人教A高中数学选修21浙江专模块综合检测 含解析

合集下载

高中数学模块综合检测(二)(含解析)新人教A版选修2-1(2021学年)

高中数学模块综合检测(二)(含解析)新人教A版选修2-1(2021学年)

2017-2018学年高中数学模块综合检测(二)(含解析)新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学模块综合检测(二)(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学模块综合检测(二)(含解析)新人教A版选修2-1的全部内容。

模块综合检测(二)(时间120分钟,满分150分)一、选择题(本题共10小题,每小题6分,共60分)1.设a,b是实数,则“a>b”是“a2〉b2"的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D 可采用特殊值法进行判断,令a=1,b=-1,满足a>b,但不满足a2>b2,即条件“a〉b”不能推出结论“a2>b2”;再令a=-1,b=0,满足a2〉b2,但不满足a>b,即结论“a2>b2”不能推出条件“a〉b”.故选D。

2.若平面α,β的法向量分别为a=(-1,2,4),b=(x,-1,-2),并且α⊥β,则x的值为()A.10 ﻩB.-10C。

\f(1,2) D.-错误!解析:选B 因为α⊥β,则它们的法向量也互相垂直,所以a·b=(-1,2,4)·(x,-1,-2)=0,解得x=-10。

3.(天津高考)已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A, B两点,O为坐标原点. 若双曲线的离心率为2, △AOB的面积为\r(3),则p=()A.1B.错误!C.2D.3解析:选C 因为双曲线的离心率e=ca=2,所以b=错误!a,所以双曲线的渐近线方程为y=±\f(b,a)x=±3x,与抛物线的准线x=-p2相交于A-错误!,错误!p,B错误!,所以△AOB的面积为错误!×错误!×错误!p=错误!,又p>0,所以p=2.4.已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则错误!·错误!的值为( )A.a2 B.错误!a2C.错误!a2D。

高中数学人教A版选修2-1模块综合检测.docx

高中数学人教A版选修2-1模块综合检测.docx

模块综合检测(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“任意的x ∈R,2x 4-x 2+1<0”的否定是 ( ) A .不存在x ∈R,2x 4-x 2+1<0B .存在x 0∈R,2x 40-x 20+1<0 C .存在x 0∈R,2x 40-x 20+1≥0D .对任意的x ∈R,2x 4-x 2+1≥0解析:全称命题的否定是特称命题,所以该命题的否定是:存在x 0∈R,2x 40-x 20+1≥0.答案:C2.设椭圆x 2m 2+y 2n 2=1(m >n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1 B.x 216+y 212=1 C.x 248+y 264=1D.x 264+y 248=1 解析:抛物线的焦点为(2,0),∴4=m 2-n 2.又m 2-n 2m =12,所以可解得m =4,n =2 3, 故椭圆的方程为x 216+y 212=1.答案:B3.已知空间向量a =(1,n,2),b =(-2,1,2),若2a -b 与b 垂直,则|a |等于 ( ) A.5 32B.212C.372D.3 52解析:由已知可得2a -b =(2,2n,4)-(-2,1,2)=(4,2n -1,2). 又∵(2a -b )⊥b ,∴-8+2n -1+4=0. ∴2n =5,n =52.∴|a |= 1+4+254=3 52.答案:D4.a <0是方程ax 2+2x +1=0至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件解析:因为a =0时,方程ax 2+2x +1=0变成2x +1=0,这时方程根为x =-12,所以“方程ax 2+2x +1=0至少有一个负数根”不能推出“a <0”;另一方面,当a <0时,Δ=4-4a >0,∴方程一定有两个不相等的实数根,又两根之积为1a <0,∴方程的根一定是一正根一负根,所以“a <0”能推出“方程ax 2+2x +1=0至少有一个负数根”.答案:B5.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且1PF ·2PF =0,则|1PF +2PF |=( )A.10 B .2 10 C. 5D .2 5解析:设|PF 1|=m ,|PF 2|=n , ∵1PF ·2PF =0,∴1PF ⊥2PF , ∴m 2+n 2=4c 2=40.∵|1PF +2PF |2=|1PF |2+|2PF |2+21PF ·2PF =40, ∴|1PF +2PF |=2 10. 答案:B6.已知平行六面体ABCD -A 1B 1C 1D 1,以顶点A 为端点的三条棱长都等于1,且两两夹角都是60°,则对角线AC 1的长为( )A. 3 B .2 C. 6D .2 2解析:由题意知AB ·AD =AB ·1AA =AD ·1AA =12,∴21AC =(AB +AD +1AA )2=2AB +2AD +21AA +2AB ·AD +2AB ·1AA +2AD ·1AA =6, ∴|1AC |= 6. 答案:C7.已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点.若△ABF 2为等边三角形,则该双曲线的离心率e 为 ( )A. 3B.3或33C .2D .3解析:如图,令x =-c , 则c 2a 2-y 2b 2=1,∴y =±b 2a ,∴|AF 1|=b 2a.因△ABF 2为等边三角形, ∴∠AF 2F 1=30°.∴tan ∠AF 2F 1=b 2a 2c =33,3b 2a=2c ,即 3(e 2-1)=2e , 解得e = 3. 答案:A8.已知F 1(-3,0),F 2(3,0)是椭圆x 2m +y 2n =1上的两个焦点,点P 在椭圆上,∠F 1PF 2=α.当α=2π3时,△F 1PF 2面积最大,则m +n 的值是( )A .41B .15C .9D .1解析:由S △F 1PF 2=12|F 1F 2|·y P=3y P ,知P 为短轴端点时,△F 1PF 2面积最大. 此时∠F 1PF 2=2π3,得a =m =2 3,b =n =3,故m +n =15. 答案:B9.正四棱锥S -ABCD 的侧棱长为2,底边长为3,E 是SA 的中点,则异面直线BE 和SC 所成的角等于( )A .30°B .45°C .60°D .90°解析:建立如图所示的空间直角坐标系, 因为AB =3,SA =2, 可以求得SO =22,则B (32,32,0),A (32,-32,0),C (-32,32,0),S (0,0,22). 因为E 为SA 的中点, ∴E (34,-34,24). ∴BE =(-34,-334,24), SC =(-32,32,-22).∵BE ·SC =-1,|BE |=2,|SC |=2, 所以cos 〈BE ,SC 〉=-12×2=-12,BE 与SC 所成角为60°. 答案:C10.若抛物线y 2=2x 上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +b 对称,且y 1y 2=-1,则实数b 的值为( )A .-52B.52 C.12D .-12解析:法一:直线AB 的斜率为 k AB =y 1-y 2x 1-x 2=y 1-y 212y 21-12y 22=-1,即y 1+y 2=-2,y 21+y 22=(y 1+y 2)2-2y 1y 2=6. 线段AB 的中点为(x 1+x 22,y 1+y 22)=(y 21+y 224,-1)=(32,-1). 代入y =x +b ,得b =-52.法二:设直线AB 的方程为y =-x +m ,与y 2=2x 联立,消去x 得 y 2+2y -2m =0.y 1+y 2=-2,y 1y 2=-2m . 由y 1y 2=-1得m =12.设AB 的中点为M (x 0,y 0), 则y 0=y 1+y 22=-1, x 0=m -y 0=32.又M (32,-1)在y =x +b 上,∴b =-52.答案:A二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.命题“∃x 0∈R,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围是________.解析:∵∃x 0∈R,2x 20-3ax 0+9<0为假命题,∴∀x ∈R,2x 2-3ax +9≥0为真命题, ∴Δ=9a 2-4×2×9≤0,即a 2≤8, ∴-22≤a ≤2 2. 答案:[-22,22]12.在双曲线x 2a 2-y 2b 2=1上有一点P ,F 1,F 2分别为该双曲线的左、右焦点,∠F 1PF 2=90°,△F 1PF 2的三条边长成等差数列,则双曲线的离心率是________.解析:不妨设点P 在右支上,则2|PF 1|=|PF 2|+|F 1F 2|.又|PF 1|-|PF 2|=2a ,∴|PF 1|=2c -2a ,|PF 2|=2c -4a .又|PF 1|2+|PF 2|2=4c 2,∴e 2-6e +5=0.又e >1,∴e =5.答案:513.正方体ABCD -A 1B 1C 1D 1中,E .,F 分别是BB 1,CD 的中点,则EF 与平面CDD 1C 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系,设正方体的棱长为2,则E (2,0,1),F (1,2,0), ∴EF →=(-1,2,-1).又平面CDD 1C 1的一个法向量为OD →=(0,2,0),cos 〈EF →,OD →〉=4 6×2=63,故所求角的正弦值为63. 答案:6314.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,FA →与x 轴正向的夹角为60°,则|OA →|为________.解析:如图,设A 的横坐标为x +p2(x >0),则|AF →|=2x. 由抛物线的定义得 2x =x +p 2,x =p2,∴A 的坐标为(3p 2,3p )或(3p2,-3p ),∴|OA →|=212p .答案:212p 三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知命题p :关于x 的方程4x 2-2ax +2a +5=0的解集至多有两个子集,命题q :1-m ≤x ≤1+m ,m >0.若綈p 是綈q 的必要不充分条件,求实数m 的取值范围.解:∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件. 对于命题p ,依题意知Δ=(-2a )2-4·4(2a +5)=4(a 2-8a -20)≤0, ∴-2≤a ≤10.令P ={a |-2≤a ≤10},Q ={x |1-m ≤x ≤1+m , m >0}, ∴P Q , 即⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10,或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10.解得m ≥9.因此,实数m 的取值范围是{m |m ≥9}.16.(本小题满分12分)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,O 为坐标原点,点P (-1,22)在椭圆上,且PF 1→·F 1F 2→=0, ⊙O 是以F 1F 2为直径的圆,直线l :y =kx +m 与⊙O 相切,并且与椭圆交于不同的两点A ,B .(1)求椭圆的标准方程;(2)当O A →·O B →=23时求k 的值.解:(1)依题意,可知PF 1⊥F 1F 2, ∴c =1,1a 2+12b 2=1.又a 2=b 2+c 2,所以可解得a 2=2,b 2=1,c 2=1, ∴椭圆的方程为x 22+y 2=1.(2)直线l :y =kx +m 与⊙O :x 2+y 2=1相切, 则|m |k 2+1=1,即m 2=k 2+1. 由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 直线l 与椭圆交于不同的两点A ,B . 设A (x 1,y 1),B (x 2,y 2). ∴Δ>0⇒k 2>0⇒k ≠0,x 1+x 2=-4km1+2k 2, x 1x 2=2m 2-21+2k 2,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 21+2k 2=1-k 21+2k 2,OA →·OB →=x 1x 2+y 1y 2=1+k 21+2k 2=23,∴k =±1. 17.(本小题满分12分)如图,在直三棱柱ABC -A1B 1C 1中,AB =1,AC =AA 1= 3,∠ABC =60°.(1)证明:AB ⊥A 1C ;(2)求二面角A -A 1C -B 的正切值大小.解:法一:(1)∵三棱柱ABC -A 1B 1C 1为直三棱柱, ∴AB ⊥AA 1. 在△ABC 中,AB =1,AC = 3,∠ABC =60°. 由正弦定理得∠ACB =30°,∴∠BAC =90°,即AB ⊥AC ,∴AB ⊥平面ACC 1A 1. 又A 1C ⊂平面ACC 1A 1,∴AB ⊥A 1C .(2)如图,作AD ⊥A 1C 交A 1C 于D 点,连接BD , 又AB ⊥A 1C . ∴A 1C ⊥平面ABD , ∴BD ⊥A 1C ,∴∠ADB 为二面角A -A 1C -B 的平面角. 在Rt △AA 1C 中,AD =AA 1·AC A 1C =3× 36=62.在Rt △BAD 中,tan ∠ADB =AB AD =63,∴二面角A -A 1C -B 的正切值为63. 法二:(1)∵三棱柱ABC -A 1B 1C 1为直三棱柱,∴AA 1⊥AB ,AA 1⊥AC .在△ABC 中,AB =1,AC = 3,∠ABC =60°.由正弦定理得∠ACB =30°,∴∠BAC =90°,即AB ⊥AC .如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (0,3,0),A 1(0,0,3), ∴AB =(1,0,0),1A C =(0,3,-3). ∵AB ·1A C =1×0+0×3+0×(- 3)=0, ∴AB ⊥A 1C .(2)取m =AB =(1,0,0)为平面AA 1C 1C 的法向量.设平面A 1BC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BC =0,n ·1A C =0,∴⎩⎨⎧-x + 3 y =0,3y -3z =0,∴x =3y ,y =z .令y =1,则n =(3,1,1),∴cos 〈m ,n 〉=m ·n|m |·|n |=3×1+1×0+1×0(3)2+12+12·12+02+02=155, ∴sin 〈m ,n 〉=1-(155)2=105, ∴tan 〈m ,n 〉=63, ∴二面角A -A 1C -B 的正切值为63. 18.(本小题满分14分)(2012·安徽高考)如图,点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y2b 2=1(a >b >0)的左、右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c 于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.解:(1)法一:由条件知,P (-c ,b 2a ).故直线PF 2的斜率为kPF 2=b 2a -0-c -c =-b 22ac .因为PF 2⊥F 2Q ,所以直线F 2Q 的方程为y =2ac b 2x -2ac 2b 2.故Q (a 2c,2a ).由题设知,a 2c =4,2a =4,解得a =2,c =1. 故椭圆方程为x 24+y 23=1.法二:设直线x =a 2c 与x 轴交于点M .由条件知,P (-c ,b 2a ). 因为△PF 1F 2∽△F 2MQ ,所以|PF 1||F 2M |=|F 1F 2||MQ |.即b 2aa 2c -c=2c |MQ |,解得|MQ |=2a . 所以⎩⎪⎨⎪⎧a 2c =4,2a =4,解得a =2,c =1.故椭圆方程为x 24+y 23=1.(2)直线PQ 的方程为y -2a b 2a -2a =x -a 2c-c -a2c ,即y =ca x +a . 将上式代入椭圆方程得,x 2+2cx +c 2=0, 解得x =-c ,y =b 2a .所以直线PQ 与椭圆C 只有一个交点.。

高中数学 模块综合检测2(含解析)新人教A版选择性必修第二册-新人教A版高二选择性必修第二册数学试题

高中数学 模块综合检测2(含解析)新人教A版选择性必修第二册-新人教A版高二选择性必修第二册数学试题

模块综合检测(二)(满分:150分 时间:120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=ln x 2x ,则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =( ) A .-2-ln 2B .-2+ln 2C .2-ln 2D .2+ln 2A [由题意,函数f (x )=ln x 2x , 则f ′(x )=1x ·2x -(2x )′ln x (2x )2=2x -12⎝ ⎛⎭⎪⎫1-12ln x 2x , 则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =-f ′⎝ ⎛⎭⎪⎫12=-2+ln 22×12=-2-ln 2,故选A.] 2.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4C .2D .4C [∵T 13=4T 9,∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9,∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15,∴(a 8·a 15)2=4,∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0,∴a 8a 15=2.]3.已知公差不为0的等差数列{a n }的前23项的和等于前8项的和.若a 8+a k =0,则k =( )A .22B .23C .24D .25C [等差数列的前n 项和S n 可看做关于n 的二次函数(图象过原点).由S 23=S 8,得S n 的图象关于n =312对称,所以S 15=S 16,即a 16=0,所以a 8+a 24=2a 16=0,所以k =24.]4.已知函数f (x )=(x +a )e x 的图象在x =1和x =-1处的切线相互垂直,则a =( )A .-1B .0C .1D .2A [因为f ′(x )=(x +a +1)e x ,所以f ′(1)=(a +2)e ,f ′(-1)=a e -1=a e ,由题意有f (1)f ′(-1)=-1,所以a =-1,选A.]5.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( )A .15B .19C .21D .30B [由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d )2=(a 2-d )(4a 2+2d ),化简得3d 2=2a 2d ,又d ≠0,∴a 2=3,d =2,a 1=1,∴a n =1+2(n -1)=2n -1,∴a 10=19.]6.若函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,则实数a 的取值X 围是( )A .(-2,+∞)B .⎝ ⎛⎭⎪⎫12,+∞ C .⎝ ⎛⎭⎪⎫-12,+∞ D .(2,+∞)D [因为函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,所以函数f (x )=ax -ln x 的图象上存在斜率为2的切线,故k =f ′(x )=a -1x =2有解,所以a =2+1x ,x >0有解,因为y =2+1x ,x >0的值域为(2,+∞).所以a ∈(2,+∞).]7.已知等差数列{}a n 的前n 项为S n ,且a 1+a 5=-14,S 9=-27,则使得S n 取最小值时的n 为( )A .1B .6C .7D .6或7B [由等差数列{a n }的性质,可得a 1+a 5=2a 3=-14⇒a 3=-7,又S 9=9(a 1+a 9)2=-27⇒a 1+a 9=-6⇒a 5=-3,所以d =a 5-a 35-3=2,所以数列{a n }的通项公式为a n =a 3+(n -3)d =-7+(n -3)×2=2n -13,令a n ≤0⇒2n -13≤0,解得n ≤132,所以数列的前6项为负数,从第7项开始为正数,所以使得S n 取最小值时的n 为6,故选B.]8.若方底无盖水箱的容积为256,则最省材料时,它的高为( )A .4B .6C .4.5D .8A [设底面边长为x ,高为h ,则V (x )=x 2·h =256,∴h =256x 2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值.∴h =25682=4.]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.设数列{}a n 是等差数列,S n 是其前n 项和,a 1>0,且S 6=S 9,则( )A .d <0B .a 8=0C .S 5>S 6D .S 7或S 8为S n 的最大值ABD [根据题意可得a 7+a 8+a 9=0⇒3a 8=0⇒a 8=0,∵数列{}a n 是等差数列,a 1>0,∴公差d <0,所以数列{}a n 是单调递减数列, 对于A 、B ,d <0,a 8=0,显然成立;对于C ,由a 6>0,则S 5<S 6,故C 不正确;对于D ,由a 8=0,则S 7=S 8,又数列为递减数列,则S 7或S 8为S n 的最大值,故D 正确.故选ABD.]10.如图是y =f (x )导数的图象,对于下列四个判断,其中正确的判断是( )A .f (x )在(-2,-1)上是增函数B .当x =-1时,f (x )取得极小值C .f (x )在(-1,2)上是增函数,在(2,4)上是减函数D .当x =3时,f (x )取得极小值BC [根据图象知当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数单调递减; 当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数单调递增.故A 错误;故当x =-1时,f (x )取得极小值,B 正确;C 正确;当x =3时,f (x )不是取得极小值,D 错误.故选BC.]11.已知等比数列{}a n 的公比q =-23,等差数列{}b n 的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10AD [∵等比数列{}a n 的公比q =-23,∴a 9和a 10异号,∴a 9a 10<0 ,故A 正确;但不能确定a 9和a 10的大小关系,故B 不正确;∵a 9和a 10异号,且a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数, 又∵b 1=12>0 ,∴d <0,∴b 9>b 10 ,故D 正确,∴b 10一定是负数,即b 10<0 ,故C 不正确. 故选AD.]12.已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f (x 1)-f (x 2)x 1-x 2<0 D .当ln x >-1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)AD [设g (x )=f (x )x =ln x ,函数单调递增,则g (x 2)>g (x 1),即f (x 2)x 2>f (x 1)x 1,∴x 1f (x 2)>x 2f (x 1),A 正确; 设h (x )=f (x )+x ∴h ′(x )=ln x +2不是恒大于零,B 错误;f (x )=x ln x ,∴f ′(x )=ln x +1不是恒小于零,C 错误;ln x >-1,故f ′(x )=ln x +1>0,函数单调递增.故(x 2-x 1)(f (x 2)-f (x 1))=x 1f (x 1)+x 2f (x 2)-x 2f (x 1)-x 1f (x 2)>0,即x 1f (x 1)+x 2f (x 2)>x 2f (x 1)+x 1f (x 2).f (x 2)x 2=ln x 2>f (x 1)x 1=ln x 1,∴x 1f (x 2)>x 2f (x 1),即x 1f (x 1)+x 2f (x 2)>2x 2f (x 1),D 正确.故选AD.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.数列{a n }的前n 项和为S n ,若a n +1=11-a n(n ∈N *),a 1=2,则S 50=________. 25[因为a n +1=11-a n (n ∈N *),a 1=2,所以a 2=11-a 1=-1,a 3=11-a 2=12,a 4=11-a 3=2,∴数列{a n }是以3为周期的周期数列,且前三项和S 3=2-1+12=32, ∴S 50=16S 3+2-1=25.]14.将边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =(梯形的周长)2梯形的面积,则s 的最小值是________. 3233[设AD =x (0<x <1),则DE =AD =x ,∴梯形的周长为x+2(1-x )+1=3-x .又S △ADE =34x 2,∴梯形的面积为34-34x 2,∴s =433×x 2-6x +91-x 2(0<x <1), 则s ′=-833×(3x -1)(x -3)(1-x 2)2. 令s ′=0,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′<0,s 为减函数;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′>0,s 为增函数.故当x =13时,s 取得极小值,也是最小值,此时s 的最小值为3233.]15.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.32[由S 2=3a 2+2,S 4=3a 4+2相减可得a 3+a 4=3a 4-3a 2,同除以a 2可得2q 2-q -3=0,解得q =32或q =-1.因为q >0,所以q =32.]16.已知函数f (x )是定义在R 上的偶函数,当x >0时,xf ′(x )>f (x ),若f (2)=0,则2f (3)________3f (2)(填“>”“<”)不等式x ·f (x )>0的解集为________.(本题第一空2分,第二空3分)> (-2,0)∪(2,+∞)[由题意,令g (x )=f (x )x ,∵x >0时,g ′(x )=xf ′(x )-f (x )x 2>0.∴g (x )在(0,+∞)单调递增,∵f (x )x 在(0,+∞)上单调递增,∴f (3)3>f (2)2即2f (3)>3f (2).又∵f (-x )=f (x ),∴g (-x )=-g (x ),则g (x )是奇函数,且g (x )在(-∞,0)上递增,又g (2)=f (2)2=0,∴当0<x <2时,g (x )<0,当x >2时,g (x )>0;根据函数的奇偶性,可得当-2<x <0时,g (x )>0,当x <-2时,g (x )<0. ∴不等式x ·f (x )>0的解集为{x |-2<x <0或x >2}.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{}a n 中,已知a 1=1,a 3=-5.(1)求数列{}a n 的通项公式;(2)若数列{}a n 的前k 项和S k =-25,求k 的值.[解](1)由题意,设等差数列{}a n 的公差为d ,则a n =a 1+()n -1d ,因为a 1=1,a 3=-5,可得1+2d =-5,解得d =-3,所以数列{}a n 的通项公式为a n =1+()n -1×()-3=4-3n .(2)由(1)可知a n =4-3n ,所以S n =n [1+(4-3n )]2=-32n 2+52n ,又由S k =-25,可得-32k 2+52k =-25,即3k 2-5k -50=0,解得k =5或k =-103,又因为k ∈N *,所以k =5.18.(本小题满分12分)已知函数f (x )=a ln x +12x 2.(1)求f (x )的单调区间;(2)函数g (x )=23x 3-16(x >0),求证:a =1时f (x )的图象不在g (x )的图象的上方.[解](1)f ′(x )=a x +x (x >0),若a ≥0,则f ′(x )>0,f (x )在 (0,+∞)上单调递增;若a <0,令f ′(x )=0,解得x =±-a ,由f ′(x )=(x --a )(x +-a )x >0,得x >-a ,由f ′(x )<0,得0<x <-a .从而f (x )的单调递增区间为(-a ,+∞),单调递减区间为(0,-a ). (2)证明:令φ(x )=f (x )-g (x ),当a =1时,φ(x )=ln x +12x 2-23x 3+16(x >0),则φ′(x )=1x +x -2x 2=1+x 2-2x 3x =(1-x )(2x 2+x +1)x. 令φ′(x )=0,解得x =1.当0<x <1时,φ′(x )>0,φ(x )单调递增;当x >1时,φ′(x )<0,φ(x )单调递减.∴当x =1时,φ(x )取得最大值φ(1)=12-23+16=0,∴φ(x )≤0,即f (x )≤g (x ).故a =1时f (x )的图象不在g (x )的图象的上方.19.(本小题满分12分)已知数列{}a n 的前n 项和为S n ,且2S n =3a n -1.(1)求数列{}a n 的通项公式;(2)若数列{}b n 满足b n =log 3a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .[解](1)由2S n =3a n -1()n ∈N +得,2S n -1=3a n -1-1()n ≥2.两式相减并整理得,a n =3a n -1()n ≥2.令n =1,由2S n =3a n -1()n ∈N +得,a 1=1.故{}a n 是以1为首项,公比为3的等比数列,因此a n =3n -1()n ∈N +.(2)由b n =log 3a n +1,结合a n =3n -1得,b n =n .则1b n b n +1=1n ()n +1=1n -1n +1 故T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+1n -1n +1=n n +1. 20.(本小题满分12分)某旅游景点预计2019年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧ 35-2x (x ∈N *,且1≤x ≤6),160x (x ∈N *,且7≤x ≤12).(1)写出2019年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)问2019年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?[解](1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x ,验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x 个月旅游消费总额(单位:万元)为g (x )=⎩⎨⎧ (-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12),即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12). (i)当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0,当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125.(ii)当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,∴当x =7时,g (x )max =g (7)=3 040.综上,2019年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.21.(本小题满分12分)已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n b n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解](1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5.设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2.∵b n >0,∴d =-10应舍去,∴d =2,∴b 1=3,∴b n =2n +1.故a n b n=(2n+1)·3n-1.(2)由(1)知T n=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①3T n=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②①-②,得-2T n=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)×3n =3+2×(3+32+33+…+3n-1)-(2n+1)×3n=3+2×3-3n1-3-(2n+1)×3n=3n-(2n+1)×3n=-2n·3n.∴T n=n·3n.22.(本小题满分12分)设函数f (x)=x3-6x+5,x∈R.(1)求f (x)的极值点;(2)若关于x的方程f (x)=a有3个不同实根,某某数a的取值X围;(3)已知当x∈(1,+∞)时,f (x)≥k(x-1)恒成立,某某数k的取值X围.[解](1)f ′(x)=3(x2-2),令f ′(x)=0,得x1=-2,x2= 2.当x∈(-∞,-2)∪(2,+∞)时,f ′(x)>0,当x∈(-2,2) 时,f ′(x)<0,因此x1=-2,x2=2分别为f (x)的极大值点、极小值点.(2)由(1)的分析可知y=f (x)图象的大致形状及走向如图所示.要使直线y=a 与y=f (x)的图象有3个不同交点需5-42=f (2)<a<f (-2)=5+4 2.则方程f (x)=a有3个不同实根时,所某某数a的取值X围为(5-42,5+42).(3)法一:f (x)≥k(x-1),即(x-1)(x2+x-5)≥k(x-1),因为x>1,所以k≤x2+x-5在(1,+∞)上恒成立,令g(x)=x2+x-5,由二次函数的性质得g(x)在(1,+∞)上是增函数,所以g(x)>g(1)=-3,所以所求k的取值X围是为(-∞,-3].法二:直线y=k(x-1)过定点(1,0)且f (1)=0,曲线f (x)在点(1,0)处切线斜率f ′(1)=-3,由(2)中图知要使x∈(1,+∞)时,f (x)≥k(x-1)恒成立需k≤-3.故实数k的取值X围为(-∞,-3].。

