各种数学符号读法
数学符号及读法大全(详细)
数学符号及读法大全符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作e xa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数a x同 a^xlogb a 以b为底a的对数; b logba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b)a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
下边界值写在其下部,上边界值写在其上部。
如j从1到100 的和可以表示成:。
这表示 1 + 2 + … + nM 表示一个矩阵或数列或其它|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v| 被写成行或可被看成从1×k阶矩阵的向量dx 变量x的一个无穷小变化,dy, dz, dr等类似ds 长度的微小变化ρ变量 (x2 + y2 + z2)1/2或球面坐标系中到原点的距离r 变量 (x2 + y2)1/2或三维空间或极坐标中到z轴的距离|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积||M|| 矩阵M的行列式的值,为一个面积、体积或超体积det M M的行列式M-1矩阵M的逆矩阵v×w向量v和w的向量积或叉积符号含义θvw向量v和w之间的夹角A•B×C标量三重积,以A、B、C为列的矩阵的行列式uw在向量w方向上的单位向量,即 w/|w|df 函数f的微小变化,足够小以至适合于所有相关函数的线性近似df/dx f关于x的导数,同时也是f的线性近似斜率f ' 函数f关于相应自变量的导数,自变量通常为x∂f/∂x y、z固定时f关于x的偏导数。
数学符号读法大全3篇
数学符号读法大全第一篇:基础数学符号读法大全数学符号在我们学习和研究数学的过程中起着至关重要的作用,熟练掌握各种符号的读法是学好数学的重要保障。
以下是数学符号读法的基础大全:1. +(加号),读作“加”:“3+5”读作“三加五”。
2. -(减号),读作“减”:“7-2”读作“七减二”。
3. ×(乘号),读作“乘”:“2×4”读作“二乘四”。
4. ÷(除号),读作“除”:“8÷2”读作“八除以二”。
5. =(等号),读作“等于”:“1+2=3”读作“一加二等于三”。
6. ≠(不等号),读作“不等于”:“4≠2”读作“四不等于二”。
7. >(大于号),读作“大于”:“5>3”读作“五大于三”。
8. <(小于号),读作“小于”:“3<7”读作“三小于七”。
9. ≥(大于等于号),读作“大于等于”:“4≥3”读作“四大于等于三”。
10. ≤(小于等于号),读作“小于等于”:“3≤6”读作“三小于等于六”。
11. ∑(求和符号),读作“求和”:“∑n”读作“求和n”。
12. ∧(与符号),读作“与”:“A∧B”读作“A与B”。
13. ∨(或符号),读作“或”:“C∨D”读作“C或D”。
14. ⊕(异或符号),读作“异或”:“E⊕F”读作“E 异或F”。
15. ↔(双向箭头),读作“等价于”:“G↔H”读作“G等价于H”。
16. ⇒(单向箭头),读作“蕴含”:“I⇒J”读作“I 蕴含J”。
17. ∴(三点儿因为),读作“因为”:“K∴L”读作“因为K,所以L”。
18. ∵(三点儿所以),读作“所以”:“M∵N”读作“因为M,所以N”。
19. ∈(属于符号),读作“属于”:“x∈A”读作“x 属于A”。
20. ∉(不属于符号),读作“不属于”:“y∉B”读作“y不属于B”。
21. ∅(空集符号),读作“空集”:“∅”读作“空集”。
22. ∞(无穷符号),读作“无穷”:“∞”读作“无穷”。
所有的数学符号及读法
所有的数学符号及读法所有的数学符号及读法及读法⼤全常⽤数学输⼊符号:≈≡ ≠ = ≤≥ <>≮≯∷ ± +- × ÷ /∫∮∝ ∞ ∧∨ ∑ ∏∪∩∈∵∴⊥‖∠⌒≌∽ √ ()【】{}ⅠⅡ⊕⊙∥αβγδεζηθ Δ⼤写⼩写英⽂注⾳国际⾳标注⾳中⽂注⾳Ααalpha alfa阿⽿法Ββbeta beta贝塔Γγgamma gamma伽马Δδdeta delta德⽿塔Εεepsilon epsilon艾普西隆Ζζzeta zeta截塔Ηηeta eta艾塔Θθthetaθita西塔Ιιiota iota约塔Κκkappa kappa∧λlambda lambda兰姆达Μµmu miu缪Ννnu niu纽Ξξxi ksi可塞Οοomicron omikron奥密可戎∏πpi pai派Ρρrho rou柔∑σsigma sigma西格马Ττtau tau套Υυupsilon jupsilon⾐普西隆Φφphi fai斐Χχchi khai喜Ψψpsi psai普西Ωωomega omiga欧⽶符号含义i-1的f(x)函数f在⾃变量x处的值sin(x)在⾃变量x处的值exp(x)在⾃变量x处的值,常被写作exa^x a的x次⽅;有理数x由定义ln x exp x 的反函数ax同 a^xlogba以b为底a的对数; blogba = acos x在⾃变量x处的值tan x其值等于 sin x/cos xcot x的值或 cos x/sin xsec x含数的值,其值等于 1/cos xcsc x的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ⾓度的⼀个标准符号,不注明均指弧度,尤其⽤于表⽰atan x/y,当x、y、z⽤于表⽰空间中的点时i, j, k分别表⽰x、y、z⽅向上的(a, b, c)以a、b、c为元素的向量(a, b)以a、b为元素的向量(a, b)以a、b为元素的向量(a, b)a、b向量的点积a·b a、b向量的点积(a·b)a、b向量的点积|v|向量v的模|x|数x的绝对值Σ表⽰求和,通常是某项指数。
