2005数字信号处理试卷_B_

合集下载

数字信号处理试卷B

数字信号处理试卷B

盐城师范学院考试试卷2009 - 2010 学年 第二学期黄海 学院 电子信息工程 专业 《数字信号处理》试卷B班级 学号 姓名 一、填空题(本大题共16小题,每空1分,共25分)1. 数字信号处理在实现时由于量化而引起的误差因素有A/D 变换的量化效应,_系数__量化效应,数字运算过程中的有限_字长____效应。

2. 一个采样频率为fs 的N 点序列X(n),其N 点DFT 结果X(2)代表2fs/N 的频谱。

3. 双边序列的收敛域在Z平面上是一 环 状的。

4. 用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在 过渡 带,旁瓣使数字滤波器存在衰减,减少阻带 波动 。

5. 已知x(n)=δ(n),其N 点的DFT [x(n)]=X(k),则X(N-1)= 1 。

6. 线性移不变数字滤波器的算法可以用 加法器 、乘法器 、延时器 这三个基本单元来描述。

7. 设两有限长序列的长度分别是M 与N ,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取 M+N-1 。

8. 对于线性移不变系统,其输出序列的傅里叶变换等于输入序列的傅里叶变换与系统的频率响应的乘积。

9. 序列R 3(n)的z 变换为 121z z --++ ,其收敛域为 0z <≤∞ 。

10. 对信号进行频谱分析时,截断信号引起的截断效应表现为频谱 泄露 和谱间 干扰 两个方面。

11. 设实序列的10点DFT 为X(k)(0≤n ≤9),已知X(1)=3+j ,则X(9)= 。

12. 设实连续信号x(t)中含有频率为40Hz 的余弦信号,先用f s =120Hz 的采样频率对其采样,并利用N=1024点DFT 分析信号的频谱,计算频谱的峰值出现在第341 条谱线附近。

13. 设序列)1()()1(2)(--++=n n n n x δδδ,则0|)(=ωωj e X 的值为 2 。

数字信号处理考试试题

数字信号处理考试试题

数字信号处理考试试题第一部分:选择题1. 数字信号处理是指对________进行一系列的数学操作和算法实现。

A) 模拟信号B) 数字信号C) 复数信号D) 频率信号2. ________是用于将连续时间信号转换为离散时间信号的过程。

A) 采样B) 量化C) 编码D) 解码3. 数字滤波器是一种通过对信号进行加权和求和来对信号进行滤波的系统。

下面哪个选项不属于数字滤波器的类型?A) FIR滤波器B) IIR滤波器C) 均衡器D) 自适应滤波器4. 快速傅里叶变换(FFT)是一种用于计算傅里叶变换的算法。

它的时间复杂度是:A) O(N)B) O(logN)C) O(N^2)D) O(NlogN)5. 在数字信号处理中,抽样定理(Nyquist定理)指出,对于最高频率为f的连续时间信号,采样频率至少要为________以上才能完全还原出原始信号。

A) 2fB) f/2C) fD) f/4第二部分:填空题1. 数字信号处理中一个重要的概念是信号的频谱。

频谱表示信号在________域上的分布情况。

2. 离散傅里叶变换(DFT)是傅里叶变换的离散形式,将________长度的离散时间序列转换为相对应的离散频谱序列。

3. 线性时间不变系统的传递函数通常用________表示,其中H(z)表示系统的频率响应,z为复数变量。

4. 信号的峰均比(PAPR)是指信号的________与信号的平均功率之比。

5. 在数字信号处理中,差分方程可用来描述离散时间系统的________。

第三部分:简答题1. 请简要说明数字信号处理的基本流程。

2. 描述一下离散时间系统的单位样值响应和单位脉冲响应的关系。

3. 什么是滤波器的幅频响应和相频响应?4. 请解释滤波器的截止频率和带宽的概念,并说明它们在滤波器设计中的重要性。

5. 请简要介绍数字信号处理中的数字滤波器设计方法。

第四部分:计算题1. 给定一个离散时间系统的差分方程为:y[n] - 0.5y[n-1] + 0.125y[n-2] = 2x[n] - x[n-1]求该系统的单位样值响应h[n],其中x[n]为输入信号,y[n]为输出信号。

数字信号处理试题

数字信号处理试题

数字信号处理试题一、单项选择题(本大题共10小题,每小题2分,共20分)1. 数字信号的特征是()A.时间离散、幅值连续B.时间离散、幅值量化C.时间连续、幅值量化 D.时间连续、幅值连续2. 在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样周期T s与信号最高截止频率f h应满足关系()A. T s >2/f h B. T s >1/f h C. T s < 1/f h D. T s <1/ (2f h)3.以下是一些系统函数的收敛域,则其中稳定的是()A. |z| > 2B. |z| < 0.5C. 0.5 < |z| < 2D. |z| < 0.94.已知某序列z变换的收敛域为|z| < 1,则该序列为()A.有限长序列 B.右边序列C.左边序列 D.双边序列5.实序列的傅里叶变换必是()A.共轭对称函数B.共轭反对称函数C.线性函数 D.双线性函数6.下列序列中属周期序列的为()A. x(n) = δ(n)B. x(n) = u(n)C. x(n) = R4(n)D. x(n) = 17.通常DFT计算频谱只限制在离散点上的频谱,这种现象称为()A.栅栏效应B.吉布斯效应C.泄漏效应 D.奈奎斯特效应8.设两有限长序列的长度分别是M与N,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取()A.M + N B.M + N –1 C.M + N +1 D.2 (M + N)9.基2 FFT算法的基本运算单元为()A.蝶形运算 B.卷积运算 C.相关运算 D.延时运算10.以下关于用双线性变换法设计IIR滤波器的论述中正确的是()A.数字频率与模拟频率之间呈线性关系B. 总是将稳定的模拟滤波器映射为一个稳定的数字滤波器C. 使用的变换是s平面到z平面的多值映射D. 不宜用来设计高通和带阻滤波器二、判断题(本大题共5小题,每小题2分,共10分)1.若系统有一个移变的增益,则此系统必是移变的。