高中数学人教版选修2-1模块综合检测(一) Word版含答案

高中数学人教版选修2-1模块综合检测(一) Word版含答案

模块综合检测(一)(时间分钟,满分分)一、选择题(本题共小题,每小题分,共分).命题“∃∈->”的否定是( ).∃∈-≤.∀∈->.∀∈-≤.∃∈->解析:选由特称命题的否定的定义即知..已知条件甲:>;条件乙:>,且>,则( ).甲是乙的充分但不必要条件.甲是乙的必要但不充分条件.甲是乙的充要条件.甲是乙的既不充分又不必要条件解析:选甲乙,而乙⇒甲..对∀∈,则方程+=所表示的曲线不可能的是( ).两条直线.圆.椭圆或双曲线.抛物线解析:选分=及>且≠,或<可知:方程+=不可能为抛物线..下列说法中正确的是( ).一个命题的逆命题为真,则它的逆否命题一定为真.“>”与“+>+”不等价.“+=,则,全为”的逆否命题是“若,全不为,则+≠”.一个命题的否命题为真,则它的逆命题一定为真解析:选否命题和逆命题互为逆否命题,有着一致的真假性,故选..已知空间向量=(,),=(-),若-与垂直,则等于( )())())解析:选由已知可得-=()-(-,)=(,-).又∵(-)⊥,∴-+-+=.∴=,=.∴==())..(山东高考)已知直线,分别在两个不同的平面α,β内,则“直线和直线相交”是“平面α和平面β相交”的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件解析:选由题意知⊂α,⊂β,若,相交,则,有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则,的位置关系可能为平行、相交或异面.因此“直线和直线相交”是“平面α和平面β相交”的充分不必要条件.故选..已知双曲线的中心在原点,离心率为,若它的一个焦点与抛物线=的焦点重合,则该双曲线的方程是( )-=-=-=-=解析:选由已知得=,=,∴=,=,且焦点在轴,所以方程为-=..若直线=与双曲线-=(>,>)有公共点,则双曲线的离心率的取值范围为( ) .(,) .(,+∞).(,] .[,+∞)解析:选双曲线的两条渐近线中斜率为正的渐近线为=.由条件知,应有>,故===>..已知(-),()是椭圆+=的两个焦点,点在椭圆上,∠=α.当α=时,△面积最大,则+的值是( )....解析:选由△=·=,知点为短轴端点时,△面积最大.此时∠=,得==,==,故+=..正三角形与正三角形所在平面垂直,则二面角­­的正弦值为( )解析:选取中点,连接,.建立如图所示坐标系,设=,则,,.∴=,=,=.由于=为平面的一个法向量,可进一步求出平面的一个法向量=(,-,),。

高中数学人教A版选修2-1模块综合测评 选修2-1(A版).docx

高中数学人教A版选修2-1模块综合测评 选修2-1(A版).docx

模块综合测评 选修2-1(A 版)(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.已知命题p :若x 2+y 2=0(x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b .给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1个B .2个C .3个D .4个解析:命题p 为真,命题q 为假,故p ∨q 真,綈q 真. 答案:B2.“α=π6+2k π(k ∈Z )”是“cos2α=12”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析:当α=π6+2k π(k ∈Z )时,cos2α=cos ⎝ ⎛⎭⎪⎫4k π+π3=cos π3=12. 反之当cos2α=12时,有2α=2k π+π3(k ∈Z )⇒α=k π+π6(k ∈Z ),故应选A.答案:A3.若直线l 的方向向量为b ,平面α的法向量为n ,则可能使l ∥α的是( )A .b =(1,0,0),n =(-2,0,0)B .b =(1,3,5),n =(1,0,1)C .b =(0,2,1),n =(-1,0,-1)D .b =(1,-1,3),n =(0,3,1)解析:若l ∥α,则b·n =0.将各选项代入,知D 选项正确. 答案:D4.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是( )A .90°B .60°C .30°D .0°解析:∵|a |=|b |=2,∴(a +b )·(a -b )=a 2-b 2=0.故向量a +b 与a -b 的夹角是90°.答案:A5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .4解析:由抛物线的定义得|AB |=x 1+x 2+p =6+2=8.答案:B6.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为()A.63B.255C.155D.105解析:建立如图所示空间直角坐标系,得D (0,0,0),B (2,2,0),C 1(0,2,1),B 1(2,2,1),D 1(0,0,1),则DB →=(2,2,0),DD 1→=(0,0,1),BC 1→=(-2,0,1). 设平面BD 1的法向量n =(x ,y ,z ).∴⎩⎪⎨⎪⎧n ·DB →=2x +2y =0,n ·DD 1→=z =0,∴取n =(1,-1,0).设BC 1与平面BD 1所成的角为θ,则sin θ=cos 〈n ,BC 1→〉=|BC 1→·n ||BC 1→|·|n |=25·2=105.答案:D7.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程是( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:y 2=ax 的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0,过焦点且斜率为2的直线方程为y =2⎝⎛⎭⎪⎫x -a 4,令x =0得y =-a2. ∴12×|a |4×|a |2=4,∴a 2=64,∴a =±8. 答案:B8.三棱锥A -BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC =60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3解析:AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=|AB →||AD →|cos90°-2×2×cos60°=-2.答案:A9.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5D. 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,∵y =x 2+1与渐近线相切,故x 2+1±b a x =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a 2=4,∴c 2a 2=5,∴e = 5. 答案:C10.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形解析:双曲线的离心率e 21=a 2+b 2a 2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 21e 22=1,即a 2+b 2a 2×m 2-b 2m2=1,化简,得a 2+b 2=m 2.∴以a 、b 、m 为边长的三角形为直角三角形.答案:C第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分. 11.双曲线x 2m 2+12-y 24-m 2=1的焦距是__________.解析:依题意a 2=m 2+12,b 2=4-m 2,所以c 2=a 2+b 2=16,c =4,2c =8.答案:812.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“綈p ”中是真命题的有__________.解析:依题意可知p 假,q 真,所以“p ∨q ”为真,“p ∧q ”为假,“綈p ”为真.答案:“p ∨q ” “綈p ”13.已知A (0,-4),B (3,2),抛物线x 2=y 上的点到直线AB 的最短距离为__________.解析:直线AB 为2x -y -4=0,设抛物线y 2=x 上的点P (t ,t 2), d =|2t -t 2-4|5=t 2-2t +45=(t -1)2+35≥35=355.答案:35 5.14.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为__________.解析:建立空间直角坐标系如图,则M ⎝ ⎛⎭⎪⎫1,12,1,N ⎝ ⎛⎭⎪⎫1,1,12,A (1,0,0),C (0,1,0),∴AM →=⎝⎛⎭⎪⎫0,12,1,CN →=⎝⎛⎭⎪⎫1,0,12.∴cos 〈AM →,CN →〉=AM →·CN →|AM →||CN →|=1254=25.即直线AM 与CN 所成角的余弦值为25. 答案:25三、解答题:本大题共4小题,满分50分.15.(12分)已知命题p :方程x 22m +y 29-m=1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m =1的离心率e ∈⎝ ⎛⎭⎪⎫62,2,若命题p 、q 中有且只有一个为真命题,求实数m 的取值范围.解:若p 真,则有9-m >2m >0, 即0<m <3.若q 真,则有m >0, 且e 2=1+b 2a 2=1+m 5∈⎝ ⎛⎭⎪⎫32,2,即52<m <5. 若p 、q 中有且只有一个为真命题, 则p 、q 一真一假.(4分) ①若p 真、q 假,则0<m <3,且m ≥5或m ≤52,即0<m ≤52;(6分) ②若p 假、q 真,则m ≥3或m ≤0,且52<m <5, 即3≤m <5.(8分)故所求m 的范围为:0<m ≤52或3≤m <5.(12分)16.(12分)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,与另一个外切.(1)求圆C 的圆心轨迹L 的方程;(2)已知点M ⎝ ⎛⎭⎪⎫355,455,F (5,0),且P 为L 上一动点,求||MP |-|FP ||的最大值及此时点P 的坐标.解:(1)设圆C 的圆心坐标为(x ,y ),半径为r . 圆(x +5)2+y 2=4的圆心为F 1(-5,0),半径为2, 圆(x -5)2+y 2=4的圆心为F (5,0),半径为2.由题意得⎩⎪⎨⎪⎧ |CF 1|=r +2,|CF |=r -2或⎩⎪⎨⎪⎧|CF 1|=r -2,|CF |=r +2,∴||CF 1|-|CF ||=4. ∵|F 1F |=25>4,∴圆C 的圆心轨迹是以F 1(-5,0),F (5,0)为焦点的双曲线,其方程为x 24-y 2=1.(6分)(2)由图知,||MP |-|FP ||≤|MF |,∴当M ,P ,F 三点共线,且点P 在MF 延长线上时, |MP |-|FP |取得最大值|MF |, 且|MF |=⎝ ⎛⎭⎪⎫355-52+⎝ ⎛⎭⎪⎫455-02=2. 直线MF 的方程为y =-2x +25,与双曲线方程联立得⎩⎨⎧y =-2x +25,x 24-y 2=1,整理得15x 2-325x +84=0.解得x 1=14515(舍去),x 2=655. 此时y =-255.∴当||MP |-|FP ||取得最大值2时,点P 的坐标为⎝ ⎛⎭⎪⎫655,-255.(12分)17.(12分)如图,点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c 于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的标准方程; (2)证明:直线PQ 与椭圆C 只有一个交点. 解:(1)方法一:由条件知,P ⎝ ⎛⎭⎪⎫-c ,b 2a .故直线PF 2的斜率为 kPF 2=b 2a -0-c -c =-b 22ac .∵PF 2⊥F 2Q .∴直线F 2Q 的方程为y =2ac b 2x -2ac 2b 2.故Q ⎝ ⎛⎭⎪⎫a 2c ,2a . 由题设知,a 2c =4,2a =4,解得a =2,c =1. 则b 2=a 2-c 2=3.故椭圆方程为x 24+y 23=1.(6分)方法二:设直线x =a 2c 与x 轴交于点M .由条件知,P ⎝⎛⎭⎪⎫-c ,b 2a . ∵△PF 1F 2∽△F 2MQ ,∴|PF 1||F 2M |=|F 1F 2||MQ |. 即b 2a a 2c -c=2c |MQ |,解得|MQ |=2a .∴⎩⎨⎧a 2c =4,2a =4.解得a =2,c =1.则b 2=3.故椭圆方程为x 24+y 23=1.(6分)(2)直线PQ 的方程为y -2a b 2a -2a =x -a 2c -c -a 2c,即y =c a x +a .将上式代入椭圆方程得,x 2+2cx +c 2=0,解得x =-c ,y =b 2a .∴直线PQ 与椭圆C 只有一个交点.(12分)18.(14分)如图,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成的角的大小;(2)证明平面AMD ⊥平面CDE ;(3)求二面角A -CD -E 的余弦值.解:如图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1),M ⎝ ⎛⎭⎪⎫12,1,12. (1)BF →=(-1,0,1),DE →=(0,-1,1),于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12×2=12.∴异面直线BF 与DE 所成的角的大小为60°.(4分)(2)证明:由AM →=⎝ ⎛⎭⎪⎫12,1,12,CE →=(-1,0,1), AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0.因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A ,故CE ⊥平面AMD .而CE ⊂平面CDE ,所以平面AMD ⊥平面CDE .(8分)(3)设平面CDE 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧ u ·CE →=0,u ·DE →=0.于是⎩⎪⎨⎪⎧-x +z =0,-y +z =0. 令z =1,可得u =(1,1,1).又∵由题设,平面ACD 的一个法向量为v =(0,0,1).∴cos 〈u ,v 〉=u·v |u |·|v |=0+0+13×1=33. ∵二面角A -CD -E 为锐角,∴其余弦值为33.(14分)。

(人教版)高中数学选修2-1检测模块综合检测A Word版含答案

(人教版)高中数学选修2-1检测模块综合检测A Word版含答案

模块综合检测一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).命题“存在实数,使>”的否定是( ).对任意实数,都有>.不存在实数,使≤.对任意实数,都有≤.存在实数,使≤解析:利用特称(存在性)命题的否定是全称命题求解.“存在实数,使>”的否定是“对任意实数,都有≤”.故选.答案:.在命题“若∈,()=,则函数()是奇函数”的逆命题、否命题与逆否命题中,真命题的个数是( ) ....解析:原命题与逆否命题是假命题,逆命题与否命题是真命题.答案:.已知直线⊥平面α,直线⊂平面β,则“∥”是“α⊥β”的( ).充要条件.必要条件.充分条件.既不充分也不必要条件解析:⇒⇒α⊥β,∴“∥”是“α⊥β”的充分条件,⇒∥.答案:.已知命题:若+=(,∈),则,全为;命题:若>,则<.给出下列四个复合命题:①且;②或;③¬;④¬.其中真命题的个数是( )....解析:命题为真,命题为假,故或真,¬真.答案:.已知,,是空间直角坐标系中轴、轴、轴正方向上的单位向量,且=,=-+-,则点的坐标为( ).(-,-) .(-,,-).(,-,-) .(-)解析:设点的坐标为(,,),则有=(,,-)=(-,-),∴(\\(=-,=,-=,))解得(\\(=-,=,=.))故选.答案:.如下图所示,正四棱柱-中,=,则异面直线与所成角的余弦值为( )解析:连接,则∥,∠为与所成角,不妨设=,则=∠===.答案:.以-=-的焦点为顶点,顶点为焦点的椭圆方程为( )+=+=+=+=解析:双曲线-=-,即-的焦点为(,±),顶点为(,±).所以对椭圆+=而言,=,=.∴=,因此方程为+=.答案:.如图,在锐二面角α--β的棱上有两点,,点,分别在平面α、β内,且⊥,∠=°,===,与所成角为°,则的长度为( )-.解析:=====-.答案:.设,是双曲线-=(>)的两个焦点,点在双曲线上,且满足:·=,·=,则的值为( )..解析:双曲线方程化为-=(>),∵·=,∴⊥.。