(完整版)数学符号及读法大全
数学符号大全数学符号及读法大全常用数学输入符号:≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ公式输入符号≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒⊙≌∽√+:plus(positive正的)-:minus(negative负的)*:multiplied by÷:divided by=:be equal to≈:be approximately equal to():round brackets(parenthess)[]:square brackets{}:braces∵:because∴:therefore≤:less than or equal to≥:greater than or equal to∞:infinityLOGnX:logx to the base nxn:the nth power of xf(x):the function of xdx:diffrencial of xx+y:x plus y(a+b):bracket a plus b bracket closeda=b: a equals ba≠b: a isn't equal to ba>b : a is greater than ba>>b: a is much greater than ba≥b: a is greater than or equal to bx→∞:approches infinityx2:x squarex3:x cube√ ̄x:the square root of x3√ ̄x:the cube root of x3‰:three peimilln∑i=1xi:the summation of x where x goes from 1to nn∏i=1xi:the product of x sub i where igoes from 1to n ∫ab:integral betweens a and b数学符号(理科符号)——运算符号1.基本符号:+- × ÷(/)2.分数号:/3.正负号:±4.相似全等:∽≌5.因为所以:∵∴6.判断类:=≠<≮(不小于)>≯(不大于)7.集合类:∈(属于)∪(并集)∩(交集)8.求和符号:∑9.n次方符号:¹(一次方) ²(平方) ³(立方)⁴(4次方)ⁿ(n次方)10.下角标:₁₂₃₄(如:A₁B₂C₃D₄效果如何?)11.或与非的"非":¬12.导数符号(备注符号):′〃13.度:°℃14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫∬19.箭头类:↗↙↖↘↑↓↔↕↑↓→←20.绝对值:|21.弧:⌒22.圆:⊙11.或与非的"非":¬12.导数符号(备注符号):′〃13.度:°℃14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫∬19.箭头类:↗↙↖↘↑↓↔↕↑↓→←20.绝对值:|21.弧:⌒22.圆:⊙αβγδεζηθικλμνξοπρστυφχψωΑΒΓΔΕΖΗΘΙΚ∧ΜΝΞΟ∏Ρ∑ΤΥΦΧΨΩабвгдеёжзийклмнопрстуфхцчшщъыьэюяАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯΔ。
数学符号读法大全(免费)
N的阶级大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Γδdeta delta 德耳塔Δεepsilon epsilon 艾普西隆Εδzeta zeta 截塔Ζεeta eta 艾塔Θζtheta ζita西塔Ηηiota iota 约塔Κθkappa kappa 卡帕∧ιlambda lambda 兰姆达Μκmu miu 缪Νλnu niu 纽Ξμxi ksi 可塞Ονomicron omikron 奥密可戎∏πpi pai 派Ρξrho rou 柔∑ζsigma sigma 西格马Τηtau tau 套Υυupsilon jupsilon 衣普西隆Φθphi fai 斐Φχchi khai 喜Χψpsi psai 普西Ψωomega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos yatan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z 用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
各种数学符号及读法大全
