2011数学建模A附件_数据
2011高教社杯全国大学生数学建模竞赛A题
2011高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):A
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名):_______________
参赛队员(打印并签名) :1.
2.
3.
指导教师或指导教师组负责人(打印并签名):
日期:2011年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):
2011高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):。
2011数学建模资料
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度优化模型摘要交巡警是在我国兴起不久的一种全新的警种,为了在突发事件或者重大突发事件中得到充分的调度,使之能在第一时间到达事故现场,交巡警服务平台必须设置合理。
本文通过对该城市交巡警服务平台的设置和调度的合理性的分析,得出了最佳优化方案,其算法适合于其他城市交巡警服务平台的规划。
针对于分配平台管辖范围、应对突发事件的调度、平台工作量的不均衡、优化全市服务平台设置方案、设置最佳围堵方案这五个问题,我们建立了两个模型:网络中各点间最短距离的矩阵求法(Floyd算法)模型和指派模型。
针对问题一,建立Floyd算法模型,求出A区中各节点间的最短距离,分别按照距离优先、发案率优先的原则得出了分配管辖范围不同的方案,最后通过层次分析法得出了最优方案。
针对问题二,建立了指派模型。
利用模型一获得的附表3的数据,建立数学模型求得最优调度方案。
2011全国大学生数学建模竞赛A题获奖论文——一篇
城市表层土壤重金属污染分析的数学模型摘要为研究城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式。
本文通过处理和分析已给数据,给出金属的空间分布说明污染程度和主要原因;建立数学模型确定污染源位置;最后收集其他信息讨论城市地质环境的演变模式。
问题一,利用matlab软件作出位置坐标x、y与八种总金属元素浓度的空间分布图;分析采集的重金属元素浓度所在区域的大致情形。
对采集的重金属元素浓度的数据进行分析,并计算单因子和多因子污染指数,根据土壤污染分级标准判断出不同重金属元素在各功能区的污染程度和各功能区的综合污染程度,其中工业区中铜是所有元素在不同功能区中污染程度最严重的,而工业区和交通区的综合污染程度是最严重的。
问题二,首先利用SAS软件对八种重金属元素在五个城区的含量进行主成分分析,得到八种重金属对各功能区的贡献率,可初步推断出工业生产、交通设施和生活垃圾造成重金属污染。
再利用SAS软件对各城区的重金属进行因子分析,进一步判断八种不同重金属污染的原因,如汞污染的原因为工业生产中三废的排放、交通运输业中汽油的燃烧和汽车轮胎磨损产生的粉尘等。
问题三,根据所给数据,分析重金属污染传播特征,即分别是介质的迁移运动、污染物的分散运动、污染物的累积与转化、污染物被环境介质吸收或吸附、污染物的沉淀,然后利用Matlab软件,采用多元纯二次二项式回归分析方法,分别得到每种重金属元素浓度与坐标的回归方程,并根据该方程利用多元函数求极值的方法确定出污染源的可能位置分别为:As(1878.2634,6003.7263,4.5846),Cd(970.5835,3946.7518,6.5891),Cr(1235.1956,2658.3427,8.5402),Cu(138.4682,6223.4521,3.2461),Hg (1231.5782,2561.5483,5.2478),Ni(12234.2587,5865.1656,23.2461),Pb (2310.68914145.2674,3.2651),Zn(3015.43418642.2365 5.0543);问题四,基于前三问,分析所建模型的优缺点。
2011高教社杯全国大学生数学建模竞赛A题
2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):_______________参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2011年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于GS技术的城市土壤重金属污染分析摘要本文我们主要解决的问题是如何通过污染物在土壤中的传播特征建立模型求解污染源。
在模型建立的过程当中,我们主要应用了因子分析法,变异函数模型,kringing 插值方法,运用GS软件绘图,SPSS软件处理数据。
问题一,运用GS软件对319个离散数据做出该城市重金属浓度分布图,利用内梅罗综合污染指数法求出各区域的样本重金属污染率,得到综合污染程度。
问题二,采用因子分析法,分别对8种重金属污染物的浓度指标进行了因子分析,运用spss统计软件处理数据,将这8项指标归结为5个公共因子,在此基础上根据不同区域的因子得分对各区域环境污染状况进行了总体比较和评价。
问题三,使用变异函数模型,找到理论变异函数,通过kringing插值,进行交叉检验得到浓度的估计值,此时产生一个标准误差。
2011高教社杯全国大学生数学建模竞赛A题
城市表层土壤重金属污染分析摘要随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日益突出,研究人类活动影响下城市地质环境的演变模式日益成为人们关注的焦点。
