第二章连续时间信号与系统的时域分析
信号与系统课后题解第二章
⑺
对⑺式求一阶导,有:
de(t ) d 2 i 2 (t ) di (t ) du (t ) =2 +2 2 + c 2 dt dt dt dt de(t ) d 2 i2 (t ) di (t ) =2 + 2 2 + 2i1 (t ) + 2i 2 (t ) 2 dt dt dt
⑻
将⑸式代入⑻式中,有:
λ 2 + 2λ + 1 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1
y h (t ) = C1e −t + C2 te− t
由初始状态为 y (0 ) = 1, y ' (0 ) = 0 ,则有:
C1 = 1 − C 1 + C 2 = 0
由联立方程可得 故系统的零输入响应为:
由联立方程可得 故系统的零输入响应为:
A1 = 2, A2 = −1
y zi (t ) = 2e − t − e −2 t
(2)由原微分方程可得其特征方程为
λ 2 + 2λ + 2 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1 ± i
y h (t ) = e −t (C1 cos t + C2 sin t )
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
(
(
( + C e )δ (t ) + (C e
2 1
)
−2 t
+ C2 e t δ ' (t )
第二章 信号与系统的时域分析
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t
x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,
信号与系统第二章第一讲
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才
Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平
1
台
C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。
信号与系统分析第二章 连续时间系统的时域分析
第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。
第2章连续系统的时域分析
信号与线性系统 令 t 0 ,可得
2.2 LTI连续系统的响应
1 uC (0 ) uC (0 ) C
0
0
iC ( )d 0
如果 iC ( t ) 为有限值,则
此时
0 0
iC ( )d 0
uC (0 ) uC (0 )
如果 iC ( t ) ( t ) ,则
y( t ) 2e
2 t
e
3 t
2 cos( t
4
),
t 0
瞬态响应
2-13
稳态响应
信号与线性系统
二、初始条件的确定
(1) t = 0+与t = 0-的概念
认为换路在 t=0时刻进行
x(0 ) x(0 )
x(t)
0- 0+
:换路前一瞬间 :换路后一瞬间
x(0 ) x(0 )
2-18
信号与线性系统
2.2 LTI连续系统的响应
(3)初始条件的确定
这里我们介绍用冲激函数匹配法来确定 0 状态的
值,它的基本原理根据 t 0 时刻微分方程左右两端
的 ( t ) 及其各阶导数应该平衡相等。
2-19
信号与线性系统
2.2 LTI连续系统的响应
例2-2:如果描述系统的微分方程为 y ( t ) 3 y ( t ) 3 ( t ) ,给 定 0 状态起始值为 y(0 ) ,确定它 0 的状态 y(0 ) 。
2-4
激励及其各 阶导数(最 高阶为m次)
信号与线性系统 (1)齐次解是齐次微分方程
2.2 LTI连续系统的响应 的解。
y(n)+an-1y(n-1)+…+a1y(1)(t)+a0y(t)=0
信号与线性系统分析第2章
e t
cos t sin t
Pe t (不等于特征根) t (P t P )e (等于特征单根) 1 0
(Pr t r Pr 1t r 1 P0 )e t (等于r重特征根)
例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1) f1(t)* f2(t) = 2 ε (t)* ε (t+1) –2 ε (t)* ε (t –1) –2ε (t –1)* ε (t+1) +2ε (t –1)* ε (t –1) 由于ε (t)* ε (t) = tε (t) 据时移特性,有 f1(t)* f2(t) = 2 (t+1) ε (t+1) - 2 (t –1) ε (t –1) –2 tε (t) +2 (t –2) ε (t –2)