各种数学符号及读法大全常用数学输入符号:≈ ≡ ≠ =≤≥ <>≮≯∷±+-× ÷/∫ ∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔlg龙格ln罗伊公式输入符号≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒⊙≌∽√数学符号(理科符号)——运算符号1.基本符号:+-× ÷(/)2.分数号:/3.正负号:±4.相似全等:∽≌5.因为所以:∵∴6.判断类:=≠ <≮(不小于)>≯(不大于)7.集合类:∈(属于)∪(并集)∩(交集)8.求和符号:∑9.n次方符号:¹(一次方)²(平方)³(立方)⁴(4次方)ⁿ(n次方)10.下角标:₁₂₃₄ (如:A₁B₂C₃D₄)11.或与非的"非":¬12.导数符号(备注符号):′ 〃13.度:°℃14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫ ∬19.箭头类:↗↙↖↘↑↓↔↕↑↓→←20.绝对值:|21.弧:⌒22.圆:⊙23.平均数-,ba拔数学符号不好打,复制一下吧1 几何符号⊥∥∠⌒⊙≡≌△2 代数符号∝∧∨~∫≠≤≥≈∞∶3运算符号×÷√±4集合符号∪∩∈5特殊符号∑π(圆周率)6推理符号|a|⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&;§①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯?⊙⊥⊿⌒℃指数0123:º¹²³符号意义∞无穷大PI圆周率|x|函数的绝对值∪集合并∩集合交≥大于等于≤小于等于≡恒等于或同余ln(x)自然对数lg(x)以2为底的对数log(x)常用对数floor(x)上取整函数ceil(x)下取整函数x mod y求余数{x}小数部分x - floor(x)∫f(x)δx不定积分∫[a:b]f(x)δx a到b的定积分[P]P为真等于1否则等于0∑[1≤k≤n]f(k)对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?)求极限f(z)f关于z的m阶导函数C(n:m)组合数,n中取mP(n:m)排列数m|n m整除nm⊥n m与n互质a ∈A a属于集合A#A集合A中的元素个数。
各种数学符号的读法
各种数学符号的读法在日常生活中,我们经常会遇到各种各样的数学符号,例如加减乘除、大于小于、平方根等等。
对于这些符号,我们需要了解它们的读法,以便正确理解和运用。
下面就让我们来一起学习各种数学符号的读法吧。
首先,我们来看看最基本的加减乘除符号。
加号“+”读作“加”,减号“-”读作“减”,乘号“×”读作“乘”,除号“÷”读作“除”。
这些符号在数学运算中经常出现,对于初学者来说,掌握它们的读法是非常重要的。
接下来,我们来学习一些比较常见的数学符号。
大于号“>”读作“大于”,小于号“<”读作“小于”,等于号“=”读作“等于”。
这些符号在比较大小或者表示相等关系时经常被使用。
除了基本的运算符号和比较符号外,还有一些特殊的数学符号需要我们了解。
例如平方根符号“√”读作“根号”,百分号“%”读作“百分之”,阶乘符号“!”读作“阶乘”。
这些符号在数学表达式中起着重要的作用,正确理解它们的读法可以帮助我们更好地理解数学问题。
此外,还有一些数学符号的读法可能会让人感到困惑。
例如π(圆周率)读作“派”,Σ(求和符号)读作“求和”,∞(无穷大符号)读作“无穷大”。
这些符号在数学中具有特殊的意义,掌握它们的读法有助于我们更好地理解数学概念。
总的来说,数学符号的读法在数学学习中起着至关重要的作用。
正确理解这些符号的读法可以帮助我们更好地理解和运用数学知识,提高数学学习的效率和水平。
希望通过学习各种数学符号的读法,能够让我们在数学学习中更加得心应手,取得更好的成绩。
让我们一起努力学习,掌握更多有关数学的知识吧!。
数学符号及读法大全
数学符号及读法大全第一部分:基本数学符号1. 加号 (+)读作:加2. 减号 ()读作:减3. 乘号(×)读作:乘4. 除号(÷)读作:除5. 等号 (=)读作:等于6. 不等号(≠)读作:不等于7. 大于号 (>)读作:大于8. 小于号 (<)读作:小于9. 大于等于号(≥)读作:大于等于10. 小于等于号(≤)读作:小于等于467. 静谧之海468. 翱翔天际469. 晨曦微光470. 暮色温柔471. 琴瑟和鸣472. 碧波荡漾473. 风轻云淡474. 星河滚烫475. 雨后初晴476. 月下独酌477. 寂静之声478. 花前月下479. 时光荏苒480. 笑忘书481. 梦开始的地方482. 时光旅行者483. 漫步星河484. 风起云涌485. 雨落花飞4. 月影斑驳487. 晨光熹微488. 暮色苍茫489. 静谧之夜490. 翱翔天际491. 晨曦微光492. 暮色温柔493. 琴瑟和鸣494. 碧波荡漾495. 风轻云淡496. 星河滚烫497. 雨后初晴498. 月下独酌499. 寂静之声500. 花前月下501. 时光荏苒502. 笑忘书503. 梦开始的地方504. 时光旅行者505. 漫步星河506. 风起云涌507. 雨落花飞508. 月影斑驳509. 晨光熹微510. 暮色苍茫511. 静谧之夜512. 翱翔天际513. 晨曦微光514. 暮色温柔515. 琴瑟和鸣516. 碧波荡漾517. 风轻云淡518. 星河滚烫519. 雨后初晴520. 月下独酌521. 寂静之声522. 花前月下523. 时光荏苒524. 笑忘书525. 梦开始的地方526. 时光旅行者527. 漫步星河528. 风起云涌529. 雨落花飞530. 月影斑驳531. 晨光熹微532. 暮色苍茫533. 静谧之夜534. 翱翔天际535. 晨曦微光536. 暮色温柔537. 琴瑟和鸣538. 碧波荡漾539. 风轻云淡540. 星河滚烫541. 雨后初晴542. 月下独酌543. 