多少厘米?13.在一幅比例尺是1:300的地圖上,量得東、西兩村的距離是12.3厘米,東、西兩村的實際距離是多少米?14.朝陽小學的操場是一個長方形,長120米,寬75米,用30001的比例尺畫成平面圖,長和寬各是多少厘米?GAGGAGAGGAFFFFAFAF15.在比例尺是1:6000000的地圖上,量得兩地之間的距離是3厘米,這兩地之間的實際距離是多少千米?16.右图是一个梯形地平面图(单位:厘米),求它的实际面积17.修一條路,如果每天修120米,8天可以修完;如果每天修150米,幾天可以修完?(用比例方法解)18.同學們做操,每行站20人,正好站18行。

比和比例练习题

比和比例练习题

比和比例练习题一、填空题1. 如果a:b=3:4,那么a与b的比是______,b与a的比是______。

2. 在比例里,若内项之积等于40,且其中一个外项为8,则另一个外项是______。

3. 已知x:y=5:4,那么3x:3y的比值是______。

4. 如果a:b=2:3,那么(3a+2b):(3b2a)的比值是______。

5. 在比例中,若三个内项的和是24,且其中两个内项分别是4和6,则第三个内项是______。

二、选择题1. 下列比例中,与4:6相等的是()。

A. 8:12B. 12:18C. 10:152. 已知a:b=3:4,那么下列比例中,正确的是()。

A. 3a:4b=9:12B. 6a:8b=9:12C. 9a:12b=3:43. 如果a:b=2:3,那么下列哪个比例是正确的?()A. 2a:3b=4:6B. 3a:2b=6:4C. 4a:6b=8:124. 在比例中,若一个外项是8,一个内项是12,则另一个内项与另一个外项的比值是()。

A. 2:3B. 3:2C. 4:35. 已知x:y=5:4,那么下列比例中,正确的是()。

A. 3x:2y=15:8B. 2x:3y=10:12C. 5x:4y=20:16三、解答题1. 已知a:b=4:5,b:c=6:7,求a:b:c的比值。

2. 在比例中,若两个内项分别是8和12,两个外项分别是10和15,求另一个内项和另一个外项。

3. 已知x:y=3:4,z:x=5:3,求y:z的比值。

4. 在比例里,若一个内项是12,一个外项是18,且另一个内项与另一个外项的比是2:3,求另一个内项和另一个外项。

5. 已知a:b=7:5,求(3a+4b):(5a2b)的比值。

四、应用题1. 甲、乙两数的比是3:4,如果甲数增加12,乙数减少12,那么甲乙两数的比是多少?2. 一个长方形的长与宽的比是5:3,如果长方形的长增加10厘米,宽减少10厘米,求新的长方形的长与宽的比。

比和比例应用题

比和比例应用题

比和比例应用题例1 甲、乙两个仓库原有粮食吨数的比是5:4,甲仓库运走36吨后,两仓库粮食的吨数的比是3:4,甲仓库原有粮食多少吨?练习1 甲、乙两个仓库存放的货物重量比是4:3,把甲仓库货物的1/3运到乙仓库,这时乙仓库的货物重量比甲仓库多100吨,甲仓库原有货物多少吨?练习2 甲乙两人各加工100个零件,甲比乙迟1 1/2小时开工,结果同时完成,甲乙两人的工作效率比是5:2。

甲每小时加工多少个零件练习3 两个相同的瓶子装满酒精溶液,一个瓶中酒精和水的体积之比是3:1,而另一个瓶中酒精与水的比是4:1,若把两瓶酒精溶液混合,混合液中酒精和水的体积比是多少?例2 甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1,乙瓶中酒精与水的体积比是4:1,现在把两瓶溶液倒入大瓶中混合,这时酒精与水的体积比是多少?练习1 某班在一次考试中,平均成绩是78分,男、女生各自的平均成绩是75.5分和81分,这个班男、女生人数的比是多少?练习3 一个长方形和一个正方形的周长比为6:5,长方形的长是宽的521倍,求这个长方形与正方形的面积之比。

例3甲和乙同时从A、B两地相向走来,甲每小时走7.5千米,两人相遇后,再走22.5千米到米到A地,甲再走2小时到B地,乙每小时走多少千米?练习1 甲、乙两人步行的速度比是7:5,甲、乙分别由A、B两地同时出发,如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?练习2 一批货物已经运走的65%,还剩下280吨,这批货物运走了多少吨?练习3 甲、乙两人进行百米赛跑,当甲到达终点时,乙距终点还有6米。

如果甲在起跑线后面6米,与乙同时跑,谁先到达终点?这时另一个距终点还有几米?例4化肥厂经过改革日产量比原来的20吨提高了25%,原来30天的产量,现在需要多少天能完成?练习1 有一项搬运砖的任务,25个人去搬需6小时可以完成。

如果相同工效的人数增加到30人,运完这批砖能减少几小时?练习2 甲、乙两辆汽车同时从A、B两个城市相对开出,经过12小时相遇后,甲车继续向前开到B城还要6小时,已知甲车每小时比乙车块25千米,求A、B两个城市间的公路长多少千米练习3 师徒两人加工一批零件,徒弟共加工3小时,师傅再参加工作,完成时,徒弟加工了这批零件的83,已知师徒工效比为2:5,师徒单独加工各要几小时例5 在一群学生中,如果走了15名学生,那么剩下的男女人数比为2:1。

