2020中考数学专题2 几何模型之“K”型相似
中考数学几何专项——相似模型(相似三角形)
中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。
下面给出几个几何问题。
1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。
2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。
3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。
中考数学常见几何模型专题02 全等模型-半角模型(原卷版)
专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论. 1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∠四边形ABCD 是正方形,∠AB =AD ,∠B =∠ADC =90°.把∠ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '. E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明)②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =求AF 的长.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12∠BAD.当BC=4,DC=7,CF=1时,CEF的周长等于.(4)如图4,正方形ABCD中,AMN的顶点M、N分别在BC、CD边上,AH∠MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD 中,AB =AD ,∠B =∠ADC =90°,E 、F 分别是BC 、CD 上的点,且EF =BE +FD ,探究图中∠BAE 、∠F AD 、∠EAF 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE .连接AG ,先证明△ABE ∠∠ADG ,再证明△AEF ∠∠AGF ,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E 、F 分别是BC 、CD 上的点,且EF =BE +FD ,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD 中,∠ABC +∠ADC =180°,AB =AD ,若点E 在CB 的延长线上,点F 在CD 的延长线上,如图3所示,仍然满足EF =BE +FD ,请直接写出∠EAF 与∠DAB 的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B 、D ∠都不是直角,则当B 与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在∠ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时,(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt ∠ABC 中,∠BAC =90°,AB =AC ,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将∠ABD绕点A按逆时针方向旋转90º,得到∠ACF,联结EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△F AE∠△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.(1)请回答:在图2中,∠FCE的度数是,DE的长为.参考小明思考问题的方法,解决问题:∠BAD.猜(2)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=12想线段BE,EF,FD之间的数量关系并说明理由.8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD是正方形,一个等腰直角三角板的一个锐角顶点与A点重合,将此三角板绕A点旋转时,两边分别交直线BC,CD于M,N.(1)如图1,当M,N分别在边BC,CD上时,求证:BM+DN=MN(2)如图2,当M,N分别在边BC,CD的延长线上时,请直接写出线段BM,DN,MN之间的数量关系(3)如图3,直线AN与BC交于P点,MN=10,CN=6,MC=8,求CP的长.9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM∠EF于点M,请直接写出AM和AB的数量关系;∠BAD,(3)如图2,将Rt∠ABC沿斜边AC翻折得到Rt∠ADC,E,F分别是BC,CD边上的点,∠EAF=12连接EF,过点A作AM∠EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在∠ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP (0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD∠CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.。
中考数学常见几何模型一线三等角(K型图)模型(从全等到相似)
专题05 一线三等角(K 型图)模型(从全等到相似) 全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(全等模型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角条件:A CED B ∠=∠=∠+ CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅异侧型一线三等角:锐角一线三等角 直角一线三等角 钝角一线三等角条件:FAC ABD CED ∠=∠=∠+ 任意一边相等证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅1.(2022·湖南湘潭·中考真题)在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .(1)特例体验:如图①,若直线l BC ∥,AB AC ==分别求出线段BD 、CE 和DE 的长;(2)规律探究:①如图②,若直线l 从图①状态开始绕点A 旋转()045αα<<︒,请探究线段BD 、CE 和DE 的数量关系并说明理由;②如图③,若直线l 从图①状态开始绕点A 顺时针旋转()4590αα︒<<︒,与线段BC 相交于点H ,请再探线段BD 、CE 和DE 的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD 交线段AC 于点F ,若3CE =,1DE =,求BFC S △.【答案】(1)BD =1;CE =1;DE =2(2)①DE =CE +BD ;理由见解析;②BD =CE +DE ;理由见解析 (3)258BFC S ∆=【分析】(1)先根据得出90452ABC ACB ︒∠=∠==︒,根据l BC ∥,得出45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,再根据90BDA CEA ∠=∠=︒,求出45ABD ∠=︒,45ACE ∠=︒, 即可得出45DAB ABD EAC ACE ∠=∠=∠=∠=︒,最后根据三角函数得出1AD BD ==,1AE CE ==,即可求出2DE AD AE =+=;(2)①DE =CE +BD “AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;②BD =CE +DE ;根据题意,利用“AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;(3)在Rt△AEC 中,根据勾股定理求出5AC =,根据DF CE ∥,得出AD AF AE CF =,代入数据求出AF ,根据AC =5,算出CF ,即可求出三角形的面积.(1)解:△90BAC ∠=︒,AB AC =,△90452ABC ACB ︒∠=∠==︒, △l BC ∥,△45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△904545ABD ∠=︒-︒=︒,904545ACE ∠=-=︒︒︒,△45DAB ABD EAC ACE ∠=∠=∠=∠=︒,△sin 1AD BD AB DAB ==⨯∠==,sin 1AE CE AC EAC ==⨯∠==,△2DE AD AE =+=. (2)①DE =CE +BD ;理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△DE =AD +AE =CE +BD ,即DE =CE +BD ;②BD =CE +DE ,理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△BD =AE =AD +DE =CE +DE ,即BD =CE +DE .(3)根据解析(2)可知,AD =CE=3,△314AE AD DE =+=+=,在Rt△AEC 中,根据勾股定理可得:5AC =,△BD △AE ,CE △AE ,△DF CE ∥,△AD AF AE CF =,即345AF =,解得:154=AF , △155544CF AC AF =-=-=,△AB =AC =5,△1152552248BFC S CF AB ∆=⨯=⨯⨯=. 【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明ABD CAE ∆∆≌,是解题的关键.2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m , CE △直线m ,垂足分别为点D 、E .证明△DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为△BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若△BDA =△AEC =△BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF 为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB△△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB△△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD;(3)由△ADB△△CEA得BD=AE,△DBA =△CAE,由△ABF和△ACF均等边三角形,得△ABF=△CAF=60°,FB=F A,所以△DBA+△ABF=△CAE+△CAF,即△DBF=△F AE,所以△DBF△△EAF,所以FD=FE,△BFD=△AFE,再根据△DFE=△DF A+△AFE=△DF A+△BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:△BD△直线m,CE△直线m,△△BDA=△CEA=90°.△△BAC=90°,△△BAD+△CAE=90°.△△BAD+△ABD=90°,△△CAE=△ABD.又AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(2)成立.证明如下:△△BDA =△BAC=α,△△DBA+△BAD=△BAD +△CAE=180°-α.△△DBA=△CAE.△△BDA=△AEC=α,AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB△△CEA,BD=AE,△DBA =△CAE,△△ABF和△ACF均为等边三角形,△△ABF=△CAF=60°.△△DBA+△ABF=△CAE+△CAF.△△DBF=△F AE.△BF=AF,△△DBF△△EAF(SAS).△DF=EF,△BFD=△AFE.△△DFE=△DF A+△AFE=△DF A+△BFD=60°.△△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.3.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ∠=︒,AE =BD ,则AED ≌_______; ②如图2,ABC 为正三角形,,60BD CF EDF =∠=︒,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l ⊥于E ,CF l ⊥于F .若1AE =,2CF =,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为(,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥于E ,AD △CE 于D ,4cm DE =,6cm AD =,求BE 的长.△四边形OABC是正方形△△AOC=90゜,AO=OC模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论; (2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ β∠=.当β在许可范围内变化时,α取何值总有△ABP △△PCQ ?当α在许可范围内变化时,β取何值总有△ABP △△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.【答案】(1)DE AE AD BD CE =+=+;证明见解析;(2)30α=︒;75β=︒;(3)可能;30α=︒,30β=︒或52.5α=︒,75β=︒.【分析】(1)证明△ADB △△CEA (AAS ),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=△2或△1=△CQP ,即△2=30°+β-α=β,解得α=30°,即可求解;由β=△1或△2=△CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则△2=△B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.【详解】解:(1)如图1,△BDA BAC α∠=∠=,△180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,△DBA CAE ∠=∠,在△ADB 和△CEA 中,DBA EAC BDA AEC BA AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADB △△CEA (AAS ),△AE BD =,AD CE =, △DE AE AD BD CE =+=+;(2)在△ABP 中,2230APC B αβ∠=∠+∠=+∠=︒+,△1150β∠=︒-,同理可得:230βα∠=︒+-;由2β=∠或1CQP ∠=∠,即230βαβ∠=︒+-=,解得30α=︒,则△ABP △△PCQ ;△当β在许可范围内变化时,30α=︒时,总有△ABP △△PCQ ;由1β=∠或2CQP ∠=∠,同理可得:75β=︒.△当α在许可范围内变化时,75β=︒总有△ABP △△QCP ;(3)可能.①当30α=︒,30β=︒时,则230B α∠=∠==︒,则△ABP △△PCQ △△BCA ; ②当75β=︒,52.5α=︒时,同理可得:115075ββ∠=︒-=︒=,23052.5βαα∠=︒+-=︒=,△△ABP △△CQP △△BCA .【点睛】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.2.(2022·河南新乡·二模)如图,△ABC 和△ADE 是有公共顶点A 的两个等腰直角三角形,△DAE =△BAC =90°,AD =AE ,AB =AC =6,D 在线段BC 上,从B 到C 运动,点M 和点N 分别是边BC ,DE 的中点.(1)【问题发现】若点D 是BC 边的中点时,BD MN= ,直线BD 与MN 相交所成的锐角的度数为 (请直接写出结果)(2)【解决问题]若点D 是BC 边上任意一点时,上述结论是否成立,请说明理由.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.当点D 是BC 的中点时,△AB =AC ,△AD △BC ,AD 平分△BAC ,如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B ∠=∠=∠=︒时,求证:AD BC AP BP ⋅=⋅.(2)探究:若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用:如图3,在ABC 中,AB =45B ∠=︒,以点A 为直角顶点作等腰Rt ADE △.点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若CE =CD 的长.)结论仍然成立,理由如下,BPD ∠=又BPD ∠=DPC BPC +∠DPC ∠=∠α,BPC ∴∠ADP ∴∽△△,△AD ⋅BC)∠ABD DFE ∴∽,AB DF ∴ADE 是等腰直角三角形,,2AB =,4DF ∴=,45EFD ∠=135DEC =︒,EFC DEC ∴∽,FC EC ∴5EC =,()45FC CD FC FC ⋅=⋅+=,1FC ∴= 【点睛】本题考查相似三角形的综合题,三角形的相似;能够通过构造45°角将问题转化为一线三角是解题的关键.模型3.一线三直角模型(相似模型)【模型解读与图示】“一线三直角”模型的图形,实则是“一线三等角”型的图形的特例,因为这种图形在正方形和矩形中出现的比较多,对它做一专门研究,这样的图形,因为有三个角是直角,就有两个角相等,再根据“等角的余角相等”可以得到另外一对角相等,从而判定两个三角形相似.1.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB =,6BC =.点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM +的最小值;②当AG GM +取最小值时,求线段DE 的长.【答案】(1)见解析(2)①5;②3DE =3DE =【分析】(1)证明出DCE AEF ∠=∠即可求解;(2)①连接AM .先证明132BM CM GM BC ====.确定出点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM 中利用勾股定理即可求出AM ,则问题得解.②先求出AF ,求AF 的第一种方法:过点M 作∥MN AB 交FC 于点N ,即有CMN CBF ∽△△,进而有12MN CM BF CB ==.设AF x =,则4BF x =-,()142MN x =-.