数字信号处理题库(附答案)

数字信号处理题库(附答案)
8.序列 在 的收敛域为( A )。
A. B. C. D.
9.序列 则 的收敛域为( D )。
A. B. C. D.
10.关于序列 的 ,下列说法正确的是( C )。
A.非周期连续函数 B.非周期离散函数
C.周期连续函数,周期为 D.周期离散函数,周期为
11.以下序列中( D )的周期为5。
A. B.
A.微分方程 B.差分方程 C.系统函数 D.信号流图
51.下面的几种网络结构中,( A )不是IIR滤波器的基本网络结构。
A.频率采样型 B.用的延迟单元较少
C.适用于实现低阶系统 D.参数 、 对滤波器性能的控制作用直接
52.( D )不是直接型结构实现IIR数字滤波器的优点。
A.简单直观 B.用的延迟单元较少
A.单位函数响应奇对称,N为奇数 B.单位函数响应偶对称,N为奇数
C.单位函数响应奇对称,N为偶数 D.单位函数响应偶对称,N为偶数
以上为FIR数字滤波器设计部分的习题
49.在不考虑( A ),同一种数字滤波器的不同结构是等效的。
A.拓扑结构 B.量化效应 C.粗心大意 D.经济效益
50.研究数字滤波器实现的方法用( A )最为直接。
43.窗函数的主瓣宽度越小,用其设计的线性相位FIR滤波器的( A )。
A.过渡带越窄 B.过渡带越宽
C.过渡带内外波动越大 D.过渡带内外波动越小
44.用频率采样法设计线性相位FIR滤波器,线性相位FIR滤波器在采样点上的幅频特性与理想滤波器在采样点上的幅频特性的关系( A )。
A .相等 B.不相等 C.大于 D.小于
60.频率采样型结构适用于( B )滤波器的情况。
A.宽带的情况 B.窄带 C.各种 D.特殊

模拟试卷B及参考答案----数字信号处理

模拟试卷B及参考答案----数字信号处理

模拟试卷B1、 判断下述每个序列是否是周期性的,若是周期性的,试确定其周期。

解:(a ) (b ) 无理数,非周期解: (a) 2、求下列序列的DFT(b)3、研究两个有限长序列()x n 和()y n ,此二序列当0n <时皆为零,并且各作其20点DFT ,然后将两个DFT 相乘,再计算其乘积序列的逆DFT ,设()r n 表示逆DFT ,试指出()r n 哪些点对应于()x n 与()y n 作线性卷积应得到的点。

解:x(n)的长度为N 1=8;y(n) 的长度为N 2=20;将x(n)和y(n)分别做20点的DFT ,后再相乘,再计算其逆DFT ,得到的r (n),相当于对x(n)和y(n)做20点圆周卷积。

圆周卷积代 替线性卷积的条件是:圆周卷积的点数N ≥N 1+N 2-1 本题中N =20,不满足N =N 1+N 2-1=27的条件,因此r(n)有27-20=7个点不等于线性卷积,这7个点为0≤n ≤6, 因此r(n)在719≤≤n 点上等于x(n)与y(n)的线性卷积。

4、现有一为随机信号谱分析所使用的处理器,该处理器所用的取样点数必须是2的整数次方,并假设没有采取任何特殊的数据处理措施。

已给条件是:(1)频率的分辨率≤5 Hz ,(2)信号的最高频率≤1.25kHz,要求确定下列参量:(a )最小记录长度;(b )取样点间的最大时间间隔;(c )在一个记录中的最少点数。

解:(a )最小记录长度:(b )取样点间的最大时间间隔: (s )(c ) 取 51229==N 5、按照下面所给的系统函数,求出该系统直接型Ⅰ和直接型Ⅱ、级联和并联结构。