高中数学人教版选修2-1模块综合检测(一) Word版含解析

高中数学人教版选修2-1模块综合检测(一) Word版含解析

模块综合检测(一)(时间分钟,满分分)一、选择题(本题共小题,每小题分,共分).命题“∃∈->”的否定是( ).∃∈-≤.∀∈->.∀∈-≤.∃∈->解析:选由特称命题的否定的定义即知..已知条件甲:>;条件乙:>,且>,则( ).甲是乙的充分但不必要条件.甲是乙的必要但不充分条件.甲是乙的充要条件.甲是乙的既不充分又不必要条件解析:选甲乙,而乙⇒甲..对∀∈,则方程+=所表示的曲线不可能的是( ).两条直线.圆.椭圆或双曲线.抛物线解析:选分=及>且≠,或<可知:方程+=不可能为抛物线..下列说法中正确的是( ).一个命题的逆命题为真,则它的逆否命题一定为真.“>”与“+>+”不等价.“+=,则,全为”的逆否命题是“若,全不为,则+≠”.一个命题的否命题为真,则它的逆命题一定为真解析:选否命题和逆命题互为逆否命题,有着一致的真假性,故选..已知空间向量=(,),=(-),若-与垂直,则等于( )())())解析:选由已知可得-=()-(-,)=(,-).又∵(-)⊥,∴-+-+=.∴=,=.∴==())..下列结论中,正确的为( )①“且”为真是“或”为真的充分不必要条件;②“且”为假是“或”为真的充分不必要条件;③“或”为真是“綈”为假的必要不充分条件;④“綈”为真是“且”为假的必要不充分条件..①②.①③.②④.③④解析:选∧为真⇒真真⇒∨为真,故①正确,由綈为假⇒为真⇒∨为真,故③正确..已知双曲线的中心在原点,离心率为,若它的一个焦点与抛物线=的焦点重合,则该双曲线的方程是( )-=-=-=-=解析:选由已知得=,=,∴=,=,且焦点在轴,所以方程为-=..若直线=与双曲线-=(>,>)有公共点,则双曲线的离心率的取值范围为( ) .(,) .(,+∞).(,] .[,+∞)解析:选双曲线的两条渐近线中斜率为正的渐近线为=.由条件知,应有>,故===>..已知(-),()是椭圆+=的两个焦点,点在椭圆上,∠=α.当α=时,△面积最大,则+的值是( )....解析:选由△=·=,知点为短轴端点时,△面积最大.此时∠=,得==,==,故+=..正三角形与正三角形所在平面垂直,则二面角--的正弦值为( )解析:选取中点,连接,.建立如图所示坐标系,设=,则,,.∴=,=,=.由于=为平面的一个法向量,可进一步求出平面的一个法向量=(,-,),∴〈,〉=,∴〈,〉=.二、填空题(本题共小题,每小题分,共分).在平面直角坐标系中,若定点()与动点(,)满足·=,则动点的轨迹方程是.。

人教A高中数学选修21新课改地区模块综合检测 含解析

人教A高中数学选修21新课改地区模块综合检测 含解析

模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析:选C 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件.2.若抛物线的准线方程为x =1,焦点坐标为(-1,0),则抛物线的方程是( ) A .y 2=2x B .y 2=-2x C .y 2=4xD .y 2=-4x解析:选D ∵抛物线的准线方程为x =1,焦点坐标为(-1,0),∴抛物线的开口方向向左且顶点在原点,其中p =2,∴抛物线的标准方程为y 2=-4x .3.下列命题中的假命题是( ) A .∀x ∈R,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2解析:选B A 中命题是全称命题,易知2x -1>0恒成立,故是真命题;B 中命题是全称命题,当x =1时,(x -1)2=0,故是假命题;C 中命题是特称命题,当x =1时,lg x =0,故是真命题;D 中命题是特称命题,依据正切函数定义,可知是真命题.4.已知直线l 1的方向向量a =(2,4,x ),直线l 2的方向向量b =(2,y,2),若|a |=6,且a ⊥b ,则x +y 的值是( )A .-3或1B .3或-1C .-3D .1解析:选A 由题意,得⎩⎪⎨⎪⎧4+16+x 2=6,4+4y +2x =0,解得⎩⎪⎨⎪⎧ x =4,y =-3或⎩⎪⎨⎪⎧x =-4,y =1,∴x +y =1或x +y =-3.5.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 先证“α⊥β ⇒a ⊥b ”.∵α⊥β,α∩β=m ,b ⊂β,b ⊥m ,∴b ⊥α.又∵a ⊂α,∴b ⊥a ;再证“a ⊥b ⇒/ α⊥β”.举反例,当a ∥m 时,由b ⊥m 知a ⊥b ,此时二面角α-m -β可以为(0,π]上的任意角,即α不一定垂直于β.故选A.6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1 B.x 28-y 28=1 C.x 24-y 28=1 D.x 28-y 24=1 解析:选B 由离心率为2可知a =b ,c =2a ,所以F (-2a,0),由题意可知k PF =4-00-(-2a )=42a =1,所以2a =4,解得a =22,所以双曲线的方程为x 28-y 28=1,故选B.7.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .[1,3] B .[-1,3] C .[-3,3]D .[-1,1]解析:选B 根据题意可得∀x ∈R , 都有x 2+(a -1)x +1≥0, ∴Δ=(a -1)2-4≤0,∴-1≤a ≤3.8.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 解析:选B 根据双曲线C 的渐近线方程为y =52x , 可知b a =52.①又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5,所以C 的方程为x 24-y 25=1.9.设F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1 D.⎣⎡⎭⎫33,1解析:选D 由垂直平分线的性质知|F 1F 2|=|PF 2|,设直线x =a 2c 与x 轴的交点为M ,则|PF 2|≥|F 2M |,即|F 1F 2|≥|F 2M |,则2c ≥a 2c -c ,即3c 2≥a 2,所以e 2=c 2a 2≥13,又0<e <1,所以33≤e <1. 10.若直线y =2x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共点,则双曲线的离心率的取值范围为( )A .(1,5)B .(5,+∞)C .(1,5]D .[5,+∞)解析:选B 双曲线的两条渐近线中斜率为正的渐近线为y =b a x .由条件知,应有ba >2, 故e =c a =a 2+b 2a=1+⎝⎛⎭⎫b a 2> 5.11.如图,将边长为1的正方形ABCD 沿对角线BD 折成直二面角,若点P 满足BP ―→=12BA ―→-12BC ―→+BD ―→,则|BP ―→|2的值为( )A.32 B .2 C.10-24D.94解析:选D 由题可知|BA ―→|=1,|BC ―→|=1,|BD ―→|= 2. 〈BA ―→,BD ―→〉=45°,〈BD ―→,BC ―→〉=45°,〈BA ―→,BC ―→〉=60°.∴|BP ―→|2=⎝⎛⎭⎫12 BA ―→-12 BC ―→+BD ―→ 2=14BA 2―→+14BC 2―→+BC 2―→-12BA ―→·BC ―→+BA ―→·BD ―→-BC ―→·BD ―→=14+14+2-12×1×1×12+1×2×22-1×2×22=94.12.过M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1、P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2 C.12D .-12解析:选D 设直线m :y =k 1(x +2),代入x 22+y 2=1,得:x 2+2k 21(x +2)2-2=0, 整理,得(1+2k 21)x 2+8k 21x +8k 21-2=0,Δ=(8k 21)2-4(1+2k 21)(8k 21-2)>0,解得k 21<12. 设P 1P 2的中点P (x 0,y 0),则x 0=x 1+x 22=-4k 211+2k 21,y 0=k 1(x 0+2)=2k 11+2k 21.∴k 2=-12k 1.∴k 1k 2=-12.二、填空题(本大题共4小题,每小题5分,共20分)13.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.解析:这里给出的是一个特称命题,其否定是一个全称命题.等于的否定是不等于. 答案:对任意的x ∈R ,都有x 2+2x +5≠014.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为________. 解析:取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝⎛⎭⎫0,0,32, B ⎝⎛⎭⎫0,-12,0,D ⎝⎛⎭⎫32,0,0. ∴OA ―→=⎝⎛⎭⎫0,0,32,BA ―→=⎝⎛⎭⎫0,12,32,BD ―→=⎝⎛⎭⎫32,12,0.由于OA ―→=⎝⎛⎭⎫0,0,32为平面BCD 的一个法向量,可进一步求出平面ABD 的一个法向量n =(1,-3,1),∴cos 〈n ,OA ―→〉=55,∴sin 〈n ,OA ―→〉=255.答案:25515.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.解析:双曲线的右顶点为A (a,0),一条渐近线的方程为y =ba x ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=abc .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=ab c ,即3b 2=ab c ,所以e =23=233.答案:233 16.设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为________.解析:由抛物线的方程可知F (1,0),准线方程为x =-1,设点C (-1,t ),t >0,则圆C 的方程为(x +1)2+(y -t )2=1,因为∠FAC =120°,CA ⊥y 轴,所以∠OAF =30°,在△AOF 中,OF =1, 所以OA =3,即t =3,故圆C 的方程为(x +1)2+(y -3)2=1. 答案:(x +1)2+(y -3)2=1三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解:(1)由题意,知m =x 2-x =⎝⎛⎭⎫x -122-14. 由-1<x <1,得m ∈⎣⎡⎭⎫-14,2,故M =⎣⎡⎭⎫-14,2. (2)由x ∈N 是x ∈M 的必要条件,知M ⊆N . ①当a >2-a ,即a >1时,N =(2-a ,a ),则⎩⎪⎨⎪⎧2-a <-14,a ≥2,a >1,解得a >94.②当a <2-a ,即a <1时,N =(a,2-a ), 则⎩⎪⎨⎪⎧a <1,a <-14,2-a ≥2,解得a <-14.③当a =2-a ,即a =1时,N =∅,不满足M ⊆N . 综上可得a ∈⎝⎛⎭⎫-∞,-14∪⎝⎛⎭⎫94,+∞. 18.(本小题12分)已知椭圆x 2b 2+y 2a 2=1(a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)若直线l :x -y +m =0与椭圆交于A 、B 两点,且线段AB 的中点在圆x 2+y 2=1上,求m 的值.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,c =1,b =1,故椭圆的方程为x 2+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0).联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,Δ=(2m )2-12(m 2-2)>0,-3<m <3, 所以x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3,即M ⎝⎛⎭⎫-m 3,2m3,又因为M 点在圆x 2+y 2=5上, 所以⎝⎛⎭⎫-m 32+⎝⎛⎭⎫2m 32=1,解得m =±53.19.(本小题12分)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,且∠ABC =120°.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F .(1)求证:AB ∥EF;(2)若PA =PD =AD =2,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余弦值.解:(1)证明:∵底面ABCD 是菱形,∴AB ∥CD , 又AB ⊄平面PCD ,CD ⊂平面PCD . ∴AB ∥平面PCD .∵A ,B ,E ,F 四点共面,且平面ABEF ∩平面PCD =EF ,∴AB ∥EF . (2)如图,取AD 的中点G ,连接PG ,GB ,∵PA =PD , ∴PG ⊥AD ,又平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴PG ⊥平面ABCD ,∴PG ⊥GB .在菱形ABCD 中,∵AB =AD ,∠DAB =60°,G 是AD 的中点,∴AD ⊥GB .以G 为坐标原点,GA ,GB ,GP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系G -xyz ,∵PA =PD =AD =2,∴G (0,0,0),A (1,0,0),B (0,3,0),C (-2,3,0),D (-1,0,0),P (0,0,3), ∵AB ∥EF ,点E 是棱PC 的中点, ∴点F 是棱PD 的中点, ∴E ⎝⎛⎭⎫-1,32,32,F ⎝⎛⎭⎫-12,0,32,AF ―→=⎝⎛⎭⎫-32,0,32,EF ―→=⎝⎛⎭⎫12,-32,0. 设平面AFE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·AF ―→=0,n ·EF ―→=0,∴⎩⎪⎨⎪⎧z =3x ,y =33x ,不妨令x =3,则n =(3,3,33),为平面AFE 的一个法向量. 易知BG ⊥平面PAD ,∴GB ―→=(0,3,0)是平面PAF 的一个法向量. ∵cos n , GB ―→=n ·GB ―→|n |·|GB ―→|=339·3=1313,∴平面PAF 与平面AFE 所成的锐二面角的余弦值为1313. 20.(本小题12分)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF 是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD .(1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.解:(1)证明:在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD , 所以△ABD 为直角三角形且∠ADB =90°.因为DE ⊥平面ABCD ,BD ⊂平面ABCD , 所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE . 因为BD ⊂平面BDEF , 所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD ,又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD , 故以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3), 所以AE ―→=(-1,0,3),AC ―→=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AF ―→=0,n ·AC ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1),为平面AEC 的一个法向量. 因为AF ―→=(-1,3,3),所以cos n ,AF ―→=n ·AF ―→|n |·|AF ―→|=4214,所以直线AF 与平面AEC 所成角的正弦值为4214. 21.(本小题12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆的四个顶点为顶点的四边形的面积为8.(1)求椭圆C 的方程;(2)如图,斜率为12的直线l 与椭圆C 交于A ,B 两点,点P (2,1)在直线l 的左上方.若∠APB =90°,且直线PA ,PB 分别与y 轴交于点M ,N ,求线段MN 的长度.解:(1)由题意知⎩⎪⎨⎪⎧c a =32,2ab =8,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=8,b 2=2.所以椭圆C 的方程为x 28+y 22=1.(2)设直线l :y =12x +m ,A (x 1,y 1),B (x 2,y 2),联立,得⎩⎨⎧y =12x +m ,x 28+y22=1,消去y ,化简整理,得x 2+2mx +2m 2-4=0.则由Δ=(2m )2-4(2m 2-4)>0,得-2<m <2.由根与系数的关系得,x 1+x 2=-2m ,x 1x 2=2m 2-4, 因为k PA =y 1-1x 1-2,k PB =y 2-1x 2-2,所以k PA +k PB =y 1-1x 1-2+y 2-1x 2-2=(y 1-1)(x 2-2)+(y 2-1)(x 1-2)(x 1-2)(x 2-2),上式中,分子=⎝⎛⎭⎫12x 1+m -1(x 2-2)+⎝⎛⎭⎫12x 2+m -1(x 1-2) =x 1x 2+(m -2)(x 1+x 2)-4(m -1) =2m 2-4+(m -2)(-2m )-4(m -1)=0. 所以k PA +k PB =0.因为∠APB =90°,所以k PA ·k PB =-1, 则k PA =1,k PB =-1.所以△PMN 是等腰直角三角形, 所以|MN |=2x P =4.22.(本小题12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率;(2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解:(1)由已知有c 2a 2=13, 又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c . 因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎫c ,233c . 由|FM |=(c +c )2+⎝⎛⎭⎫233c -02=433,解得c =1, 所以椭圆的方程为x 23+y 22=1. (3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立得⎩⎪⎨⎪⎧ y =t (x +1),x 23+y 22=1,消去y ,整理得2x 2+3t 2(x +1)2=6. 又由已知,得t =6-2x 23(x +1)2>2, 解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x,即y =mx (x ≠0), 与椭圆方程联立,整理可得m 2=2x 2-23. ①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝⎛⎭⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0,因此m <0, 于是m =-2x 2-23,得m ∈⎝⎛⎭⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233.。