再根据∥MN AB ,得到AFG MNG ∽△△,得到AF AG MN GM =,则有()21342xx =-,解方程即可求出AF ;求AF 的第二种方法:过点G 作GH AB ∥交BC于点H .即有MHG MBA ∽△△.则有GM GH MH AM AB MB ==,根据5AM =,可得3543GH MH ==,进而求出125GH =,95MH =.由GH AB ∥得CHG CBF ∽△△,即可求出AF .求出AF 之后,由(1)的结论可得AF AE DE DC.设DE y =,则6AE y =-,即有164y y -=,解得解方程即可求出DE .(1)证明:如图1,△四边形ABCD 是矩形,△90A D ∠=∠=︒,△90CED DCE ∠+∠=︒.△EF CE ⊥,△90CED AEF ∠+∠=︒,△DCE AEF ∠=∠,△AEF DCE ∽;(2)①解:如图2-1,连接AM .△BG CF ⊥,△BGC 是直角二角形.△132BM CM GM BC ====. △点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点不共线时,由三角形两边之和大于箒三边得:AG GM AM +>, 当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM中,5AM ==.△AG GM+的最小值为5.②(求AF 的方法一)如图2-2,过点M 作∥MN AB 交FC 于点N ,△CMN CBF ∽△△.△12MN CM BF CB ==. 设AF x =,则4BF x =-,△()11422MN BF x ==-. △∥MN AB ,△AFG MNG ∽△△,△AF AG MN GM =, 由①知AG GM +的最小值为5、即5AM =,又△3GM =,△2AG =.△()21342xx =-,解得1x =,即1AF =.(求AF 的方法二)如图2-3,过点G 作GH AB ∥交BC 于点H .△MHG MBA ∽△△.△GM GH MH AM AB MB==, 由①知AG GM +的最小值为5,即5=,又△3GM =,△3543GH MH ==.△125GH =,95MH =. 由GH AB ∥得CHG CBF ∽△△,△GH CH FB CB =,即1293556FB +=,解得3FB =. △1AF AB FB =-=.由(1)的结论可得AF AE DE DC . 设DE y =,则6AE y =-,△164y y -=,解得3y =3△036<,036<<,△3DE =+或3DE =【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.2.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P , Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ ∠相等的角是_____(2)问题探究直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作正方形ACEF 和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE =,CD kCH =,试探究TE 与TH 之间的数量关系,并证明你的结论.【答案】(1)PR ,PMR ∠,(2)EK LH =,证明见解析;(3)ET HT=,证明见解析.【分析】(1)根据等腰直角三角形的性质得到,=MR RN ,90MRN ∠=︒,根据余角性质得到PMR NRQ ∠=∠,再证明MPR NRQ ≌△△,即可得到QN PR =,NRQ PMR ∠=∠;(2)证明ABC CEK ≌△△,得到EK BC =,再证明DCB CHL ≌△△,得到BC HL =,可得到EK LH =;(3)证明ACB ECM ∽△△,得到BC kEM =,证明BCD NHC ∽△△,得到BC kHN =,得到EM HN =,证明NHT EMT ≌△△即可得到ET HT =. (1)解:△MRN △是等腰直角三角形,△=MR RN ,90MRN ∠=︒,△MP PQ ⊥,NQ PQ ⊥,△90MPR NQR ∠=∠=︒,△90PMR MRP MRP NRQ ∠+∠=∠+∠=︒,△PMR NRQ ∠=∠,在MPR △和NRQ △中,PMR NRQ MPR NRQ MR NR ∠=∠⎧⎪∠=∠⎨⎪=⎩△MPR NRQ ≌△△,△QN PR =,NRQ PMR ∠=∠,故答案为:PR ,PMR ∠;(2)解:△四边形ACEF 是正方形,△AC CE =,90ACE ∠=︒,△EK BK ⊥△90B EKC ∠=∠=︒,△90BAC ACB ACB ECK ∠+∠=∠+∠=︒,△BAC ECK ∠=∠,在ABC 和CEK △中,BAC KCE B EKCAC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩△ABC CEK ≌△△,△EK BC =, △四边形CDGH 是正方形,△CD CH =,90DCH ∠=︒在DCB和△3)解:过△四边形ACEF是矩形,△90ACE∠=︒,△90BAC ACB ACB ECM∠+∠=∠+∠=︒,顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,△ACB =90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC△△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC△△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=12x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=32,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=4,BC=5,点E为BC边上一个动点,连接AE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.由(1)可得:△NFO△△OEM,△NF OF NO==,△点M(2,1),△OE=2,ME=1,OE ME MONF OF33ON33课后专项训练:1.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:CD BE =. (2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为()4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x =-+与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45︒后,所得的直线交x 轴于点R .求点R 的坐标.20由已知得OM=ON,且△OMN=90°,△由(1)得△OFM△△MGN,=35x+4.【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,汕头市潮阳区教师发展中心教学研究室一模)直角三角形ABC中,△ACB=90°,CB=CA,直线ED经过点C,过A作AD△ED于D,过B作BE△ED于E.求证:△BEC△△CDA;(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin△ABO=35,OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x-5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.和CDA中⎧⎪⎨⎪⎩①如图,过点中sin△ABO ,AB=5m,)可证得CDB∆当D在AB的下方时,过D作DE△y轴于E,交BC于F,,在ABC中,MN经过点C,且AD MN⊥于D,BE MN⊥于E.(1)由图1,证明:DE AD BE=+;(2)当直线MN绕点C旋转到图2的位置时,请猜想出DE,AD,BE的等量关系并说明理由;(3)当直线MN绕点C旋转到图3的位置时,试问DE,AD,BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE AD BE =-,证明过程见解析;(3)DE BE AD =-,证明过程见解析【分析】(1)先证明△ADC △△CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明△ADC △△CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明△ADC △△CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC 中,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒,△AD MN ⊥,△90ACD CAD ∠+∠=︒,△BCE =∠∠CAD ,又△AC BC =,90ADC CEB ∠=∠=,△()≌ADC CEB AAS ,△AD CE =,DC BE =, △直线MN 经过点C ,△DE CE DC AD BE =+=+;(2)DE ,AD ,BE 的等量关系为:DE AD BE =-,理由如下:△AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△△CE AD =,CD BE =,△DE CE CD AD BE =-=-;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD =-,理由如下:△AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△△CE AD =,CD BE =,△DE CD CE BE AD =-=-.【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.4.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =, 1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图③,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB △△ADC ,根据全等三角形的性质解答即可; (2)由条件可得△BEA =△AFC ,△4=△ABE ,根据AAS 可证明△ABE △△CAF ;(3)先证明△ABE △△CAF ,得到ACF ∆与BDE ∆的面积之和为△ABD 的面积,再根据2CD BD =故可求解.【详解】解:(1)△BE △CE ,AD △CE ,△△E =△ADC =90°,△△EBC +△BCE =90°.△△BCE +△ACD =90°,△△EBC =△DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CEB △△ADC (AAS ),△BE =DC ,CE =AD =2.5cm .△DC =CE −DE ,DE =1.7cm ,△DC =2.5−1.7=0.8cm ,△BE =0.8cm 故答案为:0.8cm ; (2)证明:△△1=△2,△△BEA =△AFC .△△1=△ABE +△3,△3+△4=△BAC ,△1=△BAC ,△△BAC =△ABE +△3,△△4=△ABE .△△AEB =△AFC ,△ABE =△4,AB =AC ,△△ABE △△CAF (AAS ).(3)△BED CFD BAC ∠=∠=∠△△ABE +△BAE =△F AC +△BAE =△F AC +△ACF△△ABE =△CAF ,△BAE =△ACF又AB AC =△△ABE △△CAF ,△ABE CAF S S =△ACF ∆与BDE ∆的面积之和等于ABE ∆与BDE ∆的面积之和,即为△ABD 的面积,△2CD BD =,△ABD 与△ACD 的高相同则13ABD ABC S S =△△=5 故ACF ∆与BDE ∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2022·无锡市九年级月考)(1)如图1,直线m 经过等腰直角△ABC 的直角顶点A ,过点B 、C 分别作BD ⊥m ,CE ⊥m D 、E .求证:BD +CE =DE ;(2)如图2,直线m 经过△ABC 的顶点A ,AB =AC ,在直线m 上取两点 D 、E ,使∠ADB =∠AEC =α,补充∠BAC = (用α表示),线段BD 、CE 与DE 之间满足BD +CE =DE ,补充条件后并证明;(3)在(2)的条件中,将直线m 绕着点A 逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC = (用α表示).通过观察或测量,猜想线段BD 、CE 与DE 之间满足的数量关系,并予以证明.【答案】(1)证明见详解,(2)∠BAC=α,证法见详解,(3)180º-α,DE=EC-BD,证明见详解.【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;(3)180º-α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.6.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,△BAC=90°,ABAC=k,直线l经过点A,BD△直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,ABAC=k,D、A、E三点都在直线l上,并且有△BDA=△AEC=△BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI 之间的数量关系:.【答案】(1)见解析(2)结论还成立,证明见解析(3)①见解析②BC=AI【分析】(1)由条件可证明△ABD△△CAE,可得BDAE=ABAC=k;(2)由条件可知△BAD+△CAE=180°−α,且△DBA+△BAD=180°−α,可得△DBA=△CAE,结合条件可证明△ABD△△CAE,同(1)可得出结论;(3)①过点G作GM∥AE交AI的延长线于点M,连接EM,证明△ABC△△GMA,再得到四边形AGME是平行四边形,故可求解;②由①得到BC=12AM,再根据四边形AGME是平行四边形得到BC=AI,故可求解.【详解】(1)如图1,△BD△直线l,CE△直线l,△△BDA=△CEA=90°,△△BAC=90°,△△BAD+△CAE=90°△△BAD+△ABD=90°,△△CAE=△ABD△△ABD=△CAE,△BDA=△CEA,△△ADB△△CEA,△BDAE =ABAC=k;(2)成立,证明如下:如图2,△△BDA=△BAC=α,△△DBA+△BAD=△BAD+△CAE=180°−α,△△DBA=△CAE,△△ABD=△CAE,△BDA=△CEA△△ADB△△CEA,△BDAE =ABAC=k;(3)①过点G作GM∥AE交AI的延长线于点M,连接EM △四边形AGFC是矩形,△△GAC=90°又AH△BC△△AHC=90° △△5+△CAH=△4+△CAH=90°△△5=△4△△BDE=△AHB=90°△△2+△BAH=△1+△BAH=90°△△2=△1又GM∥AE△△3=△2△△3=△1△△ABC△△GMA【点睛】此题主要考查相似三角形的判断与性质综合,解题的关键是根据题意找到相似三角,ABC 是等腰直角三角形,直线l 过点C ,AM l ⊥,BN l ⊥,垂足分别为M ,N .求证:AMC CNB △≌△;[尝试应用](2)如图2,AC BC =,90ACB ∠=︒,N ,B ,E 三点共线,CN NE ⊥,45E ∠=︒,1CN =,2BN =.求AE 的长;[拓展创新](3)如图3,在DCE 中,45CDE ∠=︒,点A ,B 分别在DE ,CE 上,AC BC =,90ACB ∠=︒,若1tan 2DCA ∠=,直接写出AE AD 的值为 .在AMC和△△()AMC CNB AAS≌2)如图2AM NH⊥于M,由(1)可知:BCN CAM△≌△,△2CM BN==,1CN AM==,)可知:AMC BNC≌,45DAM DFN=∠=∠=a,△32AF a=,BCN BFH∽△,等腰直角三角形的性质等知识,添加恰当辅助线构造全等三角形或相似三角形是本题的关键.8.(2022·黑龙江齐齐哈尔·三模)数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB BD ⊥于点B ,CD BD ⊥于点D ,P 是BD 上一点,AP PC =,AP PC ⊥,则ABP △≌△________,请你说明理由.(2)利用结论,直接应用:①如图2,四边形ABCD 、EFGH 、NHMC 都是正方形,边长分别为a 、b 、c ,A 、B 、N 、E ,F 五点在同一条直线上,则CBN △≌△________,c =________(用含a 、b 的式子表示).②如图3,四边形ABCD 中,AB DC ,AB BC ⊥,2AB =,4CD =,以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,则圆心O 到弦AD 的距离为________.(3)弱化条件,变化引申:如图4,M 为线段AB 的中点,AE 与BD 交于点C ,45DME A B ∠=∠=∠=︒,且DM 交AC 于点F ,ME 交BC 于点G ,连接FG ,则AMF 与BGM 的关系为:________,若AB =3AF =,则FG =________.5即可证明∽AMF BGM ,即可求出△AB DC ∥,AB BC ⊥△90B C ∠=∠=︒ △90AOD ∠=︒△90AOB DOC +=︒∠∠在AOB 和△Rt AOB 中,Rt AOD △中,12AD OE ⨯⨯=10=△圆心解:AMF 与BGM 的关系为:相似,45︒△AMD AFM +∠∠△∽AMF BGM △AM BG 45︒△90ACB ∠=︒△AC 84433=-=△FG FC =本题考查了全等三角形的判定和性质、x 轴上,C 、D 、E 分别是AB 、OB 、OA 上的动点,且满足BD =2AC ,DE ∥AB ,连接CD 、CE ,当点E 坐标为 时,△CDE 与△ACE 相似.【分析】因为DE ∥AB 得到∠DEC =∠ACE ,所以△CDE 与△ACE 相似分两种情况分类讨论.【解答】解:∵DE ∥AB ,∴∠DEC ACE ,△ODE ∽△OBA ,∴△ODE 也是等边三角形,则OD =OE =DE ,设E (a ,0),则OE =OD =DE =a ,BD =AE =4﹣a .∵△CDE 与△ACE 相似,分两种情况讨论:①当△CDE ∽△EAC 时,则∠DCE =∠CEA ,∴CD ∥AE ,∴四边形AEDC 是平行四边形,∴AC =a ,,∵BD =2AC ,∴4﹣a =2a ,∴a =.∴E ;②当△CDE ∽△AEC 时,∠DCE =∠EAC =60°=∠B ,∴∠BCD +∠ECA =180°﹣60°=120°,又∵∠BDC +∠BCD =180°﹣∠B =120°,∴∠BCD +∠ECA =∠BDC +∠BCD , ∴∠ECA =∠BDC ,∴△BDC ∽△ACE ,∴,∴BC =2AE =2(4﹣a )=8﹣2a , ∴8﹣2a +2=4,∴a =.∴.