12123 3.60.6()10.10.2z z H z z z ----++=+-解:(1).直接I 型结构(2).直接II 型结构(3)级联型结构)5.01()2.01()4.01()1(3)5.01)(4.01()2.01)(1(32.01.016.06.33)(111111112121------------++⋅-+=+-++=-+++=z z z z z z z z z z z z z Hx(n)y(n)x(n) y(n)10.2-0.50.4-0.5()8()()nj b x n e π-=(){1,,1,}2()()sin()01b j j n d x n n N Nπ--=≤≤-()()332240()j kjk kn j j k n X k DFT x n x n W e j ee j eπππ----====+⋅--⋅⎡⎤⎣⎦∑()12222(1)2(1)11002(1)2(1)2(1)2(1)2()sin 112211122011N knNn nn nk n k n k N N jjj j j NNN N Nn n N k N k j j N N k k j j N N n X k DFT x n W N j ee e j e e N j k j e e e e ππππππππππ-=+-------==+---+---⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎧-=-- ⎪=-= ⎪ ⎪--⎝⎭∑∑∑其他01k N ⎪≤≤-⎨⎪⎩221437πππω==∴,周期N=14022168πππω== ,3()()cos(78a x n A n ππ=-()08()020x n n y n n =≥=≥)(2.0511s F T p ===3104.01025.121211-*=⨯⨯=<=h s f f T 50051025.1223=⨯⨯=>Ff N h 212121212.01.012.02.1132.01.016.06.33)(---------+++=-+++=z z z z z z z z z H(4)并联型结构)5.01(1)4.01(732.01.016.06.33)(112121------+-+-+-=-+++=z z zzz z z H6、已知滤波器单位取样响应为 求FIR 滤波器直接型结构。

数字信号处理考试试题及答案

数字信号处理考试试题及答案

数字信号处理试题及答案一、填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是离散时间信号,再进行幅度量化后就是数字信号。

2、已知线性时不变系统的单位脉冲响应为,则系统具有因果性要求,系统稳定要求。

3、若有限长序列x(n)的长度为N,h(n)的长度为M,则其卷积和的长度L为 N+M-1。

4、傅里叶变换的几种形式:连续时间、连续频率—傅里叶变换;连续时间离散频率-傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率-离散傅里叶变换5、序列的N点DFT是的Z变换在单位圆上的N点等间隔采样。

6、若序列的Fourier变换存在且连续,且是其z变换在单位圆上的值,则序列x(n)一定绝对可和。

7、用来计算N=16点DFT,直接计算需要__256___次复乘法,采用基2FFT算法,需要__32__ 次复乘法。

8、线性相位FIR数字滤波器的单位脉冲响应应满足条件。

9.IIR数字滤波器的基本结构中,直接型运算累积误差较大;级联型运算累积误差较小;并联型运算误差最小且运算速度最高。

10.数字滤波器按功能分包括低通、高通、带通、带阻滤波器.11.若滤波器通带内群延迟响应 = 常数,则为线性相位滤波器.12.的周期为 1413.求z反变换通常有围线积分法(留数法)、部分分式法、长除法等。

14.用模拟滤波器设计IIR数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法。

15.任一因果稳定系统都可以表示成全通系统和最小相位系统的级联。

二、选择题(20分,每空2分)1. 对于x(n)= u(n)的Z变换,( B )。

A。

零点为z=,极点为z=0 B。

零点为z=0,极点为z=C. 零点为z=,极点为z=1 D。

零点为z=,极点为z=22.,,用DFT计算二者的线性卷积,为使计算量尽可能的少,应使DFT的长度N满足( B )A. B。

C。

D。

3。

设系统的单位抽样响应为h(n)=δ(n)+2δ(n-1)+5δ(n-2),其频率响应为( B ).A。

数字信号处理试卷及答案

数字信号处理试卷及答案

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,—2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 . 6.设LTI 系统输入为x (n ) ,系统单位序列响应为h (n ),则系统零状态输出y(n )= 。

7.因果序列x (n ),在Z →∞时,X (Z )= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C 。

2πδ(ω) D 。

2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B 。

4 C 。

6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n —2),输出为 ( ) A 。

y (n-2) B.3y (n-2) C.3y (n) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列 C 。

时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A 。

理想低通滤波器 B 。

理想高通滤波器 C 。

理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统( )A 。

y(n)=x (n+2) B 。

y (n )= cos (n+1)x (n ) C. y (n)=x (2n) D.y (n)=x (— n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点 C 。

年南京邮电大学研究生入学考试数字信号处理真题与答案

年南京邮电大学研究生入学考试数字信号处理真题与答案
所以该系统为线性时不变系统。
因果性: y(n) x(n 1) x(1 n) y(0) x(1) x(1) 所以在 n 0 时刻的输出与 x(1) 有关,故为非因果。
1
稳定性:若 | x(n) | M ,| y(n) | 2M 系统稳定。
(2)(6 分)解:
用方差为 1 的白噪声序列 (n) 作为激励源输入待测系统,得到一个输出序列 y(n) 。
k 0n4Fra bibliotek南京邮电大学 2005 年攻读硕士学位研究生入学考试数字信号处理试题参考答案
一、基本概念题(共 50 分) 1、填空题(每空 1 分,共 20 分) (1)系数量化效应;运算中的有限字长效应(2)12、16
(3)3 (n) 2 (n 1) 4 (n 3)(或者3、2、1)
j Imz
1 2
3 Rez
①若已知序列的傅氏变换是收敛的,问 X (z) 的收敛域是什么?序列 x(n) 是左边序列、右边序列还是双边序列? ②若已知序列是双边序列,且其 Z 变换存在,问对应的序列可能有几种 (不需要求出序列的表达式)?并分别指出他们对应的收敛域。 二、证明题(每题 6 分,共 12 分) 1、已知 x(n) 是长度为 N 的有限长序列,证明:如果 x(n) 是纯实序列,则 其 DFT X (k) 具有共轭偶对称性,即 X (k) X (N k) 2、有一单位脉冲响应为 h(n) 的线性时不变离散时间系统,其输入 x(n) 是周期为 N 的周期序列,试证系统的输出 y(n) 也是周期为 N 的周期序列。
T ax1(n) bx2 (n) ax1(n 1) bx1(n 1) ax2 (1 n) bx2 (1 n) T ax1(n) bx2 (n) ax1(n 1) ax2 (1 n) bx1(n 1) bx2 (1 n)