数学比和比例的应用试题

数学比和比例的应用试题

数学比和比例的应用试题1.地质考察员发现一种锡矿石每100千克含锡65千克,则这种锡矿石5000千克含锡()千克.A.3250B.3210C.3520D.6120【答案】A【解析】先用“65÷100”计算出每1千克锡矿石含锡多少千克,进而根据求几个相同加数和的简便运算,用乘法进行解答即可.解:5000×(65÷100),=5000×0.65,=3250(千克);答:这种锡矿石5000千克含锡3250千克.故选:A.点评:解答此题的关键是计算出1千克锡矿石含锡多少千克,进而根据整数乘法的意义,用乘法进行解答.2.下面说法正确的是()A.2和37都是质数,又是互质数B.如果m:8=5:n,那么m和n成正比例C.a、b、c都是自然数,且a>b>c,则>D.一个直角三角形中,最大内角与最小内角的比是3:1,最小内角是30度【答案】A、D【解析】A,根据互质数的意义,公因数只有1的两个数叫做互质数,如果两个数都是质数,那么这两个数一定是互质数.所以2和37都是质数,又是互质数.此说法正确.B,根据比例的基本性质,m:8=5:n,则mn=8×5,积一定,所以mn成反比列.C,根据分数大小比较的方法,设a、b、c分别为3、2、1,a+b=3+2=5,a+c=3+1=4,则,,所以.D,三角形内角和是180°,直角是90°,两个锐角的和是90°,已知最大内角与最小内角的比是3:1,也就是最小的内角是90°的,90°×=30°.所以一个直角三角形中,最大内角与最小内角的比是3:1,最小内角是30度.此说法正确.解:根据分析可知:上面四种说法正确的是:A,2和37都是质数,又是互质数.D,一个直角三角形中,最大内角与最小内角的比是3:1,最小内角是30度.故选:A、D.点评:此题考查的目的是理解互质数的意义、正、反比列的意义,掌握分数大小比较的方法、三角形的内角和是180°,3.计算第四部分面积:第一部分面积为20平方米,第二部分面积为50平方米,第三部分面积为40平方米.【答案】100【解析】根据图得出第一部分的面积比第三部分的面积等于第二部分的面积与第四部分的面积,由此列出比例解答即可.解:设第四部分的面积为x平方米,20:40=50:x,20x=40×50,x=,x=100,答:第四部分的面积是100平方米.点评:关键是根据题意得出哪两个面积的比是相等的,进而列出比例解答即可.4.某养兔专业户养了白、黑和灰三种颜色的兔、白兔和只数占总支数的,黑兔与灰兔只数的比是3:5,已知黑兔比灰兔少64只.三种兔各养了多少只?【答案】白兔有144只,黑兔有96只,灰兔有160只.【解析】因为黑兔与灰兔只数的比是3:5,所以黑兔比灰兔少5﹣3=2份,是64只,用64除以2就可以求出每一份的只数,再分别乘黑兔和灰兔的份数就可以求出灰兔和黑兔的只数;又因为白兔的只数占总只数的,则灰兔和黑兔共占总数的(1﹣),用黑兔和灰兔的总只数除以所占的分率即可求出兔的总只数,再乘就是白兔的只数.解:64÷(5﹣3),=64÷2,=32(只);所以黑兔有:32×3=96(只);灰兔有:32×5=160(只);白兔有:(160+96)÷(1﹣)×,=256÷×,=144(只).答:白兔有144只,黑兔有96只,灰兔有160只.点评:解决本题的关键是根据黑兔和灰兔的数量差求出每一份的只数;再根据所占的总只数的分率求出总数.5.把一根绳子按5:2截成甲、乙两段,甲段比乙段长2.4米,乙段长几米?【答案】1.6【解析】由题意得把一根绳子平均分成5+2=7份,甲段是5份,乙段是2份,甲比乙多5﹣2=3份,是 2.4米,进而可以求出一份的长度,再用乙段所占份数乘每份的长度就可以求出乙的长度.解:2.4÷(5﹣2),=2.4÷3,=0.8(米),乙:0.8×2=1.6(米);答:乙段长1.6米.点评:此题主要考查比的灵活运用,关键是通过两段长度之差除以对应的份数的差求出每份的长度.6.甲书架上的书是乙书架上的4:7,两个书架上各增加55本后,甲书架上的书与乙书架上的书的比是5:6,甲、乙两书架上原来各有多少本书?【答案】20;35【解析】根据“甲书架上的书是乙书架上的4:7”,假设甲书架上的书有4x本,则乙书架上有7x 本,“两个书架上各增加55本后”,甲的本书是4x+55,乙的本书是7x+55本,此时根据“甲书架上的书与乙书架上的书的比是5:6”列出比例式,根据比例的基本性质,找到等量关系,解方程,即可得解.解:假设甲书架上的书有4x本,则乙书架上有7x本,根据题意,得:(4x+55):(7x+55)=5:6,(4x+55)×6=(7x+55)×5,24x+55×6=35x+55×5,(35﹣24)x=55(6﹣5),11x=55,x=55÷11,x=5,4×5=20,7×5=35,答:甲书架上原来有20本书,乙书架上原来有35本书.点评:解答此题的关键是弄清楚两个比的不同含义,找出等量关系,即可列方程求解.7.已知甲:乙=2:5;乙:丙=4:7,而且甲+乙+丙=126,求甲、乙、丙各是多少?【答案】甲、乙、丙各是16、40、70.【解析】先求甲、乙、丙三个数的连比,再按比例分配解答即可.解:甲:乙:丙=(2×4):(5×4):(7×5)=8:20:35,126×=16,126×=40,126×=70;答:甲、乙、丙各是16、40、70.点评:此题解答关键是利用比的基本性质先求三个数的比,再按比例分配解答.8.甲、乙两人每天共做56个机器零件,如果甲、乙工作效率的比是3:5,甲、乙两人每天各做多少个零件?【答案】甲每天做21个,乙每天做35个.【解析】由“甲、乙工作效率的比是3:5”可求得每人占两人总效率的几分之几,也就是占总工作量的几分之几,再根据按比例分配的方法解答.解:56×=21(个),56×=35(个).答:甲每天做21个,乙每天做35个.点评:此题考查了学生对按比例分配方法的掌握与运用.9.学校装修多媒体教室,如果用面积为64平方分米的方砖铺地,需要162块.请你帮忙计算一下,如果改用面积为81平方分米的方砖铺地,需要多少块?(用比例方法解)【答案】128【解析】因为地板的总面积一定,所以每块砖的面积和块数成反比例,即砖的块数与砖的面积的乘积相等.据此列出等量关系式解答即可.解:设需要x块面积为81平方分米的方砖.81x=64×162,x=64×162÷81,x=128;答:如果改用面积为81平方分米的方砖铺地,需要128块.点评:在用比例解决问题时,首先要先据题意确定不变量,然后再据不变量列出等量关系式.10.货车速度与客车速度比是3:4,两车同时从甲乙两站相对行驶,在离中点6千米处相遇,当客车到达甲站时,货车离乙站还有多远?【答案】21【解析】两车在离中点6千米处相遇,那么客车就比货车多行驶6×2=12千米,把两地间的距离看作单位“1”,货车速度与客车速度比是3:4,依据时间依据路程和速度成正比可得:两车行驶的路程比是3:4,先求出客车比货车多行驶路程占总里程得房率,也就是12千米占总里程的分率,依据分数除法意义,求出两地间的距离,最后依据分数乘法意义即可解答.解:3+4=7,(6×2)÷(﹣)×(1﹣),=12×,=84×,=21(千米);答:货车离乙站还有21千米.点评:解答本题的关键是求出两地间的距离,解答的依据是分数乘法意义,以及分数除法意义.11.一种农药是把药粉和水按1:99的比例配合而成的,要配制这种农药200千克,需要药粉多少千克?396千克的水能配制这种农药多少千克?【答案】药粉2千克,400千克.【解析】根据比与分数的关系知:药粉就占了这种农药的,农药是200千克,农药的千克数已知用乘法计算,根据题意知水就占了这种家药的,不有396千克,求农药的千克数,用除法计算.解:需要药水:200×=2(千克),可配制的农药:396÷=400(千克).答:要配制这种农药200千克,需要药粉2千克,396千克的水能配制这种农药400千克.点评:本题的关键是根据比与分数的关系,求出水和药粉各占了农药的几分之几,再根据分数乘法和分数除法的意义列式解答.12.盐与水的比是2:99,297千克水可以配置多少千克的盐水呢?【答案】303【解析】由题意可知:需要2份的盐,就需要99份的水,总份数是2+99=101份;297千克水,其中水占盐水的,根据已知一个数的几分之几是多少,求这个数,用除法解答.解:2+99=101,297=303(千克);答:可以配置303千克的盐水点评:此题属于按比例分配问题,解答关键是求出总份数,把比转化成分率,根据已知一个数的几分之几是多少,求这个数,用除法解答.13.李惠家8月份共缴纳水费、电费、煤气费140元,其中电费占整个费用的,水费与煤气费的比是1:3,李惠家水费、电费、煤气费各付多少元?【答案】水费15元、电费80元、煤气费45元.【解析】其中电费占总费用的,则水费与煤气费占总数的1﹣=,由于水费与煤气费的比是1:3,则水费占三者总数的×,煤气费×,由此根据分数乘法的意义即能求.解:电费为:140×=80(元);水费为:140×(1﹣)×,=140××,=15(元);煤气费为:140×(1)×,=140××,=45(元).答:李惠家8月份共缴纳水费15元、电费80元、煤气费45元.点评:解答此题的关键是求出水费、电费和煤气费占总数的分率,再根据分数乘法的意义解答即可.14.小伟和小英给希望工程捐款的钱数比是7:8,两人共捐款75元.小伟和小英各捐款多少元?【答案】小伟捐款35元,小英捐款40元.【解析】要求小伟和小英各捐款多少元,根据小伟和小英捐款钱数的比是7:8,知道捐款总数为75元,小伟捐款为总数的,小英捐款为总数的,然后根据一个数乘分数的意义即可求出.解:75×=35(元),75×=40(元),答:小伟捐款35元,小英捐款40元.点评:此题属于典型的按比例分配应用题,做题时应明确每一个人捐款的钱数分别占总钱数的几分之几,然后根据一个数乘分数的意义即可解决问题.15.王大伯计划在工作上640平方米的塑料大棚内种白菜、黄瓜和西红柿,白菜种植面积占全部面积的,黄瓜和西红柿种植面积的比是5:3,三种蔬菜各种了多少平方米?【答案】白菜种植了160平方米,黄瓜种植了300平方米,西红柿种植了180平方米.【解析】先依据分数乘法意义,求出白菜种植面积,再求出黄瓜和西红柿种植面积,最后按照按比例分配方法即可解答.解:640﹣640×,=640﹣160,=480(平方米),5+3=8,480×=300(平方米),480×=180(平方米),答:白菜种植了160平方米,黄瓜种植了300平方米,西红柿种植了180平方米.点评:本题考查知识点:(1)正确运用分数乘法意义解决问题,(2)能正确理解并掌握按比例分配方法.16.一个电视机厂五月份生产的彩色电视机与数码电视机的比是5:4,现生产的彩色电视机有4500台,生产的数码电视机有多少台?【答案】3600【解析】由“彩色电视机与数码电视机的比是5:4”可知:数码电视机的台数=彩色电视机的台数×,彩色电视机的台数已知,代入关系式即可求出数码电视机的台数.解:4500×=3600(台);答:生产的数码电视机有3600台.点评:解答此题的关键是得出:数码电视机的台数=彩色电视机的台数×,问题即可得解.17.有84个红气球,其中红气球和黄气球的比是7:5,黄气球有多少个,(用比例的知识解答)【答案】60【解析】根据题意可知红气球和黄气球的份数比是7:5,其中红气球的具体数量是84,设黄气球有x个,由此列式为:84:x=7:5,然后解答即可.解:设黄气球有x个,84:x=7:5,x=,x=60;答:黄气球有60个.点评:本题还可以把红气球和黄气球的比是7:5,转化为黄气球是红气球的,然后根据分数乘法的意义来解答:84×=60(个).18.一种药水是按药粉和水的比1:5000配制成的.现在用药粉30克配制成这样的药水,需要加水多少千克?(用比例解)【答案】150【解析】根据一种药水是按药粉和水的比1:5000配制成的,知道药粉和水的比是1:5000,此比值一定,所以药粉与水的克数成正比例,由此列出比例解决问题.解:设需要加水x克,1:5000=30:x,x=30×5000,x=150000,150000克=150千克,答:需要加水150千克.点评:解答此题的关键是,判断哪两种相关联的量成何比例,由此列出比例解决问题,注意本题的单位的换算.19.如图,已知线段AB的长为2.8cm.(1)用直尺和圆规按所给的要求作图:点C在线段BA的延长线上,且CA=AB;(2)在上题中,如果在线段BC上有一点M,且线段AM、BM长度之比为1:3,求线段CM的长.【答案】(1)(2),CM长1.4cm或3.5cm.【解析】(1)根据题意画,延长BA至C,使CA=2.8cm,(2)如果在线段BC上有一点M,且线段AM、BM长度之比为1:3,点M在线段BC的情况有两种,一种是M在线段AB上,另一种是在线段BC上,据此解答.解:(1)(2),或,因为CA=AB,AB=2.8cm,所以CA=2.8cm,①当点M在线段AC上时,设AM=x,则BM=3x,3x﹣x=2.8,2x=2.8,2x÷2=2.8÷2,x=1.4;所以CM=CA﹣AM=2.8﹣1.4=1.4(cm);②当点M在线段AB上时,设AM=x,BM=3x,x+3x=2.8,4x=2.8,4x÷4=2.8÷4,x=0.7;CM=CA+AM=2.8+0.7=3.5(cm);答:CM长1.4cm或3.5cm.点评:本题考查了学生画图,以及画图中有两种情况时如何来解答的能力.20.有两筐苹果,第二筐比第一筐少,从第二筐拿走4.2千克后,第一筐与第二筐的比是8:5,第一筐苹果比原来第二筐苹果多多少千克?【答案】8.4千克.【解析】由图意可知:设第一框苹果的重量为x千克,则第二框苹果的重量为(1﹣)x千克,再据“第一框苹果的重量:(第二框苹果的重量﹣4.2)=8:5”即可解比例求解.