综上所述,点E 的坐标为或.【点评】本题主要考查相似三角形,考虑分类讨论是本题的关键.10.(2022•广东中考模拟)(1)模型探究:如图1,D 、E 、F 分别为ABC ∆三边BC 、AB 、AC 上的点,且B C EDF α∠=∠=∠=,BDE ∆与CFD ∆相似吗?请说明理由.(2)模型应用:ABC ∆为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF ∆沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD =.①如图2,当点D 在线段BC 上时,求AE AF的值; ②如图3,当点D 落在线段CB 的延长线上时,求BDE ∆与CFD ∆的周长之比.【答案】(1)~∆∆BDE CFD ,见解析;(2)①57AE AF =;②BDE ∆与CFD ∆的周长之比为13. 【分析】(1)根据三角形的内角和得到BED CDF ∠=∠,即可证明;(2)①设AE x =,AF y =,根据等边三角形的性质与折叠可知DE AE x ==,DF AF y ==,60EDF A ∠=∠=,根据三角形的内角和定理得BED CDF ∠=∠,即可证明~∆∆BDE CFD ,故BD BE DE CF CD FD ==,再根据比例关系求出AE AF的值; ②同理可证~∆∆BDE CFD ,得BD BE DE CF CD FD ==,得28810x x y y -==-,再得到13x y =,再根据相似三角形的性质即可求解.【详解】解(1)~∆∆BDE CFD ,理由:B C EDF α∠=∠=∠=,在BDE ∆中,180B BDE BED ∠+∠+∠=,180180BDE BED B α∴∠+∠=-∠=-,180BDE EDF CDF ∠+∠+∠=,180180BDE CDF EDF α∴∠+∠=-∠=-,BED CDF ∴∠=∠,B C ∠=∠,~BDE CFD ∴∆∆;(2)①设AE x =,AF y =,ABC ∆是等边三角形,60A B C ∴∠=∠=∠=,8AB BC AC ===,由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=,在BDE ∆中,180B BDE BED ∠+∠+∠=,180120BDE BED B ∴∠+∠=-∠=, 180120BDE BED B ∠+∠=-∠=,180BDE EDF CDF ∠+∠+∠=,180120BDE CDF EDF ∴∠+∠=-∠=,BED CDF ∴∠=∠,60B C ∠=∠=,~BDE CFD ∴∆∆,BD BE DE CF CD FD∴==, 8BE AB AE x =-=-,8CF AC AF y =-=-,6CD BC BD =-=2886x x y y -∴==-,()()2868y x y x y x ⎧=-⎪∴⎨=-⎪⎩,105147x y ∴==,57AE AF ∴=; ②设AE x =,AF y =,ABC ∆是等边三角形, 60A ABC ACB ∴∠=∠=∠=,8AB BC AC ===,由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=,在BDE ∆中,180ABC BDE BED ∠+∠+∠=,180120BDE BED ABC ∴∠+∠=-∠=, 180BDE EDF CDF ∠+∠+∠=,180120BDE CDF EDF ∴∠+∠=-∠=,BED CDF ∴∠=∠,60ABC ACB ∠=∠=,120DBE DCF ∴∠=∠=,~BDE CFD ∴∆∆,BD BE DE CF CD FD ∴== 8BE AB AE x =-=-,8CF AF AC y =-=-,10CD BC BD =+=,28810x x y y -∴==-,2(8)10(8y x y x y x =-⎧∴⎨=-⎩,13x y ∴=. ~BDE CFD ∆∆.BDE ∴∆与CFD ∆的周长之比为13DE x DF y ==. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知等边三角形的性质及相似三角形的判定与性质.11.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC 中,90ACB ∠=︒,AC BC =,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:ADC CEB △≌△.(1)探究问题:如果AC BC ≠,其他条件不变,如图②,可得到结论;ADC CEB △∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x =与直线CD 交于点()2,1M ,且两直线夹角为α,且3tan 2α=,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD中,3AB=,5BC=,点E为BC边上—个动点,连接AE,将线段AE绕点E顺时针旋转90︒,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若DPC△为直角三角形时,请你探究并直接写出BE的长.415NF OF NO△△ADC=90°,△△ADC+△PDC=180°,△A 、D 、P 共线,90△△ABE△△EFP12.(2022·山东青岛·九年级期中)【模型引入】我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.【模型探究】如图,正方形ABCD中,E是对角线BD上一点,连接AE,过点E作EF△AE,交直线CB于点F.(1)如图1,若点F在线段BC上,写出EA与EF的数量关系并加以证明;(2)如图2,若点F在线段CB的延长线上,请直接写出线段BC,BE和BF的数量关系.【模型应用】(3)如图3,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH△AE于F,过H作HG△BD于G.则下列结论:①AF=FH;②△HAE=45°;③BD=2FG;④△CEH的周长为8.正确的结论有个.(4)如图4,点E是正方形ABCD对角线BD上一点,连接AE,过点E作EF△AE,交线段BC于点F,交线段AC于点M,连接AF交线段BD于点H.给出下列四个结论,①AE=EF;=CF;③S△AEM=S△MCF;④BE=DE;正确的结论有个.【模型变式】(5)如图5,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN△DM,垂足为M,交△CBE的平分线与点N,求证:MD=MN(6)如图6,在上一问的条件下,连接DN交BC于点F,连接FM,则△FMN和△NMB之间有怎样的数量关系?请给出证明.【拓展延伸】(7)已知△MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,且满足OB>OA.点C在线段OA的延长线上,且AC=OB.如图7,在线段BO 上截取BE,使BE=OA,连接CE.若△OBA+△OCE=β,当点B在射线OM上运动时,β的大小是否会发生变化?如果不变,请求出这个定值;如果变化,请说明理由.(8)如图8,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF△ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF 于点N,若点F是AB边的中点,则△EDM的面积是.。
初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型
一线三等角相似三角形判定的基本模型A字型 X字型反A字型反8字型母子型旋转型双垂直三垂直相似三角形判定的变化模型CB EDA一线三等角型相似三角形三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:【应用】1.如图,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,BC=1,AB=5,点P 为x 轴上的一个动点,点P 不与点0、点A 重合.连接CP ,过点P 作PD 交AB 于点D . (1)直接写出点B 的坐标 . (2)当点P 在线段OA 上运动时,使得∠CPD=∠OAB ,且BD: AD=3:2 ,求点P 的坐标.2、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ; (2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD于点M ,那么①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长.模型训练:1. 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠. (1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域; (3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.ABCDEEDC BAP(第25题图)EDCBA(备用图)共顶点等腰三角形以上给出了各种图形连续变化图形,图中出现的两个阴影部分的三角形是全等三角形,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化二利用旋转思想构造辅助线(1)根据相等的边先找出被旋转的三角形(2)根据对应边找出旋转角度(3)根据旋转角度画出对应的旋转的三角形三旋转变换前后具有以下性质:(1)对应线段相等,对应角相等(2)对应点位置的排列次序相同(3)任意两条对应线段所在直线的夹角都等于旋转角θ.【例题精讲】例1.在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若S ABCD=25,求DP的长。
中考数学复习难题突破专题二:K字型相似研究
难题突破专题二“K”字型相似研究相似基本图形中除了常见的“A”字型、“X”字型相似外,还有一个“K”字型相似,也常用于各种相似图形中.“K”字型相似由特殊到一般,题型往往丰富多彩,也是近几年浙江省中考题中常见的一种基本图形.了解一个基本图形,有助于我们在复杂图形中渗透其中的奥秘,从而找到解决问题的突破口.类型1 “K”字型相似基本图形1图Z2-11 条件:如图Z2-1,B,C,E三点共线,∠B=∠ACD=∠E=90°.结论:△ABC∽△CED.证明:例题分层分析(1)证明两个三角形相似有哪些方法?(2)除了∠B=∠E=∠ACD之外,图中还可以找出哪些角相等?【应用】如图Z2-2,已知点A(0,4),B(4,1),BC⊥x轴于点C,点P为线段OC上一点,且PA⊥PB,则点P 的坐标为________.图Z2-2例题分层分析(1)根据“K”字型相似,图中可以找到哪两个三角形相似?根据相似三角形又可以得到怎样的比例式?(2)设P(x,0),则根据比例式列出方程即可求得x的值,从而得到点P的坐标.解题方法点析“K”字型相似基本图形1,在于寻找三个直角相等,熟记基本图形有利于快速找到相似三角形,从而通过建立方程解决问题.类型2 “K”字型相似基本图形22 条件:如图Z2-3,B,D,C三点共线,∠B=∠EDF=∠C=∠α.图Z2-3结论:△BDE∽△CFD.证明:例题分层分析(1)“K”字型相似基本图形2与基本图形1有何联系?(2)如何证明∠E=∠CDF?【应用】1.如图Z2-4,在平面直角坐标系中,四边形OABC是梯形,CB∥OA,OC=BA,OA=7,BC=1,AB=5,点P为x轴上的一个动点,点P不与点O,A重合.连结CP,过点P作PD交AB于点D.图Z2-4(1)直接写出点B的坐标:________;(2)当点P在线段OA上运动时,使得∠CPD=∠OAB,且BD∶AD=3∶2,求点P的坐标.例题分层分析(1)过点B作BQ⊥x轴于点Q,依题意可得OQ=4,AQ=3,已知AB=5,根据勾股定理求出QB即可解答.(2)根据“K”字型相似,图中可以找到哪两个三角形相似?根据相似三角形又可以得到怎样的比例式?2.如图Z2-5,已知直线y=kx与抛物线y=-427x2+223交于点A(3,6).图Z2-5(1)求直线y=kx的函数表达式和线段OA的长度.(2)若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O,A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.探究:m在什么范围内时,符合条件的点E分别有1个、2个?例题分层分析(1)利用待定系数法求出直线y=kx的函数表达式,根据A点坐标用勾股定理求出线段OA的长度.(2)①延长AB交x轴于点F,由∠BAE=∠AOD可求出点F的坐标为________,进而再求得点B的坐标为________,然后由两点间距离公式可求得线段AB的长为________;②由已知条件∠BAE=∠BED=∠AOD,可得到“K”字型相似的基本图形2,故可得到△________∽△________,设OE=a,则由对应边的比例关系可以得到________.从而得到关于a的一元二次方程为____________,然后根据根的判别式可以分别得到a的值分别为1个、2个时m的取值范围.解题方法点析“K”字型相似基本图形2,根据三个角相等,联想到“K”字型基本图形1,便于快速找到相似三角形,从而利用相似的有关性质解决问题.专题训练1.[2019·常州] 如图Z2-6,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD∶AB=3∶1,则点C的坐标是( )A.(2,7) B.(3,7) C.(3,8) D.(4,8)图Z2-62.如图Z2-7,在矩形ABCD中,把DA沿AF对折,使得点D与CB边上的点E重合,若AD=10,AB =8,则EF=________.图Z2-73.[2019·攀枝花] 如图Z2-8,D 是等边△ABC 边AB 上的点,AD =2,BD =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E ,F 分别在边AC 和BC 上,则CFCE=________.图Z2-84.如图Z2-9,在直角梯形ABCF 中,CB =14,CF =4,AB =6,CF ∥AB ,在边CB 上找一点E ,使以E ,A ,B 为顶点的三角形和以E ,C ,F 为顶点的三角形相似,则CE =________.图Z2-95.如图Z2-10,在直角梯形ABCD 中,∠A =90°,∠B =120°,AD =3,AB =6.在底边AB 上取点E ,在射线DC 上取点F ,使得∠DEF=120°.(1)当点E 是AB 的中点时,线段DF 的长度是________; (2)若射线EF 经过点C ,则AE 的长是________.图Z2-106.[2019·绵阳]将形状、大小完全相同的两个等腰三角形如图Z2-11所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点.若CA =5,AB =6,AD ∶AB =1∶3,则MD +12MA·DN的最小值为________.图Z2-117.如图Z2-12,在四边形ABCD 中,已知AD∥BC,∠B =90°,AB =7,AD =9,BC =12,在线段BC 上任取一点E ,连结DE ,作EF⊥DE,交直线AB 于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.图Z2-128.如图Z2-13,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.图Z2-139.[2019·天水] △ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图Z2-14①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE.(2)如图Z2-14②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.图Z2-1410.在△ABC中,AB=AC,∠BAC=120°,P为BC的中点,小明拿着含有30°角的透明直角三角板,使30°角的顶点落在点P上,三角板绕点P旋转.(1)如图Z2-15①,当三角板的一直角边和斜边分别与AB,AC交于点E,F时,连结EF,请说明△BPE∽△CFP.(2)操作:将三角板绕点P旋转到图②的情形时,三角板的两边分别交BA的延长线、边AC于点E,F,连结EF.①探究1:△BPE与△CFP相似吗?请说明理由;②探究2:△BPE与△PFE相似吗?请说明理由.图Z2-15参考答案类型1 “K”字型相似基本图形1例1 【例题分层分析】(1)证明两个三角形相似常用的判定方法有:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似等.(2)根据余角的性质还可以得到∠A=∠DCE,∠ACB=∠D,从而可证得△ABC∽△CED.证明:证明过程略.应用【例题分层分析】(1)根据“K”字型相似,可得到△AOP∽△PCB,所以AOPC=OPCB.(2)设P(x,0),因为AO=OC=4,BC=1,所以OP=x,PC=4-x,所以44-x=x1,解得x=2,从而得到点P的坐标为(2,0).[答案] (2,0) [解析] ∵PA⊥PB,∴∠APO+∠BPC=90°.∵AO⊥x轴,∴∠APO+∠PAO=90°,∴∠PAO=∠BPC.又∵BC⊥x轴,AO⊥x轴,∴∠BCP=∠POA=90°,∴△BCP∽△POA,∴AOPC =OP CB.∵点A(0,4),B(4,1),∴AO=4,BC=1,OC=4. 设P(x,0),则OP=x,PC=4-x,∴44-x=x1,解得x=2,∴点P的坐标为(2,0).类型2 “K”字型相似基本图形2例2 【例题分层分析】(1)两个图形都有三个角相等,基本图形1是三个直角相等,而基本图形2是基本图形1的一般情况,更具普遍性,两个图形的形状均类似于字母“K”,因此称之为“K”字型相似图形.(2)∵∠B=∠EDF=∠C=∠α,由外角性质可知∠EDC=∠B+∠E=∠α+∠E.又∵∠EDC=∠EDF+∠FDC=∠α+∠CDF,∴∠E=∠CDF.证明:∵∠B=∠EDF=∠C=∠α,由外角性质可知∠EDC=∠B+∠E=∠α+∠E.又∵∠EDC=∠EDF+∠FDC=∠α+∠FDC,∴∠E=∠FDC.又∵∠B=∠C,∴△BDE∽△CFD.应用1【例题分层分析】(1)过点B作BQ⊥x轴于点Q,易求得BQ=4,故得到点B的坐标为(4,4).(2)由“K”字型相似可得到△POC∽△DAP,所以OCAP=OPAD,设OP=x,OC=AB=5,AD=25AB=2,AP=7-x,所以57-x =x2,解得x =2或x =5, 所以点P 的坐标为(2,0)或(5,0). 解:(1)过点B 作BQ⊥x 轴于点Q. ∵AB =OC ,∴AQ =(7-1)÷2=3, 在Rt △BQA 中,BA =5,由勾股定理,得BQ =AB 2-AQ 2=4, ∴点B 的坐标为(4,4). (2)∵∠CPA=∠OCP+∠COP, 即∠CPD+∠DPA=∠COP+∠OCP, 而∠CPD=∠OAB=∠COP, ∴∠OCP =∠APD, ∴△OCP ∽△APD , ∴OC AP =OP AD. ∵BD AD =32,∴AD =2. 