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案)

________ 次复乘法,运算效率为__
_。
6、FFT利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR滤波器的单位取样响应
是圆周偶对称的,N=6,
,其幅度特性有什么特性? ,相位有何特 性? 。 9、数字滤波网络系统函数为

4、 已知

的反变换
。 3、
,变换区间
,则
。 4、




的8点循环卷积,则

5、用来计算N=16点DFT直接计算需要_
2FFT算法,需要
次复乘法
6、基2DIF-FFT 算法的特点是
7、有限脉冲响应系统的基本网络结构有
8、线性相位FIR滤波器的零点分布特点是
9、IIR系统的系统函数为
次复加法,采用基
转换为
时应使s平面的左半平面映射到z平面的

A.单位圆内 B.单位圆外 C.单位圆上 D.单位圆与实轴的交

6、 分析问答题(每题5分,共2题)
3、 某线性时不变因果稳定系统单位取样响应为
(长度为N),则该系统的频率特性、复频域特性、离散频率特性分 别怎样表示,三者之间是什么关系? 4、 用
对连续信号进行谱分析时,主要关心哪两个问题以及怎样解决二者的 矛盾?
十一、(7分)信号 包含一个原始信号 和两个回波信号: 求一个能从 恢复 的可实现的滤波器.
附录:
矩形窗(rectangular window) 汉宁窗(Hann window) 汉明窗(Hamming window) 布莱克曼窗(Blackman window)
表1 一些常用的窗函数
表2 一些常用窗函数的特性

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)⼀、单项选择题(在每⼩题的四个备选答案中,选出⼀个正确答案,并将正确答案的序号填在括号。

1.若⼀模拟信号为带限,且对其抽样满⾜奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想⾼通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输⼊序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲⽤圆周卷积计算两者的线性卷积,则圆周卷积的长度⾄少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,⽽不发⽣时域混叠现象,则频域抽样点数N 需满⾜的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正⽐。

A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第⼆种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

数字信号处理 第二版 (门爱东 苏菲 李雷 著)科学教育出版社

数字信号处理 第二版 (门爱东 苏菲 李雷 著)科学教育出版社

F (ω ) = π
n =−∞
∑ sin c( )δ (ω − nω )
∞ nω1T 4π 1
1.5 证明 (1) H ( Ω ) ∗ δ ( Ω ) = H ( Ω − a )
(2) 证明: (1)
H (Ω) ∗
n=−∞
∑ δ (Ω + nΩ 0 ) =

n=−∞
∑ H (Ω + nΩ

0
)
左边 = (2)
0
1
2
3
t
(2) g (t ) = f (t − 1)
g(t)
1
-2
-1
0
1
2
3
t
(3) h(t ) = f (t )u (t )
1
数字信号处理
习题解答 2005
h(t)
1
0
1
2
3
t
t (4) f ( 2 )
t f (2 )
1
-5
-4
-3
-2
-1
0
1
2
3
4
5
t
1.2 设 f(t) 是某一函数,a, t0, T 为实常数,证明: (1) f ( t )δ (
1 2π
F 1 ( Ω ) ∗ F2 ( Ω )
1.4 求下图中 f(t) 脉冲的傅氏变换。
T/4 解: 令τ =
T
T ,脉冲幅度为 1,截取 f(t) 的一个周期 f0(t)。 2
则 f0(t) 的傅立叶变换为:
(ωτ ) T (ωT ) F0 (ω ) = F [ f 0 (t )] = T 2 ⋅ Sa 2 = 2 ⋅ Sa 4
=
n =−∞

数字信号处理第1章内容提要和习题答案

数字信号处理第1章内容提要和习题答案

第一章 序论一、内容提要本章主要讲述了数字信号的定义、特点和处理方法,并且简要地回顾了我们后面所涉及的一些常用的模拟信号知识。

1.数字信号定义、特点和方法信号可定义为传递信息的函数,或者信息的物理表现形式。

各种信号在数学上可表示为一个或者几个独立变量的函数。

如果我们以信号的时间为独立变量,则时间变量既可以是连续的,也可以是离散的,从而信号可以分为模拟信号(或称为连续时间信号)和离散信号(或称为离散时间信号)。

模拟信号除了是时间的连续函数外,它在一定的时刻都有理论上无限精确的数值(幅值),且此值在一定的范围内随时间连续变化,即模拟信号表现为时间连续,幅度连续。

而离散信号定义在离散时间上的信号,只在特定的时间上有精确的数值,在其他时间上数值为零或未知。

若离散信号的幅值是连续的,则取样数据信号;若将离散信号的幅度也进行离散化处理(量化),然后将离散幅度值编码为二进制数码序列,则为数字信号,其特点是时间和幅度都是离散的。