寂静之声544. 花前月下545. 时光荏苒546. 笑忘书547. 梦开始的地方548. 时光旅行者549. 漫步星河550. 风起云涌551. 雨落花飞552. 月影斑驳553. 晨光熹微554. 暮色苍茫555. 静谧之夜556. 翱翔天际557. 晨曦微光558. 暮色温柔559. 琴瑟和鸣560. 碧波荡漾561. 风轻云淡562. 星河滚烫563. 雨后初晴565. 寂静之声566. 花前月下567. 时光荏苒568. 笑忘书569. 梦开始的地方570. 时光旅行者571. 漫步星河572. 风起云涌573. 雨落花飞574. 月影斑驳575. 晨光熹微576. 暮色苍茫577. 静谧之夜578. 翱翔天际579. 晨曦微光580. 暮色温柔581. 琴瑟和鸣582. 碧波荡漾583. 风轻云淡584. 星河滚烫585. 雨后初晴5. 月下独酌587. 寂静之声589. 时光荏苒590. 笑忘书591. 梦开始的地方592. 时光旅行者593. 漫步星河594. 风起云涌595. 雨落花飞596. 月影斑驳597. 晨光熹微598. 暮色苍茫599. 静谧之夜600. 翱翔天际601. 晨曦微光602. 暮色温柔603. 琴瑟和鸣604. 碧波荡漾605. 风轻云淡606. 星河滚烫607. 雨后初晴608. 月下独酌609. 寂静之声610. 花前月下611. 时光荏苒612. 笑忘书613. 梦开始的地方614. 时光旅行者615. 漫步星河616. 风起云涌617. 雨落花飞618. 月影斑驳619. 晨光熹微620. 暮色苍茫621. 静谧之夜622. 翱翔天际623. 晨曦微光624. 暮色温柔625. 琴瑟和鸣626. 碧波荡漾627. 风轻云淡628. 星河滚烫629. 雨后初晴630. 月下独酌631. 寂静之声632. 花前月下633. 时光荏苒634. 笑忘书635. 梦开始的地方636. 时光旅行者637. 漫步星河638. 风起云涌639. 雨落花飞640. 月影斑驳641. 晨光熹微642. 暮色苍茫643. 静谧之夜644. 翱翔天际645. 晨曦微光646. 暮色温柔647. 琴瑟和鸣648. 碧波荡漾649. 风轻云淡650. 星河滚烫651. 雨后初晴652. 月下独酌653. 寂静之声654. 花前月下655. 时光荏苒656. 笑忘书657. 梦开始的地方658. 时光旅行者659. 漫步星河660. 风起云涌661. 雨落花飞662. 月影斑驳663. 晨光熹微664. 暮色苍茫665. 静谧之夜666. 翱翔天际667. 晨曦微光668. 暮色温柔669. 琴瑟和鸣670. 碧波荡漾671. 风轻云淡672. 星河滚烫673. 雨后初晴674. 月下独酌675. 寂静之声676. 花前月下677. 时光荏苒678. 笑忘书679. 梦开始的地方680. 时光旅行者681. 漫步星河682. 风起云涌683. 雨落花飞684. 月影斑驳685. 晨光熹微6. 暮色苍茫687. 静谧之夜688. 翱翔天际689. 晨曦微光690. 暮色温柔691. 琴瑟和鸣692. 碧波荡漾693. 风轻云淡694. 星河滚烫695. 雨后初晴696. 月下独酌697. 寂静之声698. 花前月下699. 时光荏苒700. 笑忘书701. 梦开始的地方702. 时光旅行者703. 漫步星河704. 风起云涌705. 雨落花飞706. 月影斑驳707. 晨光熹微708. 暮色苍茫709. 静谧之夜710. 翱翔天际711. 晨曦微光712. 暮色温柔713. 琴瑟和鸣714. 碧波荡漾715. 风轻云淡716. 星河滚烫717. 雨后初晴718. 月下独酌719. 寂静之声720. 花前月下721. 时光荏苒722. 笑忘书723. 梦开始的地方724. 时光旅行者725. 漫步星河726. 风起云涌727. 雨落花飞728. 月影斑驳729. 晨光熹微730. 暮色苍茫731. 静谧之夜732. 翱翔天际733. 晨曦微光734. 暮色温柔735. 琴瑟和鸣736. 碧波荡漾737. 风轻云淡738. 星河滚烫739. 雨后初晴740. 月下独酌741. 寂静之声742. 花前月下743. 时光荏苒744. 笑忘书745. 梦开始的地方746. 时光旅行者747. 漫步星河748. 风起云涌749. 雨落花飞750. 月影斑驳751. 晨光熹微752. 暮色苍茫753. 静谧之夜754. 翱翔天际755. 晨曦微光756. 暮色温柔757. 琴瑟和鸣758. 碧波荡漾759. 风轻云淡760. 星河滚烫761. 雨后初晴762. 月下独酌763. 寂静之声764. 花前月下765. 时光荏苒766. 笑忘书767. 梦开始的地方768. 时光旅行者769. 漫步星河770. 风起云涌771. 雨落花飞772. 月影斑驳773. 晨光熹微774. 暮色苍茫775. 静谧之夜776. 翱翔天际777. 晨曦微光778. 暮色温柔779. 琴瑟和鸣780. 碧波荡漾781. 风轻云淡782. 星河滚烫783. 雨后初晴784. 月下独酌785. 寂静之声7. 花前月下787. 时光荏苒788. 笑忘书789. 梦开始的地方790. 时光旅行者791. 漫步星河792. 风起云涌793. 雨落花飞794. 月影斑驳795. 晨光熹微796. 暮色苍茫797. 静谧之夜798. 翱翔天际799. 晨曦微光800. 暮色温柔801. 琴瑟和鸣802. 碧波荡漾803. 风轻云淡804. 星河滚烫805. 雨后初晴806. 月下独酌807. 寂静之声808. 花前月下809. 时光荏苒810. 