设OP =x ,OC =AB =5,AP =7-x , ∴57-x =x 2, 解得x =2或x =5,∴点P 的坐标为(2,0)或(5,0). 应用2【例题分层分析】(1)直线y =kx 的函数表达式为y =2x ,OA =32+62=3 5. (2)①点F 的坐标为(152,0),点B 的坐标为(6,2),AB =5.②根据“K ”字型相似的基本图形2,可得到△ABE∽△OED ,设OE =a ,则AE =3 5-a(0<a <3 5), 由△ABE∽△OED 得AE AB =ODOE, ∴3 5-a 5=m a,∴a 2-3 5a +5m =0, 依题意知m>0,∴当Δ=0,即(-3 5)2-20m =0,m =94时,符合条件的点E 有1个;当Δ>0,即(-3 5)2-20m >0,0<m <94时,符合条件的点E 有2个.解:(1)把点A(3,6)的坐标代入y =kx ,得6=3k , ∴k =2,∴y =2x ,OA =32+62=3 5.(2)如图,延长AB 交x 轴于点F ,过点F 作FC⊥OA 于点C ,过点A 作AR⊥x 轴于点R.∵∠AOD =∠BAE, ∴AF =OF ,∴OC =AC =12OA =325.∵∠ARO =∠FCO=90°,∠AOR =∠FOC, ∴△AOR ∽△FOC , ∴OF OC =AO OR =3 53=5,∴OF =32 5×5=152, ∴点F 的坐标为⎝ ⎛⎭⎪⎫152,0.设直线AF 的函数表达式为y =ax +b(a≠0),把点A(3,6),F ⎝ ⎛⎭⎪⎫152,0的坐标代入,解得a =-43,b=10,∴y =-43x +10,由⎩⎪⎨⎪⎧y =-43x +10,y =-427x 2+223,解得⎩⎪⎨⎪⎧x 1=3,y 1=6(舍去),⎩⎪⎨⎪⎧x 2=6,y 2=2, ∴B(6,2),∴AB =5. ∵∠BAE =∠BED,∠ABE +∠BAE=∠DEO+∠BED, ∴∠ABE =∠DEO.∵∠BAE =∠EOD,∴△ABE ∽△OED. 设OE =a ,则AE =3 5-a(0<a <3 5), 由△ABE∽△OED 得AE AB =ODOE, 即3 5-a 5=m a,∴a 2-3 5a +5m =0. 依题意得m>0,∴当Δ=0,即(-3 5)2-20m =0,m =94时,符合条件的点E 有1个;当Δ>0,即(-3 5)2-20m >0,0<m <94时,符合条件的点E 有2个.专题训练1.A 2.5 3.544.2或12或285 [解析] 两个三角形相似,可能是△EFC∽△EAB,也可能是△EFC∽△AEB,所以应分两种情况讨论,进而求CE 的值即可.5.(1)6 (2)2或5 [解析] (1)过点E 作EG⊥DF,由E 是AB 的中点,得出DG =3,从而得出∠DEG =60°,由∠DEF =120°,得∠FEG=60°,由tan ∠FEG =FGGE,即可求出GF 的长,进而得出DF 的长. (2)过点B 作BH⊥DC,延长AB ,过点C 作CM⊥AB 于点M ,则BH =AD =3,再由锐角三角函数的定义求出CH 及BC 的长,设AE =x ,则BE =6-x ,利用勾股定理用x 表示出DE 及EC 的长,再判断出△EDC∽△BCE,由相似三角形的对应边成比例即可得出关于x 的方程,求出x 的值即可.6.2 3 [解析] 先求出AD =2,BD =4,由“K ”字型相似可得△AMD 和△BDN 相似,根据相似三角形对应边成比例可得MA BD =MDDN ,求出MA·DN=4MD ,再将所求代数式整理得出完全平方的形式,然后根据非负数的性质求出最小值即可.7.解:(1)当点F 和B 重合时,∵EF ⊥DE ,∴DE ⊥BC. ∵∠B =90°,∴AB⊥BC, ∴AB ∥DE.∵AD ∥BC , ∴四边形ABED 是平行四边形, ∴AD =EF =9,∴CE =BC -EF =12-9=3.(2)过点D 作DM⊥BC 于点M , ∵∠B =90°,∴AB ⊥BC , ∴DM ∥AB. ∵AD ∥BC ,∴四边形ABMD 是矩形,∴AD =BM =9,AB =DM =7,CM =12-9=3.设AF =CE =a ,则BF =7-a ,EM =a -3,BE =12-a , 可证△FBE∽△EMD,∴BF EM =BE DM ,即7-a a -3=12-a 7, 解得a =5或a =17.∵点F 在线段AB 上,∴AF =CE <AB =7,∴CE =5.8.解:(1)证明:∵∠APC=∠PAB+∠B,∠APD =∠B,∴∠DPC =∠PAB,又AB =AC ,∴∠ABP =∠PCD,∴△ABP ∽△PCD ,∴AB CP =BP CD, ∴AC CP =BP CD,∴AC ·CD =CP·BP. (2)∵PD∥AB,∴∠DPC =∠B,∴∠PAB =∠B,又∠B=∠C,∴∠PAB =∠C.又∠PBA=∠ABC,∴△PBA ∽△ABC ,∴BP AB =AB BC, ∴BP =AB 2BC =10212=253. 9.解:(1)证明:∵△ABC 是等腰直角三角形,∴∠B =∠C=45°,AB =AC ,∵AP =AQ ,∴BP =CQ ,∵E 是BC 的中点,∴BE =CE ,在△BPE 和△CQE 中,∵⎩⎪⎨⎪⎧BE =CE ,∠B =∠C,BP =CQ ,∴△BPE ≌△CQE(SAS);(2)∵△ABC 和△DEF 是两个全等的等腰直角三角形,∴∠B =∠C=∠DEF=45°,∵∠BEQ =∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP +45°=∠EQC+45°,∴∠BEP =∠EQC,∴△BPE∽△CEQ,∴BPCE =BE CQ,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3 2,∴BC=6 2.10.解:(1)∵在△ABC中,∠BAC=120°,AB=AC,∴∠B=∠C=30°.∵∠B+∠BPE+∠BEP=180°,∴∠BPE+∠BEP=150°.又∵∠BPE+∠EPF+∠CPF=180°,∠EPF=30°,∴∠BPE+∠CPF=150°,∴∠BEP=∠CPF,∴△BPE∽△CFP(两角对应相等的两个三角形相似).(2)①△BPE∽△CFP,理由同(1).②△BPE与△PFE相似.理由:由①△BPE∽△CFP,得CP∶BE=PF∶PE,而CP=BP,因此BP∶BE=PF∶PE.又∵∠EBP=∠EPF,∴△BPE∽△PFE(两边对应成比例且夹角相等的两个三角形相似).2019-2020学年数学中考模拟试卷一、选择题1.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°3.我国古代《易经》一书中记载:远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A.515B.346C.1314D.844.已知△ABC∽△DEF,其中AB=6,BC=8,AC=12,DE=3,那么△DEF的周长为()A.394B.263C.13D.265.如图,向正六边形的飞镖游戏盘内随机投掷一枚飞镖则该飞镖落在阴影部分的概率( ).A. B. C. D.6.计算a 2+4a 2的结果是( )A .4a 2B .5a 2C .4a 4D .5a 47.如图,一次函数y=kx+b 的图象经过点(-1,0)与(0,2),则关于x 的不等式kx+b >0的解集是( )A .x 1>-B .x 1<-C .x 2>D .x 2< 8.如图,P 的半径为5,A B 、是圆上任意两点,且6AB =,以AB 为边作正方形ABCD (点、D P 在直线AB 两侧).若AB 边绕点P 旋转一周,则CD 边扫过的面积为( )A .5πB .6πC .8πD .9π 9.已知抛物线2(0)y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在(3,0)-和(2,0)-之间,其部分图像如图所示,则下列结论:①点17(,)2y -,23(,)2y -,35(,)4y 是该抛物线上的点,则123y y y <<;②320b c +<;③()t at b a b +≤-(t 为任意实数).其中正确结论的个数是( )A .0B .1C .2D .310.袋中装有大小相同的6个黑球和n 个白球,经过若干次试验,发现“从袋中任意摸出一个球,恰是黑球的概率为34”则袋中白球大约有( ) A.2个 B.3个 C.4个 D.5个11.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A .25B .13C .415D .1512.对于反比例函数6y x =-,当10x -<…时,y 的取值范围是( ) A .6y …B .60y -≤<C .06y <…D .6y <-二、填空题 13.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.14.已知抛物线2=2(1)3y x -+-与直线2y kx m =+相交于A (-2,3)、B (3,-1)两点,则12y y ≥时x 的取值范围是___________.15.已知扇形的圆心角为60º,半径为6cm ,则扇形的弧长为 cm.16.已知 x =﹣1 是一元二次方程 ax 2﹣bx+6=0 的一个根,则 a+b 的值为_____17.计算)33的结果等于______________. 18.为了说明命题“等腰三角形腰上的高小于腰”是假命题,可以找的反例是_____.三、解答题19.已知2222x 4x 4x 11T x 2xx x x ⎛⎫-+-=+÷ ⎪-+⎝⎭ (1)化简T ;(2)若x 为△ABC 的面积,其中∠C =90°,∠A =30°,BC =2,求T 的值.20.已知二次函数y=ax 2+bx+8,经过点(1,9)和(6,−16).(1)求该二次函数的解析式;(2)设该二次函数的图象与x 轴的交点为A .B ,与y 轴的交点为C ,求△ABC 的面积。
中考数学专题之“一线三角”(K型图)证相似
初中数学,一线三角图( K 型图)在几何中具有相当重要的位置,常用来证明三 角形全等或者相似,善于构造 K 型图有利于解决几何问题,我们先来看下 K 型 图解决相似三角形的题目。
基本模型图(三垂直)2.从特殊到一般3.相似中K 型图常见形态(A字型、8 字型)例题1:已知△ABC 中AB=AC、BC=8,D是BC 边上任意一点,AB 边上有一点E,AC 边上有一点F,使∠ EDF= ∠ C. 已知BD=6 、BE=4,求CF的长。
分析:这是一道典型的K 型图,已知∠ EDF= ∠C=∠B,从而可以得到△BDE∽△CFD例题2:如图,已知点A(0,4)、B(4,1),BC⊥x轴于点C,点P 为线段OC 上一点,且PA⊥ PB.求点P 的坐标。
分析:这是三垂直模型图(∠ AOP= ∠AOB= ∠BCP=9°0 ),我们很快可以得到△AOC 与△BCP 相似例题 3:已知矩形 ABCD 中, CD=2 ,AD=3 ,点 P 是 AD 上的一个动点,且和 点 A ,D 不重合,过点 P 作 PE ⊥CP ,交边 AB 于点 E ,设 PD=x ,AE=y ,求 y y 的最大值。
解析:由图可知:∠ A=∠EPC= ∠D=90°,是三垂直模型,可以得到 △EAP ∽△ PDC ,通过比例式得到 x 与 y 的函数关系式,进而求出 y的最大值Zi-1•等∣∣fΔJkBC l AB=AC= 8 , ZDAC=I20°F P为BC的中点,小9>⅜含30:角的透明三角板,便抄角的顶点落在点P,三角板级P点旋無•(L)如图L当三角板的两边分別交AB ∙ AC于点EP时.束证?ABPE^∆CFPJC2)揉仕箝三角板境点PfiH刚囹b惜形叭三超板的两边分别交BA的延长线、边Ae于点E、F.G)搽究Iz ABPE与ZXFP还相似吧?(只需写比结论)©持究2:连结EF, ∆BPE ⅛∆PFE g否相似?请说明環由d® IS EF=ιt, ∆EPF的面枳为S,试用氏的代数式未示S∙rSbS□①求证:ZkOCPSAPDA;②若AOCP与ZXPDA的面枳比为U 4,求边AB州Q(2)若圄1中的点P恰好罡CD边的中点丿求/OAB的度数;<3>如凰2,在⑴条件下,揀去折痕込线段申连结叭动点Jl在纟網AP上〈点M与点P. A 不重合》,动点“在线段AB的延冷虹,且盼PIv送结加交PB于点巧作KElBP于点匚试问当点讥H在移动过程中,线段EF的*度是否发主超匕?若鸡匕说明理由丿若不氐求出线段EF的≡.Zl-4阅渎理解:如團Ii 在四边形ABCD 的边AB 上任取一点E {点E 不与A 、B 重合),分别连接ED 、EC, 可以把四边形APCD 分成三个三角形,如果Rd 有两个三角形相似啟们我把E 叫做四边形ABCP 的边AB 上的“相攸点” > 如杲这三个三角形訓目饥 我们蒯巴E 叫傲四边形ABCD 的边AB 上 的“强«似点"・〈】〉扣图b ZA=ZB=ZPEC=45d ,试判浙点E 罡否定囚边形ΛK D 的边AE 上的相似駄 并说 明理由,(2) 如因2,在矩形ABS P A∙ B. C 、D 四点均在正万形网榕(网格中毎个小正万形的边长为 1>的林点〈卬厨个小正方形的顶点)上,试衽图2中画出矩形ABCD 的边AB 上泪相似点; (3) 如图3,砌返形ABCD 沿CM 折崑 使点D 落在AB 边上的点E 处,若点E 恰好定四边形 Δ≡的边AB 上的T 、窗出忙包・试抹究AB 与DC 的刘蚩关系3己知正方形ABcD 的边长为码 T 以点A 为顶点前笳。
中考数学几何专项——相似模型(相似三角形)
相似模型【相似模型一:A 字型】 特征 模型结论DE ∥BCCBCBBC D E ADA E DA AD:AB=AE:AC=DE:BC 顺着比∠B=∠AEDCB CBDA EDAAD:AC=AE:AB=DE:BC 反着比AD×AB=AE×AC 顺着乘∠B =∠ACDCBED AAD:AC=AC:AB=CD:BC AC²=AD×AB当∠ BAC=90°AD B CB①△ABD ∽△CBA AB ²=BD×BC ②△ACD ∽△BCAAC²=CD×BC③△ADB ∽△CDA AD²=BD×CD特征 模型结论AC ∥BDAD B CO DB A CC A OD BAD B CODBACCAO D B① △BD0∽△ACO ② DO:0C=BO:0A=BD:AC 交叉比③ △AOD 与△C0B 不相似∠B=∠C(也叫蝴蝶型相似)A D BC ODBACCAD B CODBACC① △AOC ∽△DOB② AO:OD=0C:0B=AC:BDAO×OB=OC×0D 顺着比,交叉乘 ③ △BOC∽△DOA特征 模型 结论成比例线段共端点① △ABC ∽△ADE② △ABD∽△ACE特征 模型结论AB ∥EF ∥CDFEBCD AF EDCBA图2① 有两对A 字型相似△BEF ∽△BCD △DEF∽△DAB ② 有一对X 型相似△AEB ∽△DEC ③111AB CD EF+=特征模型结论ECD BAA BDC EEDCBA90度,45度; 120度,60度60°45°图2图1旋转N M 60°120°E D CB A 45°ED C B A ①△ABN ∽△MAN ∽△MCA ②△ABD ∽△CAE ∽△CBA【相似模型六:三角形内接矩形模型】 特征模型结论矩形EFGH 或正方形EFGH 内接与三角形H G FED C BA【相似模型七:十字模型】 特征 模型 结论正方形①若AF=BE,则AF ⊥BE ②若AF ⊥BE ,则AF=BE,长方形PEAB CD矩形ABCD 中,CE ⊥BD ,则△CDE ∽△BCD ,CE CDBD BC平行四边形△GME ∽△HNF△MED ≌△BFA三角形MED CAB在△ABC 中,AB =AC ,AB ⊥AC ,①D 为中点,②AE ⊥BD ,③BE :EC=2:1,④∠ADB =∠CDE ,⑤∠AEB =∠CED ,⑥∠BMC =135°,⑦2BMMC =,这七个结论中,“知二得五”【A 型,X 型,三平行模型】1.如图,在△ABC 中,EF ∥DC ,∠AFE =∠B ,AE =6,ED =3,AF =8,则AC =_________,CDBC=_________.F E DCBABCDE FA2.如图,AB ∥CD ,线段BC ,AD 相交于点F ,点E 是线段AF 上一点且满足∠BEF =∠C ,其中AF =6,DF =3,CF =2,则AE =_________.3.如图,在Rt △ABD 中,过点D 作CD ⊥BD ,垂足为D ,连接BC 交AD 于点E ,过点E 作EF ⊥BD 于点F ,若AB =15,CD =10,则BF :FD =_____________.FEBCAN MEDCBA4.如图,在□ABCD 中,E 为BC 的中点,连接AE ,AC ,分别交BD 于M ,N ,则BM :DN =_____________.5.如图所示,AB ∥CD ,AD ,BC 相交于点E ,过E 作EF ∥AB 交BD 于点F .则下列结论:①△EFD ∽△ABD ;②EF BF CD BD =;③1EF EF FD BF AB CD BD BD +=+=;④111AB CD EF+=.其中正确的有___________. F EDCBA图26.在△ABC 中,AB=9,AC=6,点M 在边AB 上,且AM=3,点N 在AC 边上.当AN= 时,△AMN 与原三角形相似.7.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为 .8.如图,已知O 是坐标原点,点A.B 分别在y x 、轴上,OA=1,OB=2,若点D 在x 轴下方,且使得△AOB 与△OAD 相似,则这样的点D 有 个.9.如图,在Rt △ACB 中,∠C=90°,AC=16cm ,BC=8cm ,动点P 从点C 出发,沿CA 方向运动;动点Q 同时从点B 出发,沿BC 方向运动,如果点P 的运动速度均为4cm/s ,Q 点的运动速度均为2cm/s ,那么运动几秒时,△ABC 与△PCQ 相似.10.将△ABC的纸片按如图所示的方式折叠,使点B落地边AC上,记为点B',折叠痕为EF,已知AB=AC=8,BC=10,若以点B'.F.C为顶点的三角形与△ABC相似,那么BF的长度是.11.如图,在中,,,是角平分线.求证:(1)(2)12.如图,四边形中,平分,,,为的中点.(1)求证:;(2)与有怎样的位置关系?试说明理由;(3)若,,求的值.13.如图,在中,为上一点,,,,于,连接.(1)求证:;(2)找出图中一对相似三角形,并证明.14.如图,在中,,分别是,上的点,,的平分线交于点,交于点.(1)试写出图中所有的相似三角形,并说明理由(2)若,求的值.15.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.16.如图,在中,于点,于点,连接,求证: ..17.如图,在△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=________.图1 图218..如图,平行于BC的直线DE把△ABC分成的两部分面积相等.则ADAB= _________.19.如图所示,AD=DF=FB, DE∥FG∥BC,则S1:S2:S3=__________.20.如图,在矩形ABCD中,对角线AC,BD相交于点O,OE⊥BC于点E,连接DE交OC于点F,作FG⊥BC于点G,则线段BG与GC的数量关系是___.21. 如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD=AB=4,连接AD ,BE ⊥AB ,AE 是∠DAB 的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 .22.如图1,在△ABC 中,点D 、E 、Q 分别在边AB 、AC 、BC 上,且DE ∥BC ,AQ 交DE 于点P . (1)求证: ;(2)如图,在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG 、AF ,分别交DE 于M 、N 两点.如图2,若AB =AC =1,直接写出MN 的长;如图3,求证MN 2=DM【母子型】1、已知:如图,△ABC 中,∠ACB=90°,CD ⊥AB 于D ,S △ABC=20,AB=10。