所以说数字信号是离散信号的特例,是离散信号最重要的子集。

数字信号处理是研究如何用数字或符号序列来表示信号以及如何对这些序列进行处理的一门学科。

信号处理是对信号进行某种变换(处理),包括滤波、变换、分析、估计、检测、压缩、识别等,从而更容易获得人们所需要的信息。

信号处理系统按所处理信号的种类分为:模拟系统、时域离散系统、数字系统。

与模拟信号处理相比,数字信号处理具有精度高、可靠性高、灵活性强、便于大规模集成化、易于加密、易于处理低频信号等显著特点。

数字信号处理实际上就是进行各种数学函数运算,许多数字信号处理算法都是在时域和频域两个域中进行,实现的方法有软件、硬件和软硬结合。

2.傅立叶变换的定义傅立叶变换的表达式为:()()1()()2j t j t H h t e dth t H e d π∞-Ω-∞∞Ω-∞Ω==ΩΩ⎰⎰傅立叶变换是信号处理中最重要的工具之一,它主要用于分析信号的频谱。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案1. 试题1.1 选择题1. 设x(n)为长度为N的实序列,其中0≤n≤N-1。

要将其进行离散傅立叶变换(DFT),DFT的结果为X(k),其中0≤k≤N-1。

以下哪个式子为正确的傅立叶变换公式?A. X(k) = ∑[x(n) * exp(-j2πkn/N)],0≤k≤N-1B. X(k) = ∑[x(n) * exp(-j2πnk/N)],0≤k≤N-1C. X(k) = ∑[x(n) * exp(-jπkn/N)],0≤k≤N-1D. X(k) = ∑[x(n) * exp(-jπnk/N)],0≤k≤N-12. 在基于FFT算法的离散傅立叶变换中,当序列长度N为2的整数幂时,计算复杂度为:A. O(N^2)B. O(NlogN)C. O(logN)D. O(N)3. 对于一个由N个采样值组成的序列,它的z变换被定义为下式:X(z) = ∑[x(n) * z^(-n)],其中n取0至N-1以下哪个选项正确表示该序列的z变换?A. X(z) = X(z)e^(-i2π/N)B. X(z) = X(z)e^(-iπ/N)C. X(z) = X(z^-1)e^(-i2π/N)D. X(z) = X(z^-1)e^(-iπ/N)1.2 简答题1. 请简要说明数字信号处理(DSP)的基本概念和应用领域。

2. 解释频率抽样定理(Nyquist定理)。

3. 在数字滤波器设计中,有两种常见的滤波器类型:FIR和IIR滤波器。

请解释它们的区别,并举例说明各自应用的情况。

2. 答案1.1 选择题答案1. B2. B3. D1.2 简答题答案1. 数字信号处理(DSP)是一种利用数字计算机或数字信号处理器对信号进行采样、量化、处理和重建的技术。

它可以应用于音频处理、图像处理、通信系统、雷达系统等领域。

DSP可以实现信号的滤波、变换、编码、解码、增强等功能。

2. 频率抽样定理(Nyquist定理)指出,为了正确地恢复一个连续时间信号,我们需要对其进行采样,并且采样频率要大于信号中最高频率的两倍。

数字信号处理试卷及答案

数字信号处理试卷及答案

数字信号处理试卷及答案一、选择题(共20题,每题2分,共40分)1.在数字信号处理中,什么是采样定理?–[ ] A. 信号需要经过采样才能进行数字化处理。

–[ ] B. 采样频率必须是信号最高频率的两倍。

–[ ] C. 采样频率必须是信号最高频率的四倍。

–[ ] D. 采样频率必须大于信号最高频率的两倍。

2.在数字信号处理中,离散傅立叶变换(DFT)和离散时间傅立叶变换(DTFT)之间有什么区别?–[ ] A. DFT和DTFT在计算方法上有所不同。

–[ ] B. DFT是有限长度序列的傅立叶变换,而DTFT是无限长度序列的傅立叶变换。

–[ ] C. DFT只能用于实数信号的频谱分析,而DTFT可以用于复数信号的频谱分析。

–[ ] D. DFT和DTFT是完全相同的。

3.在数字滤波器设计中,零相移滤波器主要解决什么问题?–[ ] A. 相位失真–[ ] B. 幅度失真–[ ] C. 时域响应不稳定–[ ] D. 频域响应不稳定4.数字信号处理中的抽样定理是什么?–[ ] A. 抽样频率必须大于信号最高频率的两倍。

–[ ] B. 抽样频率必须是信号最高频率的两倍。

–[ ] C. 抽样频率必须是信号最高频率的四倍。

–[ ] D. 信号频率必须是抽样频率的两倍。

5.在数字信号处理中,巴特沃斯滤波器的特点是什么?–[ ] A. 频率响应为低通滤波器。

–[ ] B. 具有无限阶。

–[ ] C. 比其他类型的滤波器更加陡峭。

–[ ] D. 在通带和阻带之间有一个平坦的过渡区域。

…二、填空题(共5题,每题4分,共20分)1.离散傅立叶变换(DFT)的公式是:DFT(X[k]) = Σx[n] * exp(-j * 2π * k * n / N),其中X[k]表示频域上第k个频率的幅度,N表示序列的长度。

