北京四中111104初三数学期中试卷.pptx

合集下载

北京四中初三数学期中试题 (含答案)

北京四中初三数学期中试题 (含答案)

初三数学试卷班级__________ 学号__________ 姓名__________ 成绩__________ 考生须知1.本试卷共8页,共26道题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写班级、姓名和学号。

3.答案一律填写在答题纸上,在试卷上作答无效。

4.考试结束后,将试卷和答题纸一并交回。

一、选择题(每题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.二次函数y =(1x +)22-的最小值是 ( )A .1B .1-C .2D .2-2.如图,⊙O 是△ABC 的外接圆,40OCB ∠=︒,则A ∠的大小为( )A .40︒B .50︒C .80︒D .100︒3.若将抛物线25y x =先向右平移2个单位,再向上平移1个单位,则得到的新抛物线的表达式为( )A .2521y x =-+() B .25+21y x =+() C .2521y x =--() D .25+21y x =-() 4. 如图, AB 为⊙O 的弦, 点C 为AB 的中点,AB =8,OC =3, 则⊙O 的半径长为( )A .4B .5C .6D .75.已知A (12-,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y=-(x -2)2的图象上,则y 1,y 2,y 3的大小关系为( )A. y 1<y 2<y 3B. y 1<y 3<y 2C. y 3<y 1<y 2D. y 3<y 2<y 1 6.如图,⊙O 中直径AB ⊥DG 于点C ,点D 是弧EB 的中点,CD 与BE 交于点F .下列结论①∠A =∠E ,②∠ADB =90°,③FB=FD 中正确的个数为( )A .0B .1C .2D .3AB CO第2题图第4题图第6题图7.已知抛物线2(0)y ax bx c a =++≠上部分点的横坐标x 与纵坐标y 的对应值如下表:x… 2- 1-0 1 23 … y…4-2 24-…下列结论:①抛物线开口向下; ②当−1<x <2时,y >0;③抛物线的对称轴是直线12x =; ④函数2(0)y ax bx c a =++≠的最大值为2. 其中所有正确的结论为( )A .①②③B .①③C .①③④D .①②③④ 8.如图,在平面直角坐标系xOy 中,以 0) (3,为圆心作⊙P , ⊙P 与x 轴交于A 、B ,与y 轴交于点C 2) (0,,Q 为⊙P 上 不同于A 、B 的任意一点,连接QA 、QB ,过P 点分别作 PE ⊥QA 于E ,PF ⊥QB 于F .设点Q 的横坐标为x ,y PF PE =+22.当Q 点在⊙P 上顺时针从点A 运动到点B的过程中,下列图象中能表示y 与x 的函数关系的部分..图象是( )A. B.C.D.二、填空题(本题共16分,每小题2分)9.若抛物线26y x x m =++与x 轴只有一个公共点,则m 的值为 .10.如图,A ,B ,C 是⊙O 上的三个点,如果∠AOB =140°, 那么∠ACB 的度数为 .11.若点(1,5),(5,5)是抛物线y =x 2+bx +c(a ≠0)上的两个点, 则b = .第8题图BCAO第10题图12. 筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,如图1,点P 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5 m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为 m .13.如图,在平面直角坐标系中,点A ,B ,C 都在格点上, 过A ,B ,C 三点作一圆弧,则圆心的坐标是 . 14. 已知关于x 的二次函数42++=bx ax y 的图象如右图所示,则关于x 的方程02=+bx ax 的根为_____________. 15.元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy 中,⊙A 经过坐标原点O ,并与两坐标轴分别交于B 、C 两点,点B 的坐标为(2,0),点D 在⊙A 上,且∠ODB =30°,求⊙A 的半径. 元元的做法如下,请你帮忙补全解题过程.解:如图2,连接BC. ∵∠BOC =90°,∴BC 是⊙A 的直径. (依据是___________________________________________)431254312OxyC BA 第13题图图1图2第12题图yx41-4O第14题图图2图1第15题图∵∠ODB =30°,∴∠OCB =∠ODB =30°.