中考数学专题05 相似之K字型相似(教案PPT)
【思考】“等腰、直角、作垂直”在证明全等中所发挥的作用是什么? 等腰——可得一组对应边相等; 直角+作垂直——可得两组角对应相等.
【弱化条件】 (1)如果没有等腰? 依然可以构造三垂直,只不过得到的是三垂直相似,而非三垂直全等.
B A
DC
E
如图,有△ADC∽△CEB. 特别地,若点 C 为 BD 中点,则△ADC∽△CEB∽△ACB.
B
A
D
C
E
(2)如果没有直角? 直角与作垂直是配套的,最终的结果是有三个直角,其价值不在于它们是特殊角,而是它 们都是相等的,所以即便没有直角,换成三个相等的角亦可,即“一线三等角”模型
二、典例精析
1.(2018·遵义)如图,在菱形 ABCD 中, ABC 120,将菱形折叠,使点 A 恰好落在对
B
O
A
x
【分析】已知了 A 点坐标,求出点 C 坐标即可,旋转 90°可构造三垂直全等. 过点 C 作 CD⊥x 轴交 x 轴于点 D,
y C
B
O
A Dx
易证△BOA≌△ADC, ∴AD=BO=1,DC=OA=2, ∴C 点坐标为(3,2), ∴直线 AC 解析式为 y 2x 4 . 【小结】尤其是在坐标系中,构造三垂直可以帮助计算点坐标或直线解析式,并且触发条 件除了直角之外,也可以是其他确定的角,比如 45°角.
4.如图,在平面直线坐标系中,直线 AB 解析式为 y 1 x ,点 M(2,1)是直线 AB 上一点, 2
将直线 AB 绕点 M 顺时针旋转 45°得到直线 CD,求 CD 解析式.
y C
B M 45°
D
O
x
A
【分析】构造三垂直相似(全等) 在坐标系中存在 45°角,可作垂直即可得到等腰直角三角形,构造三垂直 全等确定图形. 在直线 AB 上取一点 O,过点 O 作 OP⊥AB 交 CD 于 P 点,分别过 M、P 向 x 轴作垂线,垂足为 E、F 点.
中考数学几何专项——相似模型(相似三角形)
相似模型【相似模型一: A 字型】 特征 模型 结论DE ∥BCCBCBBC D E ADA E DA AD:AB=AE:AC=DE:BC 顺着比∠B=∠AEDCB C BDA EDAAD:AC=AE:AB=DE:BC 反着比AD×AB=AE×AC 顺着乘∠B =∠ACDCBED AAD:AC=AC:AB=CD:BC AC²=AD×AB当∠ BAC=90°AD B CB①△ABD ∽△CBA AB ²=BD×BC ②△ACD ∽△BCAAC²=CD×BC③△ADB ∽△CDA AD²=BD×CD【相似模型二: X 型】 特征 模型 结论AC ∥BDAD B CO DB A CC A OD BAD B CODBACCAO D B① △BD0∽△ACO ② DO:0C=BO:0A=BD:AC 交叉比③ △AOD 与△C0B 不相似∠B=∠C(也叫蝴蝶型相似)A D BC ODBACCAD B CODBACC① △AOC ∽△DOB② AO:OD=0C:0B=AC:BDAO×OB=OC×0D ③ 顺着比, 交叉乘 ④ △BOC∽△DOA【相似模型三: 旋转相似】 特征 模型结论成比例线段共端点① △ABC ∽△ADE ② △ABD∽△ACE【相似模型四: 三平行模型】 特征 模型结论AB ∥EF ∥CDFEBCD AF EDCBA图2① 有两对A 字型相似△BEF ∽△BCD △DEF∽△DAB ② 有一对X 型相似△AEB ∽△DEC ③111AB CD EF+=【相似模型五: 半角模型】 特征模型 结论ECD BAA BDC EEDCBA90度, 45度; 120度, 60度 120度,60度60°45°图2图1旋转N M 60°120°E D CB A 45°ED C B A ①△ABN ∽△MAN ∽△MCA ②△ABD ∽△CAE ∽△CBA【相似模型六: 三角形内接矩形模型】 特征模型 结论矩形EFGH 或正方形EFGH 内接与三角形H GFED C BA【相似模型七: 十字模型】 特征 模型结论正方形①若AF=BE,则AF ⊥BE ②若AF ⊥BE, 则AF=BE,②若AF ⊥BE ,则AF=BE,长方形PEAB CD矩形ABCD 中, CE ⊥BD, 则△CDE ∽△BCD,平行四边形△GME ∽△HNF△MED ≌△BFA三角形MED CAB在△ABC 中, AB =AC,AB ⊥AC, ①D 为中点, ②AE ⊥BD, ③BE :EC =2:1, ④∠ADB =∠CDE, ⑤∠AEB =∠CED,⑥∠BMC =135°, ⑦ , 这七个结论中, “知二得五”【A 型, X 型, 三平行模型】1.如图, 在△ABC 中, EF ∥DC, ∠AFE=∠B, AE=6, ED=3, AF=8, 则AC=_________, _________.F E DCBABCDE FA2. 如图, AB ∥CD, 线段BC, AD 相交于点F, 点E 是线段AF 上一点且满足∠BEF=∠C, 其中AF=6, DF=3, CF=2, 则AE=_________.3.如图, 在Rt △ABD 中, 过点D 作CD ⊥BD, 垂足为D, 连接BC 交AD 于点E, 过点E 作EF ⊥BD 于点F, 若AB=15, CD=10, 则BF:FD=_____________.FEBCD AN MEDCBA4.如图, 在□ABCD中, E为BC的中点, 连接AE, AC, 分别交BD于M, N, 则BM:DN=_____________.5.如图所示, AB∥CD, AD, BC相交于点E, 过E作EF∥AB交BD于点F.则下列结论:①△EFD∽△ABD;②;③;④.其中正确的有___________.F EDCBA图26.在△ABC中, AB=9, AC=6, 点M在边AB上, 且AM=3, 点N在AC边上.当AN= 时, △AMN与原三角形相似.7.如图, 在△ABC中, ∠C=90°, AC=8, BC=6, D是边AB的中点, 现有一点P位于边AC上, 使得△ADP与△ABC相似, 则线段AP的长为.8.如图, 已知O是坐标原点, 点A.B分别在轴上, OA=1, OB=2, 若点D在轴下方, 且使得△AOB与△OAD相似, 则这样的点D有个.9.如图, 在Rt△ACB中, ∠C=90°, AC=16cm, BC=8cm, 动点P从点C出发, 沿CA方向运动;动点Q同时从点B出发, 沿BC方向运动,如果点P的运动速度均为4cm/s, Q点的运动速度均为2cm/s, 那么运动几秒时, △ABC与△PCQ相似.10.将△ABC的纸片按如图所示的方式折叠, 使点B落地边AC上, 记为点B', 折叠痕为EF, 已知AB=AC=8, BC=10,若以点B'.F.C为顶点的三角形与△ABC相似, 那么BF的长度是.11.如图,在中,,,是角平分线.求证:(1)(2)12.如图, 四边形中, 平分, , , 为的中点.(1)求证: ;(2)与有怎样的位置关系?试说明理由;(3)若, , 求的值.13.如图, 在中, 为上一点, , , , 于, 连接.(1)求证:;(2)找出图中一对相似三角形, 并证明.14.如图, 在中, , 分别是, 上的点, , 的平分线交于点, 交于点.(1)试写出图中所有的相似三角形, 并说明理由(2)若, 求的值.15.如图, 在平行四边形ABCD中, 对角线AC.BD交于点O. M为AD中点, 连接CM交BD于点N, 且ON=1.(1)求BD的长;(2)若△DCN的面积为2, 求四边形ABNM的面积.16.如图,在中,于点,于点,连接,求证: ..17.如图,在△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=________.图1 图218..如图,平行于BC的直线DE把△ABC分成的两部分面积相等.则ADAB = _________.19.如图所示, AD=DF=FB, DE∥FG∥BC,则=__________.20.如图, 在矩形ABCD中, 对角线AC, BD相交于点O, OE⊥BC于点E, 连接DE交OC于点F, 作FG⊥BC于点G, 则线段BG与GC的数量关系是___.21.如图, 已知点C为线段AB的中点, CD⊥AB且CD=AB=4, 连接AD, BE⊥AB, AE是∠DAB的平分线, 与DC相交于点F, EH⊥DC于点G, 交AD 于点H, 则HG的长为 .22.如图1, 在△ABC 中, 点D.E 、Q 分别在边AB.AC.BC 上, 且DE ∥BC, AQ 交DE 于点P. (1)求证: ;(2)如图, 在△ABC 中, ∠BAC=90°, 正方形DEFG 的四个顶点在△ABC 的边上, 连接AG 、AF, 分别交DE 于M 、N 两点. 如图2, 若AB=AC=1, 直接写出MN 的长;如图3, 求证MN2=DM【母子型】1.已知: 如图, △ABC 中, ∠ACB=90°, CD ⊥AB 于D, S △ABC=20, AB=10。
中考数学常见的11种几何模型
中考数学常见的11种几何模型一、三角形的不等关系模型:A字型、K字型、X字型1. 三角形两边之和大于第三边;2. 三角形两边之差小于第三边;3. 直角三角形斜边上的中线等于斜边的一半;4. 直角三角形中30度所对的直角边等于斜边的一半;5. 三角形三个内角之和等于180度。
二、全等、相似模型模型:A字型全等、A字型相似、8字型全等、8字型相似、蝴蝶型全等、蝴蝶型相似、平行型全等、平行型相似、等积模型等。
三、平行四边形模型模型:平行四边形ABCD中,E为AB中点,则:AC、DE互相平分;模型:平行四边形ABCD中,AC、BD交于O,则:AO=CO,BO=DO;模型:平行四边形ABCD中,AC平分角BAD,则:四边形ABCD为菱形。
四、梯形模型模型:梯形ABCD中,E为AD中点,则:延长BE交DC延长线于F,则:BE=FE;模型:梯形ABCD中,A、B在直线EF上,则:延长DC交AB延长线于F,则:梯形ABCD面积等于三角形面积的2倍;模型:梯形ABCD中,E为AD中点,则:延长BE交DC延长线于F,则:EF=FC。
五、矩形模型模型:矩形ABCD中,E为BC中点,则:AE平分角BAD;模型:矩形ABCD中,E为AD中点,则:AF平分角ABC;模型:矩形ABCD中,AC平分角BAD,则:四边形ABCD为菱形。
六、多边形模型模型:任意多边形ABCD中,E为AD中点,则:延长BE交DC延长线于F,则:BF=FE;模型:任意多边形ABCD中,E为AD中点,延长BE交DC延长线于F,则:EF=FC。
七、燕尾模型模型:在三角形ABC中,BD平分角ABC,CE平分角ACB,则:点D、E在BC同旁,则:三角形ADE的面积等于三角形ABC面积的一半。
八、风筝模型模型:在三角形ABC中,点D、E在BC上,且AD平分角BAE,则:三角形ABC与三角形ADE的面积相等。
九、铅笔模型模型:在矩形ABCD中,点E、F分别在AB、CD上,则:EF平行于AD,则:矩形ABFE与矩形EFCD相似。
2023年中考数学总复习—几何模型02—中点—中线—中垂线—中线定理附解析
中线定理下面的那个点)图1一半,面积是原三角形面积的四分之一。
①连接任意四边形四边的中点得到的四边形是平行四边形。
②连接矩形四边的中点得到的四边形是菱形。
③连接菱形四边的中点得到的四边形是矩形。
④连接正方形四边的中点得到的四边形是正方形。
以上四边形各中点的连线所得到的四边形的形状其证明的方法是大家学习过程当中的重点与难点,在证明过程当中要明白。
不管是三角形还是四边形在实际的应用过程当中,问题转化为三角形内中位线的实际应用,所以在题目条件当中出现边的中点时,我们优先考虑利用三角形中位线来做辅助线。
具体做辅助线的方法归纳为以下三个方面:已知三角形两边的中点,可以连接这两个中点构造中位线;已知三角形一边的中点,可以在另一边上取中点,连接两中点构造中位线;已知三角形一边的中点,过中点作其他两边任意一边的平行线可构造相似三角形。
中点四边形是什么样的形状取决于四边形对角线之间的关系,有ABCD ABCD AC BD ABCD AC BD AC BD ABCD AC BD ìÞïïïï=Þïïï^Þíïï禳ï^镲ï镲Þï睚ï镲=ï镲铪ïî四边形中点四边形是平行四边形四边形对角线中点四边形是菱形四边形对角线中点四边形是矩形四边形对角线中点四边形是正方形梯形中位线—1.定义:连接梯形两腰中点的线段叫做梯形的中位线。
梯形的中位线平行于上底和下底,其长度为上、下底长度和的一半,可将梯形旋转180°、将其补齐为平行四边形后易证。
其逆定理正确与否与上相仿。
梯形的中位线平行于两底,并且等于两底和的一半。
注意:(1)要把三角形的中位线与三角形的中线区分开。
三角形垂直于弦的直径平分这条弦,并且平分弦所对的弧。
相似三角形复习之K形相似
E
1.你能找到哪些角相等?
哪些边成比例?B来自2.由这个图形,你还 D
C
F
能得到什么结论呢?
3.你能够为这个图形命名吗?
2
1.如图,已知点A(0,4)、B(4,1), BC⊥x轴于点C,点P为线段OC上一点, 且PA⊥PB.则点P的坐标为
C
Q
P
B
O
A
5
例2.如图,GA⊥AB于A点,E为AB上一点 GE⊥EF,若AB=10,BF=4,∠B=60°,设AE=x,AG=y, 求y与x的函数关系式。
M
例3:如图,等边△ABC中,边长为6,D是BC 上动点,∠EDF=60° (1)求证:△BDE∽△CFD (2)当BD=1,FC=3时,求BE
A
E
F
B
D
C
7
A
△ABE∽ △ECF ((12))点点EE为为BBCC上上任任意意一一点点,
若若∠∠BB==∠∠CC==60α°,, ∠∠AAEEFF== ∠∠ F CC,则,则△△AABBEE与与△△EECCF的F的关关
系系还还成成立立吗吗??说明理由
B
E
C
A
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
6α6α00°°
CCC
8
感悟数学
发现
基本
图形
构造
活用
题目具备基本图形 所有特征,可直接 通过基本图形性质 作答的简单应用。
题目具备基本图形 部分特征,可稍作 变形才能求解。
基本图形的运用只 是求解的一个重要 环节,运用转化思 想可化难为易。
数学北师大版九年级上册相似三角形——“K字型”相似模型
条件3 ,
结论3Байду номын сангаас用差型全等得出HE=HF。
处理方式:学生独立思考,小组讨论,成员展示,教师点评。
六、课堂小结
回想本节课,给你留下印象深刻的片段、环节是什么?请同学来分享一下。
七、板书设计
三、模型运用(一)
例1如图,已知点A(0,4)、B(4,1),BC⊥x轴于点C,点P为线段OC上一点,且PA⊥PB.则点P的坐标为
是否符合K型特征?
一线:
三等角:
相似三角形:
变式练习1如图,在四边形ABCD中,AD∥BC,AB= AD=6,∠ABC=∠C=70°,点E、F分别在线段AD、DC上,且∠BEF=110°, 若AE=3,求DF的长.
教学过程:
一、前测练习
1.如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于F,连结BF,则 ∽
2.在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,则 ∽
二、模型探究
课前完成填空,上课请学生回答答案,根据答案回答以下问题:
问题1判定这两个三角形相似的依据是什么?
学生答:两个角对应相等的两个三角形相似。
问题5由此你得到了什么结论?
学生答:只要满足共线三角的度数相等,则这两个三角形相似的。
问题6此图形形如英语字母谁?
学生答:字母K
教师答:我们就把这个基本图形叫做K字形,这是我们证明两三角形相似的一个基本图形。观察下图,请大家找出图中的对应边,由此可得到怎样的比例式?你能将该式转化为等积式吗?
通过刚才的研究发现,我们利用K型得相似,利用相似可得出边之间的关系。下面我们就一起来研究K字形在相似三角形中的应用。
中考数学难点突破与经典模型精讲练相似三角形中的“K”字型相似模型(解析版)
专题11 相似三角形中的“K”字型相似模型【模型展示】如图,直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,即△ACD∽△ABC∽△CBD.CA222“三垂直”模型如图,∠B=∠D=∠ACE=90°,则△ABC∽△CDE.“一线三等角”模型如图,∠B=∠ACE=∠D,则△ABC∽△CDE.特别地,连接AE,若C为BD的中点,则△ACE∽△ABC∽△CDE.【题型演练】一、单选题1.如图,矩形纸片ABCD中,AB=6,BC=8,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若DE=4,则AF的长为()A.163B.4C.3D.2【答案】C【分析】由矩形的性质可得AB=CD=6,AD=BC=8,∠BAD=∠D=90°,通过证明∠ABF∠∠DAE,可得AF DEAB AD=,即可求解.【详解】解:∠矩形ABCD,∠∠BAD=∠D=90°,BC=AD=8∠∠BAG+∠DAE=90°∠折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,∠BF垂直平分AG∠∠ABF+∠BAG=90°∠∠DAE=∠ABF,∠∠ABF∠∠DAE∠AF ABDE AD=即648AF=解之:AF=3.故答案为:C.【点评】本题考查了翻折变换,矩形的性质,相似三角形的判定与性质,熟练掌握翻折变换和矩形的性质,证明三角形相似是解题的关键.2.如图,边长为10的等边ABC中,点D在边AC上,且3AD=,将含30°角的直角三角板(30F∠=︒)绕直角顶点D旋转,DE、DF分别交边AB、BC于P、Q.连接PQ,当//EF PQ 时,DQ长为()A.6B C.10D.【答案】B【分析】过点Q作QK AC⊥于K,根据等边三角形,和含30︒角的直角三角形,易证得ADP BPQ∽△△,从而求得线段BP,AP,BQ,CQ,CK,QK,DK的长度,最后在Rt DQK△中利用勾股定理可以求得DQ 的长度.【详解】解:过点Q 作QK AC ⊥于K ,在等边ABC 中,60∠=∠=∠=︒A B C ,10AB BC AC , 在Rt EFD 中,60E ∠=︒,30F ∠=︒,∠//EF PQ ,∠60DPQ ∠=︒,30DQP ∠=︒,∠APD ADP APD QPB ∠+∠=∠+∠,∠ADP QPB ∠=∠,又∠∠A =∠B =60°,∠ADP BPQ ∽△△, ∠AD AP PD BP BQ QP==, ∠在Rt PQD △中,30DQP ∠=︒, ∠12PD QP =, 即12PD QP =, ∠12AD AP PD BP BQ QP ===, ∠3AD =, ∠312BP =, ∠6BP =,已知10AB =∠1064AP AB BP =-=-=, ∠412BQ =, ∠8BQ =,∠1082CQ BC BQ =-=-=,在Rt CQK △中,60C ∠=︒,∠30KQC ∠=︒, ∠2122CQ KC ===, ∠DK AC AD KC =--,∠10316DK =--=,而sin KQ C CQ ∠=,∠sin 602KQ ︒==∠KQ =在Rt DQK △中,DQ∠DQ =即DQ =故选:B .