2.信号的采样频率为fs,信号的最高频率为f,根据采样定理,信号的最小采样周期T应满足:T ≤ 1 / (2* f)3.时域上的离散信号可以通过使用巴特沃斯滤波器进行时域滤波。

数字信号处理期末试卷

数字信号处理期末试卷

数字信号处理模拟试题一一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs与信号最高截止频率Ωc应满足关系(A )A.Ωs>2ΩcB.Ωs>ΩcC.Ωs<ΩcD.Ωs<2Ωc2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( D)A.y(n)=y(n-1)x(n)B.y(n)=x(n)/x(n+1)C.y(n)=x(n)+1D.y(n)=x(n)-x(n-1)3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为(D )A.有限长序列B.右边序列C.左边序列D.双边序列4.实偶序列傅里叶变换是(A )A.实偶序列B.实奇序列C.虚偶序列D.虚奇序列5.已知x(n)=δ(n),其N点的DFT[x(n)]=X(k),则X(N-1)=( B)A.N-1B.1C.0D.-N+16.设两有限长序列的长度分别是M与N,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取(B )A.M+NB.M+N-1C.M+N+1D.2(M+N)7.下面说法中正确的是( C)A.连续非周期信号的频谱为周期连续函数B.连续周期信号的频谱为周期连续函数C.离散非周期信号的频谱为周期连续函数D.离散周期信号的频谱为周期连续函数8.下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?(C )A.直接型B.级联型C.频率抽样型D.并联型9.下列关于FIR滤波器的说法中正确的是(C)A.FIR滤波器容易设计成线性相位特性B.FIR滤波器的脉冲响应长度是无限的C.FIR滤波器的脉冲响应长度是确定的D.对于相同的幅频特性要求,用FIR滤波器实现要比用IIR滤波器实现阶数低10.下列关于冲激响应不变法的说法中错误的是(D)A.数字频率与模拟频率之间呈线性关系B.能将线性相位的模拟滤波器映射为一个线性相位的数字滤波器C.具有频率混叠效应D.可以用于设计低通、高通和带阻滤波器二、判断题(本大题共5小题,每小题2分,共10分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。

数字信号处理期末试卷含答案

数字信号处理期末试卷含答案

数字信号处理期末试卷(含答案) 数字信号处理期末试卷(含答案)一、选择题1.下列哪一项不是数字信号处理的应用领域? A. 图像处理 B. 语音识别 C.控制系统 D. 电路设计答案:D2.数字信号处理系统的输入信号一般是: A. 模拟信号 B. 数字信号 C. 混合信号 D. 无线信号答案:A3.下列哪一项可以实现信号的离散化? A. 采样 B. 傅里叶变换 C. 滤波 D.量化答案:A4.数字信号处理中的“频域”是指信号的: A. 幅度 B. 相位 C. 频率 D. 时间答案:C5.下列哪一项是数字信号处理的基本操作? A. 加法 B. 减法 C. 乘法 D. 除法答案:A二、填空题1.数字信号处理的基本步骤包括信号的采样、________、滤波和解调等。

答案:量化2.采样定理规定了采样频率应该是信号最高频率的________。

答案:两倍3.傅里叶变换可以将信号从时域变换到________。

答案:频域4.信号的频率和________有关。

答案:周期5.数字信号处理系统的输出信号一般是________信号。

答案:数字三、计算题1.对于一个模拟信号,采样频率为8 kHz,信号的最高频率为3 kHz,求采样定理是否满足?答案:采样定理要求采样频率大于信号最高频率的两倍,即8 kHz > 3 kHz * 2 = 6 kHz,因此采样定理满足。

2.对于一个信号的傅里叶变换结果为X(f) = 2δ(f - 5) + 3δ(f + 2),求该信号的时域表示。

答案:根据傅里叶变换的逆变换公式,可以得到时域表示为x(t) = 2e^(j2π5t) + 3e^(j2π(-2)t)。

3.对于一个数字信号,采样频率为10 kHz,信号的频率为2 kHz,求该信号的周期。

答案:数字信号的周期可以用采样频率除以信号频率来计算,即10 kHz / 2 kHz = 5。

四、简答题1.请简要介绍数字信号处理的基本原理。

答案:数字信号处理是将模拟信号转换为数字信号,并在数字域中对信号进行处理和分析的过程。

数字信号处理05-习题3-FIR滤波器设计_82

数字信号处理05-习题3-FIR滤波器设计_82

主讲人:李艳凤电子信息工程学院数 字 信 号 处 理Digital Signal Processing试用矩形窗函数法设计线性相位FIR 低通数字滤波器,其在W ∈[0,2p )内的幅度响应逼近c cj d 0 2π(e ) 1 H WW W W ≤<-⎧=⎨⎩其他(1) 若选用I 型线性相位系统,试确定h [k ];(2) 若选用II 型线性相位系统,试确定h [k ]。