(依据是_________________________________________)∴BC OB 21=.∵OB=2,∴BC =4.即⊙A 的半径为2.16.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论: ⊥abc <0; ⊥20a b +=; ⊥4a −2b +c >0; ⊥若,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是 .三、解答题 (本题共68分,第17题每小题5分共10分,第18、19、21、22、24题每题6分,第20、23、25、26题每题7分) 17. 解关于x 的方程.(1)0232=++x x ; (2)01222=--x x .18. 已知抛物线的顶点为(-2,2),且过坐标原点,求抛物线的解析式.19.如图,AB 是⊙O 的一条弦,OD ⊥AB 于点C ,交⊙O 于点D ,连接OA .若AB = 4,CD =1,求⊙O 半径的长.0m n >>C D OAB第16题图20. 已知抛物线y=-x 2+2x +3,回答下列问题: (1)画出该函数图象(要求列表、2B 铅笔画图);(2)当−3<x <3时,y 的取值范围是__________.21. 如图,⊥ABC 中AB=AC ,以AB 为直径作⊙O 交BC 于点D ,DE AC 于点E . 求证:(1)BD=DC ;(2)DE 是⊙O 的切线.22. 学生会要组织“四中杯”篮球赛,赛制为单循环形式(每两队之间都赛一场). (1)如果有4支球队参加比赛,那么共进行 场比赛;(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?x … ... y …...23.在画函数图象时,我们常常通过描点、平移或翻折的方法.某班“数学兴趣小组”根据学到的函数知识探究函数22||y x x =-的图象与性质,并利用函数图象解决问题.探究过程如下,请补充完整.(1)函数22||y x x =-的自变量x 的取值范围是________. (2)化简:当x >0时函数y =_________,当x <0时函数y =________.(3)根据上题,在如图所示的平面直角坐标系中描点, 画出该函数的图象,并写出该函数的一条性质: ______________________________________________. (4)若直线y=k 与该函数只有两个公共点,根据图象判断 k 的取值范围为________.24. 在平面直角坐标系xOy 中,抛物线2+232y mx mx m =-+. (1) 求抛物线的对称轴;(2) 过点)20(,P 作与x 轴平行的直线,交抛物线于点M ,N .求点M ,N 的坐标; (3) 横、纵坐标都是整数的点叫做整点.如果抛物线和线段MN 围成的封闭区域内(不包括边界)恰有3个整点,求m 的取值范围.25. (1)已知等边三角形ABC ,请作出△ABC 的外接圆⊙O .在⊙O 上任取一点P (异于A 、B 、C 三点),连结P A 、PB 、PC .①依题意补全图形,要求尺规作图,不写作法,保留作图痕迹; ②请判断P A 、PB 、PC 的关系,并给出证明.(2)已知⊙O ,请作出⊙O 的内接等腰直角三角形ABC ,∠C =90°.在⊙O 上任取一点P (异于A 、B 、C 三点),连结P A 、PB 、PC.①依题意补全图形,要求尺规作图,不写作法,保留作图痕迹; ②请判断P A 、PB 、PC 的关系,并给出证明.26.在平面直角坐标系xOy 中,对于△ABC ,点P 在BC 边的垂直C ABO平分线上,若以点P为圆心,PB为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.右图所示,点P即为△ABC关于边BC的“Math点”已知点P(0, 4),Q(a, 0)(1)如图1,a=4,在点A(1, 0)、B( 2, 2)、C( 2√3, 2√3) 、D( 5, 5)中,△POQ关于边PQ的“Math点”为.(2)如图2,a=4√3,①已知D(0 , 8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线y=−√3x+b交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.图1图2初三期中测试数学学科参考答案:一、选择题1、D2、B3、A4、B5、B6、D7、A8、A 二、填空题9、9 10、110 11、-6 12、2 13、(2,1) 14、-3,0 15、90º的圆周角所对的弦是直径,同弧所对的圆周角相等。