f (t ) f1 ( ) f 2 (t )d
为f1(t)与f2(t)的卷积积分,简称卷积;记为 f(t)= f1(t)*f2(t) 注意:积分是在虚设的变量τ下进行的,τ为积分变量, t为参变量。结果仍为t 的函数。
y zs (t )
f ( )h(t ) d f (t ) * ) d
▲ ■ 第 13 页
2 .任意信号作用下的零状态响应
f ( t) 根据h(t)的定义: δ(t)
LTI系统 零状态
yzs(t) h(t) h(t -τ) f (τ) h(t -τ)
由时不变性:
信号与系统-第2章
f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
第2章连续系统的时域分析
2013年8月13日8时12分
2.2 卷积积分
2.2.2 卷积的图解机理
y( t ) f ( t ) h( t )
f ( )h(t )d
①变量替换t→τ
f (t ) f ( )
h(t ) h( )
11
2013年8月13日8时12分
2.2 卷积积分
2.2 卷积积分
2.2.3 卷积的性质
性质1:卷积代数 交换律:
f1 ( t ) f 2 ( t ) f 2 ( t ) f1 ( t )
结合律:
f1 ( t ) f 2 ( t ) f3 ( t ) f1 ( t ) f 2 ( t ) f3 ( t )
f ( )h(t )d
④相乘
f h t
⑤扫描积分
f h t d
13
2013年8月13日8时12分
2.2 卷积积分
2.2.2 卷积的图解机理 替换 翻转 平移 相乘 积分
14
2013年8月13日8时12分
(t mT )
f ( t mT )
f ( t ) T ( t )
m
f ( t
f (t ) A
…
… …
…
-3T -2T -T o T 2T 3T
- 0 1
1
t
- 2T T
o
T
2T
t
信号与系统第二章_连续时间系统时域分析(青岛大学)
n
rzi (t) Azikekt k 1
(b)
r(k zi
)
(0
)
r(k) (0 )
k 0,1,L ,(n 1)
系数Azik可直接由 r(k) (0 ) 来确定。
例:已知描述某二阶LTI连续时间系统的动态方程
d2 dt 2
r(t)
5
d dt
r(t)
6r(t)
e(t)
起始状态 r(0 ) 1,r(0 ) ,2激励信号
(t)
2
p3
5
2p p2
5
p
3
e(t)
2
d3 dt3
vo
(t)
5
d2 dt 2
vo
(t)
5
d dt
vo
(t)
3vo
(t)
2
d dt
e(t)
总结: (1)引入算子符号后,RLC 电路可借助纯电阻电路的分析方法;
(2)是否可消去公共因子的原则:微分方程的阶数应等于电路 阶数(独立储能元件的个数)。
§2.3 微分方程的经典解法 r(t) rh (t) rp (t)
r(0 ) r(0 ) 1
(4)由 0状态确定待定系数
r(t) A1et A2e2t 0.5e3t
rr((00))
A1 A1
A2 0.5 1 2A2 1.5
3
A1 A2
5.5 5
全响应 r(t) 5.5et 5e2t 0.5e3t ,t 0
(一)经典法求解微分方程步骤:
r(t) 0 u(t) r(0 ) r(0 )
代入
d2 dt 2
r(t)
3
d dt
r(t)
信号与系统第2章选择题
A. ℎ′(������) = ������(������)
B. ������′(������) = ℎ(������)
C. g(������) = ∫−∞∞ ℎ(������)������������
D. h(������) = ∫−������∞ ������(������)������������
C. y″(t) + 10y′(t) + 15y(t) = 0.5f′(t)
D. y″(t) + 5y′(t) + 1.5y(t) = −2f′(t)
解析:A 利用广义网孔法列出两个算子方程,再利用克莱姆法则,整理得出微分方程。
6. 已知������″(������) + 2������(������) = ������′(������) − ������(������),其冲激响应为( )。
A. (1 + 3t������−������)u(t)
B. 3������������−������������(������)
C. (1 − ������−������)u(t)
D. ������−������u(t)
解析:A