解:设第一框苹果的重量为x千克,则第二框苹果的重量为(1﹣)x千克,x:[(1﹣)x﹣4.2]=8:5,x:(x﹣4.2)=8:5,8×(x﹣4.2)=5x,6x﹣33.6=5x,x=33.6;33.6×=8.4(千克);答:第一筐苹果比原来第二筐苹果多8.4千克.点评:解答此题的关键是:分析题意,找出等量关系,于是列比例即可求解.21.六年一班的男生与女生的人数比是8:7,又转来2名男生后,男生与女生的人数比是9:7.六年一班原来有多少人?【答案】30【解析】根据“男生与女生的人数比是8:7,”知道男生占女生的,再由“男生与女生的人数比是9:7,”知道男生是女生的,现在比原来多了女生的(﹣),由此用2除以(﹣)求出女生的人数,进而求出原来六年一班的人数.解:女生的人数:2÷(﹣),=2,=14(人),六年一班原来有的人数:14÷7×(8+7),=2×15,=30(人),答:六年一班原来有30人.点评:此题解答的关键是抓住女生人数这个不变的量,把它作为单位“1”,找出2对应的分数,用除法列式求出单位“1”,进而求出答案.22.一个工厂女工和男工的人数比是7:8,其中男工56人,女工有多少人?【答案】49【解析】女工和男工的人数比是7:8,也就是说女工人数是男工的人数,由此列式解答即可.解:56×=49(人);答:女工有49人.点评:此题也可以列比列解答,设女工有x人,列比例式为:x:56=7:8,解这个比例即可.23.修一条路已修全长的60%,如果再修48米,这是已修与未修的比是7:2,这条路的是多少米?【答案】这条路的是30米【解析】如果再修48米,这是已修与未修的比是7:2,即此时已修的与未修的比是,则这48米占全长的﹣60%,所以,这条路全长是48÷(﹣60%)米,则它的是48÷(﹣60%)×米.解:48÷(﹣60%)×=48÷(﹣)×,=48÷×,=30(米).答:这条路的是30米.点评:首先根据再修48米后,已修与未修的比是7:2,求出已修的与未修的占全部的分率是完成本题的关键.24.有两袋大米,分给甲、乙、丙三人吃,甲吃总数的,乙吃的千克数与丙的比是3:2.第二袋大米是第一袋的,如果从第一袋取出18千克给第二袋,那么两袋大米的重量相等.甲、乙、丙三人各吃大米多少千克?【答案】甲、乙、丙三人各吃大米176千克、132千克、88千克【解析】根据题意,第一袋比第二袋大米多18×2千克,由“第二袋大米是第一袋的”,求出第一袋大米的重量为:18×2÷(1﹣)=216(千克),再求出第二袋大米的重量:216×=180(千克).那么甲吃:(216+180)×=176(千克);然后根据“乙吃的千克数与丙的比是3:2”,求出乙、丙各吃大米多少千克.解:第一袋大米的重量为:18×2÷(1﹣),=36÷,=216(千克);第二袋大米重:216×=180(千克);两袋共重:216+180=396(千克);则甲吃:396×=176(千克);乙吃:(396﹣176)÷(3+2)×3,=220÷5×3,=132(千克);丙吃:396﹣176﹣132=88(千克).答:甲、乙、丙三人各吃大米176千克、132千克、88千克.点评:此题解答的关键在于求出两袋大米的总重量,再根据“甲吃总数的,乙吃的千克数与丙的比是3:2”,解决问题.25.有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?【答案】新合金中铜和锌的比是1:2【解析】现知道再加入6克锌,熔化后共得新合金36克,可得原合金的克数,又知道原合金铜锌的比,计算出原铜锌的克数,加入锌后再计算,得出新合金铜和锌的比.解:解法一:加入的6克锌相当于新合金的6÷36=,原来的合金是新合金是1﹣=,铜没有变,占新合金的÷(2+3)×2=,新合金中的锌占1﹣=,所以新合金中的铜和锌的比是:=1:2;解法二:原来的合金重36﹣6=30(克),原来的合金每份重30÷(2+3)=6(克),含铜6×2=12(克),含锌6×3=18(克),新合金中的合金比12:(18+6)=,即铜:锌=1:2.答:新合金中铜和锌的比是1:2.点评:第二种解法易于理解,解答此题的关键是找出不变量.26.表比钟每小时快30秒,钟每小时比标准时慢30秒.问表是快还是慢?一昼夜相差多少秒?【答案】表慢了,一昼夜相差6秒【解析】一昼夜为24小时,钟每小时比标准时间慢30秒,那么一昼夜慢了30×24=720秒=12分钟,所以钟一昼夜走了23.8小时,表比钟每小时快30秒,所以表比钟多走了30×23.8=714秒,而钟比标准时间慢了720秒,所以表慢了,一昼夜相差6秒.解:(1)钟一昼夜走了:30×24=720(秒),720秒=0.2小时,24﹣0.2=23.8(小时).(2)表23.8小时多走:30×23.8=714(秒).在24小时内,钟比标准时间慢了720秒,表比钟快了714秒,所以表慢了.一昼夜相差:720﹣714=6(秒)答:表慢了,一昼夜相差6秒.点评:完成本题要注意最后表和钟都要和标准时间相比较.27.慈溪市盐业公司用100吨海水晒制出2千克食用盐,现在晒制出19吨食用盐需要多少吨海水?【答案】需要海水950000吨【解析】根据每千克海水的含盐量是一定的,即海水的质量与含盐的质量的比值一定,由此判断海水的质量与盐的质量成正比例,据此即可列比例求解.解:设需要海水x吨,2千克=0.002吨,100:0.002=x:19,0.002x=100×19,x=1900÷0.002,x=950000;答:需要海水950000吨.点评:根据海水的含盐率一定,判断海水的质量与盐的质量成正比例,注意海水的质量与含盐的质量的单位要统一.28. 100克蜂蜜里含有34.5克葡萄糖.照这样计算,多少克蜂蜜里含有207克葡萄糖?(用比例的方法解)【答案】600克蜂蜜里含有207克葡萄糖【解析】根据蜂蜜里含有葡萄糖的量一定,即蜂蜜的质量与所含的葡萄糖的质量的比值一定,由此得出蜂蜜的质量与所含的葡萄糖的质量成正比例,设出未知数,列出比例解决问题.解:设x克蜂蜜里含有207克葡萄糖;100:34.5=x:207,34.5x=100×207,x=,x=600;答:600克蜂蜜里含有207克葡萄糖.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.29.铺一块地,用边长3dm的方砖要2400块.改用边长2dm的方砖铺,要用多少块砖?(用比例方法解)【答案】要用5400块砖【解析】根据题意知道,每块地的面积一定,每块方砖的面积×方砖的块数=每块地的面积(一定),由此得出每块方砖的面积与方砖的块数成反比例,设出未知数,列方程解决即可.解:设要用x块砖,2×2×x=2400×3×3,4x=2400×9,x=,x=5400;答:要用5400块砖.点评:注意此题是每块方砖的面积与方砖的块数成反比例,注意3dm与2dm是方砖的边长不是方砖的面积.30.一列客车和一列货车同时从甲、乙地相对开出,相遇后两车继续向前行驶,当客车到达乙地,货车到达甲地后,两车立即返回,已知第二次相遇的地点距甲地120千米,客车与货车的速度比是3:2,甲、乙两地相距多少千米?【答案】甲、乙两地相距600千米【解析】第二次相遇时,这时客货两车共行了3个路程,客车与货车的速度比是3:2,因相遇时用的时间相同,时间一定速度和路程成正比例,所以它们行的路程的比是3:2,,客车就行了全路程的(),第二次相遇距甲地120米,就是客车再行120千米就是2个路程,就是全路程的(2﹣)的就是120千米,据此解答.解;120÷(2﹣),=120÷(2﹣),=120÷(2﹣),=120÷,=600(千米).答:甲、乙两地相距600千米.点评:本题的关键是理解第二次相遇时客车再行120米就是2个路程,以及时间一定路程和速度成正比例,客车和货车第二次相遇时行的路程时,两车共行了3个路程,客车行的路程就是().31.一种药水是按药粉和水的比1:2500配制成的.现在用药粉15克配制成这样的药水,需要加水多少千克?【答案】需要加水37.5千克【解析】根据一种药水是按药粉和水的比1:2500配制成的,知道药粉和水的比是1:5000,此比值一定,所以药粉与水的克数成正比例,由此列出比例解决问题.解:设需要加水x克,1:2500=15:x,x=15×2500,x=37500,37500克=37.5千克,答:需要加水37.5千克.点评:解答此题还可以先根据比的知识,用15÷求出配制成的药水的重量,进而用药水的重量减去药粉的重量即可得出所需水的重量.32.王大爷家养鸡和鸭共240只,其中鸡与鸭的比是3:5,王大爷家养鸡和鸭各多少只?【答案】王大爷家养鸡和鸭分别为90只、150只【解析】鸡与鸭的比是3:5,就是鸡的只数是3份,鸭的只数是5份,共3+5=8份,鸡占总份数的,鸭占总份数的,所以求鸡的只数用240×,求鸭的只数用240×解答.解:3+5=8份,鸡的只数:240×=90(只),鸭的只数:240×=150(只),答:王大爷家养鸡和鸭分别为90只、150只.点评:本题是按比例分配的问题,找出总的份数,求出鸡鸭各自占总份数的几分之几,然后按比例分配即可求出.33.(2011•河池模拟)50千克甘蔗可以榨糖6千克,1000千克甘蔗可以榨糖多少千克?【答案】1000千克甘蔗可以榨糖120千克【解析】由题意可知:每千克甘蔗的榨糖量是一定的,则榨糖的量与甘蔗的量成正比,据此即可列比例求解.解:设可以榨糖x千克,则有6:50=x:1000,50x=6×1000,50x=6000,x=120;答:1000千克甘蔗可以榨糖120千克.点评:解答此题的主要依据是:若两个量的商一定,则这两个量成正比,可以列比例求解.34.植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【答案】四年级参加植树的有220人,五年级有200人,六年级有300人【解析】由题意可知:设四年级的人数为x,则六年级的人数为(x+80),五年级的人数为(x+80)×,又因三个年级的人数总和为720,于是就可以列方程求解.解:设四年级的人数为x,则六年级的人数为(x+80),五年级的人数为(x+80)×,x+x+80+(x+80)×=720,2x+80+x+=720,2x+x=720﹣80﹣,x=,x=220;220+80=300(人),300×=200(人);答:四年级参加植树的有220人,五年级有200人,六年级有300人.点评:解答此题的关键是:用四年级的人数表示出六年级的人数,用六年级的人数表示出五年级的人数.35.一个商场总营业额11.5万元,甲乙柜营业额比为3:2,乙丙柜营业额比为3:4,求甲柜营业额.【答案】甲柜营业额为4.5万元【解析】根据比的性质,把3:2的前后项同乘3变为9:6,把3:4的前后项同乘2变为6:8,再把这两个比写成连比为9:6:8,进而用按比例分配的方法求得甲柜营业额即可.解:甲:乙=3:2=9:6,乙:丙=3:4=6:8,则甲:乙:丙=9:6:8,则甲柜营业额:11.5×=11.5×=4.5(万元);答:甲柜营业额为4.5万元.点评:解决此题关键是把甲、乙两柜营业额的比与乙、丙两柜营业额比,改写成甲、乙、丙三柜营业额的比,再应用按比例分配的方法求得甲柜营业额.36.客、货两车同时从A、B两地相向而行,已知客车行完全程需5小时,当客车行到两地的中点时,货车离中点的路程与客车已行路程的比是1:3.照这样计算,货车行完全程需多少小时?【答案】货车行完全程需7.5小时【解析】根据题意,可以画出下面的线段图:已知货车离中点的路程与客车已行路程的比是1:3,也就是在相同时间内客车与货车所行路程的比是3:2,即客车与货车的速度比是3:2,根据在相同时间内两车所行时间的比等于速度比的反比,已知客车行完全程需5小时,由此求出货车行完全程所需时间.解:根据题意可知,客车的速度:货车的速度=3:2;时间比:客车的时间:货车的时间=2:3;货车行完全程需:5÷2×3=2.5×3=7.5(小时);答:货车行完全程需7.5小时.点评:此题解答关键是根据相同时间内,时间的比等于速度比的反比,由此解决问题.37.(2012•中山模拟)商店运来橘子、苹果和梨一共320千克.橘子和苹果的比是5:6,梨的重量是苹果的.橘子比梨多多少千克?【答案】橘子比梨多80千克【解析】由“橘子和苹果的比是5:6,”把橘子看做5份,则苹果是6份,梨是(6×)份,得橘子比梨多5﹣(6×),根据按比例分配的题目的计算方法,即可解答.解:一份是:320÷[5+6+(6×)]=320÷[11+]=320×=25(千克)橘子比梨橘子比梨:25×[5﹣(6×)]=25×=80(千克)答:橘子比梨多80千克.点评:把分数转化成比,用按比例分配的方法解答.即找准总数,找准把总数分成的总份数,求出一份是多少.38.(2013•广州模拟)荔枝树和龙眼树的比是5:3,荔枝树比龙眼树多40棵,荔枝树和龙眼树各有多少棵?【答案】荔枝树有100棵,龙眼树有60棵【解析】把“荔枝树和龙眼树的比是5:3”理解为荔枝树和龙眼树分别占两种树总棵树的和,进而得出荔枝树比龙眼树多两种树总棵树的(﹣);此时把两种树总棵树看作单位“1”,根据“对应数÷对应分率=单位“1”的量”求出两种树总棵树;继而根据一个数乘分数的意义用乘法解答即可得出结论.解:5+3=8,40÷(﹣),=40÷,=160(棵);荔枝树:160×=100(棵);龙眼树:160×=60(棵);答:荔枝树有100棵,龙眼树有60棵.点评:解答此题的关键是先进行转化,进而判断出单位“1”,根据“对应数÷对应分率=单位“1”的量”求出两种树总棵树;继而根据一个数乘分数的意义用乘法解答即可得出结论.39.修路队计划9天修路360米.照这样计算,这个修路队20天可以修路多少米?【答案】这个修路队20天可以修路800米。