一学期北京四中初三级数学期中考试试题及答案

一学期北京四中初三级数学期中考试试题及答案

2013-2014第一学期北京四中初三年级数学期中考试试卷及答案(时间:120分钟满分:120分)姓名:班级:成绩: ____________一.选择题(每题4分,共32分)1.抛物线2(1)4yx 的顶点坐标是()A .(1,4)B.(-1,4) C.(1,-4) D.(-1,-4) 2.在Rt △ABC 中,∠C=90°,4sinA5,则cosB 的值等于()A .53 B.54 C.43D.553.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DE :EC=2:3,则S △DEF :S △ABF =()A. 2:3B.4:9C.2:5D.4:25 4.在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为2,把△EFO 放大,则点E 的对应点E ′的坐标是()A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)5.二次函数2y axbxc (a ≠0)中的x 与y 的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 y125﹣3﹣4﹣3512给出了结论:(1)二次函数2y axbx c 有最小值,最小值为﹣3;(2)当122x 时,y <0;(3)二次函数2y axbx c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是()A .1个 B.2个 C . 3个 D.0个6.如图,D 是△ABC 的边BC 上一点,已知AB=4,AD=2.∠DAC=∠B ,若△ABD 的面积为a ,则△ACD 的面积为()A .aB .12a C.13aD .23a7.若定义变换:(,)(,)f a b a b ,(,)(,)g m n m n ,如:(1,2)(1,2)f ,(4,5)(4,5)g ,则((2,3))g f =()A .(2,3)B .(2,3)C .(2,3)D .(2,3)8.小明从如图所示的二次函数2y axbx c (a ≠0)的图象中,观察得出了下面五条信息:①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤32a b你认为其中正确信息的个数有()A. 2个B. 3个C. 4个D. 5个二.填空题(每题4分共16分)9.在△ABC 中,∠C =90°,3cos ,32Ba,则b=_________.10.已知(-3,m )、(1,m)是抛物线223y x bx 的两点,则b=____. 11.如图,是二次函数21y axbx c 和一次函数2y mxn 的图象,观察图象写出21y y 时,x 的取值范围__________.12. 已知二次函数2y axbx c 图象的一部分如图,则a 的取值范围是______.三.解答题(本题共30分)13.计算:.11()8|12|2sin 60tan 60214.如图,正△ABC 中,∠ADE=60°,(1)求证:△ABD ∽△DCExyO(2)若BD=2,CD=4,求AE 的长.15.如图,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进(939)m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,求该建筑物AB 的高度.16. 已知抛物线2234y xkx k .(1)顶点在y 轴上时,k 的值为_________. (2)顶点在x 轴上时,k 的值为_________. (3)抛物线经过原点时,k 的值为_______.17.已知二次函数21322yx x.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y < 0时,x 的取值范围;(3)若将此图象沿x 轴向右平移3个单位,请写出平移后图象所对应的函数关系式.18.已知:如图,在△ABC 中,AD 是边BC 上的高,E 为边AC 的中点,BC =14,AD =12,54sin B 求:(1)线段DC 的长;(2)tan ∠EDC 的值.四、解答题(本题共20分,19、20每小题5分21题6分22题4分)19.如图,直角△ABC 中,90C ,25AB,5sin 5B,点P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连结AP .(1)求AC 、BC 的长;(2)设PC 的长为x ,ADP 的面积为y .当x 为何值时,y 最大并求出最大值.20.如图,直线3y x 和2y x 分别与直线2x相交于点A 、B ,将抛物线2yx 沿线段OB 移动,使其顶点始终在线段OB 上,抛物线与直线x =2相交于点C ,设△AOC 的面积为S ,求S 的取值范围.21.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?22、当抛物线的解读式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化. 例如:x x y y x x由抛物线22221y xmx mm ①有2()21y x m m ②,所以抛物线顶点坐标为(m ,2m -1),即x = m ③, y = 2m -1④.当m 的值变化时,x ,y 的值也随之变化,因而y 的值也随x 值的变化而变化.将③代入④,得y=2x -1⑤. 可见,不论m 取任何实数,抛物线顶点的纵坐标y 和横坐标x都满足关系式:y=2x -1;(1)根据上述阅读材料提供的方法,确定点(-2m, m -1)满足的函数关系式为_______.(2)根据阅读材料提供的方法,确定抛物线22211y xx mmm顶点的纵坐标y 与横坐标x 之间的关系式. 五、解答题(本题共22分,第23题6分,第24题7分,第25题9分)23. 已知二次函数22aax xy (1)求证:不论a 为何实数,此函数图象与x 轴总有两个交点.(2)设a<0,当此函数图象与x 轴的两个交点的距离为13时,求出此二次函数的解读式.(3)在(2)的条件下,若此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△PAB 的面积为3132,若存在求出P 点坐标,若不存在请说明理由。