由 特 征 根 及 初 始 条 件 y(0−) = 1,y′(0−) = 2 , 求 得 零 输 入 响 应 为 : ������������������(t) = (1 + 3t)������−������ u(t),零状态响应:������������������(t) = f(t) ∗ h(t) = u(t) ∗ ������−������u(t),全响应:y(t) = ������������������(t) + ������������������(t) = (1 + 3t������−������)u(t)
第二章 连续时间系统的时域分析
19
2.3 起始点的跳变(初始条件的确定)
分析 激励加入:t=0时刻
响应区间:t≥0+
0
0
0
t
起始状态(0-状态):激励加入之前瞬间的状态。
d r 0 d 2 r 0 d n 1 r 0 r 0 r 0 , , , 2 dt dt d t n 1
9
n阶线性时不变系统的模型
一个线性系统,其激励信号 e(t ) 与响应信号 r (t ) 之间的关 系,可以用下列形式的微分方程式来描述
d n r (t ) d n 1 r (t ) d r (t ) C0 C1 Cn 1 Cn r (t ) n n 1 dt dt dt d m e(t ) d m 1 e(t ) d e(t ) E0 E1 Em 1 Em e(t ) m m 1 dt dt dt
dt
21
[ 例 ] 如 图 所 示 , 已 知 R1=1Ω, R2=3/2Ω, e2(t)=4V,
e1(t)=2V, L=1/4H, C=1F, t<0时开关S处于1的位置而 且电路已经达到稳态;当t=0时,S由1转向2。
建立i(t)的微分方程并求解i(t)在t>0时的变化。
解 : (1) 由 元 件 的 约
k
初始条件(0+状态/导出的起始状态):
k
d r 0 d 2 r 0 d n 1 r 0 r 0 r 0 , , , 2 dt dt d t n 1
由于用经典法求解微分方程时,是考虑了激励作用以 (k ) 后的解, 时间范围是 0 t 所以要利用r (0 ) 确定系 数Ai,而不是利用 r ( k ) (0 ) 。 20
信号与系统PPT课件(共9章)第2章连续时间信号的时域分析
36
2.4 信号的运算
3. 信号的反褶、时移、尺度变换
(1)反褶运算
f (t) f (t) 以 t = 0为轴反褶
f(t) 1
f(-t) 1
-1
1
(2)时移运算
f (t) f (t t0 )
t -1
1
t
t0>0时,f(t)在 t 轴上整体右移
t0<0时,f(t)在 t 轴上整体左移 37
15
2.2 常用连续时间信号
5. 单位斜变信号
斜变信号指的是从某一时刻开始随时间正比例增长的 信号。其表达式为
R(t
)
t 0
t0 t0
(2.2 9)
R(t
t0
)
t 0
t0
t t0 t t0
(2.2 10)
R(t)
R(t–t0)
1
1
0
1
t
0
t0
t0+1 t
16
2.3 奇异信号
1. 单位斜变信号 2. 单位阶跃信号 3. 单位冲激信号 4. 冲激偶信号 重点:阶跃信号和冲激信号 难点:冲激信号
A
Aet ( 0)
Aet ( 0)
0
t
8
2.2 常用连续时间信号
常见的指数信号是单边指数衰减信号,其表达式为
f
(t)
Ae t
t0
(2.2 2)
0
t0
式中, >0。其波形如下图所示:
1
通常将τ称为指数信 号的时间常数 ,表示
指数信号的衰减速度, 具有时间量纲。
重要特性:指数信号的微分或积分,仍然是指数信号。
28
《信号与系统》第二版第二章:LTI连续时间系统的时域分析
零状态(zero state)响应 yzs (t ) :不考虑起始时刻系统储能的作用,即Y(0-) ≡0,由系统的外加激励信号 v (t ) = v (t )u (t ) ≠ 0 所产生的响应。
零输入响应 yzi (t ) :
5
《信号与系统》
第二章:LTI 连续时间系统的时域分析
∏(p −αi )
i =1
(αi 为互异特征根)
= N (p) ⎡⎣eαnt ∗ ∗ eα1t ∗ v (t )⎤⎦
(2-19)
n
∑ yzs (t ) = 齐次解 Aieαit +特解 B (t ) i =1
(2-20)
特解 B (t ) 反映系统输入对输出的强迫。
非零状态线性系统: 定义(非零状态线性系统):系统 T 的初始状态为X(0-)≠0
令: D (p) pn + an−1pn−1 + ... + a1p + a0
N (p) bmpm + ... + b1p + b0
4
《信号与系统》
有:
第二章:LTI 连续时间系统的时域分析
y
(t)
=
N (p) D(p)
v(t
)
H (p)v(t)
(2-13)
其中,
H
(p)
=
N (p) D(p)
称为系统算子。
≤ ∫ ∫ f (τ ) g (t −τ ) dτ dt ΩΩ