【专业资料】新版高中数学人教A版选修2-1习题:模块综合检测 含解析

【专业资料】新版高中数学人教A版选修2-1习题:模块综合检测 含解析

模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下列结论正确的个数是()①命题“所有的四边形都是矩形”是特称命题;②命题“∀x∈R,x2+1<0”是全称命题;③∃x∈R,x2+2x+1≤0是全称命题.A.0B.1C.2D.3是全称命题;②是全称命题;③是特称命题.2若抛物线的准线方程为x=1,焦点坐标为(-1,0),则抛物线的方程是()A.y2=2xB.y2=-2xC.y2=4xD.y2=-4x抛物线的准线方程为x=1,焦点坐标为(-1,0),∴抛物线的开口方向向左,且方程是标准的,其中p=2.∴抛物线的标准方程为y2=-4x.3已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A.既不充分也不必要的条件B.充分不必要的条件C.必要不充分的条件D.充要条件f(x)为[0,1]上的增函数,则f(x)在[-1,0]上为减函数,根据f(x)的周期为2可推出f(x)为[3,4]上的减函数;若f(x)为[3,4]上的减函数,则f(x)在[-1,0]上也为减函数,所以f(x)在[0,1]上为增函数,故选D.4以双曲线x 24−y212=-1的焦点为顶点,顶点为焦点的椭圆方程为()A.x 2+y2=1B.x 2+y2=1C.x 2+y2=1D.x 2+y2=1由x 24−y 212=-1,得y 212−x 24=1.∴双曲线的焦点为(0,4),(0,-4),顶点坐标为(0,2√3),(0,-2√3).∴椭圆方程为x 24+y 216=1.5如图,在正方体ABCD-A 1B 1C 1D 1中,M ,N 分别为A 1B 1,CC 1的中点,P 为AD 上一动点,记θ为异面直线PM 与D 1N 所成的角,则θ的集合是( ) A.{π2}B.{θ|π6≤θ≤π2} C.{θ|π4≤θ≤π2}D.{θ|π3≤θ≤π2}C 1D 1的中点E ,PM 必在平面ADEM 内,易证D 1N ⊥平面ADEM.D 1N 总是垂直PM.6若向量a =(1,0,z )与向量b =(2,1,2)的夹角的余弦值为23,则z=( ) A.0B.1C.-1D.2<a ,b >=a ·b |a ||b |=2=23,解得z=0.7已知向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),若a ≠b ,设|a-b |=k ,则a-b 与x 轴上的单位向量的夹角的余弦值为( ) A.x 1-x2k B.x 2-x1kC.|x 1-x 2|kD.±(x 1-x 2)ka-b =(x 1-x 2,y 1-y 2,z 1-z 2),x 轴上的单位向量可设为n =(1,0,0)或(-1,0,0),∴(a-b )·n =±(x 1-x 2).又|a-b |=k ,|n |=1,∴夹角的余弦值为±(x 1-x 2)k.8如果命题“( p )∨( q )”是假命题,那么在下列各结论中,正确的为( )①命题“p ∧q ”是真命题 ②命题“p ∧q ”是假命题 ③命题“p ∨q ”是真命题 ④命题“p ∨q ”是假命题A.①③B.②④C.②③D.①④“( p )∨( q )”是假命题,知 p 和 q 均为假命题⇒p 为真,q 为真,则p ∧q 为真,p ∨q 为真,则①③正确,故选A.9椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为( ) A.√1010B.√1717C.2√1313D.√37372c ,短轴长为2b ,由已知,得2c=2b3,故b=3c.又∵a 2=b 2+c 2=9c 2+c 2=10c 2,∴e=c =√10.10以双曲线x 24−y 25=1的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是()A.y 2=12xB.y 2=-12xC.y 2=6xD.y 2=-6x由x 2−y 2=1,得a 2=4,b 2=5,∴c 2=a 2+b 2=9.∴右焦点的坐标为(3,0),故抛物线的焦点坐标为(3,0),顶点坐标为(0,0).故p=3.∴抛物线方程为y 2=12x.11设F 1,F 2是双曲线x 2-4y 2=4a (a>0)的两个焦点,点P 在双曲线上,且满足:PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0,|PF 1⃗⃗⃗⃗⃗⃗⃗ |·|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2,则a 的值为( ) A.2B.√52C.1D.√5双曲线方程可化为x 2−y 2=1(a>0),∵PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0,∴PF 1⊥PF 2.∴|PF 1⃗⃗⃗⃗⃗⃗⃗ |2+|PF 2⃗⃗⃗⃗⃗⃗⃗ |2=4c 2=20a.① 由双曲线定义,知|PF 1⃗⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ |=±4√a , ② 又已知|PF 1⃗⃗⃗⃗⃗⃗⃗ |·|PF 2⃗⃗⃗⃗⃗⃗⃗ |=2,③由①②③,得20a-2×2=16a ,∴a=1.12过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P.设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为( ) A.2B.-2C.12D.-12m :y=k 1(x+2)代入x 22+y 2=1,得x 2+2k 12(x+2)2-2=0,整理,得(1+2k 12)x 2+8k 12x+8k 12-2=0. Δ=(8k 12)2-4(1+2k 12)(8k 12-2)>0, 解得k 12<12.设P 1P 2的中点P 0(x 0,y 0),则x 0=x 1+x22=-4k 121+2k 12,y 0=k 1(x 0+2)=2k 11+2k 12. ∴k 2=yx 0=2k 11+2k 12-4k 121+2k 12=-12k 1, ∴k 1·k 2=-12.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13在平面直角坐标系xOy 中,双曲线x 24−y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为 .M 的横坐标可求得M (3,±√15),双曲线的右焦点的坐标为F 2(4,0).由两点间的距离公式,得 |F 2M|=√(x 2-x 1)2+(y 2-y 1)2 =√(3-4)2+(±√15-0)2=4.14“三角形任意两边之和大于第三边”的否定是 .,存在两边,其和小于或等于第三边15在四面体OABC 中,OA⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,D 为BC 的中点,E 为AD 的中点,则OE ⃗⃗⃗⃗⃗ = .(用a ,b ,c 表示)=12(OA ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗)=12OA ⃗⃗⃗⃗⃗ +12(12OB ⃗⃗⃗⃗⃗ +12OC ⃗⃗⃗⃗⃗ ) =12OA ⃗⃗⃗⃗⃗ +14OB ⃗⃗⃗⃗⃗ +14OC ⃗⃗⃗⃗⃗ =12a +14b +14c .+14b +14c16曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a>1)的点的轨迹.给出下列三个结论:①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,正确结论的序号是 .曲线C 经过原点,则当曲线C 上点P 为原点时,|PF 1||PF 2|=1,即a=1,这与a>1矛盾,所以①错误;②曲线C 关于原点对称,设曲线C 上点P 关于原点的对称点为P',则|PF 1|=|P'F 2|,|PF 2|=|P'F 1|,满足|P'F 1||P'F 2|=a 2,所以②正确;③由三角形面积公式S=12ab sin C ,得S △PF 1F 2=12|PF 1|·|PF 2|sin ∠F 1PF 2≤1|PF 1|·|PF 2|=a 2,所以③正确.三、解答题(本大题共6小题,共74分.解答时应写出文字说明、证明过程或演算步骤)17(12分)已知椭圆D :x 250+y 225=1与圆M :x 2+(y-m )2=9(m ∈R ),双曲线G 与椭圆D 有相同的焦点,它的两条渐近线恰好与圆M 相切.当m=5时,求双曲线G 的方程.D :x 2+y 2=1的两个焦点为F 1(-5,0),F 2(5,0),故双曲线的中心在原点,焦点在x 轴上,且c=5.设双曲线G 的方程为x 2a 2−y 2b2=1(a>0,b>0),则G 的渐近线方程为y=±b ax ,即bx ±ay=0,且a 2+b 2=25.当m=5时,圆心为(0,5),半径为r=3,于是|5a |√a 2+b =3⇒a=3,b=4.故双曲线G 的方程为x 29−y 216=1.18(12分)已知命题p :不等式|x-1|>m-1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,求实数m 的取值范围.|x-1|>m-1的解集为R ,所以m-1<0,m<1.又因为f (x )=-(5-2m )x 是减函数, 所以5-2m>1,m<2. 即命题p :m<1,命题q :m<2. 因为p ∨q 为真,p ∧q 为假, 所以p 和q 一真一假.当p 真q 假时应有{m <1,m ≥2,m 无解.当p 假q 真时应有{m ≥1,m <2,1≤m<2.故实数m 的取值范围是[1,2).19(12分)已知点P (1,3),圆C :(x-m )2+y 2=92过点A (1,-3√22),点F 为抛物线y 2=2px (p>0)的焦点,直线PF 与圆相切.(1)求m 的值与抛物线的方程;(2)设点B (2,5),点Q 为抛物线上的一个动点,求BP ⃗⃗⃗⃗⃗ ·BQ ⃗⃗⃗⃗⃗ 的取值范围.把点A 代入圆C的方程,得(1-m )2+(-3√22)2=92,∴m=1.圆C :(x-1)2+y 2=92.当直线PF 的斜率不存在时,不合题意. 当直线PF 的斜率存在时,设为k , 则PF :y=k (x-1)+3,即kx-y-k+3=0.∵直线PF 与圆C 相切,∴√k +1=3√22.解得k=1或k=-1.当k=1时,直线PF 与x 轴的交点横坐标为-2,不合题意,舍去. 当k=-1时,直线PF 与x 轴的交点横坐标为4,∴p2=4.∴抛物线方程为y 2=16x.(2)BP⃗⃗⃗⃗⃗ =(-1,-2), 设Q (x ,y ),BQ⃗⃗⃗⃗⃗ =(x-2,y-5),则 BP⃗⃗⃗⃗⃗ ·BQ ⃗⃗⃗⃗⃗ =-(x-2)+(-2)(y-5) =-x-2y+12=-y 216-2y+12 =-116(y+16)2+28≤28.∴BP ⃗⃗⃗⃗⃗ ·BQ ⃗⃗⃗⃗⃗ 的取值范围为(-∞,28]. 20(12分)如图所示,在四棱锥P-ABCD 中,PC ⊥平面ABCD ,PC=2,在四边形ABCD 中,∠ABC=∠BCD=90°,AB=4,CD=1,点M 在PB 上,PB=4PM ,PB 与平面ABCD 成30°角. 求证:(1)CM ∥平面PAD. (2)平面PAB ⊥平面PAD.C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz ,因为PC ⊥平面ABCD ,所以∠PBC 为PB 与平面ABCD 所成的角. 所以∠PBC=30°.因为PC=2,所以BC=2√3,PB=4.所以D (0,1,0),B (2√3,0,0),A (2√3,4,0),P (0,0,2),M (√32,0,32).所以DP ⃗⃗⃗⃗⃗ =(0,-1,2),DA ⃗⃗⃗⃗⃗ =(2√3,3,0),CM ⃗⃗⃗⃗⃗⃗ =(√32,0,32). (1)令n =(x ,y ,z )为平面PAD 的法向量, 则{DP⃗⃗⃗⃗⃗ ·n =0,DA ⃗⃗⃗⃗⃗ ·n =0,即{-y +2z =0,2√3x +3y =0, 所以{z =12y ,x =-√3y ,令y=2,得n =(-√3,2,1).因为n ·CM ⃗⃗⃗⃗⃗⃗ =-√3×√32+2×0+1×32=0, 所以n ⊥CM⃗⃗⃗⃗⃗⃗ . 又CM ⊄平面PAD ,所以CM ∥平面PAD. (2)取AP 的中点E , 则E (√3,2,1),BE⃗⃗⃗⃗⃗ =(-√3,2,1).因为PB=AB , 所以BE ⊥PA.又因为BE ⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =(-√3,2,1)·(2√3,3,0)=0, 所以BE ⃗⃗⃗⃗⃗ ⊥DA ⃗⃗⃗⃗⃗ , 所以BE ⊥DA.又因为PA ∩DA=A ,所以BE ⊥平面PAD. 又因为BE ⊂平面PAB , 所以平面PAB ⊥平面PAD.21(13分)如图,在四棱锥S-ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD , AD=√2,DC=SD=2.点M 在侧棱SC 上,∠ABM=60°. (1)求证:M 是侧棱SC 的中点; (2)求二面角S-AM-B 的余弦值的大小.D 为坐标原点,射线DA ,DC ,DS 为x 轴、y 轴、z 轴正半轴,建立如图所示的空间直角坐标系Dxyz.则A (√2,0,0),B (√2,2,0),C (0,2,0),S (0,0,2).设SM ⃗⃗⃗⃗⃗⃗ =λMC ⃗⃗⃗⃗⃗⃗ (λ>0), 则M (0,2λ1+λ,21+λ), 所以MB ⃗⃗⃗⃗⃗⃗ =(√2,21+λ,-21+λ).又AB⃗⃗⃗⃗⃗ =(0,2,0),<MB ⃗⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >=60°, 故MB ⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =|MB ⃗⃗⃗⃗⃗⃗ |·|AB⃗⃗⃗⃗⃗ |cos 60°, 即41+λ=√(√2)2+(21+λ)2+(-21+λ)2, 解得λ=1,即SM⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ . 所以M 为侧棱SC 的中点.M (0,1,1),A (√2,0,0),得AM 的中点G (√22,12,12).所以GB ⃗⃗⃗⃗⃗ =(√22,32,-12),MS ⃗⃗⃗⃗⃗⃗ =(0,-1,1),AM ⃗⃗⃗⃗⃗⃗ =(-√2,1,1),则GB ⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ =0,MS ⃗⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ =0,即GB ⃗⃗⃗⃗⃗ ⊥AM ⃗⃗⃗⃗⃗⃗ ,MS ⃗⃗⃗⃗⃗⃗ ⊥AM ⃗⃗⃗⃗⃗⃗ .因此,<GB ⃗⃗⃗⃗⃗ ,MS ⃗⃗⃗⃗⃗⃗ >等于二面角S-AM-B 的平面角, 所以cos <GB ⃗⃗⃗⃗⃗ ,MS ⃗⃗⃗⃗⃗⃗ >=GB ⃗⃗⃗⃗⃗⃗ ·MS ⃗⃗⃗⃗⃗⃗⃗|GB ⃗⃗⃗⃗⃗⃗ ||MS ⃗⃗⃗⃗⃗⃗⃗|=-√63, 故二面角S-AM-B 的余弦值为-√6.22(13分)已知椭圆x 22+y 24=1与射线y=√2x (x ≥0)交于点A ,过A 作倾斜角互补的两条直线,它们与椭圆的另一交点为点B 和点C.(1)求证:直线BC 的斜率为定值,并求出这个定值; (2)求△ABC 面积的最大值.{x 22+y 24=1,y =√2x (x ≥0)得A (1,√2).设直线AB 的斜率为k ,则直线AC 的斜率为-k. 直线AB 的方程为y=k (x-1)+√2, ① 直线AC 的方程为y=-k (x-1)+√2, ②将①代入椭圆方程并化简得 (k 2+2)x 2-2(k-√2)kx+k 2-2√2k-2=0.∵1和x B 是它的两个根, ∴x B =k 2-2√2k -2k 2+2,y B =kx B +√2-k=-√2k 2-4k+2√2k 2+2.同理可得x C =k 2+2√2k -2k 2+2,y C =-√2k 2+4k+2√2k 2+2∴k BC =y B -yC x B -x C=√2.BC 的方程为y=√2x+m ,代入椭圆方程并化简得4x 2+2√2mx+m 2-4=0,|BC|=√3|x 1-x 2|=√3√16-2m 22.∵A 到BC 的距离为d=|m |√3, ∴S △ABC =√m 2(16-2m 2)4≤4√2·2m 2+(16-2m 2)2=√2,当且仅当2m 2=16-2m 2,即m=±2时,上式等号成立. 故△ABC 面积的最大值为√2.。

人教版高中数学选修2-1 模块综合检测卷(附答案解析)

人教版高中数学选修2-1 模块综合检测卷(附答案解析)

- 1 -人教版高中数学选修2-1模块综合检测题(满分150分 时间120分钟)一、单选题.(每小题5分,共12小题) 1.“如果x y >,则22x y >”的逆否命题是.A 如果x y ≤,则22x y ≤ .B 如果x y >,则22x y <.C 如果22x y ≤,则x y ≤ .D 如果x y <,则22x y < 【答案】.C【解析】原命题为“若p 则q 形式”,则其逆否命题为“若q ⌝则p ⌝形式”.故选.C 2. 不等式()20x x -<成立的一个必要不充分条件是.A ()0,2x ∈ .B [)1,x ∈-+∞ ().0,1C x ∈ ().1,3D x ∈【答案】.B【解析】由()20x x -<得02x <<,()[)0,21,⊂-+∞且()0,2x ∈是[)1,x ∈-+∞的一个真子集, ∴ [)1,x ∈-+∞是“不等式()20x x -<成立”的一个必要不充分条件.3.已知A 、B 、C 三点不共线,则下列条件中能使点M 与点A 、B 、C 一定共面的是 .A 32OM OA OB OC =-- .B 0OM OA OB OC +++= .C 0MA MB MC ++= 11.42D OM OB OA OC =-+【答案】.C【解析】∵ 0MA MB MC ++=,∴ MA MB MC =--,根据向量共面定理,可知点M 与点A 、B 、C 四点共面.4.若方程22216y x a a+=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为.A 3a > .B 2a <- .C 3a >或2a <- .D 3a >或62a -<<- 【答案】.D【解析】∵ 椭圆22216y x a a+=+的焦点在x 轴上,∴ 2660a a a ⎧>+⎪⎨+>⎪⎩ 即 ()()2306a a a ⎧+->⎪⎨>-⎪⎩ 解得 3a >或62a -<<-,故选.D5. 如图,椭圆221259y x +=上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为 .A 8 .2B.4C 3.2D【答案】.C【解析】∵O 为12F F 的中点,N 为1MF 的中点,∴ 2//ON MF 且212ON MF =. ∵12210MF MF a +==∴ 21101028MF MF =-=-=,∴ 4ON =.6.已知椭圆的标准方程为()222210yx a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x⊥轴,直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率为AB 1.3C 1.2D【答案】.D- 2 -【解析】如图,∵ 2AP PB =,∴ 2OA OF =,即 2a c =,∴ 12e =.7.双曲线221412y x -=的焦点到渐近线的距离为A .2BC .1D 【答案】.A【解析】双曲线221412y x -=的焦点分别为()()4,0,4,0-.渐近线方程为y =或y =,由双曲线的对称性可知,任一焦点到任一条渐近线的距离都相等,∴d ==.A8.直线1y kx k =-+与椭圆22194yx +=的位置关系是.A 相交 .B 相切 .C 相离 .D 不确定 【答案】.A【解析】直线方程1y kx k =-+可化为()11y k x =-+,过定点()1,1.而把点()1,1代入椭圆方程可得131119436+=<,∴点()1,1在椭圆内部,∴直线与椭圆相交. 9.已知椭圆2211216y x +=,则以点()1,2M -为中点的弦所在直线方程为 .38190A x y -+= .38130B x y +-= .2380C x y -+= .2340D x y +-= 【答案】.C【解析】设弦的两端点为()()1122,,,A x y B x y ,代入椭圆方程得221122221121611216x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得 ()()()()1212121201216x x x x y y y y -+-++= 整理得 121223y y x x -=-, ∴ 弦所在直线斜率为23,∴ 直线方程为()2213y x -=+,即2380x y -+=,故选.C10.在同一坐标系中,方程22221a x b y +=与()200ax by a b +=>>所表示的曲线大致是【答案】.D【解析】方法一 将方程22221a x b y +=与()200ax by a b +=>>转化为2222111y x a b +=和2a y x b =-,∵ 0a b >>,∴ 110b a >>. ∴ 椭圆焦点在y 轴上,抛物线焦点在x 轴上, 且开口向左,故选.D方法二 方程()200ax by a b +=>>中将y -代替y ,方程结果不变,∴ 20ax by +=图象关于x 轴对称,排除B 、C ;又椭圆焦点在y 轴上,排除A ,故选.D 11.过点()3,0A 且与y 轴相切的圆的圆心的轨迹为.A 直线 .B 椭圆 .C 双曲线 .D 抛物线 【答案】.D【解析】如图,设点P 为满足条件的一点,易知点P 到点A 的距离等于 点P 到y 轴的距离.故点P 在以点A 为焦点,y 轴为准线的抛物线上,故 点P 的轨迹为抛物线,故选.DPAB- 3 -12.已知0a b >>,椭圆1C 方程为22221y x a b +=,双曲线2C 的方程为22221y x a b-=,曲线1C 与2C 的离心率,则双曲线2C 的渐近线方程为.0A x ±=.0B y ±= .20C x y ±= .20D x y ±= 【答案】.A【解析】22221122c a b e a a -==,22222222c a b e a a +==,∴ ()44422124314a b b e e a a -⋅==-=,∴b a =∴渐近线方程为y =,即0x ±=,故选.A二、填空题.(每小题5分,共4小题)13. 命题“()**,n N f n N ∀∈∈且()f n n ≤”的否定形式为 . 【答案】()**00,n N f n N ∃∈∉或()00f n n >.【解析】全称命题的否定是特称命题,否定结论时“且”要换为“或”,“≤”换为“>”,故最后的否定形式为“()**00,n N f n N ∃∈∉或()00f n n >”.14. 已知平面α的一个法向量为()2,2,1n =--,点()1,3,0A -在平面α内,则点()2,1,4P -到平面α的距离为 . 【答案】10.3【解析】()1,2,4PA =-,()2,2,1n =--,∴ 点()2,1,4P -到平面α的距离为103PA n d n⋅==. 15. 设抛物线()20y mx m =≠的准线与直线1x =的距离为3,则抛物线的方程为 . 【答案】28y x =或216y x =-.【解析】当0m >时,2p m =,∴2m p =,∴抛物线的准线方程为4m x =-,依题意,()134m --=,∴8m =,∴抛物线方程为28y x =.当0m <时,2p m =-,∴2m p =-,∴抛物线的准线方程为4m x =-,依题意得134m +=,∴8m =(舍)或16m =-,∴抛物线的方程为216y x =-.综上,抛物线方程为28y x =或216y x =-.16. 与椭圆22194x y +=有公共焦点,且两条渐近线互相垂直的双曲线方程为 .【答案】2252x y -=.【解析】因为所求双曲线的两条渐近线互相垂直,∴渐近线方程为y x =±.故可设双曲线方程为()220xy λλ-=>,又∵椭圆焦点为(),根据题意,所求双曲线焦点为(). ∴25λ=,52λ=.故所求双曲线方程为2252x y -=.三、解答题.17.(10分)设命题:p 函数21y x mx =++在()1,-+∞上单调递增;命题:q 函数()24421y x m x =+-+大于零恒成立. 若p 或q 为真,而p 且q 为假,求实数m 的取值范围.【答案】{}312m m m ≥<<或.【解析】若函数21y x mx =++在()1,-+∞上单调递增,- 4 -则12m-≤-,∴2m ≥,即:2p m ≥; 若函数()24421y x m x =+-+大于零恒成立,则()2162160m ∆=--<,解得13m <<,即:13q m <<. ∵p q ∨为真,p q ∧为假,∴,p q 一真一假.当p 真q 假时,由231m m m ≥⎧⎨≥≤⎩或 得3m ≥,当p 假q 真时,由213m m <⎧⎨<<⎩ 得 12m <<,综上,m 的取值范围为{}3m m ≥或1<m<2.18.(12分)设圆222150x y x ++-=的圆心为A ,直线l 过点()1,0B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .证明:EA EB +为定值,并写出点E 的轨迹方程. 【解析】将圆A 的方程整理得()22116x y ++=,∴点A 的坐标为()1,0-∵AD AC =,∴ACD ADC ∠=∠.∵//EB AC ,∴EBD ACD ∠=∠,故EBD ACD ADC ∠=∠=∠. ∴EB ED =,故EA EB EA ED AD +=+=.又圆A 的标准方程为()22116x y ++=,从而4AD =,∴4EA EB +=由题设得()()1,0,1,0,2A B AB -=,由椭圆定义可得点E 的轨迹方程为()221043x y y +=≠. 19.(12分)已知双曲线过点()3,2-且与椭圆224936x y +=有相同的焦点. (1)求双曲线的标准方程;(2)若点M 在双曲线上,1F 、2F 为双曲线的左右焦点,且122MF MF =,求12MF F ∆的面积. 【解析】(1)椭圆方程可化为22194x y +=,焦点在x 轴上,且c =,设双曲线方程为22221x y a b -=,则22229415a ba b ⎧-=⎪⎨⎪+=⎩ 解得 2232a b ⎧=⎪⎨=⎪⎩ , ∴ 双曲线的方程为22132x y -=.(2)因为点M 在双曲线上,又122MF MF =①,∴ 点M 在双曲线右支上,∴ 12MF MF -=②,由①②解得12MF MF ==12F F = 在12MF F ∆中,222121212125cos 26MF MF F F F MF MF MF +-∠==,∴ 12sin F MF ∠=∴12121211sin 226MF F S MF MF F MF ∆=∠=⨯=20.(12分)如图所示,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =, E F 、分别为AB 、PB 的中点. (1)求证:EF CD ⊥;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论; (3)求DB 与平面DEF 所成角的正弦值. 【解析】如图,以D 为原点,,,DA DC DP 所在直线分别为x 轴、y 轴、z 轴 建立空间直角坐标系,P ABC D EF OA- 5 -设AD a =,则()()()()0,0,0,,0,0,,,0,0,,0D A a B a a C a ,,,02a E a ⎛⎫⎪⎝⎭,()0,0,,,,222a a a P a F ⎛⎫⎪⎝⎭.(1)证明:∵(),0,,0,,022a a EF DC a ⎛⎫=-= ⎪⎝⎭,∴0EF DC ⋅=,∴EF DC ⊥,即EF CD ⊥.(2)设(),0,G x z ,则,,222a a a FG x z ⎛⎫=--- ⎪⎝⎭,若使GF ⊥平面PCB ,则由(),,,0,002222a a a a FG CB x z a a x ⎛⎫⎛⎫⋅=---⋅=-= ⎪ ⎪⎝⎭⎝⎭,解得2a x =.由()2,,0,,022222a a a a a FG CP x z a a a z ⎛⎫⎛⎫⋅=---⋅-=+-= ⎪ ⎪⎝⎭⎝⎭,解得0z =. ∴G 点坐标为,0,02a ⎛⎫⎪⎝⎭,即点G 为AD 的中点.(3)设平面DEF 的一个法向量为(),,n x y z =,则00n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩ ∴ ()(),,,,0222,,,,002a a a x y z a x y z a ⎧⎛⎫⋅= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅= ⎪⎪⎝⎭⎩即()0202a x y z a ax y ⎧++=⎪⎪⎨⎪+=⎪⎩ 取1x =,则2,1y z =-=,∴()1,2,1n =-,∴cos ,2BD n BD n a BD n⋅==, ∴DB 与平面DEF . 21.(12分)如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点()()()11221,2,,,,P A x y B x y 均在抛物线上.(1)求抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,证明:直线AB 的斜率为定值. 【解析】(1)由题意可设抛物线的方程为()220y px p =>, 由点()1,2P 在抛物线上,得2221p =⨯,解得2p =,故所求抛物线方程 为24y x =,准线方程为1x =-.(2)∵PA 与PB 的斜率存在且倾斜角互补,∴PA PB k k =-,即12122211y y x x --=---,又()()1122,,,A x y B x y 均在抛物线上, ∴ 221212,44y y x x ==,从而有122212221144y y y y --=---, 即124422y y =-++,整理得124y y +=-, 故直线AB 的斜率12121241AB y y k x x y y -===--+. 22.(12分)已知12,F F 分别为椭圆()22122:10y x C a b a b+=>>的上、下焦点,其中1F 也是抛物线22:4C x y=的焦点,点M 是1C 与2C 在第二象限的交点,且153MF =.x。