解:I 型线性相位系统的幅度函数A (W )关于W =p 偶对称c d c cc10()02π12π2πW W W W W W W W ≤<⎧⎪=≤<-⎨⎪-≤<⎩A d ()2MϕW W=-c cj d 0 2π(e ) 1 H WW W W ≤<-⎧=⎨⎩其他Ωd ()W A 02p Ωc 2p-Ωc 1pd 2πj ()j d d01[]()e e d 2πk h k A ϕW WW W =⎰解: 根据A d (W )和ϕd (W )构建H d (e j W ),通过IDTFT 求解h d [k ]cc Sa[(0.5)]k M W W =-pcc2πj0.5j j0.5j 02π1{e e d e e d }2πM k M k ΩW W W W W W W ---=⋅+⋅⎰⎰c c j(0.5)j(0.5)(2π)j(0.5)2πd 1[][e 1e e ]2πj(0.5)k M k M k M h k k M W W ----=-+--c c j(0.5)j(0.5)j πj π1[e 1e ]2πj(e e 0.5)kM k M M kM k k M W W -----=-+-⋅-M 为偶数当k ≠0.5M 时解:cd c []Sa[(0.5)]h k k M W W =-p 加窗截短h d [k ],得到h [k ]= h d [k ]w N [k ],N 为奇数cc2πj0.5j j0.5j d 02π1[]{e e d e e d }2πM k M k h k W W W W WW W W ---=⋅+⋅⎰⎰当k ≠0.5M 时 当k=0.5M 时c c2πj0.5j0.5j0.5j0.5d 02π1[]{e e d e e d }2πM M M M h k W W W W W W W W ---=⋅+⋅⎰⎰c πW =cd c []Sa[(0.5)]h k k M W W =-pcc2π02π1{1d 1d }2πW W W W -=⋅+⋅⎰⎰解:II型线性相位系统的幅度函数A (W )关于W =p 奇对称 c d c cc10()02π12π2πW W W W W W W W --≤<⎧⎪=≤<≤<-⎨⎪⎩A d ()2MϕW W=-Ωd ()W A 02p Ωc 2p-Ωc 1-1p c cj d 0 2π(e ) 1 H WW W W ≤<-⎧=⎨⎩其他d 2πj ()j d d01[]()e e d 2πk h k A ϕW WW W =⎰解: 根据A d (W )和ϕd (W )构建H d (e j W ),通过IDTFT 求解h d [k ]cc2πj0.5j j0.5j 02π11{e e d e e d }2πΩM Ωk ΩM Ωk ΩΩΩΩ---=⋅-⋅+⋅⎰⎰加窗截短h d [k ],得到h [k ]= h d [k ]w N [k ],N 为偶数cd c []Sa[(0.5)]W W =-ph k k M c c j(0.5)j(0.5)(2π)j(0.5)2π1[e 1e e ]2πj(0.5)k M Ωk M Ωk M k M ----=--+-c c j(0.5)j(0.5)j πj π1[e 1e ]2πj(e e 0.5)kM kM k M Ωk M Ωk M -----=--+⋅-M 为奇数选用I 型线性相位系统选用II 型线性相位系统cd c []Sa[(0.5)]W W =-ph k k M cd c []Sa[(0.5)]W W =-ph k k M c cj d 0 2π(e ) 1 H WW W W ≤<-⎧=⎨⎩其他试用矩形窗函数法设计线性相位FIR 低通数字滤波器,其在W ∈[0,2p )内的幅度响应逼近c d c cc10()02π12π2πW W W W W W W W ≤<⎧⎪=≤<-⎨⎪-≤<⎩A c d c cc10()02π12π2πW W W W W W W W --≤<⎧⎪=≤<≤<-⎨⎪⎩A I 型:M =62 II 型:M =63谢谢本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事和同行的交流,难以一一注明出处,特此说明并表示感谢!。

数字信号试题及答案

数字信号试题及答案

数字信号试题及答案一、选择题1. 数字信号的特点是:A. 连续变化B. 离散变化C. 随机变化D. 周期变化答案:B. 离散变化2. 奈奎斯特定理适用于什么类型的信号?A. 模拟信号B. 数字信号C. 脉冲信号D. 正弦信号答案:A. 模拟信号3. 数字信号的采样率是指:A. 信号的持续时间B. 信号的幅度范围C. 信号的采样点数量D. 信号的频率范围答案:C. 信号的采样点数量4. 在数字信号处理中,量化是指:A. 将模拟信号转换为数字信号B. 将数字信号转换为模拟信号C. 对信号进行编码D. 对信号进行解码答案:A. 将模拟信号转换为数字信号5. 数字信号的传输速率由以下因素决定:A. 采样率和量化位数B. 频率和幅度C. 信噪比和误码率D. 传输介质和距离答案:A. 采样率和量化位数二、填空题1. 数字信号的采样定理由_______和_______提出。