【点睛】本题考查了等边三角形的性质,特殊三角函数值,一线三等角的相似模型,正确找到相似三角形是解题的关键.3.如图,在矩形ABCD 中,CD =4,E 是BC 的中点,连接AE ,tan∠AEB 43=,P 是AD 边上一动点,沿过点P 的直线将矩形折叠,使点D 落在AE 上的点D 处,当APD '△是直角三角形时,PD 的值为( )A .23或67B .83或247C .83或307D .103或187【答案】B【分析】根据矩形的性质得到AB =CD ,∠B =90°,根据勾股定理求得AE ,当∠APD '是直角三角形时,分两种情况分类计算即可;【详解】∠四边形ABCD 是矩形,∠AB =CD ,∠B =90°,∠CD =4,tan∠AEB 43=,∠BE =3,在Rt ∠ABE 中,AE 5=,∠E 是BC 的中点,∠AD =6,由折叠可知,PD =PD ',设PD =x ,则PD '=x ,AP =6﹣x ,当∠APD '是直角三角形时,∠当∠AD 'P =90°时,∠∠AD 'P =∠B =90°,∠AD ∠BC ,∠∠P AD '=∠AEB ,∠∠ABE ∠∠PD 'A , ∠AP PD AE AB '=, ∠654x x -=, ∠x 83=, ∠PD 83=; ∠当∠APD '=90°时,∠∠APD '=∠B =90°,∠∠P AE =∠AEB ,∠∠APD '∠∠EBA , ∠AP PD BE AB '=, ∠634x x -=, ∠x 247=, ∠PD 247=; 综上所述:当∠APD '是直角三角形时,PD 的值为83或247; 故选:B .【点睛】本题主要考查了矩形的性质,勾股定理,直角三角形的性质,相似三角形的判定与性质,准确计算是解题的关键.4.如图,在矩形ABCD 中,4AB =,5AD =,E 、F 、G 、H 分别为矩形边上的点,HF 过矩形的中心O ,且HF AD =.E 为AB 的中点,G 为CD 的中点,则四边形EFGF 的周长为( )A .B .C .D .【答案】B【分析】连接EG ,证明四边形EHGF 是矩形,再证明AEH DHG △∽△,求得AH 与DH 的长度,由勾股定理求得EH 与HG ,再由矩形的周长公式求得结果.【详解】解:连接EG ,四边形ABCD 是矩形,AB CD ∴=,//AB CD , E 为AB 的中点,G 为CD 的中点,AE DG ∴=,//AE DG ,∴四边形AEGD 是平行四边形,AD EG ∴=,矩形是中心对称图形,HF 过矩形的中心O .EG ∴过点O ,且OH OF =,OE OG =,∴四边形EHGF 是平行四边形,HF AD EG ==,∴四边形EHGF 是矩形,90EHG ∴∠=︒,90A D ∠=∠=︒,90AHE AEH AHE DHG ∴∠+∠=∠+∠=︒,AEH DHG ∴∠=∠,AEH DHG ∴△∽△, ∴AH AE DG DH=,设AH x =,则5DH x =-,122AE DG AB ===, ∴225x x=-, 解得,1x =或4,1AH ∴=或4,当1AH =时,4DH =,则HE =HG∴四边形EFGH 的周长2=⨯=同理,当4AH =时,四边形EFGH 的周长2=⨯=;故选:B .【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键在于证明四边形EHGF 是矩形.5.如图,E 、F 、G 、H 分别为矩形的边AB 、BC 、CD 、DA 的中点,连接AC 、HE 、EC 、GA 、GF ,已知AG ∠GF ,AC 则下列结论:∠∠DGA =∠CGF ;∠∠DAG ∠∠CGF ;∠AB =2;∠BE CF .正确的个数是( )A .2个B .3个C .4个D .5个 【答案】B【分析】由余角的定义可推出90DGA CGF ∠+∠=︒,并不能说明DGA CGF ∠=∠,说明∠错误;再根据90DAG DGA ∠+∠=︒,可推出DAG CGF ∠=∠,进而可证明DAG CGF ,说明∠正确;连接BD ,由三角形中位线可知12GF BD =DAG CGF 可进一步推出2CF CG CG CF =,即2CF =,即BE =,说明∠正确;在Rt GCF 中,222GF CF CG =+,即可求出CG 长度,即可求出AB=2,说明∠正确.【详解】解:∠90AGF ∠=︒,∠90DGA CGF ∠+∠=︒,∠不能说明DGA CGF ∠=∠,故∠错误.∠90DAG DGA ∠+∠=︒,∠DAG CGF ∠=∠,又∠90ADG GCF ∠=∠=︒∠DAG CGF ,故∠正确.如图连接BD ,由题意可知AC BD =∠G 和F 分别为CD 和BC 的中点,∠12GF BD = ∠DAG CGF ∠AD DG GC CF =,即2CF CG CG CF=,∠CF =在Rt GCF 中,222GF CF CG =+,即222)CG =+, 解得1CG =∠22AB CG ==,故∠正确.∠BE CG =,∠CF BE ,即BE ,故∠正确. 综上正确的有∠∠∠共3个.故选B .【点睛】本题考查矩形的性质,余角,三角形中位线,三角形相似的判定和性质以及勾股定理,综合性强.能够连接常用的辅助线和证明DAG CGF 是解答本题的关键.6.如图,在ABC 中,490,5cm,cos 5C AB B ∠=︒==.动点D 从点A 出发沿着射线AC 的方向以每秒1cm 的速度移动,动点E 从点B 出发沿着射线BA 的方向以每秒2cm 的速度移动.已知点D 和点E 同时出发,设它们运动的时间为t 秒.连接BD .下列结论正确的有( )个∠4BC =;∠当AD AB =时,tan 2ABD ∠=;∠以点B 为圆心、BE 为半径画B ,当2513t =时,DE 与B 相切; ∠当CBD ADE ∠=∠时,2511t. A .1B .2C .3D .4 【答案】D【分析】利用锐角三角函数求出BC 可判断∠,利用勾股定理求AC ,BD ,AG ,再用正切锐角三角函数定义求值可判断∠,利用相似三角形判定与性质,可判断∠,利用相似三角形判定与性质建构方程,解方程求解可判断∠【详解】解:在ABC 中,490,5cm,cos 5C AB B ∠=︒==. 4cos 545BC AB B =⋅=⨯=, 故∠4BC =正确;作AG ∠BD 于G ,在Rt∠ABC 中,3AC =,∠AD =AB =5,AG ∠BD∠CD =AD -AC=5-3=2,DG =BG ,在Rt∠DCB 中,BD =∠DG =BG在Rt∠BGA 中,AG =∠tan 2AG ABD BG ∠===, 故∠当AD AB =时,tan 2ABD ∠=正确;AD =t ,BE =2t ,cos A =35AC AB =, 当2513t =时,2513AD t ==,2550221313BE t ==⨯=, ∠50155251313AE AB BE t =-=-=-=, ∠1531325513AE AD ==, ∠cos A ==AE AC AD AB,∠DAE =∠BAC , ∠∠ADE ∠∠ABC ,∠∠AED =∠ACB =90°,∠∠DEB =90°,∠DE 与B 相切,故∠以点B 为圆心、BE 为半径画B ,当2513t =时,DE 与B 相切正确;过E 作EH ∠AC 于H ,当CBD ADE ∠=∠时,∠∠EHD =∠DCB =90°,∠∠EHD ∠∠DCB , ∠HE DH CD CB=, ∠AE =5-2t ,∠AH =()35-25t ,EH =()45-25t ,3CD t =-,6113355HD AD AH t t t =-=-+=-, ∠()4115235534t t t --=-, 整理得211801250t t -+=,因式分解得()()112550t t --=, ∠2511t 或5t =(舍去),故∠当CBD ADE ∠=∠时,2511t正确;正确的结论有4个.故选择D .【点睛】本题考查锐角三角函数求边长,勾股定理,相似三角形判定与性质,圆的切线判定,一元二次方程的解法,掌握锐角三角函数求边长,勾股定理,相似三角形判定与性质,圆的切线判定,一元二次方程的解法是解题关键.二、填空题7.如图,正方形ABCD 的对角线AC ,BD 相交于点O,AB =E 为OC 上一点,2OE =,连接BE ,过点A 作AF BE ⊥于点F ,与BD 交于点G ,则EF 的长是______.【分析】根据 正方形的性质求出5AO BO CO ===,证明EBO EAF ∽△△得到EF AE OE BE =,即可求出答案.【详解】解:四边形ABCD 是正方形,AB =90AOB ∠=︒∴,OA=OB=OC=OD ,∠222OA AB =,∠5AO BO CO ===,AF BE ⊥,EBO EAF ∴∠=∠,EBO EAF ∴∽△△,即EF AE OE BE= 2OE =,5OB OA ==,BE ∴=7AE =,2EF ∴=EF =. 【点睛】此题考查正方形的性质,勾股定理,相似三角形的判定及性质,解题中熟练掌握并运用各知识点是解题的关键.8.如图,在矩形ABCD 中,9AB =,12BC =,F 是边AD 上一点,连接BF ,将ABF △沿BF 折叠使点A 落在G 点,连接AG 并延长交CD 于点E ,连接GD .若DEG △是以DG 为腰的等腰三角形,则AF 的长为________.或9 2【分析】分两种情形:如图1中,当GD=GE时,过点G作GM∠AD于M,GN∠CD于N.设AF=x,证明∠BAF∠∠ADE,推出AB AFDA DE=,可得DE=43x,再证明AM=MD=6,在Rt∠FGM中,利用勾股定理构建方程求解.如图2中,当DG=DE时,利用相似三角形的性质求解即可.【详解】解:如图1中,当GD=GE时,过点G作GM∠AD于M,GN∠CD于N.设AF=x.∠四边形ABCD是矩形,∠AD=BC=12,∠BAF=∠ADE=90°,由翻折的性质可知,AF=FG,BF∠AG,∠∠DAE+∠BAE=90°,∠ABF+∠BAE=90°,∠∠ABF=∠DAE,∠∠BAF=∠ADE=90°,∠∠BAF∠∠ADE,∠AB AF DA DE=,∠912xDE=,∠DE=43x,∠GM∠AD,GN∠CD,∠∠GMD=∠GND=∠MDN=90°,∠四边形GMDN是矩形,∠GM=DN=EN=23 x,∠GD=GE,∠∠GDE=∠GED,∠∠GDA+∠GDE=90°,∠GAD+∠GED=90°,∠∠GDA=∠GAD,∠GA =GD =GE ,∠GM ∠DE ,∠AM =MD =6,在Rt ∠FGM 中,则有()222()263x x x =-+,解得x =(舍弃),∠AF . 如图2中,当DG =DE 时,由翻折的性质可知,BA =BG ,∠∠BAG =∠BGA ,∠DG =FE ,∠∠DGE =∠DEG ,∠AB ∠CD ,∠∠BAE =∠DEG ,∠∠AGB =∠DGE ,∠B ,G ,D 共线,∠BD 15=,BG =BA =9,∠DG =DE =6,∠∠BAF ∠∠ADE , ∠AF AB DE AD =, ∠9612AF =, ∠AF =92,综上所述,AF 或92.【点睛】本题考查矩形的性质,翻折变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.9.如图,ABC 为等边三角形,点D ,E 分别在边AB ,AC 上,3BD =,将ADE 沿直线DE 翻折得到FDE ,当点F 落在边BC 上,且4BF CF =时,DE AF ⋅的值为______.【分析】根据∠ABC 为等边三角形,∠ADE 与∠FDE 关于DE 成轴对称,可证∠BDF ∠∠CFE ,根据BF =4CF ,可得CF =4,根据AF 为轴对称图形对应点的连线,DE 为对称轴,可得DE ∠AF ,根据S 四边形ADFE =12DE AF ⋅=S △CEF =-S △ABC -S △CEF ,进而可求DE AF ⋅= 【详解】解:如图,作∠ABC 的高AL ,作∠BDF 的高DH ,∠∠ABC 为等边三角形,∠ADE 与∠FDE 关于DE 成轴对称,∠∠DFE =∠DAE = 60°,AD = DF ,∠∠CFE +∠FEC =∠CFE +∠DFB = 120°,∠∠DFB = ∠CEF ,又∠B =∠C = 60°,∠∠BDF ∠∠CFE , ∠BD CF BE CE= , 即BF CF CE BD ⋅=, 设CF = x (x > 0),∠BF =4CF ,∠BF = 4x ,∠BD =3, ∠243x CE =, ∠45BC BF CF x x x =+=+=,∠53AD AB BD BC BD DF x =-=-==-,2453x AE EF x ==-, ∠∠BDF ∠∠CFE , ∠DF BD EF CF=, ∠2533453x x x x -=- 解得:x =2,∠CF =4,∠BC =5x =10,∠在Rt ∠ABL 中,∠B =60°,∠AL =AB∠S △ABC=1102⨯⨯= ∠在Rt ∠BHD 中,BD =3,∠B =60°,∠DH =BDsin60°=3= ∠S △BDF=11822BF DH ⋅=⨯= ∠∠BDF ∠∠CFE , ∠223924BDF CFE S BD S CF ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ∠S△BDF =∠S △CEF , 又∠AF 为轴对称图形对应点的连线,DE 为对称轴,∠AD =DF ,∠ADF 为等腰三角形,DE ∠AF ,∠S 四边形ADFE =12DE AF ⋅=S △CEF =-S △ABC -S △CEF==,∠DE AF⋅=故答案为.【点睛】本题主要考查等边三角形的和折叠的性质,一线三等角证明k型相似,以及“垂美四边形”的性质:对角线互相垂直的四边形的面积=对角线乘积的一半.三、解答题10.如图,在矩形ABCD中,E为AD的中点,EF∠EC交AB于F,延长FE与直线CD相交于点G,连接FC(AB>AE).(1)求证:∠AEF∠∠DCE;(2)∠AEF与∠ECF是否相似?若相似,证明你的结论;若不相似,请说明理由;(3)设ABkBC=,是否存在这样的k值,使得∠AEF与∠BFC相似?若存在,证明你的结论并求出k的值;若不存在,请说明理由.【答案】(1)见解析(2)相似,证明见解析(3)存在,k【分析】(1)由题意可得∠AEF+∠DEC=90°,又由∠AEF+∠AFE=90°,可得∠DEC=∠AFE,据此证得结论;(2)根据题意可证得Rt∠AEF∠Rt∠DEG(ASA),可得EF=EG,∠AFE=∠EGC,可得CE垂直平分FG,∠CGF是等腰三角形,据此即可证得∠AEF与∠ECF相似;(3)假设∠AEF与∠BFC相似,存在两种情况:∠当∠AFE=∠BCF,可得∠EFC=90°,根据题意可知此种情况不成立;∠当∠AFE=∠BFC,使得∠AEF与∠BFC相似,设BC=a,则AB=ka,可得AF=13ka,BF=23ka,再由∠AEF∠∠DCE,即可求得k值.(1)证明:∠EF∠EC,∠∠FEC=90°,∠∠AEF+∠DEC=90°,∠∠AEF+∠AFE=90°,∠∠DEC=∠AFE,又∠∠A=∠EDC=90°,∠∠AEF∠∠DCE;(2)解:∠AEF∠∠ECF.理由:∠E为AD的中点,∠AE=DE,∠∠AEF=∠DEG,∠A=∠EDG,∠∠AEF∠∠DEG(ASA),∠EF=EG,∠AFE=∠EGC.又∠EF∠CE,∠CE垂直平分FG,∠∠CGF是等腰三角形.∠∠AFE=∠EGC=∠EFC.又∠∠A=∠FEC=90°,∠∠AEF∠∠ECF;(3)解:存在k使得∠AEF与∠BFC相似.理由:假设∠AEF与∠BFC相似,存在两种情况:∠当∠AFE=∠BCF,则有∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况不成立;∠当∠AFE=∠BFC,使得∠AEF与∠BFC相似,设BC=a,则AB=ka,∠∠AEF∠∠BCF,∠12AFAE BF BC , ∠AF =13ka ,BF =23ka , ∠∠AEF ∠∠DCE , ∠AE AF DC DE =,即113212ka a ka a =,解得,k =.∠存在k ∠AEF 与∠BFC 相似. 【点睛】本题考查了矩形的性质,相似三角形的判定及性质,全等三角形的判定与及性质,等腰三角形的判定及性质,采用分类讨论的思想是解决本题的关键.11.(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B ∠=∠=∠=︒时,求证:AD BC AP BP ⋅=⋅.(2)探究若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在ABC 中,AB =45B ∠=︒,以点A 为直角顶点作等腰Rt ADE △.点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD∠=︒,若CE CD 的长.【答案】(1)见解析;(2)成立,理由见解析;(3)5CD =【分析】(1)由∠DPC =∠A =B =90°,可得∠ADP =∠BPC ,即可证到∠ADP ∽∠BPC ,然后运用相似三角形的性质即可解决问题;(2)由∠DPC =∠A =∠B =α,可得∠ADP =∠BPC ,即可证到∠ADP ∽∠BPC ,然后运用相似三角形的性质即可解决问题;(3)先证∠ABD ∽∠DFE ,求出DF =4,再证∠EFC ∽∠DEC ,可求FC =1,进而解答即可.【详解】(1)证明:如题图1,∠∠DPC =∠A =∠B =90°,∠∠ADP +∠APD =90°,∠BPC +∠APD = 90°, ∠∠ADP = ∠BPC ,∠∠ADP ∽∠BPC ,AD AP BP BC∴=, ∠AD ⋅BC = AP ⋅BP ,(2)结论仍然成立,理由如下,BPD DPC BPC ∠=∠+∠,又BPD A ADP ∠=∠+∠,DPC BPC A ADP ∴∠+∠=∠+∠,DPC A ∠=∠,设DPC A α∠=∠=,BPC ADP ∴∠=∠,ADP BPC ∴∽△△,AD AP BP BC∴=, ∠AD ⋅BC = AP ⋅BP ,(3)45EFD ∠=︒,45B ADE ∴∠=∠=︒,BAD EDF ∴∠=∠,ABD DFE ∴∽,AB AD DF DE∴=, ADE 是等腰直角三角形,DE ∴=, 2AB =4DF ∴=,45,45EFD ADE ∠=︒∠=︒,135EFC DEC ∴∠=∠=︒,EFC DEC ∴∽,FC EC EC CD∴=, 5EC =4CD DF FC FC =+=+, ()245EC FC CD FC FC ∴=⋅=⋅+=, 1FC ∴=,【点睛】本题考查相似三角形的综合题,三角形的相似;能够通过构造45°角将问题转化为一线三角是解题的关键.12.【感知】如图∠,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),90A B DPC ∠=∠=∠=︒.易证DAP PBC △△∽.(不需要证明)【探究】如图∠,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),A B DPC ∠=∠=∠.若4PD =,8PC =,6BC =,求AP 的长.【拓展】如图∠,在ABC 中,8AC BC ==,12AB =,点P 在边AB 上(点P 不与点A 、B 重合),连结CP ,作CPE A ∠=∠,PE 与边BC 交于点E ,当CPE △是等腰三角形时,直接写出AP 的长.【答案】【探究】3;【拓展】4或203. 【分析】探究:根据相似三角形的性质列出比例式,计算即可;拓展:证明∠ACP ∠∠BPE ,分CP =CE 、PC =PE 、EC =EP 三种情况,根据相似三角形的性质计算即可.