笑忘书811. 梦开始的地方812. 时光旅行者813. 漫步星河814. 风起云涌815. 雨落花飞816. 月影斑驳817. 晨光熹微818. 暮色苍茫819. 静谧之夜820. 翱翔天际821. 晨曦微光822. 暮色温柔823. 琴瑟和鸣824. 碧波荡漾825. 风轻云淡826. 星河滚烫827. 雨后初晴829. 寂静之声830. 花前月下831. 时光荏苒832. 笑忘书833. 梦开始的地方834. 时光旅行者835. 漫步星河836. 风起云涌837. 雨落花飞838. 月影斑驳839. 晨光熹微840. 暮色苍茫841. 静谧之夜842. 翱翔天际843. 晨曦微光844. 暮色温柔845. 琴瑟和鸣846. 碧波荡漾847. 风轻云淡848. 星河滚烫849. 雨后初晴850. 月下独酌851. 寂静之声853. 时光荏苒854. 笑忘书855. 梦开始的地方856. 时光旅行者857. 漫步星河858. 风起云涌859. 雨落花飞0. 月影斑驳1. 晨光熹微2. 暮色苍茫3. 静谧之夜4. 翱翔天际5. 晨曦微光6. 暮色温柔7. 琴瑟和鸣8. 碧波荡漾9. 风轻云淡870. 星河滚烫871. 雨后初晴872. 月下独酌873. 寂静之声874. 花前月下875. 时光荏苒876. 笑忘书877. 梦开始的地方878. 时光旅行者879. 漫步星河880. 风起云涌881. 雨落花飞882. 月影斑驳883. 晨光熹微884. 暮色苍茫885. 静谧之夜8. 翱翔天际887. 晨曦微光888. 暮色温柔889. 琴瑟和鸣890. 碧波荡漾891. 风轻云淡892. 星河滚烫893. 雨后初晴894. 月下独酌895. 寂静之声896. 花前月下897. 时光荏苒898. 笑忘书899. 梦开始的地方900. 时光旅行者901. 漫步星河902. 风起云涌903. 雨落花飞904. 月影斑驳905. 晨光熹微906. 暮色苍茫907. 静谧之夜908. 翱翔天际909. 晨曦微光910. 暮色温柔911. 琴瑟和鸣912913. 紫藤花下914. 雪域之鹰915. 翠竹清风916. 风华正茂917. 水墨青花918. 晨曦暮雪919. 琴韵墨香920. 梦里江南921. 花影轻舞922. 时光流转923. 笑忘江湖924. 梦开始的地方925. 时光旅行者926. 漫步星河927. 风起云涌928. 雨落花飞929. 月影斑驳930. 晨光熹微931. 暮色苍茫932. 静谧之夜933. 翱翔天际934. 晨曦微光935. 暮色温柔936. 琴瑟和鸣937. 碧波荡漾938. 风轻云淡939. 星河滚烫940. 雨后初晴941. 月下独酌942. 寂静之声943. 花前月下944. 时光荏苒945. 笑忘书946. 梦开始的地方947. 时光旅行者948. 漫步星河949. 风起云涌950. 雨落花飞951. 月影斑驳952. 晨光熹微953. 暮色苍茫954. 静谧之夜955. 翱翔天际956. 晨曦微光957. 暮色温柔958. 琴瑟和鸣959. 碧波荡漾960. 风轻云淡961. 星河滚烫962. 雨后初晴963. 月下独酌964. 寂静之声965. 花前月下966. 时光荏苒967. 笑忘书968. 梦开始的地方969. 时光旅行者970. 漫步星河971. 风起云涌972. 雨落花飞973. 月影斑驳974. 晨光熹微975. 暮色苍茫976. 静谧之夜977. 翱翔天际978. 晨曦微光979. 暮色温柔980. 琴瑟和鸣981. 碧波荡漾982. 风轻云淡983. 星河滚烫984. 雨后初晴985. 月下独酌9. 寂静之声987. 花前月下988. 时光荏苒989. 笑忘书990. 梦开始的地方991. 时光旅行者992. 漫步星河993. 风起云涌994. 雨落花飞995. 月影斑驳996. 晨光熹微997. 暮色苍茫998. 静谧之夜999. 翱翔天际1000. 晨曦微光。
数学符号读法大全
数学符号读法大全大写小写英文注音国际音标注音中文注音Αα alpha alfa阿耳法Ββ beta beta贝塔Γγ gamma gamma 伽马Δδ deta delta德耳塔Εε epsilon epsilon 艾普西隆Ζζ zeta zeta截塔Ηη eta eta艾塔Θθ theta θita西塔Ιι iota io ta 约塔Κκ kappa kappa卡帕∧λ lambda lambda 兰姆达Μμ mu miu缪Νν nu ni u 纽Ξξ xiksi 可塞Οο omicron omikron奥密可戎∏π pi pai派Ρρ rho rou柔∑σ sigma sigma西格马Ττ tau tau套Υυ upsilon jupsilon 衣普西隆Φφ phi fai斐Χχ chi khai喜Ψψ psi psai普西Ωω omega omiga 欧米伽符号表符号含义i-1的平方根f(x)函数f在自变量x处的值sin(x)在自变量x处的正弦函数值exp(x)在自变量x处的指数函数值,常被写作e xa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数a x同 a^xlog b a以b为底a的对数; b log b a = acos x在自变量x处余弦函数的值tan x其值等于 sin x/cos xcot x余切函数的值或 cos x/sin xsec x正割含数的值,其值等于 1/cos xcsc x余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k分别表示x、y、z方向上的单位向量(a, b, c)以a、b、c为元素的向量(a, b)以a、b为元素的向量(a, b)a、b向量的点积a•b a、b向量的点积(a•b)a、b向量的点积|v|向量v的模|x|数x的绝对值Σ表示求和,通常是某项指数。