按照功能划分,可将城市划分为生活区、工业区、山区、主干道路区和公园绿地区等,不同区域环境受人类活动影响的程度不同。
对于问题一,利用附件中所给数据,通过MATLAB插值法建立城市地形的三维模型,以及八种重金属元素空间浓度分布图(共8幅),通过模型我们可以清楚地看到不同元素在不同区域的分布情况。
分析不同地区污染程度时我们采用了Muller指数将污染情况分成0—6共7个等级,并列表统计不同功能区不同金属元素的污染等级。
通过比较可以清楚地看到该城区不同区域重金属的污染程度,按严重程度依次为工业区主干道路区生活区公园绿地区山区。
对于问题二,通过问题一我们发现工业区、主干道路区和生活区是重金属污染较为严重的区域。
由于目前我国在重金属冶炼、开采、加工等领域生产方式粗放,造成了大量的重金属元素如Pb、Hg、Cu等进入空气、水体以及土壤,造成了严重的重金属污染。
人类生活中日常使用的一些物品含有大量重金属元素,如电池中含有大量Hg、Zn、Ni等重金属元素,他们通过自然和生物降解,随雨水进入水体和土壤中。
对于问题三,我们通过分析前两问得出的结论,即重金属元素从高海拔向低海拔,从高浓度向低浓度扩散,我们建立数学模型,通过求解函数极值,可确定污染源位置。
对于问题四,我们仔细分析了上述数学模型的优缺点,为了更好地研究城市地质环境的演变模式,还应收集该城市盛行风风向、水流流向、人类活动、土壤中生物活动情况、土壤本身的性质情况以及各污染源污染强度、持续时间、当地的空气污染情况等信息。
综合各因子的作用效果,通过回归分析解决新模型。
关键词:插值法;Muller;扩散模型;回归分析1一、问题重述随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
2011年高教杯数学建模A题优秀论文
2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):06007所属学校(请填写完整的全名):佳木斯大学参赛队员(打印并签名) :1. 刘明亮2. 王俊3. 王雷指导教师或指导教师组负责人(打印并签名):张菊红日期: 2011 年9月9日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题城市表层土壤重金属污染分析摘要通过对某城市城区319处土壤的取样调查,利用插值分析法研究城区8种主要重金属污染程度问题,利用MATLAB软件进行分析模拟计算,得出8种重金属在该城区空间分布特征。
对比经数据标准化后的城区海拔最高点和土壤重金属浓度最高点,可以估计污染源位置,进而建立负指数分布模型。
用梯度场检验模型,并用单因子污染指数评价法对城市表层土壤重金属污染状况进行评价。
结果表明,重金属在不同区域的空间分布不同,但大体呈现从高浓度到低浓度扩散的趋势,其中山区和工业区浓度最高,生活区的重金属浓度也很高。
最后给出了污染治理方案及相关建议。
关键词:土壤重金属污染插值分析梯度场分析负指数分布模型污染评价目录第一部分问题重述…………………………………………………………()第二部分问题分析…………………………………………………………()第三部分模型的假设………………………………………………………()第四部分定义与符号说明…………………………………………………()第五部分模型的建立与求解………………………………………………() 1.数据处理及图像的给出…………………………………………………()2.题1的解答………………………………………………………………()3.题2的解答……………………………………………………………()4.模型的建立……………………………………………………………()5.模型的求解……………………………………………………………()第六部分结果分析…………………………………………………………()第七部分模型的评价与改进……………………………………………()1.优点………………………………………………………………………().2.缺点……………………………………………………………………()3.改进措施………………………………………………………………().第八部分参考资料…………………………………………………………()第九部分附录………………………………………………………………()一问题重述在社会经济日益发展的同时,我们人类也给环境带去了一定的影响,其中尤以土壤重金属污染最为引人关注。
2011数学建模A题标准模型
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):是S13011所属学校(请填写完整的全名):河南科技学院参赛队员(打印并签名) :1. 张雅博2. 张大双3. 王伽维指导教师或指导教师组负责人(打印并签名):数学建模指导组日期 2011年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):城市表层土壤重金属污染分布特征及成因分析摘要根据目前城市环境质量的现状,本文对某城市表层土壤中的8种重金属污染进行研究,主要分析了其表层土壤重金属污染的空间分布及传播特征、形成原因,并提出了在补充其它数据信息后的建模思想。
第一个问题,通过将重金属浓度和毒性相结合统筹考虑来寻找双权重因子为各指标的确定最佳权重,用降半梯形分布函数来刻画各因子的隶属度,在求得各区域对评价等级的隶属度后,再根据最大隶属度原则进行模糊综合评价,结果得出不同功能区重金属污染状况为:工业区、交通区属于重度污染,生活区属于中度污染,山区、公园绿地属于轻度污染。