= ∫ f (τ ) ∫ g (t −τ ) dtdτ
Ω
Ω
=∫
f (τ )
g (t ) dτ = 1
f (t) 1
g (t ) 1
信号与系统第二章
§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。
信号与系统(教案) 第二章
二、图解机理
用图形方式理解卷积运算过程,包括以下6个步骤: Step1:换元。画出f1(t)与f2(t)波形,将波形图中的t轴 改换成τ轴,分别得到f1(τ)和f2(τ)。 Step2:翻转。将f2(τ)波形以纵轴为中心轴翻 180°,得 到f2(-τ)波形。 4
信号与系统
2.2
卷积积分
Step3:平移。给定t值,将f2(-τ)波形沿τ轴平移|t|。
卷积积分是一种数学运算,它有许多重要的性质 (或运算规则),灵活地运用它们能简化卷积运算。 下面讨论均设卷积积分是收敛的(或存在的)。
性质1.卷积代数 满足乘法的三律: 1. 交换律: f1(t)* f2(t) =f2(t)* f1(t) 2. 分配律: f1(t)*[ f2(t)+ f3(t)] =f1(t)* f2(t)+ f1(t)* f3(t) 3. 结合律: [f1(t)* f2(t)]* f3(t)] =f1(t)*[ f2(t) * f3(t)]
1.奇异信号
单位冲激信号 (t), 单位阶跃信号 (t).
2.正弦信号
也称为虚指数信号。 f (t ) A cos( t ) A [e j (t ) e j (t ) ] 2
式 中A、和分 别 为 正 弦 信 号 的 振 幅 角 频 率 和 初 相 。 、 f ( t )是 周 期 信 号 , 其 周 期 2 T=
1 0
f 1(t)
2
t
14
信号与系统 例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1)
2.2 卷积积分 2.2 卷积积分
信号与系统第2章 信号的时域分析(5学时)
一、典型普通信号
3. 指数类信号 — 复指数信号
x(t ) A e s j 0, t R
st
x(t ) Aet e j0t Aet cos0 t jAet sin 0 t
et cos 0t
0
et sin 0t
0
t
实部
t
虚部
一、典型普通信号
x (t ) ' (t t )dt x ' (t )
0 0
二、奇异信号
(4)、卷积特性
x( t ) '( t ) x '( t)
(5)、与冲激信号的关系
d (t ) ' (t ) dt
(t ) ' ( )d
t
总结:四种奇异信号具有微积分关
e
t
1 1 (t 1) dt 2 2e
(4)( t3 2 t 2 3) (t 2)
解: (t 2t 3) (t 2) (2 2 2 3) (t 2) 19 (t 2) (筛选特性)
3 2 3 2
注 意
0 / 2 p 3 / 8
1)x1[k] = cos(kp/6)
x1[k] k
0
2)x2[k] = cos(k/6)
x2[k] k
0
3)对x3(t) = cos6pt,以fs= 8 Hz抽样所得序列
x3(t), x3[k]
1
0 1
1
t
二、基本离散时间序列
3.复指数序列 x[k ] Ae( j0 ) k Aek e j0k Ar k e j0k
3. 斜坡信号
第2章-连续时间信号与系统的时域分析PPT课件
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。
信号与系统 第2章(全部)
第2章 连续信号与系统的 时域分析
信号与系统
第2章连续信号与系统的时域分析
2.0 引言 2.1 连续时间基本信号 2.2 卷积积分 2.3 微分方程的经典解法 2.4 系统的微分算子方程 2.5 连续系统的零输入响应 2.6 连续系统的零状态响应
信号与系统
第2章连续信号与系统的时域分析
f (t ) ∗ δ ′(t ) = f ′(t )
信号与系统
第2章连续信号与系统的时域分析
(3) 信号f (t)与阶跃信号 ε (t ) 的卷积等于信号= f
性质3
( −1)
(t ) = ∫−∞ f (τ )dτ
t
卷积的微分和积分 设
y (t ) = f1 (t ) ∗ f 2 (t )
由于 f (t ) ∗ δ (t ) = f (t ) 有:sin ωt ∗ δ (t ) = sin ωt
再利用卷积时移: sin ωt ∗ δ (t + 2) = sin ω (t + 2) 于是:
信号与系统
f1 (t ) * f 2 (t ) = sin ω (t + 2) + sin ω (t − 2)
f (t ) ∗ δ (t ) = f (t )
证明: f (t ) ∗ δ (t ) = ∫−∞ f (τ )δ (t − τ )dτ