【详解】探究:证明:∠DPB ∠是APD △的外角,∠DPB A PDA ∠=∠+∠,即DPC CPB A PDA ∠+∠=∠+∠,∠A DPC ∠=∠,∠PDA CPB ∠=∠,又∠A B ∠=∠,∠DAP PBC △△∽, ∠PD AP PC BC=, ∠4PD =,8PC =,6BC =, ∠486AP =, 解得:3AP =;拓展:∠AC =BC ,∠∠CPB 是∠APC 的外角,∠∠CPB =∠A +∠PCA ,即∠CPE +∠EPB =∠A +∠PCA ,∠∠A =∠CPE ,∠∠ACP =∠BPE ,∠∠A =∠B ,∠∠ACP ∠∠BPE ,当CP =CE 时,∠CPE =∠CEP ,∠∠CEP >∠B ,∠CPE =∠A =∠B ,∠CP =CE 不成立;当PC =PE 时,∠ACP ∠∠BPE ,则PB =AC =8,∠AP =AB -PB =12-8=4;当EC =EP 时,∠CPE =∠ECP ,∠∠B =∠CPE ,∠∠ECP =∠B ,∠PC =PB ,∠∠ACP ∠∠BPE , ∠AC AP PC BP BE EP ==, 即8128PB PB PB BE BE-==-, 解得:163PB =, ∠AP =AB -PB =16201233-=, 综上所述:∠CPE 是等腰三角形时,AP 的长为4或203. 【点睛】本题考查的是相似三角形的判定和性质、等腰三角形的性质、三角形的外角性质,灵活运用分情况讨论思想是解题的关键.13.如图,在矩形ABCD 中,E 是BC 上一点,DF AE ⊥于点F ,设()0AD AEλλ=>.(1)若1λ=,求证:CE FE =;(2)若3,4AB AD ==,且D B F 、、在同一直线上时,求λ的值.【答案】(1)证明见解析;(2)1615【分析】(1)根据矩形的性质可得,90//B AD BC AB CD AD BC ∠=︒==,,,,再根据已知条件DF AE ⊥,即可证明DFA ∠ABE △,则AF BE =,进而通过线段的和差关系求得; (2)由勾股定理求得BD 的长度,再由ABD △的面积求得AF 的长度,则可用勾股定理求得DF 的长度,则可得BF 的长度,再由DFA ∠ABE △,求得EB 的长度,在Rt ABE 中,根据勾股定理即可求得AE ,即可求得λ的值.【详解】(1)∠1λ=, ∠1AD AE=, ∠AD AE =,又∠四边形ABCD 是矩形,∠90//B AD BC AB CD AD BC ∠=︒==,,,,∠DAF AEB ∠=∠,∠DF AE ⊥,∠90DFA B ∠=∠=︒,∠在DFA 和ABE △中,DFA B DAF AEB AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠DFA ∠ABE △,∠AF BE =,∠=AE AD BC =,∠AE AF BC BE -=-,∠CE FE =;(2)如图,D B F 、、三点共线,∠3,4AB AD ==,∠5BD =,∠DF AE ⊥, ∠1122ABD S AB AD BD AF =⋅=⋅△, ∠341255AB AD AF BD ⋅⨯===,∠165DF ==, ∠169555BF BD DF =-=-=, ∠//AD BE , ∠在ADF △和EBF △中,FAD FEB ADF EBF AFD EFB ∠=∠∠=∠∠=∠,,,∠ADF △∠EBF △, ∠AD DF EB BF=, 即164595EB =, ∠94EB =,∠154AE ==, ∠14161554AD AE λ===.【点睛】本题考查了矩形的性质、三角形全等的判定和性质、三角形相似的判定和性质、勾股定理、三角形面积、相似比等,解答本题的关键是熟练掌握运用以上知识点,利用勾股定理求解线段的长.14.如图,矩形ABCD 中,AB =1,BC =3,点E 是边BC 上一个动点(不与点B 、C 重合),AE 的垂线AF 交CD 的延长线于点F ,点G 在线段EF 上,满足FG∠GE =1∠2,设BE =x . (1)求证:AD DF AB BE=; (2)当点G 在∠ADF 的内部时,用x 的代数式表示∠ADG 的余切;(3)当∠FGD =∠AFE 时,求线段BE 的长.【答案】(1)见解析;(2)361x x --;(3. 【分析】(1)根据题意可证明∠DAF =∠BAE ,又由于∠ABE =∠ADF =90°,即证明∠ADF∠∠ABE ,所以AD DF AB BE=. (2)作GH∠CF 于H ,根据题意可求出DF =3BE =3x ,根据平行线分线段成比例得出13GH FH FG EC FC FE ===,即可列出关于x 的等式,从而得出GH 和FH 的长,即可求出HD 的长,cot∠ADG =cot∠DGH =GH HD,即可求出结果. (3)作EM//GD 交DC 于点M ,即可知12FD FG DM GE ==,可求出DM ,从而求出CM ,根据图形可证明∠ABE∠∠ECM ,即可得到AB EC BE CM=,即列出关于x 的方程,解出x 即可. 【详解】(1)如图,因为AF∠AE ,∠∠EAF =∠BAD =∠ADF =90°.∠同角的余角相等,∠∠DAF =∠BAE .∠∠ABE =∠ADF =90°.∠∠ADF∠∠ABE . ∠AD DF AB BE=.(2)由31DF AD BE AB ==,得DF =3BE =3x . 如图,作GH∠CF 于H ,那么GH//BC//AD . 根据题意结合平行线分线段成比例得:13GH FH FG EC FC FE ===. ∠EC BC BE =-,FC CD DF =+, ∠13313GH FH x x ==-+.即GH =1(3)3x -,FH =1(31)3x +. 在Rt∠GHD 中,HD =DF -FH =13(31)3x x -+=123x -=1(61)3x -, ∠∠ADG =∠DGH ,∠cot∠ADG =cot∠DGH =GH HD =1(3)31(61)3x x --=361x x --.(3)当点G 在∠ADF 内部时,很明显∠FGD 和∠AFE 不相等.所以点G 在∠ADF 外部. 如图,作EM//GD 交DC 于点M ,那么12FD FG DM GE ==. ∠DM =6x ,∠MC =1-6x .如果∠FGD =∠AFE ,那么AF//GD//EM .∠∠AEM +∠EAF =180°.∠∠AEM =90°.∠∠ABE∠∠ECM . ∠AB EC BE CM =.即1316x x x-=-. 整理,得x 2-9x +1=0.解得1x =23x >(不符合题意,舍去).所以BE【点睛】本题考查三角形相似的判定与性质,矩形,余角,平行线的性质.综合性较强,作出辅助线是解答本题的关键.15.如图,已知四边形ABCD ,∠B =∠C =90°,P 是BC 边上的一点,∠APD =90°. (1)求证:ABP PCD △△;(2)若BC =10,CD =3,PD =AB 的长.【答案】(1)证明见解析;(2)8.【分析】(1)先根据直角三角形的两锐角互余、角的和差可得BAP CPD ∠=∠,再根据相似三角形的判定即可得证;(2)先利用勾股定理求出PC 的长,从而可得BP 的长,再利用相似三角形的性质即可得.【详解】(1)90,90B C APD ∠=∠=︒∠=︒,90BAP APB CPD APB ∠+∠=∠+∠=∴︒,BAP CPD ∴∠=∠,在ABP 和PCD 中,BAP CPD B C ∠=∠⎧⎨∠=∠⎩,ABP PCD ~∴;(2)在Rt PCD 中,3,CD PD ==6PC ∴,10BC =,4PB BC PC ∴=-=,由(1)已证:ABP PCD △△,AB PB PC CD ∴=,即463AB =, 解得8AB =.【点睛】本题考查了相似三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.16.如图,四边形ABCD 和四边形AEFG 都是矩形,C ,F ,G 三点在一直线上,连接AF 并延长交边CD 于点M ,若∠AFG =∠ACD .(1)求证:∠∠MFC ∠∠MCA ;∠若AB =5,AC =8,求CF BE的值. (2)若DM =CM =2,AD =3,请直接写出EF 长.【答案】(1)∠见解析;∠FC EB =85;(2)EF 【分析】(1)∠根据两角对应相等两三角形相似,证明即可.∠证明∠AEF∠∠ABC ,推出AF AC =AE AB ,推出AF AE =AC AB,推出∠FAC∠∠EAB ,可得结论. (2)利用勾股定理求出AM ,AC ,由MFC∠∠MCA ,推出CM AM =FM CM ,求出MF ,AF ,由∠AEF∠∠ABC ,推出EF BC =AF AC ,可得结论. 【详解】(1)∠证明:∠∠AFG =∠ACD ,∠∠FCA +∠F AC =∠FCA +∠MCF ,∠∠F AC =∠MCF ,∠∠FMC =∠CMA ,∠∠MFC ∠∠MCA .∠解:∠四边形AEFG ,四边形ABCD 都是矩形,∠FG ∠AE ,CD ∠AB ,∠∠AFG =∠F AE ,∠ACD =∠CAB ,∠∠AFG =∠ACD ,∠∠F AE =∠CAB ,∠∠AEF =∠ABC =90°,∠∠AEF ∠∠ABC , ∠AF AC =AE AB , ∠AF AE =AC AB, ∠∠F AE =∠CAB ,∠∠F AC =∠EAB ,∠∠F AC ∠∠EAB , ∠FC EB =AC AB =85. (2)解:∠四边形ABCD 是矩形,∠∠D =90°,AD =BC =3,∠DM =MC =2,AD =3,∠CD =4,AM AC 5, ∠∠MFC ∠∠MCA , ∠CM AM =FM CM,∠FM =2CM AM∠AF =AM ﹣FM ∠∠AEF ∠∠ABC , ∠EF BC =AF AC ,∠3EF =135,∠EF【点睛】本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.17.如图,在正方形ABCD 中,点E 在AD 上,EF ⊥BE 交CD 于点F .(1)求证:ABE DEF ∆∆;(2)连结BF ,若ABEEBF ∆∆,试确定点E 的位置并说明理由. 【答案】(1)见解析;(2)点E 为AD 的中点.理由见解析【分析】(1)根据同角的余角相等证明∠ABE =∠DEF ,再由直角相等即可得出两三角形相似的条件;(2)根据相似三角形的对应边成比例,等量代换得出AB AB DE AE=,即可得出DE =AE . 【详解】(1)证明∠四边形ABCD 是正方形,∠∠A =∠D =90°,∠∠AEB +∠ABE =90°,∠EF ∠BE ,∠∠AEB +∠DEF =90°,∠∠ABE =∠DEF .在∠ABE 和∠DEF 中, ABE DEF A D ∠=∠⎧⎨∠=∠⎩∠∠ABE ∠∠DEF ;(2)∠∠ABE ∠∠DEF , ∠AB BE DE EF=, ∠∠ABE ∠∠EBF ,∠AB BE AE EF=,∠AB AB DE AE=,∠DE=AE,∠点E为AD的中点.【点睛】本题主要考查了相似三角形的判定和性质,根据等角的余角相等证出两角相等是解决(1)的关键,根据相似三角形的对应边成比例等量代换是解决(2)的关键.18.如图,正方形ABCDP是BC边上的一动点,∠APB、∠APC的角平分线PE、PF分别交AB、CD于E、F两点,连接EF.(1)求证:∠BEP∠∠CPF;(2)当∠P AB=30°时,求∠PEF的面积.【答案】(1)详见解析;(2)2-【分析】(1)由于PE平分∠APB,PF平分∠APC,所以∠EPF=90°,然后根据相似三角形的判定即可求证∠BEP∠∠CPF;(2)由题意可知∠BPE=30°,60°,根据含30度的直角三角形的性质即可求出答案.【详解】(1)∠PE平分∠APB,PF平分∠APC,∠∠APE=12∠APB,∠APF=12∠APC,∠∠APE+∠APF=12(∠APB+∠APC)=90°,∠∠EPF=90°,∠∠EPB+∠BEP=∠EPB+∠FPC=90°,∠∠BEP=∠FPC,∠∠B=∠C=90°,∠∠BEP∠∠CPF;(2)∠∠PAB=30°,∠∠BPA=60°,∠∠BPE=30°,在Rt∠ABP中,∠PAB =30°,AB∠BP =1,在Rt∠BPE 中,∠BPE =30°,BP =1,∠EP ∠CP1,∠FPC =60°,∠PF =2CP =2,∠∠PEF 的面积为:12PE•PF =2 【点睛】本题考查相似三角形的综合问题,解题的关键是熟练运用相似三角形的性质与判定,含30度角的直角三角形的性质,本题属于中等题型.19.如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与A 、C 重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,已知3AD =,5AC =.设AP 的长为x .(1)AB =___________;当1x =时,PE =_________; (2)试探究:否是定值?若是,请求出这个值;若不是,请说明理由;(3)当PCE 是等腰三角形时,请求出x 的值.【答案】(1)4AB =,34PE PB = (2)PE PB 为定值,34PE PB = (3)75x =或4x = 【分析】(1)作PM AB ⊥于M 交CD 于N .由BMP PNE ∆∆∽,推出PE PN PB BM =,只要求出PN 、BM 即可解决问题;(2)结论:PE PB的值为定值.证明方法类似(1); (3)分两种情形讨论求解即可解决问题;(1)解:作PM AB ⊥于M 交CD 于N .四边形ABCD 是矩形,3BC AD ∴==,5AC =,90ABC ∠=︒,4AB ∴=.在Rt APM △中,1PA =,35PM =,45AM =, 165BM AB AM ∴=-=, 3MN AD ==,125PN MN PM ∴=-=, 90PMB PNE BPE ∠=∠=∠=︒,90BPM EPN ∴∠+∠=︒,90EPN PEN ∠+∠=︒,BPM PEN ∴∠=∠,BMP PNE ∴△∽△, ∴12351645PE PB===, 故答案为4,34. (2) 结论:PE PB的值为定值. 理由:由PA x =,可得35PM x =.45AM x =,445BM x =-,335PN x =-, BMP PNE △∽△, ∴33354445x PE PN PB BM x -===-; (3)∠当点E 在线段CD 上时,连接BE 交AC 于F .90PEC ∠>︒,所以只能EP EC =,EPC ECP ∴∠=∠,90BPE BCE ∠=∠=︒,BPC BCP ∴∠=∠,BP BC ∴=,BE ∴垂直平分线段PC ,在Rt BCF 中,cos CF BC BCF BC AC∠==, ∴335CF =, 95CF ∴=, 1825PC CF ∴==, 187555x PA ∴==-=. ∠当点E 在DC 的延长线上时,设BC 交PE 于G .90PCE ∠>︒,所以只能CP CE =.CPE E ∴∠=∠,90GPB GCE ∠=∠=︒,PGB CGE ∠=∠,PBG E CPE ∴∠=∠=∠,90ABP PBC ∠+∠=︒,90APB CPE ∠+∠=︒,4AB AP ∴==,综上所述,x 的值为75或4. 【点睛】本题属于四边形综合题、考查了矩形的性质、相似三角形的判定和性质、勾股定理以及等腰三角形的构成条件等重要知识,同时还考查了分类讨论的数学思想,难度较大.20.【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌. 【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DE EC 的值(用含k 的代数式表示).【答案】(1)见解析;(2)DE =(3【分析】(1)根据ASA 证明BCE CDG △△≌; (2)由(1)得9CE DG ==,由折叠得BCF BFC ∠=∠,进一步证明HF HG =,由勾股定理得2222HF FE DH DE +=+,代入相关数据求解即可;(3)如图,连结HE ,分点H 在D 点左边和点H 在D 点右边两种情况,利用相似三角形的判定与性质得出DE 的长,再由勾股定理得2222HF FE DH DE +=+,代入相关数据求解即可.【详解】(1)如图,BFE △由BCE 折叠得到,BE CF ∴⊥,90ECF BEC ∴∠+∠=︒. 又四边形ABCD 是正方形,90D BCE ∴∠=∠=︒,90ECF CGD ∴∠+∠=︒,BEC CGD ∴∠=∠, 又 正方形,ABCD,BC CD ∴=,()BCE CDG AAS ∴△△≌.(2)如图,连接EH ,由(1)得BCE CDG △△≌, 9CE DG ∴==,由折叠得BC BF =,9CE FE ==,BCF BFC ∴∠=∠.四边形ABCD 是正方形,//AD BC ∴,BCG HGF ∴∠=∠,又BFC HFG ∠=∠,HFG HGF ∴∠=∠,HF HG ∴=. 45HD HF =,9DG =, 4HD ∴=,5HF HG ==.90D HFE ∠=∠=︒2222HF FE DH DE ∴+=+,2222594DE ∴+=+,DE ∴=DE =-. (3)如图,连结HE ,由已知45HD HF =可设4DH m =,5HG m =,可令DE x EC=, ∠当点H 在D 点左边时,如图,同(2)可得,HF HG =,9DG m ∴=,由折叠得BE CF ⊥,90ECF BEC ∴∠+∠=︒,又90D ∠=︒,90ECF CGD ∴∠+∠=︒,BEC CGD ∴∠=∠,又90BCE D ∠=∠=︒,CDG BCE ∴△∽△,DG CD CE BC∴=, CD AB k BC BC ==, 91m k CE ∴=, 9m CE FE k∴==, 9mx DE k ∴=. 90D HFE ∠=∠=︒,2222HF FE DH DE ∴+=+,222299(5)(4)m mx m m k k ⎛⎫⎛⎫∴+=+ ⎪ ⎪⎝⎭⎝⎭,x ∴=x =舍去).DE EC∴=∠当点H 在D 点右边时,如图,同理得HG HF =,DG m ∴=,同理可得BCE CDG △∽△, 可得m CE FE k ==,mx DE k∴=, 2222HF FE DH DE +=+,2222(5)(4)m mx m m k k ⎛⎫⎛⎫∴+=+ ⎪ ⎪⎝⎭⎝⎭,x ∴=x =.DE EC∴=【点睛】此题主要考查了正方形的性质,矩形的性质,折叠的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.在矩形ABCD 中,点E 是CD 边上一点,将ADE 沿AE 折叠,使点D 恰好落在BC 边上的点F 处.(1)如图1,若3tan 4EFC ∠=,求:AB BC 的值;(2)如图2,在线段BF 上取一点G ,使AG 平分BAF ∠,延长AG ,EF 交于点H ,若FG BG CF =+,求:AB BC 的值.【答案】(1)45;(2)35. 【分析】(1)根据3tan 4EFC ∠=,可设3CE k =,则4CF k =,5DE EF k ==,再证明ABF FCE ~,由相似三角形性质即可用k 表示出BF ,从而求得比值;(2)过点G 作GM AF ⊥于点M ,由FG BG CF =+可得1122FG BC AF ==,再证MFG BFA ,从而12GM FM FG AB BF AF ===,设BG x =,由角平分线性质可得:BG MG x ==,2AB AM x ==,设FM y =,则2BF y =,由222AB BF AF +=列方程即可求出43y x =,再根据AB AB BC AF=即可求出比值. 