答案:奈奎斯特、香农2. 数字信号的量化位数越大,表示精度越_______。

答案:高3. 数字信号的编码方式常用的有_______和_______编码。

答案:二进制、格雷4. 数字信号的传输速率单位是_______。

答案:比特/秒5. 数字信号的解码是指将_______信号还原为模拟信号。

答案:数字三、简答题1. 请解释奈奎斯特定理的原理及应用。

答:奈奎斯特定理是指在进行信号的采样时,采样频率要大于等于信号频率的两倍,以确保信号能够完全恢复。

它的原理是由于数字信号是离散的,采样过程中可能会出现信息的损失。

奈奎斯特定理的应用主要用于计算信号的最佳采样率,以保证在数字信号处理中不会出现信息丢失。

2. 请说明数字信号的编码方式有哪些,并分别解释其原理。

答:数字信号的编码方式主要有二进制编码和格雷编码。

二进制编码是将信号的每个样本通过二进制数进行表示,利用0和1的排列来表示不同的信号状态。

格雷编码则是改进版的二进制编码,它通过仅仅改变一个位的数值,来表示相邻的两个信号状态,以减少数字信号在编码过程中的误差。

数字信号处理试题库答案

数字信号处理试题库答案

数字信号处理试题库答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】一.填空题1、一线性时不变系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为 2y(n) ;输入为x(n-3)时,输出为 y(n-3) 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为: fs>=2f max。

3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的 N 点等间隔采样。

4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。

5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的混叠现象。

6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。

7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。

8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。

9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。

10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。

12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)= x((n-m))N R N(n)。

13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。

14.线性移不变系统的性质有交换率、结合率和分配律。

15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
北 京 交 通 大 学 考 试 试 题
课程名称:数字信号处理(B 卷) 2004—2005学年第二学期 任课教师: 姓名: 学号: 班级: (请考生注意:本试卷共有9道大题) 题 号 一 二 三 四 五 六 七 八 九 十 总分 得 分 阅卷人
一. (8分) 已知确定序列x [k ]={1, −1, 2 ;k =0,1,2}, h [k ]={2, 1, 0, −1; k =0,1,2,3 }, 试计算: (1) 4点循环卷积x [k ]⊗h [k ]。

(2) 写出利用DFT 计算线性卷积的步骤。

二.(10分) 已知序列x 1[k ]={1, 0, 1; k =0,1,2},x 2[k ]={1, 0, 0, 0, 1; k =0,1,2,3,4} (1) 试求序列x 1[k ]和x 2[k ]的频谱X 1(e j Ω)和X 2(e j Ω);
(2) 比较x 1[k ]和x 2[k ],X 1(e j Ω)和X 2(e j Ω),由此可以得出什么结论? (3) 若x 2[k ]的4点DFT 为X 2[m ],求IDFT{ X 2[m ]}。

三.(15分)
(1) 试推导基2频域抽取FFT 算法的递推公式; (2) 试画出N =4基2频域抽取FFT 的信号流图;
(3) 只用一次(2)中流图,计算序列x [k ]=[0,1,0,-1,0,1,0,-1;k =0,1,…,7]的8点DFT X [m ]。

四.(10分)简述加窗在数字信号处理中的应用以及选择窗函数的原则。

五.(14分) IIR 数字滤波器设计
(1) 利用双线性变换法和模拟低通滤波器1
1
)(+=
s s H a ,设计一个参数为: Ωs1=π/3,Ωs2=π/2, Αs =3dB 的数字带阻滤波器。

(2) 能否采用脉冲响应不变法设计该滤波器?试比较双线性变换法和脉冲响应不变法的优缺点。

六.(15分) 利用频率取样法设计一个线性相位FIR 数字低通滤波器,使其逼近截频为ΩC =π/2的理想低通数字滤波器设计。

(1) 确定线性相位FIR 数字低通滤波器的类型(I ,II ,III ,IV );
2
(2) 若滤波器的阶数M=6,试求频率取样H [m ]和所设计滤波器的单位脉冲响应h [k ]的表达式;
(3) 画出该滤波器的线性相位直接型结构图,不带h [k ]的具体值; (4) 若所设计滤波器的阻带衰减不满足设计要求,应采取什么措施?
七.(12分) 利用数字系统处理模拟信号的框图如下所示,图中T =0.08秒, x (t )=cos(πt )+ cos(5πt ) +cos(10πt )。

(1) 写出x [k ]频谱与x (t )频谱的关系,并画出x [k ] 的频谱X (e j Ω); (2) 若图中数字系统在π),0[∈Ω 的频率响应为

⎨⎧≤≤=其它,0π
π7.0,1)(j ΩΩe H
试画出y [k ]的频谱Y (e j Ω)及y (t )的频谱Y (j ω)。

T
x (t )
y (t )
T
八.(10分)
(1)已知一连续信号x (t )频谱的非零范围为0~5 kHz, 现用f sam =12 kHz 对x (t )进行抽样获得x [k ]。

若对x [k ]做1000点的DFT ,试确定X [m ]中, m =100与m =800点所对应原连续信号x (t )的连续频率。

(2) 已知连续信号y (t )在f =10kHz 有一谱峰,若抽样频率f sam =12 kHz ,试确定由DFT 近似计算所得频谱的谱峰所对应的频率。

九. (6分)以抽样间隔T 对连续信号x (t )进行抽样,并将抽样后的信号存入数组x 。

为近似计算连续信号x (t )的频谱,小王编写了以下的MATLAB 程序段。

请指出程序中的错误并进行修改。

N=512;wsam=2*pi/T X=T* (fft(x));
W=(0:N-1)*2*pi/N; plot(W,abs(X));。

相关文档
最新文档