比与比例练习题

比与比例练习题

比与比例练习题比与比例练习题在我们的日常生活中,我们经常会遇到各种比与比例的问题。

无论是购物时的折扣比例,还是烹饪时的食材比例,比与比例都是我们必须面对和解决的问题。

在这篇文章中,我将为大家提供一些比与比例练习题,帮助大家巩固和提高对比与比例的理解和运用能力。

1. 甲和乙两个人一起做一件工作,甲单独完成这件工作需要10天,乙单独完成这件工作需要15天。

问他们一起完成这件工作需要多少天?解答:甲的单位时间工作量是1/10,乙的单位时间工作量是1/15。

他们一起工作的单位时间工作量是1/10 + 1/15 = 3/30 + 2/30 = 5/30 = 1/6。

所以,他们一起完成这件工作需要6天。

2. 一辆车以每小时60公里的速度行驶,行驶了4小时后,还剩下240公里的路程。

问这段路程的总长度是多少?解答:车以每小时60公里的速度行驶,行驶了4小时,总共行驶了60 * 4 = 240公里。

剩下的路程是240公里,所以这段路程的总长度是240 + 240 = 480公里。

3. 甲和乙两个人的年龄比是3:5,乙的年龄是30岁。

问甲的年龄是多少?解答:甲和乙的年龄比是3:5,乙的年龄是30岁,所以甲的年龄比乙的年龄少了2个单位。

根据比例关系,甲的年龄应该是30 - 2 * 3 = 30 - 6 = 24岁。

4. 一辆汽车以每小时80公里的速度行驶,行驶了4小时后,还剩下1/4的油量。

问这辆汽车的油箱容量是多少?解答:汽车以每小时80公里的速度行驶,行驶了4小时,总共行驶了80 * 4 =320公里。

剩下的油量是油箱容量的1/4,所以油箱容量是320 * 4 = 1280公里。

通过以上的练习题,我们可以看到比与比例在解决实际问题时的重要性。

掌握了比与比例的概念和运用方法,我们可以更好地理解和处理各种比例关系,从而更好地解决实际问题。

除了以上的练习题,我们还可以通过其他方式来练习比与比例的运用。

例如,在购物时计算折扣比例,可以帮助我们更好地理解商品的实际价格;在烹饪时计算食材比例,可以帮助我们更好地控制食材的使用量;在旅行时计算时间比例,可以帮助我们更好地安排行程等等。

比和比例应用题

比和比例应用题

比和比例应用题1.小明三天读完一本书,第一天读了全本书的一半少32页,第二天读了2、甲、乙两人去看电影,一张电影票价是甲所有钱的6/25,是乙所有钱的3/5。

当他们各自买了电影票后,甲剩下的钱比乙剩下的钱多3元。

问甲、乙买电影票前各有多少钱3、男生比全校学生总数的3/5还少63人,男生比女生多26人。

六年级中,男生与女生的人数之比是35∶31,男生比女生多8人.问其他年级中女生有多少人,B两个盘子,放着黑子和白子.在A中有2700个棋子,其中黑子多少个5.陆地与海洋的面积之比,在北半球是2∶3,在南半球是1∶4.求地球上陆地与海洋的面积之比.6、一块地由三台拖拉机耕完。