高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题

高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题

模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件.] 2.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x 0≤1D .∀x ≤0,总有(x +1)e x 0≤1 B [命题p 为全称命题,所以p 为∃x 0>0,使得(x 0+1)e x 0≤1.故选B .]3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54B .52C .32D .54B [由题意,1-b 2a 2=⎝⎛⎭⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.]4.已知空间向量a =(t,1,t ),b =(t -2,t,1),则|a -b |的最小值为( ) A . 2 B . 3 C .2D .4C [|a -b |=2(t -1)2+4≥2,故选C .] 5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有()A .相同短轴B .相同长轴C .相同离心率D .以上都不对D [对于x 2a 2+y 29=1,有a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D .]6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1-AB -C 为( ) A .π3B .2π3C .3π4D .π4D [以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1-AB -C 为锐角,即π-34π=π4,故选D .]7.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5D .a ≤5C [∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C .]8.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8xB [由已知可得,抛物线的焦点坐标为⎝⎛⎭⎫a 4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝⎛⎭⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .] 9.已知A (1,2,3),B (2,1,2),C (1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA →·DB →取最小值时,点D 的坐标为( )A .⎝⎛⎭⎫43,43,43B .⎝⎛⎭⎫83,43,83 C .⎝⎛⎭⎫43,43,83D .⎝⎛⎭⎫83,83,43C [点D 在直线OC 上运动,因而可设OD →=(a ,a,2a ),则DA →=(1-a,2-a,3-2a ),DB →=(2-a,1-a,2-2a ),DA →·DB →=(1-a )(2-a )+(2-a )(1-a )+(3-2a )(2-2a )=6a 2-16a +10,所以a =43时DA →·DB →取最小值,此时OD →=⎝⎛⎭⎫43,43,83.] 10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13B .13C .±13D .±12C [由题意知点B 的横坐标是c ,故点B 的坐标为⎝⎛⎭⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C .]11.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A .55B .155C .2155D .1520B [设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B .]12.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN ||AB |的最大值是( ) A . 3 B .32 C .33D .34C [如图.设|AF |=r 1,|BF |=r 2,则|MN |=r 1+r 22.在△AFB 中,因为|AF |=r 1,|BF |=r 2且∠AFB =2π3,所以由余弦定理,得|AB |=r 21+r 22-2r 1r 2cos 2π3=r 21+r 22+r 1r 2,所以|MN ||AB |=r 1+r 22r 21+r 22+r 1r 2=12×(r 1+r 2)2r 21+r 22+r 1r 2=12×1+r 1r 2r 21+r 22+r 1r 2≤12×1+r 1r 23r 1r 2=33,当且仅当r 1=r 2时取等号.故选C .] 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知点P 是平行四边形ABCD 所在平面外的一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号)①②③[∵AB →·AP →=-2-2+4=0,∴AB →⊥AP →,即AP ⊥AB ,①正确;∵AP →·AD →=-4+4=0,∴AP →⊥AD →,即AP ⊥AD ,②正确;由①②可得AP →是平面ABCD 的法向量,③正确;由③可得AP →⊥BD →,④错误.]14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为________.x 25-y 220=1[由已知得ba =2,所以b =2a .在y =2x +10中令y =0得x =-5,故c =5,从而a 2+b 2=5a 2=c 2=25,所以a 2=5,b 2=20,所以双曲线的方程为x 25-y 220=1.] 15.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3,则椭圆C 的方程为________.x 23+y 2=1[由e =c a=23,得c 2=23a 2,所以b 2=a 2-c 2=13a 2, 设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1,所以x 2=a 2⎝⎛⎭⎫1-y 2b 2=a 2-3y 2.|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6,当y =-1时,|PQ |有最大值a 2+6.由a 2+6=3,可得a 2=3,所以b 2=1,故椭圆C 的方程为x 23+y 2=1.]16.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.31717[如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝⎛⎭⎫23,23,0,因此DP →=(0,0,1),GP →=⎝⎛⎭⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.[解]∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.18.(本小题满分12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0.[解](1)由双曲线的离心率为2,可知双曲线为等轴双曲线,设双曲线的方程为x 2-y 2=λ,又双曲线过点(4,-10),代入解得λ=6,故双曲线的方程为x 2-y 2=6.(2)证明:由双曲线的方程为x 2-y 2=6,可得a =b =6,c =23,所以F 1(-23,0),F 2(23,0).由点M (3,m ),得MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),又点M (3,m )在双曲线上,所以9-m 2=6,解得m 2=3,所以MF 1→·MF 2→=m 2-3=0.19.(本小题满分12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE ,如图①.①∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图②所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),②∴AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1. 20.(本小题满分12分)如图,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.(1)用p 表示|AB |;(2)若OA →·OB →=-3,求这个抛物线的方程.[解](1)抛物线的焦点为F ⎝⎛⎭⎫p 2,0,过点F 且倾斜角为π4的直线方程为y =x -p2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0, ∴x 1+x 2=3p ,x 1x 2=p 24,∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝⎛⎭⎫x 1-p 2⎝⎛⎭⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2. ∴这个抛物线的方程为y 2=4x .21.(本小题满分12分)如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.[解](1)证明:∵P A =AD =1,PD =2,∴P A 2+AD 2=PD 2, 即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D , ∴P A ⊥平面ABCD .(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.[解](1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝⎛⎭⎫43,13, ∴169a 2+19b2=1, ∴b 2=1,∴椭圆的方程为x 22+y 2=1. (2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2,则C 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b 3a 2+c 2,又F 1为(-c,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c=b 33a 2c +c 3, 又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c 3·⎝⎛⎭⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.。

高中数学模块综合测评(一)(含解析)新人教A版选修1_2

高中数学模块综合测评(一)(含解析)新人教A版选修1_2

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2015·湖北高考)i为虚数单位,i607的共轭复数....为( )A.i B.-iC.1 D.-1【解析】因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.【答案】 A2.根据二分法求方程x2-2=0的根得到的程序框图可称为( )A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值( )【导学号:19220070】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】 A4.(2016·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b至少有一个能被5整除.则假设的内容是( )A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误【解析】 一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.(2015·安徽高考)设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【解析】2i1-i=2i 1+i 1-i 1+i=2i -12=-1+i ,由复数的几何意义知-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.【答案】 B7.(2016·深圳高二检测)在两个变量的回归分析中,作散点图是为了( ) A .直接求出回归直线方程 B .直接求出回归方程C .根据经验选定回归方程的类型D .估计回归方程的参数【解析】 散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C8.给出下面类比推理:①“若2a <2b ,则a <b ”类比推出“若a 2<b 2,则a <b ”; ②“(a +b )c =ac +bc (c ≠0)”类比推出“a +bc =a c +bc(c ≠0)”; ③“a ,b ∈R ,若a -b =0,则a =b ”类比推出“a ,b ∈C ,若a -b =0,则a =b ”; ④“a ,b ∈R ,若a -b >0,则a >b ”类比推出“a ,b ∈C ,若a -b >0,则a >b (C 为复数集)”.其中结论正确的个数为( ) A .1 B .2 C .3D .4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B.【答案】 B9.(2015·全国卷Ⅰ)执行如图1的程序框图,如果输入的t =0.01,则输出的n =( )图1A .5B .6C .7D .8【解析】 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01; 运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01; 运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01. 输出n =7.故选C. 【答案】 C10.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33为( ) A .3 B .-3 C .6D .-6【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,…观察可知{a n }是周期为6的周期数列,故a 33=a 3=3. 【答案】 A11.(2016·青岛高二检测)下列推理合理的是( ) A .f (x )是增函数,则f ′(x )>0B .因为a >b (a ,b ∈R ),则a +2i >b +2i(i 是虚数单位)C .α,β是锐角△ABC 的两个内角,则sin α>cos βD .A 是三角形ABC 的内角,若cos A >0,则此三角形为锐角三角形【解析】 A 不正确,若f (x )是增函数,则f ′(x )≥0;B 不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y ^=b ^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4, 所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:19220071】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0, ∴m =0或1. 【答案】 0或114.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:“否”).【解析】 因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba +b =1858,dc +d =2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】 是15.(2016·天津一中检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】 已知等式可改写为:13+23=(1+2)2;13+23+33=(1+2+3)2;13+23+33+43=(1+2+3+4)2,由此可得第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212. 【答案】 13+23+33+43+53+63=21216.(2016·江西吉安高二检测)已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论________.【解析】 由等比数列的性质可知,b 1b 30=b 2b 29=…=b 11b 20, ∴10b 11b 12…b 20=30b 1b 2…b 30.【答案】 10b 11b 12…b 20=30b 1b 2…b 30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)(2016·哈三中模拟)设z =1-4i1+i +2+4i3+4i,求|z |.【解】 z =1+i -4i +4+2+4i 3+4i =7+i 3+4i ,∴|z |=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】 学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:患心脏病 患其他病 总计 高血压 20 10 30 不高血压 30 50 80 总计5060110(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005) 【解】 由列联表中数据可得 k =110×20×50-10×30230×80×50×60≈7.486.又P (K 2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系. 20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a,1b ,1c不能构成等差数列.【导学号:19220072】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c,因此b (a +c )=2ac .而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0, 只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x 2,a ^=y -b ^x -.【解】 (1)散点图如图,(2)x =15×(88+76+73+66+63)=73.2,y =15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174. 所以b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625.a ^=y -b ^x -≈67.8-0.625×73.2=22.05. 所以y 对x 的回归直线方程是y ^=0.625x +22.05.(3)x =96,则y ^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。

(浙江专版)高中数学模块综合检测1新人教A版选修2_1

(浙江专版)高中数学模块综合检测1新人教A版选修2_1

模块综合检测(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.2.抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A.18 B .-18C .8D .-8解析:选B 由y =ax 2得x 2=1a y , ∴1a=-8,∴a =-18.3.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0” D .一个命题的否命题为真,则它的逆命题一定为真解析:选D 否命题和逆命题互为逆否命题,有着一致的真假性,故选D.4.已知空间向量a =(1,n,2),b =(-2,1,2),若2a -b 与b 垂直,则|a |等于( ) A.5 32B.212C.372D.3 52解析:选D 由已知可得2a -b =(2,2n,4)-(-2,1,2)=(4,2n -1,2). 又∵(2a -b )⊥b ,∴-8+2n -1+4=0.∴2n =5,n =52.∴|a |=1+4+254=3 52.5.双曲线x 2m -y 2n=1(mn ≠0)的离心率为2,它的一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为( )A.316 B.38 C.163D.83解析:选A 抛物线y 2=4x 的焦点为F (1,0),故双曲线x 2m -y 2n =1中,m >0,n >0且m +n =c 2=1.①又双曲线的离心率e =c m= m +nm=2,② 联立方程①②,解得⎩⎪⎨⎪⎧m =14,n =34.故mn =316. 6.若直线y =2x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)有公共点,则双曲线的离心率的取值范围为( )A .(1,5)B .(5,+∞)C .(1, 5 ]D .[5,+∞)解析:选B 双曲线的两条渐近线中斜率为正的渐近线为y =b a x .由条件知,应有b a>2,故e =c a =a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a 2> 5.7.已知F 1(-3,0),F 2(3,0)是椭圆x 2m +y 2n=1的两个焦点,点P 在椭圆上,∠F 1PF 2=α.当α=2π3时,△F 1PF 2面积最大,则m +n 的值是( )A .41B .15C .9D .1解析:选B 由S △F 1PF 2=12|F 1F 2|·y P =3y P ,知P 为短轴端点时,△F 1PF 2面积最大.此时∠F 1PF 2=2π3,得a =m =2 3,b =n =3,故m +n =15.8.正△ABC 与正△BCD 所在平面垂直,则二面角ABDC 的正弦值为( ) A.55B.33C.255D.63解析:选C 取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝ ⎛⎭⎪⎫0,0,32,B ⎝⎛⎭⎪⎫0,-12,0, D ⎝⎛⎭⎪⎫32,0,0.⎝ ⎛⎭⎪⎫0,0,32⎝ ⎛⎭⎪⎫0,12,32⎝⎛⎭⎪⎫32,12,0.⎝ ⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量,可进一步求出平面ABD 的一个法向量n =(1,-3,1),∴cos 〈n 〉=55,∴sin 〈n 〉=255.二、填空题(本大题共7小题,多空题每空3分,单空题每题4分,共36分)9.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )4,则动点P 的轨迹方程是________.4得x ×1+y ×2=4,因此所求动点P 的轨迹方程为x +2y -4=0.答案:x +2y -4=010.点F 是抛物线C :y 2=2px (p >0)的焦点,l 是准线,A 是抛物线在第一象限内的点,直线AF 的倾斜角为60°,AB ⊥l 于B ,△ABF 的面积为3,则p 的值为________,点A 坐标为________.解析:设A (x ,y ),∵直线AF 的倾斜角为60°,∴y =3⎝ ⎛⎭⎪⎫x -p 2①,∵△ABF 的面积为3,∴12·⎝ ⎛⎭⎪⎫x +p 2·y =3②,∵A 是抛物线在第一象限内的点,∴y 2=2px ③,∴由①②③可得p =1,x =32,y = 3.答案:1 ⎝ ⎛⎭⎪⎫32,3 11.已知P 为抛物线C :y 2=4x 上的一点,F 为抛物线C 的焦点,其准线方程为____________,若准线与x 轴交于点N ,直线NP 与抛物线交于另一点Q ,且|PF |=3|QF |,则点P 坐标为____________.解析:∵y 2=4x ,∴焦点坐标F (1,0),准线方程x =-1.过P ,Q 分别作准线的射影分别为A ,B ,则由抛物线的定义可知:|PA |=|PF |,|QF |=|BQ |,∵|PF |=3|QF |,∴|AP |=3|QB |,即|AN |=3|BN |,∴P ,Q 的纵坐标满足y P =3y Q ,设P ⎝ ⎛⎭⎪⎫y 24,y ,y ≠0,则Q ⎝ ⎛⎭⎪⎫y 236,y 3,N (-1,0),∵N ,Q ,P 三点共线,∴y y 24+1=y3y 236+1,解得y 2=12,∴y =±23,此时x =y 24=124=3,即点P 的坐标为(3,±23).答案:x =-1 (3,±23)12.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b2=1的离心率为________,渐近线方程为________.解析:因为椭圆x 2a 2+y 2b 2=1的离心率e 1=32,所以1-b 2a 2=e 21=34,即b 2a 2=14,而在双曲线x 2a 2-y 2b 2=1中,设离心率为e 2,则e 22=1+b 2a2=1+14=54, 所以e 2=52.渐近线方程为y =±b a x ,即y =±12x . 答案:52 y =±12x 13.已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=________.解析:由题意得⎩⎪⎨⎪⎧|F 1A |-|F 2A |=2a ,|F 1A |=2|F 2A |,解得|F 2A |=2a ,|F 1A |=4a ,又由已知可得c a=2,所以c =2a ,即|F 1F 2|=4a , ∴cos ∠AF 2F 1=|F 2A |2+|F 1F 2|2-|F 1A |22|F 2A |·|F 1F 2|=4a 2+16a 2-16a 22×2a ×4a =14.答案:1414.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.解析:由题意,如图,在Rt △AOF 中,∠AFO =30°,AO =a ,OF =c ,∴sin 30°=OA OF =a c =12.∴e =ca=2.答案:215.正方体ABCDA 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点,则EF与平面CDD 1C 1所成角的正弦值为________,EF 与AB 所成角的正切值为________.解析:建立如图所示的空间直角坐标系,设正方体的棱长为2,则E (2,0,1),F (1,2,0),(-1,2,-1).又平面CDD 1C 1(0,2,0),cos 4 6×2=63,故所求角的正弦值为63.EF 与AB 所成角为∠EFC ,tan ∠EFC = 5.答案:635三、解答题(本大题共6小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }. (1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围; (2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围. 解:(1)由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10}, ∵x ∈P 是x ∈S 的充要条件, ∴P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10∴⎩⎪⎨⎪⎧m =3,m =9,这样的m 不存在.(2)由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,1-m ≤1+m∴m ≤3.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.17.(本小题满分15分)如图,在直三棱柱ABCA1B 1C 1中,AB =1,AC =AA 1= 3,∠ABC =60°.(1)证明:AB ⊥A 1C ;(2)求二面角AA 1CB 的正切值大小.解:法一:(1)证明:∵三棱柱ABCA 1B 1C 1为直三棱柱, ∴AB ⊥AA 1.在△ABC 中,AB =1,AC = 3,∠ABC =60°. 由正弦定理得∠ACB =30°, ∴∠BAC =90°,即AB ⊥AC , ∴AB ⊥平面ACC 1A 1. 又A 1C ⊂平面ACC 1A 1, ∴AB ⊥A 1C .(2)如图,作AD ⊥A 1C 交A 1C 于D 点,连接BD .∵AB ⊥A 1C ,AD ∩AB =A , ∴A 1C ⊥平面ABD , ∴BD ⊥A 1C ,∴∠ADB 为二面角AA 1CB 的平面角. 在Rt △AA 1C 中,AD =AA 1·AC A 1C =3× 36=62.在Rt △BAD 中,tan ∠ADB =AB AD =63, ∴二面角AA 1CB 的正切值为63. 法二:(1)证明:∵三棱柱ABCA 1B 1C 1为直三棱柱, ∴AA 1⊥AB ,AA 1⊥AC . 在△ABC 中,AB =1,AC = 3,∠ABC =60°.由正弦定理得∠ACB =30°,∴∠BAC =90°,即AB ⊥AC .如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (0,3,0),A 1(0,0,3),(1,0,0)(0,3,-3).1×0+0×3+0×(- 3)=0,∴AB ⊥A 1C .(2)取m (1,0,0)为平面AA 1C 1C 的法向量.由(1)(-1,3,0),设平面A 1BC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n 0,n 0,∴⎩⎨⎧-x +3y =0,3y -3z =0,∴x =3y ,y =z .令y =1,则n =(3,1,1),∴cos 〈m ,n 〉=m ·n|m |·|n |=3×1+1×0+1×0(3)2+12+12·12+02+02=155, ∴sin 〈m ,n 〉=1-⎝⎛⎭⎪⎫1552=105, ∴tan 〈m ,n 〉=63. ∴二面角AA 1CB 的正切值为63. 18.(本小题满分15分)如图,在三棱柱ABCA 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1BC 1B 1的余弦值.解:(1)证明:因为AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC , 所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB . 由题知AB =3,BC =5,AC =4, 所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系Axyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n 0,n 0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3). 同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈 n ,m 〉=n ·m |n ||m |=1625.由题知二面角A 1BC 1B 1为锐角, 所以二面角A1BC 1B 1的余弦值为1625.19.(本小题满分15分)如图所示,在四棱锥PABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =BC =2CD =2,AD =3,PE =2BE .(1)求证:平面PAD ⊥平面PCD ;(2)若二面角PACE 的大小为45°,求直线PA 与平面EAC 所成角的正弦值. 解:(1)证明:∵PC ⊥平面ABCD ,AD ⊂平面ABCD , ∴PC ⊥AD ,又CD ⊥AD ,PC ∩CD =C ,∴AD ⊥平面PCD ,又AD ⊂平面PAD ,∴平面PAD ⊥平面PCD . (2)取AB 的中点F ,连接CF ,则CF ⊥AB ,如图,以C 为坐标原点,CF 为x 轴,CD 为y 轴,CP 为z 轴,建立空间直角坐标系,设PC =a ,则P (0,0,a )(a >0),E ⎝⎛⎭⎪⎫233,-23,a 3,A (3,1,0),(3,1,0)(0,0,a )⎝⎛⎭⎪⎫233,-23,a 3,设m =(x ,y ,z )是平面PAC 的一个法向量,则⎩⎪⎨⎪⎧m =3x +y =0,m az =0,取x =1,得m =(1,-3,0),设平面EAC 的法向量n =(x 1,y 1,z 1),则⎩⎨⎧n =3x 1+y 1=0,n =233x 1-23y 1+a 3z 1=0,取x 1=1,得n =⎝ ⎛⎭⎪⎫1,-3,-43a ,∵二面角PACE 的大小为45°,∴cos 45°=|cos 〈m ,n 〉|=|m·n ||m |·|n |=424+48a 2=22, 解得a =23,此时n =(1,-3,-2),(3,1,-23),设直线PA 与平面EAC 所成角为θ, 则sin θ=|cos n 〉||·|=434·22=64. ∴直线PA 与平面EAC 所成角的正弦值为64. 20.(本小题满分15分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为(-2,0),离心率为12.(1)求椭圆C 的方程;(2)已知直线l 过点S (4,0),与椭圆C 交于P ,Q 两点,点P 关于x 轴的对称点为P ′,P ′与Q 两点的连线交x 轴于点T ,当△PQT 的面积最大时,求直线l 的方程.解:(1)由题意可得⎩⎪⎨⎪⎧a =2,e =c a =12,可得c =1,b =a 2-c 2= 3. 所以椭圆的方程为x 24+y 23=1. (2)设直线l 的方程为x =my +4,P (x 1,y 1),Q (x 2,y 2),则P ′(x 1,-y 1),联立⎩⎪⎨⎪⎧x =my +4,3x 2+4y 2=12得(4+3m 2)y 2+24my +36=0,则Δ=(24m )2-144(4+3m 2)=144(m 2-4)>0,即m 2>4.又y 1+y 2=-24m4+3m2,y 1y 2=364+3m2, 直线P ′Q 的方程为y =y 2+y 1x 2-x 1(x -x 1)-y 1, 则x T =x 1y 2+x 2y 1y 1+y 2=(my 1+4)y 2+(my 2+4)y 1y 1+y 2=2my 1y 2+4(y 1+y 2)y 1+y 2=72m-24m+4=1,则T (1,0),故|ST |=3, 所以S △PQT =S △SQT -S △SPT=32|y 1-y 2|=32·(y 1+y 2)2-4y 1y 2=18m 2-44+3m 2, 令t =m 2-4>0,则S △PQT =18t 3t 2+16=183t +16t≤1823t ·16t=334,当且仅当t 2=163,即m 2=283,即m =±2213时取到“=”,故所求直线l 的方程为3x ±221-12=0.。