=∫
∞ −∞
∞
δ (t ) 是偶函数
f (τ )δ (τ − t )dτ
利用 δ (t ) 的抽样性质
= f (t )
(2) 信号f (t)与冲激偶 δ ′(t ) 的卷积等于f (t)的导函数
t
o (b)
t
信号与系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2:NN::,::(t )——h (t ):•h(t)tfyhttz s2.0 22.1 62.2 20 2.3 292.4 382.1.1 1••2••, KCL KVL1R i t u t R 1dtL i t u Ld d C u t i tCtKCLS R L C i t i t i t i t2S 2d d d 11d d d u t u t i t Cu t tR tLtRCL2.1.1u ts ittv mtF S ftF S tt F tkv tt v f tt v m d d d d d d S 22mF sfk3n()x t ()y t 1110111101d ()d ()d ()()d d d d ()d ()d ()()d d d nn n n n n m m m m m m y t y t y t a a a a y t t t t x t x t x t b b b b x t t t ta b nt=0t 1'(0),''(0),,(0)n y y y41ei nti i c ic +k111eei knttk ii i i i k c tct3232ddd 71612d d d y t y t y t y t x tt t t327161202230122,323123eetthy t c t cc22d d d 23d d d r tr t e t r te tttt2; e ,te tt e t3221p B tB tB tr ,2,122t t tt e 321,,,B B B ttB B B t B B tB 232234323212121271092312p t t trBe, , ette t r tB (2) tttttB B B eee 3e2e31Bt e 312.1.2)()(6)(5)('''t x t y t y t y )()(t u e t x t5.3)0(y 5.8)0('y 231()e +2e +e ,02ttty t t1(0),'(0),''(0),'''(0),,(0)n y y y y y2.1.211(0),'(0),''(0),'''(0),,(0)n y y y y yt =0 (t )(20(t )18/572.1.402)(4)(6)()(10)(7)(22t x dtt dx dtt x d t y dtt dy dtt y d )0(y dtdy )0(22)0(dty d 0t2.1.3)(4)(3)(4)(2)(''''t x t x t y t y t y )()(t u t x ,0)0(,2)0('y y )0(')0(y y2.1.3.()zi y t 11[(0)(0)...(0)]n nd dy y y dt dt2.2.1)()()()(0)1(1)1(1)(t y a t y a t ya t ya n n n n 1()k ntzi zik k y t c e2.2.1,)()(8)(6)('"t x t y t y t y 1)0(y 2)0('y 0)(8)(6)('"t y t y t y 08624122tzi tzi ec ec t y 2241)(ttee t y 2432)(0t 1)0(y 2)0('y()zs y t 111011110()()()()()()()()()(0)00,1,,1nn n n n n m m m m k d y t d y t dy t a a a a y t dt dt dtd x t d x t b b b x t b x t dt dty k n )()()(t y t y t y zsp zsh zs 2.2.22.2.2, ,)(6)(2)(2)(3)(''"t x t x ty t y t y 2)0(y 0)0('y )()(t u t x tzs tzs ec ec t y 221)((0)(0)zs zs y y ''(0)(0)22zszsy y 3)(t y p 2()43ttzs y t eet()()zs x t y t 1212()()()()zs zs ax t bx t ay t by t '()'()zs x t y t 0()()t t zs x t dty t dt25/572.2.3;(1)( )(2)2)(t