对于第二问题,根据不同功能区8个重金属的污染浓度进行多元方差分析和多重比较,多元方差分析结果表明, 5个不同功能区8种重金属污染从总体上存在极显著差异,Cr、Ni两元素对不同功能区的污染程度差异不显著,元素Zn的污染山区显著低于其它4功能区,其它各元素的污染工业区均显著高于其它各功能区。
2011全国大学生数学建模竞赛A题题目及参考答案
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。
2011全国大学生数学建模竞赛A题
2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1. 闫诺2. 谭斌3. 赵莹指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):城市表层土壤重金属污染分析摘要本文对某城市城区土壤地质环境进行调查,记录了319个采样点,测定了其土壤主要重金属As,Cd,Cr,Cu,Hg,Ni,Pb,Zn的含量。
本文以数理统计为理论基础,综合运用了机理分析和参数辨识建立数学模型,研究了该城区重金属的污染,及其传播规律。
问题(1),利用半方差函数分析方法,及Kriging最优内插法,找出了8种主要重金属元素在该城区的空间分布,并利用散点图中点的不同颜色分析出该城区内不同区域重金属的污染程度。
再利用软件matlab求出各种重金属在各个区域最大的浓度和所在的区域,用内梅罗污染指数评价,得出:生活区为严重污染,工业区为严重污染,山区为轻度污染接近无污染,主干道路区为严重污染,公园绿地区为中度污染。
2011高教社杯全国大学生数学建模竞赛A
我们得到了准则层对目标层的权向量,这里可以用同样的方法构造方案层对准则层的每一个准则的成对比较阵,可以设它们为:
1 1/4 1/5 1 1/3 1/3 1 3 4
B1= 4 1 3/2 B2= 3 1 5/2 B3=1/3 1 3
5 2/3 1 32/5 11/4 1/3 1
用Matlab分别求出它们的权向量Wk,特征值λk,一致性指标CI,一致性比率CR如下表:
图四
山区由于人烟稀少,也不是各种化工工业的聚集区,相对来说,人类的活动对山区的生态环境影响比较小,所以在该区各种重金属的含量基本都在正常值范围内。
图五
在交通区,由于车辆排放的尾气中含有Pb,经过空气的传播最终进入表层土壤,导致对土壤的污染;车辆轮胎中含有Zn等各种重金属元素,在长期的磨损中逐渐进入土壤,造成污染。
目标层:主要源头;
准则层:空气粉尘对土壤的污染、污水对土壤的污染、固体废弃物对土壤的污染;
方案层:生活区、工业区、交通区;
2.根据准则层对方案层影响的大小,可以大致假设一个正互反矩阵A,
A=(1 1/4 1/3;4 12;1/31/21)
对向量A进行归一化,得到它的权向量w=(0.1220 0.5584 0.3196);
表一
现规定,当I值超过1.7时为严重污染,I在1.0到1.7时为轻微污染,I小于1.0时为良好,则得以下表格
金属元素
As (μg/g)
Cd (ng/g)
Cr (μg/g)
Cu (μg/g)
Hg (ng/g)
Ni (μg/g)
Pb (μg/g)
Zn (μg/g)
生活区
轻微污染
良好
轻微污染
轻微污染
2007年到2011年数学建模真题(数据另附)
2007高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题:中国人口增长预测中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。
近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。
2007年初发布的《国家人口发展战略研究报告》(附录1) 还做出了进一步的分析。
关于中国人口问题已有多方面的研究,并积累了大量数据资料。
附录2就是从《中国人口统计年鉴》上收集到的部分数据。
试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。
附录1 《国家人口发展战略研究报告》附录2 人口数据(《中国人口统计年鉴》中的部分数据)及其说明2007高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)B题:乘公交,看奥运我国人民翘首企盼的第29届奥运会明年8月将在北京举行,届时有大量观众到现场观看奥运比赛,其中大部分人将会乘坐公共交通工具(简称公交,包括公汽、地铁等)出行。
这些年来,城市的公交系统有了很大发展,北京市的公交线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题。
针对市场需求,某公司准备研制开发一个解决公交线路选择问题的自主查询计算机系统。
为了设计这样一个系统,其核心是线路选择的模型与算法,应该从实际情况出发考虑,满足查询者的各种不同需求。
请你们解决如下问题:1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。
并根据附录数据,利用你们的模型与算法,求出以下6对起始站→终到站之间的最佳路线(要有清晰的评价说明)。
2011全国大学生数学建模竞赛A题以及附件
A题城市表层土壤重金属污染分析
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的
浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:
(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染
程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?