人教版高中数学选修2-1 模块综合检测卷(附答案解析)

人教版高中数学选修2-1 模块综合检测卷(附答案解析)

a2 a 6 ∴ a 6 0
a 2 a 3 0 即 a 6
解得 a 3 或 6 a 2 ,故选 D.
2 y2 5. 如图, 椭圆 x 1 上的点 M 到焦点 F1 的距离为 2, N 为 MF1 的中点,则 ON ( O 为坐标原点)的值为 25 9 y A. 8 B.2 M C .4 D. 3 2 N 【答案】 C. x F1 O F2 【解析】∵ O 为 F1 F2 的中点, N 为 MF1 的中点,
PA n 【解析】 PA 1, 2, 4 , n 2, 2,1 ,∴ 点 P 2,1, 4 到平面 的距离为 d 10 . 3 n
15. 设抛物线 y 2 mx m 0 的准线与直线 x 1 的距离为 3,则抛物线的方程为 【答案】 y 8 x 或 y 16 x .
∴ ON / / MF2 且 ON 1 MF2 . ∵ MF1 MF2 2a 10 2 ∴ MF2 10 MF1 10 2 8 ,∴ ON 4 .
2 y2 6.已知椭圆的标准方程为 x 2 2 1 a b 0 的左焦点为 F ,右顶点为 A , 点 B 在椭圆上,且 BF x a b 轴,直线 AB 交 y 轴于点 P .若 AP 2PB ,则椭圆的离心率为
二、填空题.(每小题 5 分,共 4 小题) 13. 命题“ n N * , f n N * 且 f n n ”的否定形式为 【答案】 n0 N , f n0 N 或 f n0 n0 .
* *

4
3 ,∴ b 2 , a 2 4

高中数学 模块综合评价(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

高中数学 模块综合评价(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:(1+i )3(1-i )2等于()A .1+iB .-1+iC .1-iD .-1-i解析:(1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=-1-i. 答案:D2.如图所示的框图是结构图的是( ) A.P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q B.Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件C.D.入库→找书→阅览→借书→出库→还书 解析:选项C 为组织结构图,其余为流程图. 答案:C3.若大前提:任何实数的平方都大于0,小前提:a ∈R ,结论:a 2>0,那么这个演绎推理出错在()A .大前提B .小前提C .推理形式D .没有出错 答案:A4.演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数”所得结论错误的原因是()A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误解析:对数函数y =log a x (a >0,且a ≠1),当a >1时是增函数,当0<a <1时是减函数,故大前提错误.答案:A5.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *)个等式应为()A .9(n +1)+n =10n +9B .9(n -1)+n =10n -9C .9n +(n -1)=10n -9D .9(n -1)+(n -1)=10n -10解析:易知等式的左边是两项和,其中一项为序号n ,另一项为序号n -1的9倍,等式右边是10n -9.猜想第n 个等式应为9(n -1)+n =10n -9. 答案:B6.已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i解析:因为(1-i )2z=1+i ,所以z =(1-i )21+i =(1-i )2(1-i )(1+i )(1-i )=(1+i 2-2i )(1-i )1-i 2=-2i (1-i )2=-1-i.答案:D7.根据如下样本数据得到的回归方程为y ^=bx +a ,则( )A.a >0,b C .a <0,b >0D .a <0,b <0解析:作出散点图如下:观察图象可知,回归直线y ^=bx +a 的斜率b <0, 当x =0时,y ^=a >0.故a >0,b <0. 答案:B8.下列推理正确的是( )A .如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥2lg a ·lg bD .若a 为正实数,ab <0,则a b +b a=-⎝⎛⎭⎪⎫-a b +-b a ≤-2⎝ ⎛⎭⎪⎫-a b ·⎝ ⎛⎭⎪⎫-b a =-2解析:A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.D 利用基本不等式,推理正确.答案:D9.下面的等高条形图可以说明的问题是()A .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C .此等高条形图看不出两种手术有什么不同的地方D .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握解析:由等高条形图知,D 正确. 答案:D10.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数B .a ,b ,c 都大于1C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12,则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾所以a ,b ,c 中至少有一个不小于12.答案:D11.已知直线l ,m ,平面α,β且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β.其中正确命题的个数是() A .1B .2C .3D .4解析:若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确; 若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确; 若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确; 若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确. 答案:B12.执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析:输入x =0,y =1,n =1,得x =0,y =1,x 2+y 2=1<36,不满足条件;执行循环:n =2,x =12,y =2,x 2+y 2=14+4<36,不满足条件;执行循环:n =3,x =32,y =6,x 2+y 2=94+36>36,满足条件,结束循环,输出x =32,y =6,所以满足y =4x . 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2017·某某卷)已知a ∈R ,i 为虚数单位,若a -i2+i 为实数,则a 的值为________.解析:a -i 2+i =15(a -i)(2-i)=2a -15-a +25i依题意a +25=0,所以a =-2.答案:-214.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为______________________________________________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=115.(2017·卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________; ②该小组人数的最小值为________.解析:设男学生人数、女学生人数、教师人数分别为a ,b ,c ,则有2c >a >b >c ,且a ,b ,c ∈Z.①当c =4时,b 的最大值为6;②当c =3时,a 的值为5,b 的值为4,此时该小组人数的最小值为12.答案:①6②1216.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为______.解析:首先把两组值代入回归直线方程得⎩⎨⎧3b ^+a ^=17,8b ^+a ^=22,解得⎩⎨⎧b ^=1,a ^=14. 所以回归直线方程是y ^=x +14. 答案:y ^=x +14三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)复数z =1+i ,某某数a ,b ,使az +2b z -=(a +2z )2. 解:因为z =1+i ,所以az +2b z -=(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2),解得⎩⎪⎨⎪⎧a =-2,b =-1,或⎩⎪⎨⎪⎧a =-4,b =2.所以a =-2,b =-1或a =-4,b =2.18.(本小题满分12分)设a ,b ,c 为一个三角形的三边,S =12(a +b +c ),且S 2=2ab ,求证:S <2a .证明:因为S 2=2ab ,所以要证S <2a ,只需证S <S 2b,即b <S .因为S =12(a +b +c ),只需证2b <a +b +c ,即证b <a +c .因为a ,b ,c 为三角形三边, 所以b <a +c 成立,所以S <2a 成立. 19.(本小题满分12分)观察以下各等式:tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°, tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°, tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°. 分析上述各式的共同特点,猜想出表示一般规律的等式,并加以证明. 解:表示一般规律的等式是:若A +B +C =π,则tan A +tan B +tan C =tan A ·tan B ·tan C . 证明:由于tan(A +B )=tan A +tan B1-tan A tan B ,所以tan A +tan B =tan(A +B )(1-tan A tan B ). 而A +B +C =π,所以A +B =π-C .于是tan A +tan B +tan C =tan(π-C )(1-tan A tan B )+tan C =-tan C +tan A tanB tanC +tan C =tan A ·tan B ·tan C .故等式成立.20.(本小题满分12分)已知关于x 的方程x a +b x=1,其中a ,b 为实数. (1)若x =1-3i 是该方程的根,求a ,b 的值;(2)当a >0且b a >14时,证明该方程没有实数根.解:(1)将x =1-3i 代入x a +bx=1, 化简得⎝ ⎛⎭⎪⎫1a +b 4+⎝ ⎛⎭⎪⎫34b -3a i =1,所以⎩⎪⎨⎪⎧1a +b 4=1,34b -3a =0,解得a =b =2.(2)证明:原方程化为x 2-ax +ab =0, 假设原方程有实数解,那么Δ=(-a )2-4ab ≥0,即a 2≥4ab .因为a >0,所以b a ≤14,这与题设b a >14相矛盾,故原方程无实数根.21.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. (1)解:设等差数列{a n }的公差为d ,则⎩⎨⎧a 1=1+2,3a 1+3d =9+32,联立得d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 从而(q +2)2=(p +2)(r +2), 所以(q 2-pr )+(2q -p -r )2=0. 因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝ ⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0, 所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x -=110i=8010=8,=2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).。

高中数学 模块综合评价(二)(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题

高中数学 模块综合评价(二)(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(1+i)16-(1-i)16=() A .-256B .256i C .0 D .256解析:(1+i)16-(1-i)16=[(1+i)2]8-[(1-i)2]8=(2i)8-(-2i)8=0. 答案:C2.已知函数f (x )=ln x -x ,则函数f (x )的单调递减区间是() A .(-∞,1) B .(0,1)C .(-∞,0),(1,+∞)D .(1,+∞)解析:f ′(x )=1x -1=1-xx,x >0.令f ′(x )<0,解得x >1.答案:D3.设f (x )=10x+lg x ,则f ′(1)等于( ) A .10 B .10ln 10+lg e C.10ln 10+ln 10 D .11ln 10解析:f ′(x )=10x ln 10+1x ln 10,所以f ′(1)=10ln 10+1ln 10=10ln 10+lg e. 答案:B4.若函数f (x )满足f (x )=e xln x +3xf ′(1)-1,则f ′(1)=() A .-e 2B .-e3C .-eD .e解析:由已知可得f ′(x )=e xln x +exx+3f ′(1),令x =1,则f ′(1)=0+e +3f ′(1),解得f ′(1)=-e2.答案:A5.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除解析:因为“至少有一个”的否定为“一个也没有”. 答案:B6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:因为f ′(x )=12x 2-2ax -2b ,又因为在x =1处有极值,所以a +b =6,因为a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号,所以ab 的最大值等于9.答案:D7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( ) A .10B .14C .13D .100解析:设n ∈N *,则数字n 共有n 个,所以n (n +1)2≤100,即n (n +1)≤200,又因为n ∈N *,所以n =13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.答案:B8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.故选D.答案:D8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.答案:D10.证明不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立;(2)假设n =k (k ∈N *且k ≥1)时,不等式成立,即 k 2+k ≤k +1,则当n =k +1时,(k +1)2+(k +1)= k 2+3k +2≤k 2+3k +2+(k +2)=(k +2)2=(k +1)+1.所以当n =k +1时,不等式成立.上述证法( ) A .过程全都正确 B .n =1时验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而是通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.答案:D11.已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为( )A.13B.43 C .2D.83解析:由f ′(x )的图象知,f ′(x )=2x +2, 设f (x )=x 2+2x +c ,由f (0)=0知,c =0, 所以f (x )=x 2+2x ,由x 2+2x =0得x =0或x =-2. 故所求面积S =-∫0-2(x 2+2x )d x =-⎝ ⎛⎭⎪⎫13x 3+x 2|0-2=43.答案:B12.已知定义在R 上的奇函数f (x ),设其导数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值X 围为()A .(-1,2) B.⎝⎛⎭⎪⎫-1,12C.⎝ ⎛⎭⎪⎫12,2D .(-2,1) 解析:因为f (x )是奇函数,所以不等式xf ′(x )<f (-x )等价于xf ′(x )<-f (x ),即xf ′(x )+f (x )<0,即F ′(x )<0.当x ∈(-∞,0]时,函数F (x )单调递减;由于F (x )=xf (x )为偶函数,所以F (x )在[0,+∞)上单调递增.所以F (3)>F (2x -1)等价于F (3)>F (|2x -1|), 即3>|2x -1|,解得-1<x <2. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 解析:因为z =(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5. 答案:514.在△ABC 中,D 为边BC 的中点,则AO →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题:_______________.解析:将“△ABC ”类比为“四面体A ­BCD ”,将“D 为边BC 的中点”类比为“△BCD 的重心”,于是有类比结论:在四面体A ­BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →).答案:在四面体A ­BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →)15.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =____________.解析:f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,令f ′(x )=0,则x 2+2x -a =0,x ≠-1.又f (x )在x =1处取得极值,所以x =1是x 2+2x -a =0的根,所以a =3.答案:316.下列四个命题中,正确的为________(填上所有正确命题的序号). ①若实数a ,b ,c 满足a +b +c =3,则a ,b ,c 中至少有一个不小于1; ②若z 为复数,且|z |=1,则|z -i|的最大值等于2; ③对任意x ∈(0,+∞),都有x >sin x ; ④定积分∫π0π-x 2d x =π24.解析:①若实数a ,b ,c 满足a +b +c =3,则用反证法证明,假设a ,b ,c 都小于1,则a +b +c <3,与已知矛盾,故可得a ,b ,c 中至少有一个不小于1,故①正确;②若z 为复数,且|z |=1,则由|z -i|≤|z |+|-i|=2,可得|z -i|的最大值等于2,故②正确;③令y =x -sin x ,其导数为y ′=1-cos x ,y ′≥0,所以y =x -sin x 在R 上为增函数,当x =0时,x -sin x =0,所以对任意x ∈(0,+∞),都有x -sin x >0,故③正确.④定积分∫π0π-x 2d x 表示以原点为圆心,π为半径的圆的面积的四分之一,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ∈R,问复数z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在第几象限?复数z 对应点的轨迹是什么?解:由a 2-2a +4=(a -1)2+3≥3. -(a 2-2a +2)=-(a -1)2-1≤-1. 知z 的实部为正数,虚部为负数, 所以复数z 的对应点在第四象限.设z =x +y i(x ,y ∈R),则⎩⎪⎨⎪⎧x =a 2-2a +4,y =-(a 2-2a +2), 因为a 2-2a =(a -1)2-1≥-1, 所以x =a 2-2a +4≥3,消去a 2-2a ,得y =-x +2(x ≥3), 所以复数z 对应点的轨迹是一条射线, 其方程为y =-x +2(x ≥3). 18.(本小题满分12分)设函数f (x )=1x +2,a ,b ∈(0,+∞). (1)用分析法证明:f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23;(2)设a +b >4,求证:af (b ),bf (a )中至少有一个大于12.证明:(1)要证明f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23,只需证明1a b+2+1b a+2≤23, 只需证明b a +2b +ab +2a ≤23,即证b 2+4ab +a 22a 2+5ab +2b 2≤23,即证(a -b )2≥0,这显然成立,所以f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23.(2)假设af (b ),bf (a )都小于或等于12,即a b +2≤12,b a +2≤12,所以2a ≤b +2,2b ≤a +2,两式相加得a +b ≤4, 这与a +b >4矛盾,所以af (b ),bf (a )中至少有一个大于12.19.(本小题满分12分)已知函数f (x )=ex +2(x 2-3).(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数y =f (x )的极值. 解:(1)函数f (x )=e x +2(x 2-3),则f ′(x )=ex +2(x 2+2x -3)=ex +2(x +3)(x -1),故f ′(0)=-3e 2,又f (0)=-3e 2,故曲线y =f (x )在点(0,f (0))处的切线方程为y +3e 2=-3e 2(x -0),即3e 2x +y +3e 2=0.(2)令f ′(x )=0,可得x =1或x =-3, 如下表:↗↘↗所以当x =-3时,函数取极大值,极大值为f (-3)=e ,当x =1时,函数取极小值,极小值为f (1)=-2e 3.20.(本小题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )在[1,e]上的最大值,最小值;(2)求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3图象的下方.解:(1)由f (x )=12x 2+ln x 有f ′(x )=x +1x ,当x ∈[1,e]时,f ′(x )>0,所以f (x )max =f (e)=12e 2+1.f (x )min =f (1)=12.(2)设F (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x,当x ∈[1,+∞)时,F ′(x )<0,且F (1)=-16<0故x ∈[1,+∞)时F (x )<0,所以12x 2+ln x <23x 3,得证.21.(本小题满分12分)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ); (3)设x 1,x 2是f (x )的两个零点,证明:f ′⎝ ⎛⎭⎪⎫x 1+x 22>0.解:(1)f (x )的定义域为(0,+∞),由已知,得f ′(x )=x +1-a -a x =x 2+(1-a )x -ax=(x +1)(x -a )x.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增. 若a >0,则令f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0.此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )- [12(a -x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ).所以g ′(x )=2-a a +x -aa -x =2x2x 2-a 2.当0<x <a 时,g ′(x )<0,所以g (x )在(0,a )上是减函数. 而g (0)=0,所以g (x )<g (0)=0.故当0<x <a 时,f (a +x )<f (a -x ).(3)由(1)可知,当a ≤0时,函数f (x )至多有一个零点, 故a >0,从而f (x )的最小值为f (a ),且f (a )<0. 不妨设0<x 1<x 2,则0<x 1<a <x 2,所以0<a -x 1<a . 由(2)得f (2a -x 1)<f (x 1)=0=f (x 2), 从而x 2>2a -x 1,于是x 1+x 22>a .由(1)知,f ′⎝⎛⎭⎪⎫x 1+x 22>0.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)用数学归纳法证明你的猜想,并求出a n 的表达式. 解:(1)因为a n =S n -S n -1(n ≥2) 所以S n =n 2(S n -S n -1),所以S n =n 2n 2-1S n -1(n ≥2) 因为a 1=1,所以S 1=a 1=1. 所以S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1(n ∈N *). (2)①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N *)时,等式成立,即S k =2k k +1, 当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2k k +1, 所以a k +1=2(k +2)(k +1),所以S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1.所以n =k +1时等式也成立,得证.所以根据①、②可知,对于任意n ∈N *,等式均成立. 由S n =n 2a n ,得2n n +1=n 2a n ,所以a n =2n (n +1).。