数学符号及读法大全
数学符号及读法大全数学,这门古老而精深的学科,以其独特的语言和符号系统,描绘出世界的规律与秩序。
在这门科学中,符号与标记如同密码,维系着数学世界的沟通与交流。
下面,我们将一起探索这些数学符号的读法及意义。
1、阿拉伯数字:这是我们日常生活中最为熟悉的数学符号。
从1到9,这些数字在数学中有着广泛的应用。
它们的读法与我们的日常用语基本一致,例如:1读作“一”,2读作“二”,以此类推。
2、十进制位值制:在数学中,我们用逗号或短横线将数字分隔开,表示其十进制位值。
例如,123表示为“一百二十三”。
3、小数:小数点左边的数字表示整数部分,右边的数字表示小数部分。
例如,1.23读作“一点二三”。
4、百分数:百分数是一种方便的表示比率的方式。
例如,50%读作“百分之五十”。
5、加号与减号:加号(+)表示增加或合并,减号(-)表示减少或排除。
例如,1+2读作“一加上二”,2-1读作“二减去一”。
6、乘号与除号:乘号(×)表示相乘,除号(÷)表示相除。
例如,2×3读作“二乘以三”,4÷2读作“二除以四”。
7等于号:等于号(=)表示两个数量相等或等价。
例如,2=2读作“二等于二”。
8、大于号与小于号:大于号(>)表示左边的数大于右边的数,小于号(<)表示左边的数小于右边的数。
例如,3>2读作“三大于二”,2<3读作“二小于三”。
9等价符号:等价符号(≌)表示两个形状、大小完全相同的图形或物体。
例如,△ABC≌△DEF读作“三角形ABC全等于三角形DEF”。
10、不等号:不等号(≠)表示两个数量不相等或不等价。
例如,2≠3读作“二不等于三”。
11、约等于号:约等于号(≈)表示两个数量近似相等。
例如,π≈3.14读作“π约等于三点一四”。
12、根号:根号(√)表示一个数的算术平方根。
例如,√4读作“根号四”。
13、对称轴:对称轴(l)表示一个图形关于某一条直线对称。
数学符号读法大全(免费)
N的阶级大写小写英文注音国际音标注音中文注音Αα alpha alfa阿耳法Ββ beta beta贝塔Γγ gamma gamma伽马Δδ deta delta德耳塔Εε epsilon epsilon艾普西隆Ζζ zeta zet a 截塔Ηη eta et a 艾塔Θθ theta θita西塔Ιι iota iot a 约塔Κκ kappa kappa卡帕∧λ lambda lambda兰姆达Μμ mumiu 缪Νν nuniu 纽Ξξ xiksi 可塞Οο omicron omikron奥密可戎∏π pipai 派Ρρ rho r ou 柔∑σ sigma sigma西格马Ττ tautau 套Υυ upsilon jupsilon 衣普西隆Φφ phifai 斐Χχ chi k hai 喜Ψψ psi ps ai 普西Ωω omega omiga欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同 a^xlogba 以b为底a的对数; blogba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
数学各种符号的读法
数学符号的读法有很多种,以下是一些常见的数学符号及其常见的读法:
加号(+):读作“加”或“正号”。
减号(-):读作“减”或“负号”。
乘号(×):读作“乘”或“乘以”。
除号(÷):读作“除”或“除以”。
根号(√):读作“算术平方根”或“平方根”。
指数(^):读作“的次方”或“乘方”。
括号(()):读作“括号内的内容”或“小括号”。
大括号({}):读作“大括号内的内容”。
绝对值(|x|):读作“x的绝对值”。
三角函数(sin、cos、tan等):读作“正弦”、“余弦”、“正切”等。
π:读作“派”或“圆周率”。
e:读作“自然对数的底数”。
lgx:读作“以10为底的对数”。
alnx:读作“自然对数”。
ln(x):读作“以e为底的对数”。
约等于(≈):读作“约等于”或“近似于”。
不等于(≠):读作“不等于”。
等于(=):读作“等于”。
大于(>):读作“大于”。
小于(<):读作“小于”。
大于等于(≥):读作“大于等于”或“不小于”。
小于等于(≤):读作“小于等于”或“不大于”。
无穷大(∞):读作“无穷大”或“无穷小”。
交集(∩):读作“交集”。
并集(∪):读作“并集”。
属于(∈):读作“属于”。
数学符号读法大全(免费)
N的阶级大写小写英文注音国际音标注音中文注音Αα alpha alfa阿耳法Ββ beta beta贝塔Γγ gamma gamma伽马Δδ deta delta德耳塔Εε epsilon epsilon艾普西隆Ζζ zeta zet a 截塔Ηη eta et a 艾塔Θθ theta θita西塔Ιι iotaiota 约塔Κκ kappa kappa卡帕∧λ lambda lambda兰姆达Μμ mumiu 缪Νν nuniu 纽Ξξ xiksi 可塞Οο omicron omikron 奥密可戎∏π pipai 派Ρρ rhorou 柔∑σ sigma sigma西格马Ττ tautau 套Υυ upsilon jupsilon 衣普西隆Φφ phifai 斐Χχ chikhai 喜Ψψ psi ps ai 普西Ωω omega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同 a^xlogba 以b为底a的对数; blogba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