附件1. 取样点位置及其所属功能区
附件2. 8种主要重金属元素的浓度
附件3. 8种主要重金属元素的背景值。
2011年数学建模A题国家一等奖
2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2011 年09 月12 日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):城市表层土壤重金属污染分析摘要本文针对城市表层土壤受重金属污染问题进行综合分析。
首先运用Matlab软件求解8种主要重金属元素在城区空间分布,土壤受污染主要原因,传播特征以及为今后如何更好研究地质演变问题分别建立了相应的数学模型,并对其求解结果作出了分析。
针对问题1,根据各种污染物浓度在不同区域内分布的随机性,利用空间内插值法,以城市位置为平面“横纵向”,污染物浓度为“竖向”建立三维空间模型,得到这8种重金属元素的空间分布图,直观反映出污染物浓度的等值线,得到污染物浓度的分布规律和各种重金属元素的污染浓度范围区块。
然后通过建立污染负荷指数法模型算出各区的)(PLI为1.0602,(PLI为2.1573,山区) (PLI值,生活区)(PLI为1.8336,工业区)交通区)(PLI为1.5780;结果表明工业区的污染程度最高(PLI为1.9209,公园绿地区)为2级强污染,其他区为1级中等污染。
2011高教社杯全国大学生数学建模竞赛题目(含有ABCD四题)
2011高教社杯全国大学生数学建模竞赛题目全国大学生数学建模竞赛论文格式规范本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。
论文用白色A4 纸单面打印;上下左右各留出至少2.5 厘米的页边距;从左侧装订。
论文第一页为承诺书,具体内容和格式见本规范第二页。
论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。
论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
论文应该思路清晰,表达简洁(正文尽量控制在20 页以内,附录页数不限)。
引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。
2011数学建模全国赛a题代码
clc,clearA=xlsread('cumcm2011A附件_数据.xls','附件1','A4:E322');C=xlsread('cumcm2011A附件_数据.xls','附件2','A4:I322');x=A(:,2);y=A(:,3);z=A(:,4);qy=A(:,5);As=C(:,2);Cd=C(:,3);Cr=C(:,4);Cu=C(:,5);Hg=C(:,6);Ni=C(:,7);Pb=C(:,8);Zn=C(:,9);[X,Y,Z]=griddata(x,y,z,linspace(0,28654)',linspace(0,18449),'v4'); figure,contourf(X,Y,Z)title('采样地形图');[X,Y,AS]=griddata(x,y,As,linspace(0,28654)',linspace(0,18449),'v4'); figure,contourf(X,Y,AS)title('As浓度随平面地形分布图');[X,Y,CD]=griddata(x,y,Cd,linspace(0,28654)',linspace(0,18449),'v4'); figure,contourf(X,Y,CD)title('Cd浓度随平面地形分布图');[X,Y,CR]=griddata(x,y,Cr,linspace(0,28654)',linspace(0,18449),'v4'); figure,contourf(X,Y,CR)title('Cr浓度随平面地形分布图');[X,Y,CU]=griddata(x,y,Cu,linspace(0,28654)',linspace(0,18449),'v4'); figure,contourf(X,Y,CU)title('Cu浓度随平面地形分布图');[X,Y,NI]=griddata(x,y,Ni,linspace(0,28654)',linspace(0,18449),'v4'); figure,contourf(X,Y,NI)title('Ni浓度随平面地形分布图');[X,Y,HG]=griddata(x,y,Hg,linspace(0,28654)',linspace(0,18449),'v4'); figure,contourf(X,Y,HG)title('Hg浓度随平面地形分布图');[X,Y,PB]=griddata(x,y,Pb,linspace(0,28654)',linspace(0,18449),'v4'); figure,contourf(X,Y,PB)title('Pb浓度随平面地形分布图');[X,Y,ZN]=griddata(x,y,Zn,linspace(0,28654)',linspace(0,18449),'v4'); figure,contourf(X,Y,ZN)title('Zn浓度随平面地形分布图');[X,Y,QY]=griddata(x,y,qy,linspace(0,28654)',linspace(0,18449),'v4');figure,contourf(X,Y,QY)title('区域分布图');(2)function