甲耕了这块地的2/5,乙耕的地比丙耕的多1/4,乙比甲少耕100亩。

问这块地有多少亩7.孙悟空有仙桃,机器猫有甜饼,米老鼠有泡泡糖.他们按下面比例互换:仙桃与甜饼为3∶5,仙桃与泡泡糖为3∶8,甜饼与泡泡糖为7∶10.现在孙悟空各拿出90个仙桃与其他两位互换,机器猫共拿出甜饼269个与其他两位互换,问米老鼠拿出互换的泡泡糖有多少个8.水池的水面上立着两根木桩,露出水面部分的长度之比是10∶1.当水面下降2 0厘米后,露出水面部分的长度之比变成5∶2.求较短的一根木桩,原来露出水面部分是多少厘米9.小明有12元,小强有元,他们去买每本元的笔记本,小明比小强多买了2本,小明与小强剩下的钱数之比是5∶3.问小明买了几本笔记本10.甲、乙两人收入的钱数之比是8∶5,开支的钱数之比是4∶3,甲结余152元,乙结余69元.问甲、乙两人收入各多少元11.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.第一堆三堆棋子集中在一起,求黑子数与白子数之比.12.小明要写152页字,小强要写150页字.从暑假第一天起,小明每天写3页,小强每隔一天写4页(第一天写4页,第二天不写,第三天写4页……).当小强未写的页数是小明未写的页数的2倍时,问这是第几天比和比例应用题汇总一、操作题。

比例与比例关系测验题及答案

比例与比例关系测验题及答案

比例与比例关系测验题及答案请注意:以下是一份关于小学数学中比例与比例关系的测验题及答案。

题目设计旨在提高学生对比例和比例关系的理解和应用能力。

请根据你的年级和教学进度,适当调整题目的难度和数量,并根据教学需要添加适当的解答说明。

测验题:第一部分:选择题请选择正确的答案。

1. 如果3个苹果的重量是6千克,那么15个苹果的重量是:A. 2千克B. 4千克C. 12千克D. 18千克2. 一个橙子袋里有10个橙子,如果共有30个橙子,那么还需要多少袋橙子?A. 1袋B. 2袋C. 3袋D. 4袋3. 如果5张音乐CD售价共为50元,那么10张CD的售价共为:A. 5元B. 10元C. 20元D. 100元4. 在一个集市上,12个苹果的价格是36元,那么18个苹果的价格是:A. 18元B. 36元C. 48元D. 72元5. 一辆公交车载客60人,如果每个座位都有人,那么一辆公交车可以载多少人?A. 30人B. 60人C. 90人D. 120人第二部分:填空题请根据题目要求填写合适的数字。