常用数学符号的读法及其含义
常用数学符号的读法及其含义
1. 嘿,你知道“=”这个符号吧,它读作“等于”呀!比如说,
“1+1=2”,这就表示两边是相等的呀!这多简单明了,要是没有它,我们可怎么表达相等的概念呢?
2. 哇塞,“>”这个符号读作“大于”呢!就像 5>3,这不是很直白地告诉我们 5 比 3 要大嘛,它可太重要啦!
3. 哈哈,“<”就是“小于”呀!比如 2<4,一下子就能看出 2 是小于 4 的呀,没有它可不行哦!
4. “+”呀,读“加”!想想看,2+3=5,它就是把数字加在一起的意思呀,多神奇!
5. “-”呢,当然是“减”啦!像 5-3=2,它让我们能做减法运算呢,是不是很厉害?
6. “×”这个符号读作“乘”哟!比如3×4=12,乘法可少不了它呀!
7. “÷”就是“除”啦!像12÷3=4,没有它除法可就没法表示啦,对吧?
8. “π”呀,读“派”,它可是个很特别的符号呢!在计算圆的周长和面积时经常用到它呢,厉害吧!
9. “%”读作“百分之”,像 50%就是一半呀!在表示比例的时候经常出现呢,很实用呀!
10. 最后说说“!”,它读作“阶乘”哦!比如 5!就是
5×4×3×2×1,是不是很有意思呀!
我的观点结论就是:这些数学符号真的太重要啦,它们是数学世界的基石呀,没有它们数学可就没法玩啦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)数学符号语言数学符号语言是由数学符号构成的数学语言。
具体地说,是由一些数字、字母、元素符号、运算符号和关系符号等,按一定的法则构成各种数学表达式,就是数学符号语言。
具体符号及其表示含义和读音如下:1.元素符号表示数或几何图形中的符号称为元素符号。
(1)数字符号:0,1,2,3,4,5,6,7,8,9;(2)特定数量符号:π(圆周率), e(自然对数底), i(虚数);(3)表示数量的字母:,,,a b c(常量);,,,x y z(变量);(4)多边形元素:,,,a b c(边);,,,A B C(角);(5)几何图形符号:⊥(垂直)∥(平行)∠(角)△(三角形)Rt△(直角三角形)⊙(圆)⌒(弧)○(圆周)°(度)≌(全等)∽(相似)(6)集合符号∪(并集)∩(交集)∈(属于)∉(不属于)⊆(包含于)⊇(包含)⊄(不包含于)∅(空集)I(全集)P(A)(集合A的幂集)Z 整数集N(自然数集,非负整数集)N* (正整数集)P (素数集)Q (有理数集)R 实数集C 复数集[],(闭区间)(),(开区间)[),右半开区间(],左半开区间(7)希腊字母表4-1 希腊字母表示及其读音i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作e x a^x a的x次方;有理数x由反函数定义ln x exp x 的反函数a x同 a^xlogb a 以b为底a的对数; b logba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin y acos x y,余弦函数反函数在x处的值,即 x = cos y atan x y,正切函数反函数在x处的值,即 x = tan y acot x y,余切函数反函数在x处的值,即 x = cot y asec x y,正割函数反函数在x处的值,即 x = sec y acsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b)a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
下边界值写在其下部,上边界值写在其上部。
如j从1到100 的和可以表示成:。
这表示 1 + 2 + … + nM 表示一个矩阵或数列或其它|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v| 被写成行或可被看成从1×k阶矩阵的向量dx 变量x的一个无穷小变化,dy, dz, dr等类似ds 长度的微小变化ρ变量 (x2 + y2 + z2)1/2或球面坐标系中到原点的距离r 变量 (x2 + y2)1/2或三维空间或极坐标中到z轴的距离|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积||M|| 矩阵M 的行列式的值,为一个面积、体积或超体积 det M M 的行列式M -1 矩阵M 的逆矩阵v×w 向量v 和w 的向量积或叉积 θvw 向量v 和w 之间的夹角A•B×C 标量三重积,以A 、B 、C 为列的矩阵的行列式 u w 在向量w 方向上的单位向量,即 w/|w|df 函数f 的微小变化,足够小以至适合于所有相关函数的线性近似 df/dx f 关于x 的导数,同时也是f 的线性近似斜率 f '函数f 关于相应自变量的导数,自变量通常为x∂f/∂x y 、z 固定时f 关于x 的偏导数。
通常f 关于某变量q 的偏导数为当其它几个变量固定时df 与dq 的比值。