R=byhs(w,v) ;R(1)=0;for i=1:318N=fix(log(abs(v(i)-v(i+1))))for j=1:N-1ZZ=w(j)-w(j+1);pf=ZZ*ZZ;s=sum(pf);endr=s/(2*N);R(i+1)=r;endclc,clear%将附件2中重金属元素浓度粘贴到紧邻附件1的右侧B=xlsread('cumcm2011A附件_数据','附件1','A4:M322'); A=sortrows(B,2);x=A(:,2);y=A(:,3);As=A(:,6);Cd=A(:,7);Cr=A(:,8);Cu=A(:,9);Hg=A(:,10);Ni=A(:,11);Pb=A(:,12);Zn=A(:,13);Asx=byhs(As,x);Cdx=byhs(Cd,x);Crx=byhs(Cr,x);Cux=byhs(Cu,x);Hgx=byhs(Hg,x);Nix=byhs(Ni,x);Pbx=byhs(Pb,x);Znx=byhs(Zn,x);clc,clear%将附件2中重金属元素浓度粘贴到紧邻附件1的右侧B=xlsread('cumcm2011A附件_数据','附件1','A4:M322'); A=sortrows(B,3);x=A(:,2);y=A(:,3);As=A(:,6);Cd=A(:,7);Cr=A(:,8);Cu=A(:,9);Hg=A(:,10);Ni=A(:,11);Pb=A(:,12);Zn=A(:,13);Asy=byhs(As,y);Cdy=byhs(Cd,y);Cry=byhs(Cr,y);Cuy=byhs(Cu,y);Hgy=byhs(Hg,y);Niy=byhs(Ni,y);Pby=byhs(Pb,y);Zny=byhs(Zn,y);(3)clc, cleara=load('adata1.txt'); %把附件1后4列数据保存到adata1.txtb=load('adata2.txt'); %把采样点8种元素数据保存到adata2.txtx0=a(:,1); y0=a(:,2); z0=a(:,3); %分别提取x,y,z的坐标xmm=minmax(x0') %提取x的最大值和最小值ymm=minmax(y0')zmm=minmax(z0')[xi,yi]=meshgrid([xmm(1):100:xmm(2)],[ymm(1):100:ymm(2)]); for i=1:8Fv{i}=TriScatteredInterp(x0,y0,b(:,i));vi{i}=Fv{i}(xi,yi);figure(i), subplot(121), c{i}=contour(xi,yi,vi{i})subplot(122),contourf(xi,yi,vi{i}),clabel(c{i})end。
全国大学生数学建模竞赛2011A题评阅要点(精选多篇)
全国大学生数学建模竞赛2011A题评阅要点(精选多篇)第一篇:全国大学生数学建模竞赛2011A题评阅要点2011高教社杯全国大学生数学建模竞赛A题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本问题的数据来源于某城市对土壤环境的实地监测。
评阅时,应着重注意数学模型的建立、计算方法(或所选软件的程序语句)及选择该方法的理由。
(1)可用插值拟合的方法获得各重金属污染物浓度的空间分布。
再参考由背景值确定的阈值,定量分析城区各区域的污染程度。
由于空间数据是不规则的,较好的方法是用散乱数据插值,例如Kriging插值、Shepard插值等。
也可以用其他方法插值拟合,但应明确所使用的方法,并作出分析,不能只简单套用软件。
各个污染元素浓度的最大值与插值后浓度的最大值距离不会太远。
(2)分析污染产生的原因,必须有充分的数据分析以及明确的结论。
例如,可以根据各区域的污染浓度信息进行聚类,考察污染物出现的相关性,发现某些污染物结伴出现(如Cr与Ni,Cd与Pb的相关性较高),这与污染物产生的原因是密切相关的,由此可大致确定出产生这些污染的原因。
(3)本小题可以在不同的假设下建立相应的模型,但必须有合理的假设、建立明确的数学模型,并根据模型和所给的数据进行数值计算。
例如,由于雨水的作用是重金属在土壤表层中传播的主要原因之一,可以假设传播以对流形式为主,由此建立对流方程,并以给出的重金属污染物浓度数据作为初始值(实际上是终值),从而得到偏微分方程的定解问题。
类似于(1),采用插值拟合的方法,可以得到地形高度函数。
利用特征线法,可以得到各区域在各个时间点上的重金属污染物浓度数据,从而可以得到各时间的污染范围,由此确定出污染源的位置。
(4)本问题只给出一个时间点上的数据,信息量明显不足,需要补充更多的信息。
如果学生考虑到多个时间点上的采样信息,给出更好的演化模式,应予以鼓励。
第二篇:全国大学生数学建模竞赛2011D题评阅要点2011高教社杯全国大学生数学建模竞赛D题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。