6. 如果8个苹果的重量是1千克,那么2个苹果的重量是___ 千克。

7. 8个蜡烛的高度是24厘米,那么6个蜡烛的高度是 ___ 厘米。

8. 如果7张音乐CD售价共为35元,那么一张CD的售价是 ___ 元。

9. 18个鸭蛋的重量是144克,那么一个鸭蛋的重量是 ___ 克。

10. 一辆公交车的载客量是50人,如果每个座位都有人,那么该公交车上座位的数量是 ___ 个。

第三部分:应用题请根据题目要求解答问题。

11. 张露今年10岁,她的身高是120厘米。

3年后,她的身高要增加到180厘米。

按照这个比例,她10岁时的身高增加了多少厘米?12. 王强买了一部MP3播放器,售价为120元。

他发现他的钱包里只剩下75元。

为了购买MP3播放器,他至少还需要多少钱?13. 一桶油漆可以涂抹120平方米的墙壁。

如果现在有800平方米的墙壁,需要多少桶油漆?14. 一辆汽车以每小时60公里的速度行驶。

数学比和比例的应用试题

数学比和比例的应用试题

数学比和比例的应用试题1.同时同地,一根长1米的标杆的影长0.6米,一名修理工要爬至48米高的电视塔上修理设备,他竖直方向爬行的速度为0.4米/秒,则此人的影子移动的速度为()米/秒.A.0.56B.0.24C.0.48D.0.36【答案】B【解析】因为在时间相同时,速度比等于路程的比,所以再根据在同时同地,影子的长度与物体的实际长度的比值一定,所以影子的长度与物体的实际长度成正比例,由此列出比例解答即可.解:设此人的影子移动的速度为x米/秒.0.6:1=x:0.4,x=0.6×0.4,x=0.24,答:此人的影子移动的速度为0.24米/秒.故选:B.点评:根据速度、时间与路程的关系判断出在时间相同时,速度比等于路程的比,再由影子的长度与物体的实际长度成正比例是解答此题的关键,注意48米是无关条件.2.小明和小芳各自从家里出发到学校,小明走的路程比小芳多,小芳用的时间比小明多,则小明和小芳的速度比是()A.5:8B.8:5C.27:20D.16:15【答案】C【解析】首先把小芳走的路程看作“1”则小明走的路程就是1+,再把小明用的时间看作“1”,则小芳用的时间就是1+,再根据路程除以时间等于速度,求出各自的速度,再求出辆速度差即可.解:小明的速度:(1+)÷1=,小芳的速度:1÷(1+)=,小明与小芳速度的比是::=27:20,故选:C.点评:此题关键是把一个人的路程和速度分别看作“1”,另一个人的就是“1”的几分之几,再根据路程÷时间=速度,再比快慢.3.(只列式,不计算)梨树和苹果树棵数的比是7:8,(1)梨树棵数是苹果树棵数的百分之几?(2)苹果树棵数是梨树棵数的百分之几?(3)梨树棵数比苹果树棵数少百分之几?(4)苹果树棵数比梨树棵数多百分之几?.【答案】7÷8,8÷7,(8﹣7)÷8,(8﹣7)÷7.【解析】(1)用份数计算,要求梨树棵数是苹果树棵数的百分之几,用梨树的份数除以苹果树的份数即可;(2)要求苹果树棵数是梨树棵数的百分之几,用苹果树的份数除以梨树的份数即可;(3)要求梨树棵数比苹果树棵数少百分之几,用梨树比苹果树少的部分除以苹果树占的份数即可;(4)要求苹果树棵数比梨树棵数多百分之几,用苹果树比梨树多的部分除以梨树占的份数即可.解:(1)7÷8=87.5%;答:梨树棵数是苹果树棵数的87.5%.(2)8÷7≈114.3%;答:苹果树棵数是梨树棵数的114.3%.(3)(8﹣7)÷8,=1÷8,=12.5%;答:梨树棵数比苹果树棵数少12.5%.(4)(8﹣7)÷7,=1÷7,≈14.3%;答:苹果树棵数比梨树棵数多14.3%.点评:解决这类问题,一定看准:谁是谁的百分之几,谁比谁多(或少)百分之几,只有这样,才能正确列式.4.师徒两人共生产零件若干个,徒弟生产的零件占零件总数的,若徒弟给师傅15个,则徒弟与师傅生产的零件个数的比是1:3,徒弟生产了多少个零件?【答案】40【解析】把二人生产的零件总数看作单位“1”,徒弟生产的零件占零件总数的,后来徒弟的零件数量占零件总量的=,徒弟减少的零件数量占总量的(﹣),与其对应的数量是15,所以用对应量15除以对应分率(﹣),就是零件的总量,进而就可以求出徒弟生产零件的数量.解:15÷(﹣),=15÷(﹣),=15÷,=100(个),100×=40(个);答:徒弟生产了40个零件.点评:分析题意,得出徒弟减少的零件数量占总量的几分之几,是解答本题的关键.5.甲、乙两堆煤共140吨,当甲堆运走,乙堆运走10吨时,甲、乙两堆煤的吨数比是6:5,原来两堆煤各多少吨?【答案】80;60【解析】设甲堆煤有x吨,乙堆煤有140﹣x吨,根据“当甲堆运走,乙堆运走10吨时,甲、乙两堆煤的吨数比是6:5,”列比例是(1﹣)x:(140﹣x﹣10)=6:5,据此解答.解:设甲堆煤有x吨,乙堆煤有140﹣x吨,由题意得:(1﹣)x:(140﹣x﹣10)=6:5,x:(130﹣x)=6:5,x=780﹣6x,x+6x=780﹣6x+6x,x=780,x=80;140﹣80=60(吨);答:甲堆煤有80吨,乙堆煤有60吨.点评:根据甲、乙两堆煤运走一部分后,甲、乙两堆煤余下的吨数比是6:5,进行列比例解答即可.6.一个直角三角形中,两个锐角的度数的比是1:2,这两个锐角各多少度?【答案】两个锐角分别是30度、60度.【解析】因为三角形的内角和是180度,所以在直角三角形中,两个锐角的和是180°﹣90°=90°,又因为两个锐角的比是1:2,所以一个角是90度的,用乘法计算即可,再用90度减去这个锐角的度数就是另一个锐角的度数.解:180°﹣90°=90°,所以一个锐角是:90°×=90°×=30°;另一个锐角:90°﹣30°=60°.答:两个锐角分别是30度、60度.点评:此题主要考查三角形的内角和是180度和比的灵活运用.7.一种铜与锌制的合金,其中铜的重量与锌的重量比是5:3.如果在合金中加入15千克铜,它们的重量比是2:1.求合金中原来铜和锌的重量.【答案】铜的重量是75千克,锌的重量是45千克.【解析】根据题意得出合金中锌的含量不变,所以统一单位“1”,即原来合金中铜占锌的,后来合金中铜是锌的2倍,所以15千克对应的分数是2﹣,由此用除法列式求出锌的含量,进而求出铜的含量.解:原来铜的质量是锌的,后来铜的质量是锌的2倍;15÷(2﹣),=15,=45(千克),45×=75(千克),答:合金中原来铜的重量是75千克,锌的重量是45千克.点评:关键是把比转化为分数,统一单位“1”,找出15对应的分率,求出单位“1”,进而解决问题.8.食品店用奶糖和巧克力配制一种礼品糖,每盒中奶糖与巧克力的质量比是5:3.现有奶糖和巧克力各60千克.(1)奶糖用完时,巧克力还剩多少千克?(2)再有多少千克奶糖,就可以把巧克力全部用完?【答案】24千克.40千克【解析】(1)设用去的巧克力是x千克,由“配置一种礼品糖,所需奶糖和巧克力的质量比为5:3”可得:用去的奶糖数与巧克力的重量之比是5:3,可得比例式60:x=5:3,即可求出用去的巧克力数,从而用60减去用去的巧克力的质量就是剩下的巧克力的质量.(2)设再有y千克奶糖,就可以把巧克力全部用完,再根据用去的奶糖数与巧克力的重量之比是5:3,可得比例式y:24=5:3,据此即可解答.解:(1)设用去的巧克力是x千克,则60:x=5:3,5x=60×3,x=36,60﹣36=24(千克).答:巧克力还剩24千克.(2)设再有y千克奶糖,就可以把巧克力全部用完,则可得比例式:y:24=5:3,3y=24×5,y=40,答:再有40千克奶糖,就可以把巧克力全部用完.点评:此题关键是根据题干已知比的关系得出用掉的奶糖与巧克力的重量之比,从而列出比例式解答问题.9.甲班有60人,乙班有80人.从甲班调几人到乙班才能使甲、乙两班人数的比是2:3?【答案】4【解析】根据调动后甲、乙两班人数的比是2:3,甲班人数占总人数的,调动前后总人数不变是60+80=140人,根据乘法意义即可求出调动后甲的人数,再用甲班原有的人数减去现在的人数就是调几人到乙班.解:(60+80)×,=140×,=56(人);60﹣56=4(人);答:从甲班调4人到乙班即可.点评:此题主要是明白甲、乙两班不管怎么调动,总人数是不变的,再根据甲班调几人到乙班才能使甲、乙两班人数的比是2:3,求出甲班人数占总人数的,就能求出调动后甲班的人数,再比较即可.10.一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3:2.两种作物各播种多少公顷?【答案】大豆播种60公顷,玉米播种40公顷.【解析】求出两种作物各占种植总面积的几分之几,进一步利用分数乘法的意义列式解答即可.解:100×=60(公顷),100×=40(公顷);答:大豆播种60公顷,玉米播种40公顷.点评:抓住按比例分配应用题的特点:两(或三)个数的和,两(或三)个数的比,就可以按比例进行分配.11.建筑工地运来一批水泥,甲去后,将剩下的水泥按2:3分给甲、乙两个工程队,甲队分得24袋,乙队分得多少袋?【答案】28【解析】把水泥总袋数看作单位“1”,先求出剩下水泥重量占的分率,再按照比例分配方法,求出甲分得总袋数的分率,再加上原来分得的,也就是24袋占总袋数的分率,依据分数除法意义,求出水泥总袋数,最后减甲队分得的袋数即可解答.解:22÷[(1﹣)×+]﹣22,=22÷[×]﹣22,=22÷[]﹣22,=22﹣22,=40﹣22,=18(袋);答:乙队分得18袋.点评:分数除法意义是解答本题的依据,关键是求出水泥总袋数.12.画一个边长是1.5厘米的正方形,并按照4:5的比分成两部分.【答案】【解析】画一个边长1.5厘米的正方形,按照4:5分成两部分,即将这个边长3厘米的正方形平均分成4+5=9份,其中一份占全部的,可用阴影部分表示,另一份占.点评:完成本题要明白4:5分成两部分,即将这个边长1.5厘米的正方形平均分成9份.13.小明读一本书,已经读了全书的,如果再读15页,则读过的页数与未读的页数的比是2:3,这本书有多少页?【答案】75【解析】把书的总页数看作单位“1”,再读15页,则读过的页数与未读的页数的比是 2:3,也就是读过的数是总页数的=,先求出再读15页后,比原来多读的书的页数占总页数的分率,也就是15页占总页数的分率,依据分数除法意义即可解答.解:2+3=5,15÷(),=15,=75(页),答:这本书有75页.点评:分数除法意义是解答本题的依据,关键是求出15页占总页数的分率.14.小红在同一时间、同一地点,测得自己的身高与影子的长度比是2:3,这时教学楼的影子长24米,则教学楼的高度是多少米?(用比例解)【答案】16【解析】根据“在同一时间、同一地点身高与影子的长度比是2:3,”即身高与影子的长度的比值一定,由此判断实际的高度与影子的高度成正比例,由此列出比例解决问题.解:教学楼的高度是x米;2:3=x:24,3x=24×2,x=,x=16;答:教学楼的高度是16米.点评:解答此题的关键是,判断实际高度与影子成正比例,由此列出比例解决问题.15.张华和李明两人有零花钱若干,其比为5:3,若张华给李明5元钱,则两人的比为9:7,两人原来各有多少钱?【答案】张华和李明原来的钱数分别是50元和30元【解析】根据已知所得:张华原来的钱数占两人总钱数的(),张华后来的钱数占总钱数的().因为两人的钱数和未变,所以5元所对应的分率是:﹣=,故两人的钱数和为:5÷=80(元).最后根据原来的钱数比,分别求出两人的钱数即可.解:两人的钱数和是:5÷(﹣),=5÷,=80(元);张华原来的钱数是:80×,=50(元);李明原来的钱数是:80﹣50,=30(元).答:张华和李明原来的钱数分别是50元和30元.点评:解答此题的关键是把两人的钱数和看作单位“1”,重点是求5元所对应标准量的分率.16.修一条水渠,每天工作8小时,要9天完成,如果工作效率不变,每天工作6小时,多少天可以完成任务?(用比例解)【答案】12【解析】根据题意知道修这条水渠的工作量一定,每天工作的时间和需要的天数成反比例,由此列式解答即可.解:设x天可以完成任务,6x=8×9,6x=72,x=12;答:12天可以完成任务.点评:解答此题的关键是弄清题意,先判断哪两种相关联的量成何比例,再找准对应量,列式解答即可.17.有大小两筐苹果,其重量比是4:3,大筐苹果比小筐苹果多5千克,大小两筐苹果各多少千克?【答案】大小两筐苹果各20千克、15千克.【解析】大小两筐苹果,其重量比是4:3,可以把大筐苹果的重量看做4份,小筐苹果的重量看做3份,大筐苹果比小筐苹果多1份,正好多5千克,所以每份为5÷(4﹣3)=5(千克),求大小两筐苹果各多少千克,就比较好解答了.解:大筐苹果的重量:5÷(4﹣3)×4,=5÷1×4,=20(千克);小筐苹果的重量:5÷(4﹣3)×3,=5÷1×3,=15(千克);答:大小两筐苹果各20千克、15千克.点评:此题采用了用份数解答的方法,这种方法易于理解.18.参加礼仪大赛的四、五、六年级的人数比是4:5:7,已知六年级的参赛人数是21人,四、五年级各有多少人参赛?【答案】四、五年级分别有12人、15人参赛.