【金版优课】高三数学人教A版选修2-1 模块综合检测2 Word版含解析

【金版优课】高三数学人教A版选修2-1 模块综合检测2 Word版含解析

模块综合测试(二)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知命题p :∀x ∈R ,x ≥1,那么命题¬p 为( ) A .∀x ∈R ,x ≤1 B .∃x ∈R ,x <1 C .∀x ∈R ,x ≤-1D .∃x ∈R ,x <-1解析:全称命题的否定是特称命题. 答案:B2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)与抛物线y 2=8x 有一个相同的焦点F ,且该点到双曲线的渐近线的距离为1,则该双曲线的方程为( )A. x 2-y 2=2 B. x 23-y 2=1C. x 2-y 2=3D. x 2-y 23=1解析:本题主要考查双曲线与抛物线的有关知识.由已知,a 2+b 2=4 ①,焦点F (2,0)到双曲线的一条渐近线bx -ay =0的距离为|2b |a 2+b 2=1 ②,由①②解得a 2=3,b 2=1,故选B.答案:B3.已知命题p ,q ,如果命题“¬p ”与命题“p ∨q ”均为真命题,那么下列结论正确的是( )A .p ,q 均为真命题B .p ,q 均为假命题C .p 为真命题,q 为假命题D .p 为假命题,q 为真命题解析:命题“¬p ”为真,所以命题p 为假命题.又命题“p ∨q ”也为真命题,所以命题q 为真命题.答案:D4.在三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,已知命题p :a >b ,命题q :tan 2A >tan 2B ,则p 是q 的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件解析:本题主要考查充要条件的判定以及三角形、三角函数的有关知识.在三角形中,命题p :a >b ⇔A >B .命题q :tan 2A >tan 2B ⇔sin(A +B )sin(A -B )>0⇔A >B ,显然p 是q 的充要条件,故选C.答案:C5.如右图,在三棱锥A —BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 中点,则AE →·BC →等于( )A .0B .1C .2D .3解析:如右图,建立空间直角坐标系. 设DC =DB =a ,DA =b ,则B (a,0,0)、C (0,a,0)、A (0,0,b ),E (a 2,a2,0),所以BC →=(-a ,a,0),AE →=(a 2,a 2,-b ),AE →·BC →=-a 22+a 22+0=0.答案:A6.若直线y =x +1与椭圆x 22+y 2=1相交于A ,B 两个不同的点,则|AB →|等于( )A.43B.423C.83D.823解析:联立方程组⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1,得3x 2+4x =0,解得A (0,1),B (-43,-13),所以|AB →|=(-43-0)2+(-13-1)2=423. 答案:B7.[2014·浙江省杭州二中期末考试]给出下列命题: ①若向量a ,b 共线,则向量a ,b 所在直线平行; ②若三个向量a ,b ,c 两两共面,则a ,b ,c 共面;③已知空间中三个向量a ,b ,c ,则对空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c 成立.其中正确命题的个数是( ) A. 0 B. 1 C. 2D. 3解析:本题主要考查空间向量的共线、共面、空间向量的基本定理等基础知识.若向量a ,b 共线,则向量a ,b 所在直线平行或在同一条直线上,故①不正确;在三棱锥P -ABC 中,取P A →,PB →,PC →分别为向量a ,b ,c ,则a ,b ,c 两两共面,但a ,b ,c 不共面,故②不正确;在三棱锥P -ABC 中,取AB →,BC →,CA →分别为向量a ,b ,c ,则对向量P A →,不存在实数x ,y ,z 使得P A →=x a +y b +z c 成立,故③不正确;综上,正确命题的个数是0,故选A.答案:A8.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”; ②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题; ③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”; ④“x >2”是“x 2>4”的必要不充分条件. A .0个 B .1个 C .2个D .3个解析:只有③中结论正确. 答案:B9.[2014·河南省开封高中月考]如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E 、F 分别是面A 1B 1C 1D 1、面BCC 1B 1的中心,则E 、F 两点间的距离为( )A. 1B.52C.62D. 32解析:本题主要考查空间中两点间的距离.以点A 为原点,建立如图所示的空间直角坐标系,则E (1,1,2),F (2,1,22),所以|EF |=(1-2)2+(1-1)2+(2-22)2=62,故选C. 答案:C10.如右图,在直三棱柱ABC —A 1B 1C 1中,AC =BC =CC 1,AC ⊥BC ,点D 是AB 的中点,则直线B 1B 和平面CDB 1所成角的正切值为( )A .22 B.322 C.2D.22解析:如下图,建立空间直角坐标系,可设AC =BC =CC 1=1,则A (1,0,0),B (0,1,0),D (12,12,0),B 1(0,1,1),CD →=(12,12,0),CB 1→=(0,1,1),B 1B →=(0,0,-1).设平面CDB 1的法向量为n =(x ,y ,z ), 由⎩⎨⎧n ·CD →=0,n ·CB 1→=0,即⎩⎪⎨⎪⎧12x +12y =0,y +z =0,不妨取n =(1,-1,1),所以cos 〈n ,B 1B →〉=n ·B 1B→|n ||B 1B →|=-13=-33.设直线B 1B 和平面CDB 1所成角为α,则sin α=33, 故cos α=63,tan α=22. 答案:D11.已知F 是抛物线y 2=4x 的焦点,过点F 且斜率为3的直线交抛物线于A 、B 两点,则||F A |-|FB ||的值为( )A. 83B. 163C. 833D. 823解析:本题主要考查直线与抛物线的位置关系以及抛物线的有关性质.直线AB 的方程为y =3(x -1),由⎩⎪⎨⎪⎧y 2=4x y =3(x -1)得3x 2-10x +3=0,故x 1=3,x 2=13,所以||F A |-|FB ||=|x 1-x 2|=83.故选A.答案:A12.[2012·浙江高考]如图,F 1、F 2分别是双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与双曲线C 的两条渐近线分别交于P 、Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则双曲线C 的离心率是( )A.233B.62C. 2D. 3解析:本题主要考查双曲线离心率的求解.结合图形的特征,通过PQ 的中点,利用线线垂直的性质进行求解.不妨设c =1,则直线PQ :y =bx +b ,双曲线C 的两条渐近线为y =±b a x ,因此有交点P (-a a +1,b a +1),Q (a 1-a ,b 1-a ),设PQ 的中点为N ,则点N 的坐标为(a 21-a 2,b 1-a 2),因为线段PQ 的垂直平分线与x 轴交于点M ,|MF 2|=|F 1F 2|,所以点M 的坐标为(3,0),因此有k MN =b1-a 2-0a 21-a 2-3=-1b ,所以3-4a 2=b 2=1-a 2,所以a 2=23,所以e =62.答案:B二、填空题(本大题共4小题,每小题5分,共20分) 13.命题“∃x ∈R ,x 2+2x +2≤0”的否定是__________.解析:特称命题的否定是全称命题,故原命题的否定是∀x ∈R ,x 2+2x +2>0. 答案:∀x ∈R ,x 2+2x +2>014.已知双曲线x 2m -y 2n =1的一条渐近线方程为y =43x ,则该双曲线的离心率e 为__________.解析:当m >0,n >0时,可设a =3k ,b =4k , 则c =5k ,所以离心率e =53;当m <0,n <0时,可设a =4k ,b =3k , 则c =5k ,所以离心率e =54.答案:53或5415.正方体ABCD —A 1B 1C 1D 1中,点E 、F 分别是底面A 1C 1和侧面CD 1的中心,若EF →+λA 1D →=0(λ∈R ),则λ=__________.解析:如右图,连结A 1C 1,C 1D ,则E 在A 1C 1上,F 在C 1D 上易知EF 綊12A 1D ,∴EF →=12A 1D →,即EF →-12A 1D →=0,∴λ=-12.答案:-1216. [2014·湖北省襄阳五中月考]已知函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题:①若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数;②若a 2-b >0,则f (x )在区间[a ,+∞)上是增函数;③当x =a 时,f (x )有最小值b -a 2;④当a 2-b ≤0时,f (x )有最小值b -a 2.其中正确命题的序号是________.解析:本题考查含绝对值的二次函数单调区间和最小值问题的求解.由题意知f (x )=|x 2-2ax +b |=|(x -a )2+b -a 2|.若a 2-b ≤0,则f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2,可知f (x )在区间[a ,+∞)上是增函数,所以①正确,②错误;只有在a 2-b ≤0的条件下,才有x =a 时,f (x )有最小值b -a 2,所以③错误,④正确.答案:①④三、解答题(本大题共6小题,共70分)17.(10分)(1)设集合M ={x |x >2},P ={x |x <3},则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么条件?(2)求使不等式4mx 2-2mx -1<0恒成立的充要条件. 解:(1)x ∈R ,x ∈(M ∩P )⇔x ∈(2,3). 因为“x ∈M 或x ∈P ”x ∈(M ∩P ). 但x ∈(M ∩P )⇒x ∈M 或x ∈P .故“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的必要不充分条件.(2)当m ≠0时,不等式4mx 2-2mx -1<0恒成立⇔⎩⎨⎧4m <0Δ=4m 2+16m <0⇔-4<m <0.又当m =0时,不等式4mx 2-2mx -1<0对x ∈R 恒成立, 故使不等式4mx 2-2mx -1<0恒成立的充要条件是-4<m ≤0.18.(12分)[2014·福建省质检]某几何体ABC -A 1B 1C 1的三视图和直观图如图所示.(1)求证:A 1C ⊥平面AB 1C 1; (2)求二面角C 1-AB 1-C 的余弦值.解:(1)由三视图可知,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面A 1B 1C 1,B 1C 1⊥A 1C 1,且AA 1=AC =4,BC =3.以点C 为原点,分别以CA 、CB 、CC 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图.由已知可得A (4,0,0),B (0,3,0),C (0,0,0),A 1(4,0,4),B 1(0,3,4),C 1(0,0,4),∴CA 1→=(4,0,4),C 1A →=(4,0,-4),C 1B 1→=(0,3,0).∴CA 1→·C 1A →=4×4+0×0+4×(-4)=0,CA 1→·C 1B 1→=4×0+0×3+4×0=0. ∴CA 1⊥C 1A ,CA 1⊥C 1B 1,又C 1A ∩C 1B 1=C 1,∴A 1C ⊥平面AB 1C 1. (2)由(1)得,CA →=(4,0,0),CB 1→=(0,3,4),设平面AB 1C 的法向量为n =(x ,y ,z ),则CA →⊥n ,CB 1→⊥n , ∴⎩⎨⎧CB 1→·n =0CA→·n =0,∴⎩⎪⎨⎪⎧4x =03y +4z =0,即x =0,令y =4,则z =-3,得平面AB 1C 的一个法向量为n =(0,4,-3). 由(1)知,CA 1→是平面AB 1C 1的一个法向量,cos 〈n ,CA 1→〉=n ·CA 1→|n ||CA 1→|=-12202=-3210.由图可知,二面角C 1-AB 1-C 为锐角, 故二面角C 1-AB 1-C 的余弦值为3210.19.(12分)设直线l :y =x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两个不同的点,l 与x 轴相交于点F .(1)证明:a 2+b 2>1;(2)若F 是椭圆的一个焦点,且AF →=2FB →,求椭圆的方程.解:(1)证明:将x =y -1代入x 2a 2+y 2b 2=1,消去x ,整理,得(a 2+b 2)y 2-2b 2y +b 2(1-a 2)=0.由直线l 与椭圆相交于两个不同的点,得Δ=4b 4-4b 2(a 2+b 2)(1-a 2)=4a 2b 2(a 2+b 2-1)>0,所以a 2+b 2>1. (2)设A (x 1,y 1),B (x 2,y 2),则(a 2+b 2)y 21-2b 2y 1+b 2(1-a 2)=0, ① 且(a 2+b 2)y 22-2b 2y 2+b 2(1-a 2)=0.②因为AF →=2FB →,所以y 1=-2y 2.将y 1=-2y 2代入①,与②联立,消去y 2,整理得(a 2+b 2)(a 2-1)=8b 2. ③因为F 是椭圆的一个焦点,则有b 2=a 2-1. 将其代入③式,解得a 2=92,b 2=72,所以椭圆的方程为2x 29+2y 27=1.20.(12分)已知两点M (-1,0)、N (1,0),动点P (x ,y )满足|MN →|·|NP →|-MN →·MP →=0, (1)求点P 的轨迹C 的方程;(2)假设P 1、P 2是轨迹C 上的两个不同点,F (1,0),λ∈R ,FP 1→=λFP 2→,求证:1|FP 1→|+1|FP 2→|=1.解:(1)|MN →|=2,则MP →=(x +1,y ), NP →=(x -1,y ). 由|MN →||NP →|-MN →·MP →=0, 则2(x -1)2+y 2-2(x +1)=0,化简整理得y 2=4x .(2)由FP 1→=λ·FP 2→,得F 、P 1、P 2三点共线,设P 1(x 1,y 1)、P 2(x 2,y 2),斜率存在时,直线P 1P 2的方程为:y =k (x -1) 代入y 2=4x 得:k 2x 2-2(k 2+2)x +k 2=0. 则x 1x 2=1,x 1+x 2=2k 2+4k 2.∴1|FP 1→| +1|FP 2→| =1x 1+1+1x 2+1 =x 1+x 2+2x 1x 2+(x 1+x 2)+1=1.当P 1P 2垂直x 轴时,结论照样成立.21.(12分)[2013·江西高考]如图,四棱锥P -ABCD 中,P A ⊥平面ABCD ,E 为BD 的中点,G 为PD 的中点,△DAB ≌△DCB ,EA =EB =AB =1,P A =32,连结CE 并延长交AD于F .(1)求证:AD ⊥平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值.解:(1)证明:在△ABD 中,因为E 是BD 中点,所以EA =EB =ED =AB =1, 故∠BAD =π2,∠ABE =∠AEB =π3,因为△DAB ≌△DCB ,所以△EAB ≌△ECB ,从而有∠FED =∠BEC =∠AEB =π3,所以∠FED =∠FEA ,故EF ⊥AD ,AF =FD ,又因为PG =GD , 所以FG ∥P A . 又P A ⊥平面ABCD ,所以GF ⊥AD ,故AD ⊥平面CFG .(2)以点A 为坐标原点建立如图所示的坐标系,则A (0,0,0),B (1,0,0),C (32,32,0),D (0,3,0),P (0,0,32),故BC →=(12,32,0),CP →=(-32,-32,32),CD →=(-32,32,0).设平面BCP 的法向量n 1=(1,y 1,z 1), 则⎩⎨⎧ 12+32y 1=0,-32-32y 1+32z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=(1,-33,23). 设平面DCP 的法向量n 2=(1,y 2,z 2), 则⎩⎨⎧-32+32y 2=0,-32-32y 2+32z 2=0,解得⎩⎨⎧y 2=3,z 2=2,即n 2=(1,3,2).从而平面BCP 与平面DCP 的夹角的余弦值为cos θ=|n 1·n 2||n 1||n 2|=43169·8=24. 22.(12分)已知抛物线y 2=4x ,点F 是抛物线的焦点,点M 在抛物线上,O 为坐标原点.(1)当FM →·OM →=4时,求点M 的坐标; (2)求|OM →||FM →|的最大值;(3)设点B (0,1),是否存在常数λ及定点H ,使得BM →+2FM →=λHM →恒成立?若存在,求出λ的值及点H 的坐标;若不存在,请说明理由.解:(1)抛物线y 2=4x 的焦点F 的坐标是(1,0), 设点M (x 0,y 0),其中x 0≥0.因为FM →=(x 0-1,y 0),OM →=(x 0,y 0), 所以FM →·OM →=x 0(x 0-1)+y 20=x 20+3x 0=4. 解得x 0=1或x 0=-4(舍), 因为y 20=4x 0,所以y 0=±2, 即点M 的坐标为(1,2),(1,-2). (2)设点M (x ,y ),其中x ≥0. |OM →||FM →| =x 2+y 2(x -1)2+y2=x 2+4x(x +1)2=-3(x +1)2+2x +1+1. 设t =1x +1(0<t ≤1),则|OM →||FM →|=-3t 2+2t +1=-3(t -13)2+43.因为0<t ≤1,所以当t =13(即x =2)时,|OM →||FM →| 取得最大值233.(3)设点M (x ,y ),其中x ≥0.假设存在常数λ及定点H (x 1,y 1),使得BM →+2FM →=λHM →恒成立. 由BM →+2FM →=λHM →,得(x ,y -1)+2(x -1,y )=λ(x -x 1,y -y 1),即⎩⎪⎨⎪⎧3x -2=λx -λx 1,3y -1=λy -λy 1,整理,得⎩⎪⎨⎪⎧(λ-3)x +2-λx 1=0,(λ-3)y +1-λy 1=0.由x 及y 的任意性知λ=3, 所以x 1=23,y 1=13.综上,存在常数λ=3及定点H (23,13),使得BM →+2FM →=λHM →恒成立.。