【详解】解:(1)∠四边形ABCD 是矩形,90B C D ︒∴∠=∠=∠=,由折叠的性质得:90AFE D ︒∠=∠=,EF ED =,AF AD =,3tan 4CE EFC CF ∴∠==, 设3CE k =,则4CF k =,5DE EF k ∴==,又90AFB BAF ︒∠+∠=,90AFB EFC ∠+∠=︒,BAF EFC ∴∠=∠,∠ABF FCE ~,AB BF CF CE∴=, ∠843k BF k k=, 6BF k ∴=,∠6410BC BF CF k k k =+=+=,84105AB k BC k ∴==; (2)如解图2,过点G 作GM AF ⊥于点M ,FG BG CF =+,=FG BG CF BC ++, 1122FG AD BC ∴== AD AF =,12FG AF ∴= MFG BFA ∠=∠,90FMG FBA ︒∠=∠=, MFGBFA ∴, ∠12GM FM FG AB BF AF ===, 设BG x =, AG 平分,,BAF GB AB GM AF ∠⊥⊥, BG MG x ∴==,2AB AM x ==, 设FM y =,则2BF y =,222AB BF AF +=222(2)(2)(2)x y x y ∴+=+,解得43y x = 而=AF AM MF +,∠410233x x x +=, ∠231053AB AB x BC AF x ===. 【点睛】本题考查了四边形的综合问题,也考查了三角形相似的判定与性质、勾股定理、三角函数和角平分线的性质.解题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.难点是构造垂直利用角平分线性质得线段相等并利用相似进行求解.22.问题提出(1)如图1,在矩形ABCD 中,4cm AB =,点E 为AB 的中点,点F 在BC 上,过点E 作//EG BC交FD 于点G .若5cm EG =,则EFD △的面积为_________.问题探究(2)如图2,在矩形ABCD 中,6cm,9cm AB BC ==,点P 是AD 边上一动点,点Q 是CD 的中点将.ABP 沿着BP 折叠,点A 的对应点是A ',将QDP △沿着PQ 折叠,点D 的对应点是D .请问是否存在这样的点P ,使得点P 、A '、D 在同一条直线上?若存在,求出此时AP 的长度;若不存在,请说明理由.问题解决(3)某精密仪器厂接到生产一种特殊四边形金属部件的任务,部件要求:如图3,在四边形ABCD 中,4cm BC =,点D 到BC 的距离为5cm,AD CD ⊥,且CD =.若过点D 作//BC MN ,过点A 作MN 的垂线,交MN 于点E ,交CB 的延长线于点H ,过点C 作CF MN ⊥于点F ,连接AC .设AE 的长为(cm)x ,四边形ABCD 的面积为()2cm y . ∠根据题意求出y 与x 之间的函数关系式;∠在满足要求和保证质量的前提下,仪器厂希望造价最低.已知这种金属材料每平方厘米造价60元,请你帮忙求出这种四边形金属部件每个的造价最低费用. 1.73)【答案】(1)210cm ;(2)存在,6cm AP =或3cm AP =;(3)∠210y x =+⎝⎭;∠963.3元.【分析】(1)先由矩形的性质得//,4AD BC CD AB ==,再由三角形面积公式求解即可; (2)由折叠的性质得:,APB A PB DPQ D PQ ∠=∠∠'=∠',再证BAP PDQ ∽,然后根据相似三角形的性质列比例式求解;(3)∠先证得AED DFC ∽,然后根据相似三角形的性质求得DE DF ==,然后根据面积公式列式求解;∠根据二次函数性质求最值【详解】解:(1)∠四边形ABCD 是矩形,∠//,4AD BC CD AB ==.∠//EG BC ,∠////AD EG BC .∠点E 为AB 的中点,∠EFD EGD EGF S S S =+111222EG CD =⨯⨯+12EG CD ⨯⨯ 12EG CD =⨯⨯ 1542=⨯⨯ 10=故答案为:210cm ;(2)存在,理由如下:∠四边形ABCD 是矩形,∠90,9,6cm BAD ADC BC AD AB CD ∠=∠=︒===.∠Q 是CD 的中点,∠3cm DQ =.由折叠的性质得:,APB A PB DPQ D PQ ∠=∠∠'=∠',当点P 、A '、D 三点在同一条直线上时,180APB A PB DPQ D PQ ∠+∠+∠+=''∠︒, ∠90APB DPQ ∠+∠=︒.∠90APB ABP ∠+∠=︒,∠ABP DPQ ∠=∠.∠∠90BAP PDQ ∠=∠=︒,∠BAP PDQ ∽, ∠AB AP PD DQ =,即693AP AP =-, 解得:6cm AP =或3cm AP =;(3)∠根据题意做出辅助线,如图所示.由题意得:5CF EH ==.∠AD CD ⊥,∠90EDA CDF ∠+∠=︒.∠CF MN ⊥,∠90DCF CDF ∠+∠=︒,∠EDA DCF ∠=∠.又∠90AED DFC ∠=∠=︒,∠AED DFC ∽, ∠CF DF CD DE AE DA==. 由AE x =,则5AH x =-.∠5,CF CD ==,∠5DF DE x==∠DE DF ==, ∠EACF DEA DFC ABC y S S S S =--+四边形1111(5)542222x x ⎫=+⨯-⨯+⨯⨯⎪⎪⎝⎭(5)x -2210x x =- 210x =++⎝⎭∠由∠知,210y x =+⎝⎭,当x =时,四边形ABCD 的面积取得最小值为210cm ⎛+ ⎝⎭,∠最低造价为1060963.3⎛⨯≈ ⎝⎭(元), ∠四边形金属部件每个的造价最低费用约为963.3元.【点睛】本题是四边形综合题目,考查了矩形的性质、相似三角形的判定与性质、翻折变换的性质、梯形面积公式、三角形面积公式以及二次函数的应用等知识;本题综合性强,熟练掌握矩形的性质和翻折变换的性质,证明三角形相似是解题的关键,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件:B,C,E三点共线,∠B=∠ACD=∠E=90°结论:△ABC∽△CED 条件:B,D,C 三点共线,∠B=∠EDF=∠C=α 结论:△BDE∽△CFD【模型解析】2020 中考专题 2——几何模型之“K”型相似班级姓名.DAB E【例题分析】例 1. (1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°,求证:AD﹒BC=AP﹒BP;(2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5,点P 以每秒1 个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠CPD=∠A,设点P的运动时间为t(秒),当DC=4BC时,求t的值.3例 2.如图,在等边△ABC 中,将△ABC 沿着 MN 折叠。
使点 A 落在边 BC 上的点 D 处。
(1)若 AB =4,当△BMD 为直角三角形时,求 AM 的长。
(2)当 BD :CD =1:3 时,求 AM :AN 的值。
例 3.如图,在直角坐标系中,矩形 ABCO 的边 OA 在 x 轴上,边 OC 在 y 轴上,点 B 的坐标为(4,8), 将矩形沿对角线 AC 翻折,B 点落在 D 点的位置,且 AD 交 y 轴于点 E ,那么点 D 的坐标为 .例 3 图例 4 图例 5 图例 4.如图,矩形 ABCD 中,AB =2AD ,点 A (0,1),点 C 、D 在反比例函数 y = k(k > 0) 的图象上,xAB 与 x 轴的正半轴相交于点 E ,若 E 为 AB 的中点,则 k 的值为 . 例 5.如图,直线 a ∥b ∥c ,a 与 b 之间的距离为 3,b 与 c 之间的距离为 6,a 、b 、c 分别经过等边三角形 ABC 的三个顶点,则三角形的边长为 .【巩固训练】1. 如图 1,已知△ABC 和△ADE 均为等边三角形,D 在 BC 上,DE 与 AC 相交于点 F ,AB =9,BD =3,则 CF 等于()A .1B .2C .3D .4图 1图 2 图 3 图 42. 如图 2 坐标系中,O (0,0),A (6,6 ),B (12,0),将△OAB 沿直线线 CD 折叠,使点 A 恰好落在线段OB 上的点E 处,若OE=24,则CE:DE 的值是.53.如图3,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则△ABC的面积为.5 k4.如图 4,边长为的正方形ABCD 的顶点A 在y 轴上,顶点D 在反比例函数y= (x>0)的图象上,4 x已知点B 的坐标是3,9,则k 的值为。
4 45.如图 5,在平面直角坐标系中,点A、C 分别在x 轴、y 轴上,四边形ABCO 为矩形,AB=16,4点D 与点A 关于y 轴对称,tan∠ACB=3,∠CDE=∠CAO,点E、F 分别是线段AD、AC 上的动点(点E不与点A、D重合),且∠CEF=∠ACB.(1)求AC 的长和点D 的坐标;(2)证明:△AEF∽△DCE;(3)当△EFC 为等腰三角形时,求点E 的坐标.图 56.如图6,一条抛物线经过原点和点C(8,0),A、B是该抛物线上的两点,AB∥x轴,OA=5,AB=2.点E 在线段OC 上,作∠MEN=∠AOC,使∠MEN 的一边始终经过点A,另一边交线段BC 于点F,连接AF.(1)求抛物线的解析式;(2)当点F 是BC 的中点时,求点E 的坐标;(3)当△AEF 是等腰三角形时,求点E 的坐标.图 67.如图7,已知抛物线y=mx2-3mx-4m与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,当∠ACB=90°时,(1)求抛物线解析式;(2)当抛物线开口向下时,在第一象限的抛物线上有一点P,横坐标为a,当∠BPC=90°时,求a 的值.图78.如图8,在平面直角坐标系中,抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点C,直线BC的解析式为y=kx+3.(1)求抛物线和直线BC的解析式;(2)在抛物线的对称轴上找一点P,使得∠CBP=90°,求P点坐标;(3)若点Q 是第一象限的抛物线上一动点,当∠CQB=90°时,求Q 点的坐标.图82 9. 小明是一个喜欢探究钻研的学生,他在和同学们一起研究某条抛物线 y =ax 2(a <0)的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点 O ,两直角边与该抛物线交于 A 、B 两点,请解答以下问题:图 1图 2(1) 小明测得 OA =OB = 4(如图 1),求 a 的值;(2) 对同一条抛物线,小明将三角板绕点 O 旋转到如图 2 所示位置时,过 B 作 BF ⊥x 轴于点F ,测得 OF =2,写出此时点 B 的坐标,并求点 A 的横坐标;(3) 对该抛物线,小明将三角板绕点 O 旋转任意角度时惊奇地发现,交点 A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.2020 中考专题2——几何模型之“K”型相似参考答案例1.解:(1)如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;图1 图2 图3(2)结论AD•BC=AP•BP 仍然成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)如图3,∵DC=4BC,又∵AD=BD=5,∴DC=4,BC=1,,由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t),解得:t1=1,t2=5,∴t的值为1秒或5秒.例 2.解:(1)如图1,设BM=k,AM=DM= 3k.可得方程k+ 3k=4,得k=2+2 3,得AM=2(3同理,如图2,可求得AM=8 3-12.(2)如图3,设BD=m,CD=3m,可得△BDM 与△CDN 的周长比即相似比为5:7.可得AM:AN=DM:DN=5:7.图1 图2 图3- 3).例3.解:如图,过D 作DF⊥x 轴于F,∵点B的坐标为(4,8),∴AO=4,AB=8,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=4,设OE=x,那么CE=8﹣x,DE=x,∴在Rt△DCE 中,CE2=DE2+CD2,∴(8﹣x)2=x2+42,∴x=3,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=8,∴AE=CE=8﹣3=5,∴==,即,∴DF=,AF=,∴OF=﹣4=,∴D的坐标为(﹣,).故答案是:(﹣,).例4.解:如图,作DF⊥y 轴于F,过B 点作x 轴的平行线与过C 点垂直与x 轴的直线交于G,CG 交x 轴于K,作BH⊥x 轴于H,∵四边形ABCD 是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E 为AB 的中点,∴AD=AE,在△ADF 和△EAO 中,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1•k,解得k1=,k2=,∵k﹣1>0,∴k=故答案是:.例 5.简解:构造∠BDC=∠AEC=60°,可得△BCD≌△CAE.可求得AC=2 21.【巩固训练】1.解:如图,∵△ABC 和△ADE 均为等边三角形,∴∠B=∠BAC=60°,∴∠BAD+∠ADB=120°,∠ADB+∠FDC=120°∴∠BAD=∠FDC又∵∠B=∠C=60°,∴△ABD~△CDF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.2.解:过A 作AF⊥OB 于F,∵A(6,6),B(12,0),∴AF=6,OF=6,OB=12,∴BF=6,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB 是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB 沿直线线CD 折叠,使点A 恰好落在线段OB 上的点E 处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴,设CE=a,则CA=a,CO=12﹣a,ED=b,则AD=b,DB=12﹣b,,∴24b=60a﹣5ab①,,∴36a=60b﹣5ab②,②﹣①得:36a﹣24b=60b﹣60a,∴ =,即CE:DE=.故答案为:.3.简解:构造一对直角三角形全等,可得BC=AC=5.4.解:如图,作DE⊥OA 于E,BF⊥OA 于F,∵四边形ABCD 是正方形,∴AD=AB,∠DAB=90°,∵∠EAD+∠FAB=90°,∠FAB+∠ABF=90°,∴∠EAD=∠ABF,在△ADE 和△BAF 中,,∴△ADE≌△BAF,∴AF=ED,AE=BF,∵B点坐标(,),AB=,∴OF=,AF=DE===1.∴OE=4,点D坐标(1,4),∴k=4.5.解:(1)由题意tan∠ACB=,∴cos∠ACB=,∵四边形ABCO 为矩形,AB=16,∴BC==12,AC==20,∴A(﹣12,0),∵点D与点A关于y轴对称,∴D(12,0);(2)∵点D 与点A 关于y 轴对称,∴∠CDE=∠CAO,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE;(3)当△EFC 为等腰三角形时,有以下三种情况:①当CE=EF 时,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②当EF=FC 时,过点F 作FM⊥CE 于M,则点M 为CE 中点,∴CE=2ME=2EF•cos∠CEF=2EF•cos∠ACB=EF,∵△AEF∽△DCE,∴=,即=,∴AE=,∴DE=AE﹣OA=﹣12=,∴E(,0);③当CE=CF 时,则有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=CAO,即此时点E 与点D 重合,这与已知条件矛盾,综上所述,E(8,0)或(,0).6.解:(1)如图,∵该抛物线经过原点和点C(8,0),∴设该抛物线的解析式为:y=ax(x﹣8)(a≠0).∵点C(8,0),∴该抛物线的对称轴是x=4.∵AB=2,AB∥x轴,∴设A(3,t),B(5,t),又∵OA=5,∴t=4,即A(3,4),B(5,4),∴把点A 的坐标代入解析式,得4=3a×(3﹣8),解得a=﹣,∴该抛物线的解析式是:y=﹣x(x﹣8)(或y=﹣x2+x);(2)∵AB∥x 轴,∴根据抛物线的对称性知OA=CB=5,∠AOC=∠BCO,∵点F 是BC 的中点,∴CF=.∵∠MEN=∠AOC,即∠AEF=∠AOC,∠AEC=∠AEF+∠CEF=∠AOC+∠OAE,∴∠CEF=∠OAE,∴△AOE∽△ECF,∴=,即=,( ± 解得,OE =,或 OE = ,则 E ( ,0);(3) ①当 AE =EF 时,可证△AOE ≌△ECF . 则 OA =CE =5,∴OE =3,则 E (3,0);②当 AF =EF 时,过点 F 作 FK ∥AO .易证△ABF ≌△FKE ,求得 OE =,则 E (,0);③当 AE =AF 时,在 AO 上取点 Q ,使得 EQ =OE . 易证△ABF ≌△EQA ,则 EQ =AB =2,∴OE =2.则 E (2,0);综上所述,点 E 的坐标是:(3,0)、(,0)或(2,0)时,△AEF 是等腰三角形.6.解:(1)A (-1,0),B (4,0),C (0,-4m ).利用 AO BO=CO 2 列方程可得 m =-12(2) 构 造 基 本 图 形 , 设 P ( a ,b ) , 其 中 b =-1 2,NP =4-a . (a -3a -4),CM =b -2,BN =b ,PN =4-a 2 可得方程 a (4-a )=b (b -2)即,a (4-a )=8. 解: 1 - (a -4)(a +1)( 21a 2+ 2 3 a ), 2 得 a =3(-1,0,3 舍去)(1)C (0,3),抛物线为 y =-(x +1)(x -3)=-x 2+2x +3.(2) 直线 BC 为 y =-x +3,取 BC 的中点 M 3,3)MP =1/2BC =3/2 2, 得 P 3,3 3 2) 2 2 2 2 2(3) 设 Q (a ,b )则类似第 6 题,可得 Q 9. 解:(1)设线段 AB 与 y 轴的交点为 C ,由抛物线的对称性可得 C 为 AB 中点, ∵OA =OB =4,∠AOB =90°,∴AC =OC =BC =4, ∴B (4,﹣4),1+ 5 5+ 5 2 , 2( -将B(4,﹣4)代入抛物线y=ax2(a<0)得,a=﹣.(2)过点A 作AE⊥x 轴于点E,∵点B的横坐标为2,∴B(2,﹣1),设A(﹣m,﹣m2)(m>0),则OB2=22+12=5,OA2=m2+m4,AB2=(2+m)2+(﹣1+m2)2,∵∠AOB=90°,∴AB2=OA2+OB2,∴(2+m)2+(﹣1+m2)2=m2+m4+5,解得:m=0(不合题意舍去)或m=8,即点A 的横坐标为﹣8.(3)设A(﹣m,﹣m2)(m>0),B(n,﹣n2)(n>0),设直线AB 的解析式为:y=kx+b,则,①×n+②×m得,(m+n)b=﹣(m2n+mn2)=﹣mn(m+n),∴b=﹣mn,由前可知,OB2=n2+n4,OA2=m2+m4,AB2=(n+m)2+(﹣m2+n2)2,由AB2=OA2+OB2,得:n2+n4+m2+m4=(n+m)2+(﹣m2+n2)2,化简,得mn=16.∴b=﹣×16=﹣4.由此可知不论k为何值,直线AB恒过点(0,﹣4).。