【解析】把四年级的人数看作4份,五年级的人数看作5份,六年级的人数看作7份;那么一份的人数是:21÷7=3(人),五年级的人数是:3×5=15(人),四年级的人数是:3×4=12(人);据此解答.解:21÷7=3(人),五年级的人数是:3×5=15(人),四年级的人数是:3×4=12(人);答:四、五年级分别有12人、15人参赛.点评:本题考查了比的应用,在比的应用题中可以把两个量的比看作两个量的份数关系,继而转化为两个量的分率关系,也可用于求出一份的量.19.小雅读一本名著,第一天读了一部分后,已读的页数与未读页数的比是5:7,第二天又读了92页,这时已读的页数是未读页数的4倍.第一天读了多少页?【答案】192【解析】把这本书看作单位“1”,由“已看页数与未看页数的比为5:7”可知,第一天看了全部的再由“第二天又看了92页,这时已看的页数是未看页数的4倍”得到,第二天看了全部的,92页对应得分率就是(﹣),用对应量,92除以对应分率,就是这本书的总页数,进而求出第一天读的页数.解:92÷(﹣)×,=92÷×,=192(页);答:第一天读了192页.点评:解决此题的关键是把比转化为分数,统一单位“1”,求出92页的对应分率,用对应量除以对应分率就是这本书的总页数.20.学校图书馆原有文艺书和科技书共5400本,其中科技书比文艺书少20%,最近又买来一批科技书,这时科技书和文艺书的本数的比是9:10,图书馆买来科技书多少本?【答案】图书馆买来科技书300本【解析】我们把文艺书的本数看作单位“1”,用5400除以(1﹣20%+1)求出文艺书的本数,再用文艺书的本数求出现在科技书和文艺书的总本数,再减去原来科技书和文艺书的总本数,就是最近又买来一批科技书的本数.解:5400÷(1﹣20%+1)÷﹣5400,=5400÷×﹣5400,=5400×﹣5400,=5400×﹣5400,=5700﹣5400,=300(本);答:图书馆买来科技书300本.点评:本题根据题意找准单位“1”,灵活的把关于比的问题转化成分数的乘除法应用题进行解答即可.21.甲、乙两人原来的钱数的比是3:4,后来甲给乙50元,这时甲的钱数是乙的.甲、乙原来各有多少元钱?【答案】甲原来有225元,乙原来有300元【解析】甲乙原先的钱数比是3:4,现在甲的钱数是乙的;甲原先的钱数占甲乙两人总钱数的,甲现在的钱数占甲乙两人总钱数的;那么50元占甲乙两人总钱数的﹣=,前后甲乙两人总钱数不变,为50÷=525(元).那么,甲原有钱数为525×=225(元),乙的钱数就好求了.解:甲乙总钱数:50÷(﹣),=50÷,=525(元);甲原有钱数:525×,=525×,=225(元);乙原有钱数:525﹣225=300(元).答:甲原来有225元,乙原来有300元.点评:此题解答的关键在于先求出甲、乙两人的总钱数,然后用按比例分配的方法,解决问题.22.加工一批零件,第一天完成的个数与未完成的个数的比是1:2,如果再加工120个,就可以完成这批零件的一半,这批零件共有几个?【答案】这批零件共有720个【解析】把这批零件的总量看作单位“1”,则第一天完成了,再据“如果再加工120个,就可以完成这批零件的一半”可知,此时完成了总量的,所以120个的对应分率应是(),用对应量除以对应分率,就是这批零件的总量.解:120÷(﹣),=120÷,=720(个);答:这批零件共有720个.点评:解答此题的关键是先求出120的对应分率,进而求出零件总量.23.某工厂2002年二月份前4天用电2.8万度,照这样计算,全月共用电多少万度?【答案】全月共用电19.6万度【解析】首先分析2002年二月是多少天,因为2002年是平年,二月是平月有28天,根据题意,“照这样计算”,意思是每天的用电量是一定的,即用电总量与用电天数的比值一定,所以用电总量与用电天数成正比例.由此用比例解答.解:设全月用电x万度.2.8:4=x:284x=2.8×28x=x=19.6;答:全月共用电19.6万度.点评:此题的解答关键是抓住“照这样计算”这句话,判断出题中两种相关联的量成什么比例,然后设未知为x,列比例解答即可.24.工程队修一条路,开工9天修了270m,剩下630m.照这样计算,修完这条路共要多少天?【答案】修完这条路共要30天【解析】根据题意知道,工作效率一定,工作量和工作时间成正比例,由此列式解答即可.解:设修完这条路共要x天,270:9=(270+630):x,270:9=900:x,270x=900×9,x=,x=30;答:修完这条路共要30天.点评:判断出工作量和工作时间成正比例是解答此题的关键,主要问题要求的是修完这条路共要的时间,不是剩下的630米所需要的时间.25.只列式不计算(1)2.5与的和,除它们的差,商是多少?(2)最小的合数与的比值等于X与的比值,求X(列比例式)?【答案】①(2.5﹣)÷(2.5﹣);②4:=X:.【解析】①2.5与的和为2.5+,它们的差是2.5﹣,则它们的和除它们的差,商是:(2.5﹣)÷(2.5﹣);②最小的合数是4,最小的合数与的比为4:,X与的比为X:,最小的合数与的比值等于X与的比值,由此可得比例:4:=X:.解:①(2.5﹣)÷(2.5﹣);②4:=X:.点评:完成①时要注意除法中“除与除以”的区别.26.王明读一本书,读了若干页后,这时已读的页数和未读的页数的比是2:3,如果再读5页,这时已读的页数和未读的页数的比是9:11.这本书有多少页?【答案】这本书有100页【解析】本题总页数不变,所以把总页数看作单位“1”,根据“这时已读的页数和未读的页数的比是2:3,”可得:这时已读的页数占总页数,根据“这时已读的页数和未读的页数的比是9:11.”可得:这时已读的页数占总页数的,那么再读的5页对应的分率是:,然后根据分数除法的意义用5除以这个分率即可得出这本书有多少页.解:5÷(),=5÷,=100(页);答:这本书有100页.点评:这种类型的应用题一般情况下要把不变的量看作单位“1”,有时要把“和”看作单位“1”,有时要把“差”看作单位“1”(如年龄问题),这样便于统一单位“1”,进而找到数量对应的分率,再根据已知一个数的几分之几是多少,求这个数,用除法列式计算.27.(2010•深圳模拟)学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?【答案】五年级比六年级少借45本【解析】由题意得,把315本科普读物平均分成3+4=7份,又因五年级比六年级少一份,于是用除法可以求出每一份的数量,也就是五年级比六年级少的本数,问题即可得解.解:315÷(3+4)×(4﹣3),=315÷7×1,=45(本);答:五年级比六年级少借45本.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.28.一种药液,药与水的比例是1:100,现在有4.5克药,需要水多少克?【答案】需要水450克【解析】根据比的关系知:水的用量就是药的100÷1倍,再乘4.5就是需要水的重量.据此解答.解:100÷1×4.5,=100×4.5,=450(克).答:需要水450克.点评:本题的关键是求出需要水是药的多少倍,再根据乘法的意义列式解答.29.小巧、小乐、小倩三个好朋友共收集废旧电池420节,其中小倩收集的比小乐的少,小乐与小巧收集的废旧电池的比是4:5.他们三人各收集废旧电池多少节?【答案】小倩收集96节,小乐收集144节,小巧收集180节【解析】已知小倩收集的比小乐的少,把贝贝收集的数量看作单位“1”,小倩收集的数量相当于小乐的1﹣=,也就是小倩收集的与小乐收集的比是2:3;又知道小乐与小巧收集的废旧电池的比是4:5.由此可以求出他们三人收集数量的连比是8:12:15;求出总份数及每人收集的占总数的几分之几,然后根据一个数乘分数的意义,用乘法解答.解:小倩收集的与贝贝收集的比是2:3;小乐与丽丽收集的废旧电池的比是4:5.所以他们三人收集数量的连比是8:12:15;8+12+15=35(份),小倩:420×=96(节);小乐:420×=144(节);小巧:420×=180(节);答:小倩收集96节,小乐收集144节,小巧收集180节.点评:此题解答关键是求出他们三人收集数量的连比,然后根据按比例分配的方法解答.30.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?【答案】加进去的水量为4.5升【解析】由题意可知:设加进去的水量为x升,则会有(8+x):(13+x)=5:7,解此比例即可.解:设加进去的水量为x升,则会有(8+x):(13+x)=5:7,(8+x)×7=(13+x)×5,56+7x=65+5x,2x=9,x=4.5;答:加进去的水量为4.5升.点评:解答此题的关键是:设出未知数,利用比例解答比较容易理解.31.摩托车与汽车速度的比是10:9,两车同时从甲乙两地开出,在离两地中点6千米处相遇.甲、乙两地相距多少千米?【答案】甲、乙两地相距228千米【解析】从题意可知摩托车的速度快,相遇时,摩托车已经行过了中点,比全路程的一半多6千米,汽车行驶的路程就比全路程的一半少6千米,它们的路程差就是6×2=12千米,再求出速度差,然后用路程差除以速度差就是相遇时的时间,再根据速度和×相遇时间=总路程进而求出全程.解:设摩托车与汽车的速度分别为10和9,(10+9)×[6×2÷(10﹣9)],=19×12,="288" (千米);答:甲、乙两地相距228千米.点评:本题是相遇问题,关键理解当摩托车行到离两地中点处6千米时和汽车相遇,说明它们的路程差是2个6千米,再根据路程差÷速度差求出相遇时间,根据全程=速度和×相遇时的时间来求解,即可解决问题.32.汇文书店优惠出售一批图书,第一天卖了这批图书的40%,第二天又卖了600本,这时已经卖出的本数和没有卖的本数之比是11:4,这批图书共有多少本?【答案】这批图书共有1800本【解析】这时已经卖出的本数和没有卖的本数之比是11:4,即买出的占总数的,又第一天卖了这批图书的40%,所以第二天卖出的占总数的﹣40%,根据分数除法的意义可知,这批图书共有600÷(﹣40%)本.解:600÷(﹣40%)=600÷(﹣),=600,=1800(本).答:这批图书共有1800本.点评:首先根据已卖出与未卖出的比求出已卖出的占总数的分率是完成本题的关键.33.(2011•北海模拟)有甲乙两个长方形,它们的周长相等,甲的长与宽之比是3:2,乙的长与宽之比是7:6.甲与乙的面积之比是864:87521:1010:7.【答案】【解析】甲的长与宽之比是3:2,3+2=5,说明两条长的和占周长的,则长占周长的÷2=,两条宽的和占周长的,则宽占周长的÷2=;乙的长与宽之比是7:6,7+6=13,说明两条长的和占周长的,则长占周长的÷2=,两条宽的和占周长的,则宽占周长的÷2=;因为周长相等,根据“长方形的面积=长×宽”得出:两个长方形的面积比就是:(×):(×);进行化简即可.解:因为由分析知:甲长占周长的÷2=,宽占周长的÷2=;乙长占周长的÷2=,宽占周长的÷2=;所以两个长方形的面积比就是:(×):(×);=:,=;故答案为:.点评:解答此题的关键:先把两个长方形的长和宽分别转化为周长的几分之几,进而根据长方形的面积计算方法分别求出面积,然后进行比即可.34.(2012•宝应县模拟)甲、乙、丙三人共有钱2280元,甲、乙两人钱数的比是2:7,乙、丙两人钱数的比是3:7.三人各有钱多少元?【答案】甲有钱180元,乙有630元,丙有1470元【解析】把“甲:乙=2:7”理解为甲的钱数是乙的钱数的,把“乙:丙=3:7”理解为丙的钱数是乙的钱数的,这时把乙的钱数看作单位“1”,根据“对应数÷对应分率=单位“1”的量”解答求出乙的钱数,进而根据一个数乘分数的意义,分别求出另两个人的钱数.解:乙:2280÷(1++),=2280÷,=630(元);甲:630×=180(元);丙:630×=1470(元);答:甲有钱180元,乙有630元,丙有1470元.点评:解答此题的关键:把两个数的比理解为一个数是另一个数的几分之几,进而判断出单位“1”,根据对应数÷对应分率=单位“1”的量”进行解答.35.(2012•河西区模拟)画一个上底和下底比为2:1的梯形.【答案】见解析【解析】根据题干,先确定这个梯形的上底与下底:设这个梯形的上底是2厘米,则下底是1厘米,根据梯形的上底与下底互相平行的性质,即可画出这个梯形.解:设这个梯形的上底是2厘米,则下底是1厘米,根据梯形的上底与下底互相平行的性质,画出互相平行的两条线段分别为2厘米,1厘米;再把线段的两个端点顺次连接起来即可得出这个梯形:点评:此题考查梯形的上下底互相平行的性质的灵活应用.36.(2013•黄冈模拟)校园里杨树与柳树的棵数比是3:5,杨树有180棵,柳树有多少棵.【答案】柳树有300棵【解析】根据“杨树与柳树的棵数比是3:5,”知道杨树是柳树的棵数的,的单位“1”是柳树的棵数,由此根据分数除法的意义,列式解答即可解:杨树与柳树的棵数比是3:5,”知道杨树是柳树的棵数的,180÷,=180×,。