x 31()2ecos(4) ty t t u t)(2t x 32()e2cos(4) ()ty t t u t )(0t t x )(3t y )(5.0t x )(5.0t x )(4t y 0t31zi zs ()()()[2ecos(4)]()ty t y t y t t u t )()]4cos(2e[)(2)()(3zs zi 2t u t t y t y t y t)()]4cos(e[)(3zs t u t t y t)(e 3)(3zi t u t y t03()33zi zs 000()()()3e ()[ecos(44)]()t t ty t y t y t t u t t t u t t 334zi zs 3()3()0.5()33e 0.5ecos 48.5e0.5cos 4ttty t y t y t u tt u tt ut(123; .t++t th (t)1)(t Htth 2.3.12.()(1)'110()()()()()n n n n a y t a y t a y t a y t x t ()(1)'110()()()()()n n n n a h t a ht a h t a h t t (1)(2)(0)1(0)0(0)n n h hh ()x t ()x t 1()i nti i h t c e()(0)00,1,2,...,1j h jn3.()x t 1,:.2()(1)'110()(1)'110()()()()()()()()n n n n m m m m a y t a y t a y t a y t b xt b xt b x t b x t )(1t y )()()()()(0'11)1(11)(1t x t y a t y a t ya t ya n n n n 1()h t ()(1)11101()()()...()m m m m h t b ht b ht b h t2.3.1"'()3()2()()y t y t y t x t )()()(2t u e et h tt)()(2)(3)("'t t h t h t h 0)0()0(')0("h h h )()()(221t u e c ec t h tt1)0('h 0)0(h2.3.2"'()3()2()"()2'()()y t y t y t x t x t x t 21()()()tth t ee u t '''1112()()2()()()()th t h t h t h t t e u t4h (t ))()(t u A t h titt tth mnt t h mn tt h m n n,m2.3.2t u t e tg tr tu 12t,tt t u d )()(tt h t g d )()(••t)(t h )(t h ()2.4.1),()(21t f t f d21tf f tf tf tf t f tf tf tf 2121)()()(21t f tf2.4.2dx txtx (t )()dddy t H x tH x tx H t x h t zs y tx th tx t h th (t )LTISLinear timeinvariant system2.4.3u(t)2.4.110()sinf t C t2()e ()tf t A u t 12()()f t f t 1212()220()()()()()d sin e()de sine d(sin cos)eett t ttf t f t f t f f t C A u tAC tt AC u (t ).1f .2f 123.()()f f t124.()()df f t2221,f f f ftf111()01tf tt2()(03)2tf t t12()()()g t f t f tt 3t 0O 23111f tf 2tt =0 f 2(t -)t >0 f 2(t -)t <0 f 2(t -)tf t2,1f -113t t tf 23tttf 2O3/2111f t -13t t tf 20021t f f 021tf tf tgO 3/2111f -1t 13t ttf 20-t t;1211221()()()d d21124424t tg t f f tt t t t tO3/2111f 1t 23tt tf 2113tt 1t 2211()d2241t g t t tO 2111f 2t 43tt3/t f 22t41313t t221311()()d2224342tt t t g t t tO3/2111f t 43t ttf 2t 4t -31tgtt tt t t t t t t g 04222421114124)(22)(t g tO 24211。