任何可能导致变量混淆的地方都应明确地表述(∂f/∂x)|r,z 保持r 和z 不变时,f 关于x 的偏导数grad f元素分别为f 关于x 、y 、z 偏导数 [(∂f/∂x), (∂f/∂y), (∂f/∂z)] 或(∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k; 的向量场,称为f 的梯度 ∇向量算子(∂/∂x)i + (∂/∂x)j + (∂/∂x)k, 读作 "del" ∇f f 的梯度;它和 u w 的点积为f 在w 方向上的方向导数∇•w向量场w 的散度,为向量算子∇ 同向量 w 的点积, 或 (∂w x /∂x) + (∂w y/∂y) + (∂w z /∂z)curl w 向量算子 ∇ 同向量 w 的叉积∇×ww 的旋度,其元素为[(∂f z /∂y) - (∂f y /∂z), (∂f x /∂z) - (∂f z /∂x),(∂f y /∂x) - (∂f x /∂y)]∇•∇ 拉普拉斯微分算子: (∂2/∂x 2) + (∂/∂y 2) + (∂/∂z 2) f "(x) f 关于x 的二阶导数,f '(x)的导数 d 2f/dx 2 f 关于x 的二阶导数 f (2)(x) 同样也是f 关于x 的二阶导数 f (k)(x) f 关于x 的第k 阶导数,f (k-1) (x)的导数T曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T =(dr/dt)/|dr/dt|ds 沿曲线方向距离的导数 κ 曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds| N dT/ds 投影方向单位向量,垂直于T B 平面T 和N 的单位法向量,即曲率的平面 τ 曲线的扭率: |dB/ds| g 重力常数 F 力学中力的标准符号 k 弹簧的弹簧常数 p i 第i 个物体的动量 H 物理系统的哈密尔敦函数,即位置和动量表示的能量{Q, H} Q, H的泊松括号以一个关于x的函数的形式表达的f(x)的积分函数f 从a到b的定积分。
当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积L(d) 相等子区间大小为d,每个子区间左端点的值为 f的黎曼和R(d) 相等子区间大小为d,每个子区间右端点的值为 f的黎曼和M(d) 相等子区间大小为d,每个子区间上的最大值为 f的黎曼和m(d) 相等子区间大小为d,每个子区间上的最小值为 f的黎曼和公式输入符号≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒⊙≌∽√+: plus(positive正的)-: minus(negative负的)*: multiplied by÷: divided by=: be equal to≈: be approximately equal to(): round brackets(parenthess)[]: square brackets{}: braces∵: because∴: therefore≤: less than or equal to≥: greater than or equal to∞: infinityLOGnX: logx to the base nxn: the nth power of xf(x): the function of xdx: diffrencial of xx+y: x plus y(a+b): bracket a plus b bracket closeda=b: a equals ba≠b: a isn't equal to ba>b : a is greater than ba>>b: a is much greater than ba≥b: a is greater than or equal to bx→∞: approches infinityx2: x squarex3: x cube√ ̄x: the square root of x3√ ̄x: the cube root of x3‰: three peimilln∑i=1xi: the summation of x where x goes from 1to nn∏i=1xi: the product of x sub i where igoes from 1to n∫ab: integral betweens a and b数学符号(理科符号)——运算符号1.基本符号:+-× ÷(/)2.分数号:/3.正负号:±4.相似全等:∽ ≌5.因为所以:∵ ∴6.判断类:=≠ <≮(不小于)>≯(不大于)7.集合类:∈(属于)∪(并集)∩(交集)8.求和符号:∑9.n次方符号:¹(一次方)²(平方)³(立方)⁴(4次方)ⁿ(n次方)10.下角标:₁₂₃₄(如:A₁B₂C₃D₄效果如何?)11.或与非的"非":¬12.导数符号(备注符号):′ 〃13.度:° ℃14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫ ∬19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔↕↑↓→←20.绝对值:|21.弧:⌒22.圆:⊙ 11.或与非的"非":¬12.导数符号(备注符号):′ 〃13.度:° ℃14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫ ∬19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔↕↑↓→←20.绝对值:|21.弧:⌒22.圆:⊙23.平均数-,ba拔。