小升初比和比例应用题

小升初比和比例应用题

比和比例应用题1.用84厘米长的铜丝围成一个三角形,这个三角形三条边长度的比是3:4:5。

这个三角形的三条边各是多少厘米?2.甲、乙、丙三个数的平均数是84,甲、乙、丙三个数的比是3:4:5,甲、乙、丙三个数各是多少?3.乙两个数的平均数是25,甲数与乙数的比是3:4,甲、乙两数各是多少?4.一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?5.一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的面积是多少平方米?6.一种药水是用药物和水按3:400配制成的。

(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?7. 商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?8. 纸箱里有红绿黄三色球,红色球的个数是绿色球的43,绿色球的个数与黄色球个数的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?9. 一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺?10. 甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?11. 在一幅比例尺是1:300的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?12. 朝阳小学的操场是一个长方形,长120米,宽75米,用30001的比例尺画成平面图,长和宽各是多少厘米?13. 在比例尺是1:6000000的地图上,量得两地之间的距离是3厘米,这两地之间的实际距离是多少千米?14. 右图是一个梯形地平面图(单位:厘米),求它的实际面积15. 修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)16. 同学们做操,每行站20人,正好站18行。

如果每行站24人,可以站多少行?(用比例方法解)17. 飞机每小时飞行480千米,汽车每小时行60千米。

比和比例应用题练习题及答案.doc

比和比例应用题练习题及答案.doc

比和比例应用题练习题及答案例1一架飞机所带的燃料最多可以用6小时,飞机去时顺风,每小时可以飞行1500千米;飞回时逆风,每小时可以飞行1200千米。

这架飞机最多飞出去多少千米就要往回飞?解法1:抓住问题特点,用比例知识解答较简明。

飞出和飞回的路程一定,所以飞出和飞回使用时间和其速度成为反比。

飞出时间和飞回时间的比:1200: 1500-4: 5飞出距离:1500X6X1150******** 112001150011200 解法 2:用工程问题的思路解答。

飞出时,每千米用1150011200小时,飞回时,每千米用小时,返回1千米用小时,返回多少千米用6小时? -4--4000解法3:列比例解。

返回路程一定,速度与时间成反比例。

设:飞出x小时后返回。

1500x=1200 X=81500X-40008解法4:利用时间和为6列方程。

设:飞出x千米后返回。

1500?x1200?6X-4000解法5:先求出平均速度,再求出飞出距离,假设飞出距离为“1”-4--4000 X-4000练习:1,一架飞机所带的燃料最多可以用6小时,飞机去时逆风,每小时飞行600千米;返回时顺风,每小时飞行750千米。

这架飞机最多飞出去多少千米就需返航?2,小明上学时每分钟走75米,放学时每分钟走90 米。

这样他上学和放学在路上共用了 22分钟。

你能求出小明家到学校的路程吗?、3,甲、乙两人各加工700个零件,甲比乙晚1.5 小时开工,结果比乙还提前0.5小时完成。

己知甲、乙的工作效率比是7: 5,求甲每小时加工零件多少个?例2客车和货车分别从甲、乙两地同时相对开出,经过若干小时后在途中相遇,相遇后又行5小时货车到达甲地,这时客车到乙地后又掉头行了甲、乙两地距离的25%O客车和货车从出发到相遇用了多少小时?解:客车和货车的速度比::1=5: 4行完AB这段路程客车和货车所需的时间比::5相遇时间:54-5X4-4小时练习21.甲、乙两车的速度比是5: 8,两车同时从A、B 两地相对出发,在距中点24千米处相遇。

比和比例应用题

比和比例应用题

比和比例应用题(基础)例1、学校合唱队共有126名学生,其中男、女队总人数之比是2︰7,合唱队男、女队员各有多少名?例2、甲、乙两站间的铁路长372千米。

两列火车同时出发相向开出,2.4小时后相遇,相遇时两车所行的路程比是16︰15。

求这两列火车的速度各是多少千米/小时?例3、小明读一本书。

第一天读了总页数的13,第二天读的页数与第一天读的页数比是6︰5,还剩下64页没有读。

全书共有多少页?例4、顺达服装厂有甲、乙两个车间,甲车间与乙车间人数比是3︰5,如果从甲车间调150人到乙车间,则甲、乙车间人数比是3︰7。

求原来甲、乙两个车间各个多少人?例5、在比例尺是1︰15000000的地图上,量得甲地到乙地长是5厘米,如果改画在比例尺是1︰20000000的地图上,甲地到乙地应画多少厘米?例6、如图所示,为方便学生上、下学,育才小学准备修一条直通人民大道的小路。

要使这少米?例7、飞机4小时飞行1760千米,用同样的速度从甲城飞往乙城共飞行7小时。

甲、乙两城相距多少千米?(用比例方法解)例8、把一根长3米的圆钢锯成60厘米一段,共需20分钟。

如果改成锯成50厘米一段,需要几分钟?例9、一列火车从甲城开往乙城,每小时行50千米,4.8小时可到达。

如果速度提高15,可以提前几小时到达?例10、一辆汽车计划每小时行60千米,从甲地到乙地要7.5小时,实际3小时行了150千米。

照这样计算,行完全程要几小时?例11、一辆客车在甲、乙两地之间行驶,往返一次共用4小时,客车去时每小时行45千米,回时每小时行30千米。

甲、乙两地之间的距离是多少千米?例12、甲、乙二人合做一项工程,6天后,乙因事离开,再由甲单独工作10天完成。

已知甲、乙二人工作效率比是3︰4。

乙单独完成这项工程需几天?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和比例应用题经典练习题
例1.某市的第三纺织厂有252人,男职工和女职工的比是2:7,这个纺织厂男、女职工各有多少人?
例2.一种火药是由硫磺、硝石和木炭按照一定的比例配制而成,其中硫磺、硝石和木炭的比是2:3:4,。

现在要配制这种火药3600千克,三种原料各需要多少千克?如果现在有80千克木炭,需要硫磺和硝石各多少千克?
例3.某农场有水田102公顷,旱田54公顷,现在计划把一部分旱田改为水田,使两者的比是1:5,需要把多少公顷的旱田改为水田?
例4.在比例尺0 40 80 120千米的地图上,量得甲乙两地的距离是2.5厘米。

在另一幅地图上量得甲乙两地的距离是4厘米,两幅地图,哪一幅地图看得清晰一些?
例5.有840吨货物,分给甲乙两个运输队完成。

甲队友载重5吨的汽车12辆,乙队有载重3吨的汽车15辆,按两队的运输能力分配,甲乙两队各应运输多少吨?
例6.甲、乙、丙三个数的和是210.甲和乙的比是2:3,乙和丙的比是4:5,甲、乙、丙各是多少?
例7.如果一辆汽车从甲地开往乙地,每小时行驶60千米,4.5小时
的地图上,甲乙两地画多少厘米?
到达,画在一幅1
3000000
例8.一批图书按4:5:6分配给甲、乙、丙三个班,结果甲班比丙班少分24本,这批图书共有多少本?
例9.为了减少不必要的开支,节约用纸,学校准备用单面A4纸装订练习本发给学生。

每本24页,每人一本可以发给216名同学,还有72名同学没有领到,学校要求必须每人一本,则每本应该装订多少页纸?
例10.某修路队修一条公路,用边长4分米的方砖来铺,需要900块,如果改用边长为5分米的方砖需要多少块?
(待续)。

相关文档
最新文档