人教版数学高二数学人教A版选修2-1模块综合检测

人教版数学高二数学人教A版选修2-1模块综合检测

模块综合检测一、选择题1.命题“∃x 0∈R ,2x 0-3>1”的否定是( ) A .∃x 0∈R ,2x 0-3≤1 B .∀x ∈R ,2x -3>1 C .∀x ∈R ,2x -3≤1 D .∃x 0∈R ,2x 0-3>12.若抛物线的准线方程为x =1,焦点坐标为(-1,0),则抛物线的方程是( ) A .y 2=2x B .y 2=-2x C .y 2=4x D .y 2=-4x3.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知直线l 1的方向向量a =(2,4,x ),直线l 2的方向向量b =(2,y ,2),若|a |=6,且a ⊥b ,则x +y 的值是( )A .-3或1B .3或-1C .-3D .1 5.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真6.以椭圆x 2169+y 2144=1的右焦点为圆心,且与双曲线x 29-y 216=1的渐近线相切的圆的方程是( )A .x 2+y 2-10x +9=0B .x 2+y 2-10x -9=0C .x 2+y 2+10x +9=0D .x 2+y 2+10x -9=07.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .[1,3] B .[-1,3] C .[-3,3] D .[-1,1] 8.下列结论中,正确的为( )①“p 且q 为真”是“p 或q 为真”的充分不必要条件; ②“p 且q 为假”是“p 或q 为真”的充分不必要条件;③“p 或q 为真”是“为假”的必要不充分条件;④“为真”是“p 且q 为假”的必要不充分条件.A .①②B .①③C .②④D .③④9.双曲线x 2m -y 2n =1(mn ≠0)的离心率为2,它的一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为( )A.316B.38C.163D.8310.若直线y =2x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共点,则双曲线的离心率的取值范围为( )A .(1,5)B .(5,+∞)C .(1,5]D .[5,+∞)11.如图,将边长为1的正方形ABCD 沿对角线BD 折成直二面角,若点P 满足的值为( )A.32 B .2 C.10-24 D.9412.过M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1、P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2 C.12 D .-12二、填空题13.双曲线x 2m 2+12-y 24-m 2=1的焦距是________.14.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”、“p ∧q ”、“”中是真命题的有________.15.已知A (0,-4),B (3,2),抛物线y 2=x 上的点到直线AB 的最短距离为________. 16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 1(1,0),离心率为e .设A ,B 为椭圆上关于原点对称的两点,AF 1的中点为M ,BF 1的中点为N ,原点O 在以线段MN 为直径的圆上.设直线AB 的斜率为k ,若0<k ≤3,则e 的取值范围为________.三、解答题17.已知命题p :方程x 22-m +y 2m -1=1所表示的图形是焦点在y 轴上的双曲线;命题q :方程4x 2+4(m -2)x +1=0无实根,又p ∨q 为真,綈q 为真,求实数m 的取值范围.18.已知椭圆x 2b 2+y 2a 2=1(a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)若直线l :x -y +m =0与椭圆交于A 、B 两点,且线段AB 的中点在圆x 2+y 2=1上,求m 的值.19.在等腰梯形ABCD 中,AD ∥BC ,AD =12BC ,∠ABC =60°,N 是BC 的中点.将梯形ABCD 绕AB 旋转90°,得到梯形ABC ′D ′(如图).(1)求证:AC ⊥平面ABC ′; (2)求证:C ′N ∥平面ADD ′; (3)求二面角A -C ′N -C 的余弦值.20.已知点P 是⊙O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q 满足(1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在不重合的两点M ,N ,使(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由.21.如图,四边形ABCD 是边长为2的正方形,MD ⊥平面ABCD ,NB ∥MD ,且NB =1,MD =2.(1)求证:AM ∥平面BCN ;(2)求AN 与平面MNC 所成角的正弦值;(3)E 为直线MN 上一点,且平面ADE ⊥平面MNC ,求MEMN的值.22.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.答 案1. 解析:选C 由特称命题的否定的定义即知.2. 解析:选D ∵抛物线的准线方程为x =1,焦点坐标为(-1,0),∴抛物线的开口方向向左且顶点在原点,其中p =2,∴抛物线的标准方程为y 2=-4x .3. 解析:选A 先求出两条直线平行的充要条件,再判断. 若直线l 1与l 2平行,则a (a +1)-2×1=0, 即a =-2或a =1,所以a =1是直线l 1与直线l 2平行的充分不必要条件.4. 解析:选A 由题意,得⎩⎨⎧4+16+x 2=6,4+4y +2x =0,解得⎩⎪⎨⎪⎧x =4,y =-3或⎩⎪⎨⎪⎧x =-4,y =1,∴x +y =1或x +y =-3.5. 解析:选D 否命题和逆命题互为逆否命题,有着一致的真假性,故选D.6. 解析:选A 椭圆右焦点F (5,0),双曲线渐近线方程为y =±43x ,则焦点F 到y =43x的距离为4,所以圆的方程为(x -5)2+y 2=16,即x 2+y 2-10x +9=0.7. 解析:选B 根据题意可得∀x ∈R , 都有x 2+(a -1)x +1≥0,∴Δ=(a -1)2-4≤0,∴-1≤a ≤3.8. 解析:选B p ∧q 为真⇒p 真q 真⇒p ∨q 为真,故①正确,由为假⇒p 为真⇒p∨q 为真,故③正确.9. 解析:选A 抛物线y 2=4x的焦点为F (1,0),故双曲线x 2m -y 2n=1中,m >0,n >0且m +n =c 2=1.① 又双曲线的离心率e =c m =m +nm=2,② 联立方程①②,解得⎩⎨⎧m =14,n =34.故mn =316.10. 解析:选B 双曲线的两条渐近线中斜率为正的渐近线为y =ba x .由条件知,应有ba>2, 故e =ca =a 2+b 2a =1+⎝⎛⎭⎫b a 2> 5.11.=14+14+2-12×1×1×12+1×2×22-1×2×22=94. 12. 解析:选D 设直线m :y =k 1(x +2),代入x 22+y 2=1,得:x 2+2k 21(x +2)2-2=0, 整理,得(1+2k 21)x 2+8k 21x +8k 21-2=0, Δ=(8k 21)2-4(1+2k 21)(8k 21-2)>0,解得k 21<12. 设P 1P 2的中点P (x 0,y 0),则x 0=x 1+x 22=-4k 211+2k 21,y 0=k 1(x 0+2)=2k 11+2k 21. ∴k 2=-12k 1.∴k 1k 2=-12. 13. 解析:依题意a 2=m 2+12,b 2=4-m 2,所以c 2=a 2+b 2=16,c =4,2c =8. 答案:814. 解析:依题意可知p 假,q 真,所以“p ∨q ”为真,“p ∧q ”为假,“”为真.答案:p ∨q ,15. 解析:直线AB 为2x -y -4=0,设抛物线y 2=x上的点P (t ,t 2),d =|2t -t 2-4|5=t2-2t+45=(t-1)2+35≥35=355.答案:35516.解析:设A(m,n),则B(-m,-n),k=nm,因为原点O在以线段MN为直径的圆上,所以OM⊥ON,又因为M为AF1的中点,所以OM∥BF1,同理ON∥AF1,所以OMF1N是矩形,即AF1⊥BF1,所以(1-m)(1+m)-n2=0,即m2+n2=1.又m2a2+n2b2=1,于是有m2a2+n2b2=m2+n2,从而1a2-11-1b2=n2m2=k2≤3,即1a2+3b2≥4,将b2=a2-1代入,并整理得4a4-8a2+1≤0,解得2-32≤a2≤2+32.又a>c=1,所以4-23≤1a2<1,即3-1≤e<1.答案:[3-1,1)17.解:因为方程x22-m+y2m-1=1表示焦点在y轴上的双曲线,所以⎩⎪⎨⎪⎧2-m<0,m-1>0,即m>2.故命题p:m>2;因为方程4x 2+4(m -2)x +1=0无实根, 所以Δ=[4(m -2)]2-4×4×1<0, 即m 2-4m +3<0,所以1<m <3.故命题q :1<m <3. 因为p ∨q 为真,为真,所以p 真q 假.即⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3,此时m ≥3. 综上所述,实数m 的取值范围为{m |m ≥3}. 18. 解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,c =1,b =1,故椭圆的方程为x 2+y 22=1. (2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,Δ=(2m )2-12(m 2-2)>0,-3<m <3,所以x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3,即M ⎝⎛⎭⎫-m 3,2m3,又因为M 点在圆x 2+y 2=5上, 所以⎝⎛⎭⎫-m 32+⎝⎛⎭⎫2m 32=1,解得m =±53. 19. 解:(1)证明:因为AD =12BC ,N 是BC 的中点,所以AD =NC ,又AD ∥BC ,所以四边形ANCD 是平行四边形,所以AN =DC ,又因为四边形ABCD 是等腰梯形, ∠ABC =60°,所以AB =BN =AN ,所以NC =AN ,所以四边形ANCD 是菱形,所以∠ACB =12∠DCB=30°,所以∠BAC =90°,即AC ⊥AB .由已知可知平面C ′BA ⊥平面ABC ,因为平面C ′BA ∩平面ABC =AB ,所以AC ⊥平面ABC ′.(2)证明:因为AD ∥BC ,AD ′∥BC ′,AD ∩AD ′=A , BC ∩BC ′=B ,所以平面ADD ′∥平面BCC ′,又因为C ′N ⊂平面BCC ′,所以C ′N ∥平面ADD ′.(3)连接BD 交AN 于点O .由(1)知AC ⊥平面ABC ′,同理,AC ′⊥平面ABC .建立如图所示的空间直角坐标系,设AB =1,则B (1,0,0),C (0,3,0),C ′(0,0,3),N ⎝⎛⎭⎫12,32,0,设平面C ′NC 的法向量为n =(x ,y ,z ),得平面C ′NC 的一个法向量为n =(3,1,1),因为AC ′⊥平面ABC ,所以平面C ′AN ⊥平面ABC ,又易知BD ⊥AN ,而平面C ′AN ∩平面ABC =AN ,所以BD ⊥平面C ′AN . 因为BD 与AN 交于点O ,则O 为AN 的中点,O ⎝⎛⎭⎫14,34,0,所以平面C ′AN 的一个法向量为=⎝⎛⎭⎫34,-34,0,又由图形知二面角A -C ′N -C 为钝角,所以二面角A -C ′N -C 的余弦值为-55. 20. 解:(1)设P (x 0,y 0),Q (x ,y ),依题意,得点D 的坐标为D (x 0,0),=(x -x 0,y ),=(0,y 0),∴⎩⎪⎨⎪⎧x -x 0=0,y =23y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=32y ,∵点P 在⊙O 上,故x 20+y 20=9, ∴x 29+y 24=1,∴动点Q 的轨迹方程为x 29+y 24=1. (2)假设椭圆x 29+y 24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)满足,则E (1,1)是线段MN 的中点,且有⎩⎨⎧x 1+x 22=1,y 1+y 22=1,即⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2,又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,∴⎩⎨⎧x 219+y 214=1,x 229+y 224=1,两式相减,得(x 1-x 2)(x 1+x 2)9+(y 1-y 2)(y 1+y 2)4=0,∴k MN =y 1-y 2x 1-x 2=-49,∴直线MN 的方程为4x +9y -13=0, ∴椭圆上存在点M ,N 满足,此时直线MN 的方程为4x +9y -13=0.21. 解:因为NB ∥MD ,MD ⊥平面ABCD , 所以NB ⊥平面ABCD , 因为ABCD 为正方形,所以分别以DA ,DC ,DM 所在直线为x ,y ,z 轴建立空间直角坐标系,则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,0,2),N (2,2,1).(2)设平面MNC 的法向量为n =(x ,y ,z ),故AN 与平面MNC 所成角的正弦值为255.所以m =⎝⎛⎭⎫0,λ-22λ,1,由(2)知,平面MNC 的法向量n =(1,-2,-2), 所以m·n =0,所以-2·λ-22λ-2=0,所以λ=23, 所以|ME |=2,|MN |=3,所以|ME ||MN |=23.22. 解:(1)由已知有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎫c ,233c .由|FM |=(c +c )2+⎝⎛⎭⎫233c -02=433,解得c =1, 所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,高中数学-打印版精心校对完整版 得t =y x +1,即y =t (x +1)(x ≠-1),与椭圆方程联立得⎩⎪⎨⎪⎧y =t (x +1),x 23+y 22=1,消去y ,整理得2x 2+3t 2(x +1)2=6.又由已知,得t =6-2x 23(x +1)2>2, 解得-32<x <-1,或-1<x <0. 设直线OP 的斜率为m ,得m =y x,即y =mx (x ≠0), 与椭圆方程联立,整理可得m 2=2x 2-23. ①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝⎛⎭⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0,因此m <0, 于是m =-2x 2-23,得m ∈⎝⎛⎭⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块综合检测(时间120分钟 满分150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A.18 B .-18C .8D .-8 解析:选B 由y =ax 2得x 2=1a y , ∴1a =-8,∴a =-18.2.已知α,β是两个不同的平面,直线l ⊂β,则“α∥β”是“l ∥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析:选A ∵α,β是两个不同的平面,直线l ⊂β,则“α∥β”⇒“l ∥α”,反之不成立,∴α,β是两个不同的平面,直线l ⊂β,则“α∥β”是“l ∥α”的充分不必要条件.故选A.3.已知向量a =(-1,1,0),b =(1,0,2),且ka +b 与a -2b 互相垂直,则k =( ) A .-114B .15C.35D.114解析:选D ka +b =(-k +1,k,2),a -2b =(-3,1,-4),由(ka +b )·(a -2b )=3(k -1)+k -8=0,解得k =114.4.若双曲线C 1:x 22-y 28=1与C 2:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线相同,且双曲线C 2的焦距为45,则b =( )A .2B .4C .6D .8解析:选B 由题意得,ba =2⇒b =2a .① 因为C 2的焦距2c =45,所以c =a 2+b 2=2 5.②联立①②,得b =4,故选B.5.双曲线x 2m -y 2n =1(mn ≠0)的离心率为2,它的一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为( )A.316B.38C.163D.83解析:选A 抛物线y 2=4x 的焦点为F (1,0), 故双曲线x 2m -y 2n =1中, m >0,n >0且m +n =c 2=1.① 又双曲线的离心率e =cm=m +nm =2,②联立方程①②,解得⎩⎨⎧m =14,n =34.故mn =316. 6.已知命题p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为( )A .[3,+∞)B .(-∞,8)C .RD .[3,8)解析:选D 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围为[3,8).7.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为( ) A.55B.33C.255D.63解析:选C 取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝⎛⎭⎫0,0,32, B ⎝⎛⎭⎫0,-12,0,D ⎝⎛⎭⎫32,0,0. ∴OA ―→=⎝⎛⎭⎫0,0,32,BA ―→=0,12,32,BD ―→=⎝⎛⎭⎫32,12,0.由于OA ―→=⎝⎛⎭⎫0,0,32为平面BCD 的一个法向量,可进一步求出平面ABD 的一个法向量n =(1,-3,1),∴cos 〈n ,OA ―→〉=55,∴sin 〈n ,OA ―→〉=255.8.在空间四边形ABCD 中,AB ,AC ,AD 两两垂直,则下列结论不成立的是( ) A .|AB ―→+AC ―→+AD ―→ |=|AB ―→+AC ―→-AD ―→| B .|AB ―→+AC ―→+AD ―→|2=|AB ―→|2+|AC ―→|2+|AD ―→|2 C .(AB ―→+AC ―→+AD ―→)·BC ―→=0 D .AB ―→·CD ―→=AC ―→·BD ―→=AD ―→·BC ―→解析:选C 因为AB ―→,AC ―→,AD ―→两两垂直,所以(AB ―→+AC ―→)·AD ―→=0,所以(AB ―→+AC ―→+AD ―→)2=(AB ―→+AC ―→)2+AD 2―→+2(AB ―→+AC ―→)·AD ―→=(AB ―→+AC ―→)2+AD 2―→,(AB ―→+AC ―→-AD ―→)2=(AB ―→+AC ―→)2+AD 2―→-2(AB ―→+AC ―→)·AD ―→=(AB ―→+AC ―→)2+AD 2―→,故|AB ―→+AC ―→+AD ―→|=|AB ―→+AC ―→-AD ―→|,因此A 正确;易得B 正确;C 中,(AB ―→+AC ―→+AD ―→)·BC ―→=(AB ―→+AC ―→+AD ―→)·(AC ―→-AB ―→)=AB ―→·AC ―→-|AB ―→|2+|AC ―→|2-AC ―→·AB ―→+AD ―→·AC ―→-AD ―→·AB ―→=|AC ―→|2-|AB ―→|2,当|AC ―→|=|AB ―→|时,|AC ―→|2-|AB ―→|2=0,否则不成立,因此C 不正确;D 中,AB ―→·CD ―→=AB ―→·(AD ―→-AC ―→)=AB ―→ ·AD ―→-AB ―→·AC ―→=0,同理可得AC ―→·BD ―→=0,AD ―→·BC ―→=0,因此D 正确.9.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 解析:选B 法一:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆的定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,|AF 2|=2|F 2B |, ∴|AB |=|BF 1|=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又∵|AF 1|+|AF 2|=2a , ∴|AF 1|=|AF 2|=a , ∴点A 是椭圆的短轴端点. 如图,不妨设A (0,-b ),由F 2(1,0),AF 2―→=2F 2B ―→,得B ⎝⎛⎭⎫32,b 2.由点B 在椭圆上,得94a 2+b 24b 2=1,得a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.法二:由题意设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=1a .在等腰三角形ABF 1中,cos 2θ=a 23a 2=13,所以13=1-2⎝⎛⎭⎫1a 2,解得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1.故选B. 10.若点P 为共焦点的椭圆C 1和双曲线C 2的一个交点,F 1,F 2分别是它们的左、右焦点,设椭圆的离心率为e 1,双曲线的离心率为e 2,若PF 1―→·PF 2―→=0,则1e 21+1e 22=( )A .1B .2C .3D .4解析:选B 设椭圆的方程为x 2a 21+y 2b 21=1(a 1>b 1>0),双曲线的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),它们的半焦距为c ,不妨设P 为它们在第一象限的交点,因为PF 1―→·PF 2―→=0,故|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2①.由椭圆和双曲线的定义知,⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,解得|PF 1|=a 1+a 2,|PF 2|=a 1-a 2,代入①式,得(a 1+a 2)2+(a 1-a 2)2=4c 2,即a 21+a 22=2c 2,所以1e 21+1e 22=a 21c 2+a 22c 2=a 21+a 22c2=2.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上)11.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足O P ―→·O A ―→=4,则动点P 的轨迹方程是________.解析:由O P ―→·O A ―→=4得x ×1+y ×2=4,因此所求动点P 的轨迹方程为x +2y -4=0. 答案:x +2y -4=012.点F 是抛物线C :y 2=2px (p >0)的焦点,l 是准线,A 是抛物线在第一象限内的点,直线AF 的倾斜角为60°,AB ⊥l 于B ,△ABF 的面积为3,则p 的值为______,点A 坐标为________.解析:设A (x ,y ),∵直线AF 的倾斜角为60°,∴y =3⎝⎛⎭⎫x -p2①,∵△ABF 的面积为3,∴12·⎝⎛⎭⎫x +p 2·y =3②,∵A 是抛物线在第一象限内的点,∴y 2=2px ③,∴由①②③可得p =1,x =32,y = 3. 答案:1 ⎝⎛⎭⎫32,3 13.已知P 为抛物线C :y 2=4x 上的一点,F 为抛物线C 的焦点,其准线方程为____________,若准线与x 轴交于点N ,直线NP 与抛物线交于另一点Q ,且|PF |=3|QF |,则点P 坐标为____________.解析:∵y 2=4x ,∴焦点坐标F (1,0),准线方程x =-1.过P ,Q 分别作准线的射影分别为A ,B ,则由抛物线的定义可知:|PA |=|PF |,|QF |=|BQ |,∵|PF |=3|QF |,∴|AP |=3|QB |,即|AN |=3|BN |,∴P ,Q 的纵坐标满足y P =3y Q ,设P ⎝⎛⎭⎫y 24,y ,y ≠0,则Q ⎝⎛⎭⎫y 236,y3,N (-1,0),∵N ,Q ,P 三点共线,∴yy 24+1=y3y 236+1,解得y 2=12,∴y =±23,此时x =y 24=124=3,即点P 的坐标为(3,±23).答案:x =-1 (3,±23)14.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为________,渐近线方程为________.解析:因为椭圆x 2a 2+y 2b 2=1的离心率e 1=32,所以1-b 2a 2=e 21=34,即b 2a 2=14,而在双曲线x 2a 2-y 2b 2=1中,设离心率为e 2,则e 22=1+b 2a 2=1+14=54, 所以e 2=52.渐近线方程为y =±b a x ,即y =±12x . 答案:52 y =±12x 15.在正方体ABCD A 1B 1C 1D 1中,E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.解析:以D 点为坐标原点建系如图,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),E ⎝⎛⎭⎫1,1,12, ∴DA 1―→=(1,0,1),DE ―→=⎝⎛⎭⎫1,1,12. 设平面A 1ED 的一个法向量为n =(x ,y ,z ), 则n ·DA 1―→→=0, 且n ·DE ―→=0,即⎩⎪⎨⎪⎧x +z =0,x +y +12z =0.令x =1,得y =-12,z =-1.∴n =⎝⎛⎭⎫1,-12,-1. 又平面ABCD 的一个法向量为DD 1―→=(0,0,1), ∴cos 〈n ,DD 1―→〉=-132×1=-23.∴平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.答案:2316.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线x 2=4y 的准线所围成的三角形的面积为2,则该双曲线的离心率为________.解析:依题意,得双曲线的渐近线方程是y =±ba x ,抛物线的准线方程是y =-1,因此所围成的三角形的三个顶点坐标分别是⎝⎛⎭⎫-a b ,-1,⎝⎛⎭⎫ab ,-1,(0,0),该三角形的面积等于2×12×ab ×1=a b =2,因此该双曲线的离心率e =c a =1+⎝⎛⎭⎫b a 2=1+⎝⎛⎭⎫122=52.答案:5217.已知F 1,F 2分别为椭圆C :x 2a 2+y 2=1(a >1)的左、右焦点,点F 2关于直线y =x 的对称点Q 在椭圆上,则长轴长为______;若P 是椭圆上的一点,且|PF 1|·|PF 2|=43,则S △F 1PF 2=________.解析:由椭圆C :x 2a 2+y 2=1(a >1),知c =a 2-1, 所以F 2(a 2-1,0),点F 2关于直线y =x 的对称点 Q (0,a 2-1),由题意可得a 2-1=1,即a =2,则长轴长为2 2.所以椭圆方程为x 22+y 2=1,则|PF 1|+|PF 2|=2a =22, 又|PF 1|·|PF 2|=43,所以cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|=8-83-483=12,所以sin ∠F 1PF 2=32, 则S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×43×32=33.答案:22 33三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤) 18.(本小题满分14分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.解:(1)证明:如图,以D 为原点建立空间直角坐标系Dxyz . 设DA =1,则D (0,0,0),Q (1,1,0),C (0,0,1),P (0,2,0). ∴DQ ―→=(1,1,0),DC ―→=(0,0,1),PQ ―→=(1,-1,0). ∴PQ ―→·DQ ―→=0,PQ ―→·DC ―→=0,即PQ ⊥DQ ,PQ ⊥DC , 又DQ ∩DC =D ,∴PQ ⊥平面DCQ . 又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ . (2)由题意得B (1,0,1),∴CB ―→=(1,0,0),BP ―→=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量, 则⎩⎪⎨⎪⎧n ·CB ―→=0,n ·BP ―→=0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0,因此可取平面PBC 的一个法向量为n =(0,-1,-2). 同理可得平面BPQ 的一个法向量为m =(1,1,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=-33×5=-155.结合图形可知二面角Q -BP -C 为钝角, 故二面角Q -BP -C 的余弦值为-155.19.(本小题满分15分)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解:(1)由题意,得椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t,2),(x 0,y 0), 其中x 0≠0.因为OA ⊥OB ,所以OA ―→·OB ―→=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 2x 20+4 =x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4).因为x 202+8x 20≥4(0<x 20≤4), 当且仅当x 20=4时等号成立,所以|AB |2≥8.故线段AB 长度的最小值为2 2.20.(本小题满分15分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,AC =BC =BD =2AE ,M 是AB 的中点,建立适当的空间直角坐标系,解决下列问题:(1)求证:CM ⊥EM ;(2)求CM 与平面CDE 所成角的大小.解:(1)证明:分别以CB ,CA 所在直线为x ,y 轴,过点C 且与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系.设AE =a ,则M (a ,-a,0),E (0,-2a ,a ),D (2a,0,2a ),所以CM ―→=(a ,-a,0),EM ―→=(a ,a ,-a ),所以CM ―→·EM ―→=a ×a +(-a )×a +0×(-a )=0, 所以CM ⊥EM .(2) CE ―→=(0,-2a ,a ),CD ―→=(2a,0,2a ), 设平面CDE 的法向量n =(x ,y ,z ),则有⎩⎪⎨⎪⎧ -2ay +az =0,2ax +2az =0,即⎩⎪⎨⎪⎧z =2y ,x =-z ,令y =1,则n =(-2,1,2), cos 〈CM ―→,n 〉=CM ―→·n |CM ―→||n |=a ×(-2)+(-a )×1+0×22a ×3=-22,所以直线CM 与平面CDE 所成的角为45°.21.(本小题满分15分)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,F 为其焦点,点E 的坐标为(2,0),设M 为抛物线C 上异于顶点的动点,直线MF 交抛物线C 于另一点N ,连接ME ,NE 并延长分别交抛物线C 于点P ,Q .(1)当MN ⊥x 轴时,求直线PQ 与x 轴交点的坐标;(2)当直线MN ,PQ 的斜率存在且分别记为k 1,k 2时,求证:k 1=2k 2. 解:(1)抛物线C :y 2=4x 的焦点为F (1,0). 当MN ⊥x 轴时,直线MN 的方程为x =1. 将x =1代入抛物线方程y 2=4x ,得y =±2. 不妨设M (1,2),N (1,-2), 则直线ME 的方程为y =-2x +4,由⎩⎪⎨⎪⎧y =-2x +4,y 2=4x ,解得x =1或x =4, 于是得P (4,-4). 同理得Q (4,4),所以直线PQ 的方程为x =4.故直线PQ 与x 轴的交点坐标为(4,0).(2)证明:设直线MN 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4), 由⎩⎪⎨⎪⎧x =my +1,y 2=4x ,得y 2-4my -4=0,于是y 1y 2=-4 ①,从而x 1x 2=y 214·y 224=1 ②. 设直线MP 的方程为x =ty +2, 由⎩⎪⎨⎪⎧x =ty +2,y 2=4x ,得y 2-4ty -8=0. 所以y 1y 3=-8 ③,x 1x 3=4 ④.同理y 2y 4=-8 ⑤,x 2x 4=4 ⑥.由①②③④⑤⑥,得y 3=2y 2,x 3=4x 2,y 4=2y 1,x 4=4x 1.从而k 2=y 4-y 3x 4-x 3=2y 1-2y 24x 1-4x 2=12·y 1-y 2x 1-x 2=12k 1,即k 1=2k 2. 22.(本小题满分15分)以椭圆C :x 2a 2+y 2b 2=1(a >b >0)的中心O 为圆心,a 2+b 2为半径的圆称为该椭圆的“准圆”.设椭圆C 的左顶点为P ,左焦点为F ,上顶点为Q ,且满足|PQ |=2,S △OPQ =62S △OFQ . (1)求椭圆C 及其“准圆”的方程;(2)若椭圆C 的“准圆”的一条弦ED (不与坐标轴垂直)与椭圆C 交于M ,N 两点,当OM ―→·ON ―→=0时,判断弦ED 的长是否为定值?若是,求出该定值;若不是,请说明理由.解:(1)设椭圆C 的左焦点F (-c,0),c >0,由S △OPQ =62S △OFQ , 得a =62c . 由|PQ |=2,得a 2+b 2=4.又b 2+c 2=a 2,所以a 2=3,b 2=1,所以椭圆C 的方程为x 23+y 2=1, 椭圆C 的“准圆”的方程为x 2+y 2=4.(2)设直线ED 的方程为y =kx +m (k ≠0,k ,m ∈R),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1得(1+3k 2)x 2+6kmx +3m 2-3=0, 则x 1+x 2=-6km 1+3k 2, x 1x 2=3m 2-31+3k 2, 所以y 1y 2=(kx 1+m )(kx 2+m )=m 2-3k 21+3k 2. 由OM ―→·ON ―→=0,得x 1x 2+y 1y 2=0,即3m 2-31+3k 2+m 2-3k 21+3k 2=4m 2-3k 2-31+3k 2=0, 所以m 2=34(k 2+1). 此时Δ=36k 2m 2-4(1+3k 2)(3m 2-3)=27k 2+3>0成立. 原点O 到弦ED 的距离d =|m |k 2+1= m 2k 2+1=34=32, 则|ED |=24-34=13, 故弦ED 的长为定值,定值为13.。

相关文档
最新文档