北京四中九年级(上)期中数学模拟试卷

北京四中九年级(上)期中数学模拟试卷

时,代数式 2x2+8x-3 的最
(“大”或者“小”)值为

三、计算题(本大题共 1 小题,共 8.0 分)
17. 解方程:x2-2x=8.
四、解答题(本大题共 4 小题,共 39.0 分) 18. .已知抛物线 y=x2+bx+c 的对称轴为 x=2,且过点 C(0,3)
1 求此抛物线的解析式; 2 证明:该抛物线恒在直线 y=-2x+1 上方.
A. 1
B. 2
C. 3
D. 4
3. 如果关于 x 的一元二次方程 ax2+x-1=0 有实数根,则 a 的取值范围是( )
A. a>−14
B. a≥−14
C. a≥−14 且 a≠0
D. a>14 且 a≠0
4. 用配方法解方程:x2-4x+2=0,下列配方正确的是( )
A. (x−2)2=2
B. (x+2)2=2
A. (−a,−b)
B. (−a.−b−1)
C. (−a,−b+1)
D. (−a,−b−2)
7. 如图,抛物线 y=x2+bx+c 与 x 轴交于 A,B 两点,与 y 轴 交于点 C,∠OBC=45°,则下列各式成立的是()
A. b−c−1=0 B. b+c−1=0 C. b−c+1=0 D. b+c+1=0
交 BD 于 P 点且 PB=2,PD=4,则 AD 的长为( )
第 1 页,共 13 页
A. 23
B. 26
C. 22
D. 4
10. △ABC 中,AB=AC,∠BAC=30°,将 AB 绕着点 A 逆时针旋转 m°(0<m<360)至

北京四中2013-2014学年度九年级数学第一学期期中试卷

北京四中2013-2014学年度九年级数学第一学期期中试卷

北京四中2013~2014学年度第一学期期中考试九年数学试卷(时间:120分钟 满分:120分)姓名: 班级: 成绩: ____________一.选择题(每题4分,共32分) 1.抛物线y =(x +1)2-4的顶点坐标是( )A .(1,4) B.(-1,4) C.(1,-4) D.(-1,-4) 2.在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ) A .53 B. 54 C. 43D. 553.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DE :EC=2:3,则S △DEF :S △ABF =( ) A. 2:3 B. 4:9 C. 2:5 D. 4:254.在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似 中心,相似比为2,把△EFO 放大,则点E 的对应点E′的坐标是( ) A.(-2,1) B.(-8,4) C.(-8,4)或(8,-4) D.(-2,1)或(2,-1)5.二次函数y=ax 2+bx +c (a≠0)中的x 与y 的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 y125﹣3﹣4﹣3512给出了结论:(1)二次函数y=ax 2+bx +c 有最小值,最小值为﹣3; (2)当时,y <0;(3)二次函数y=ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧. 则其中正确结论的个数是( )A .1个B .2个C . 3个D .0个 6.如图,D 是△ABC 的边BC 上一点,已知AB=4,AD=2. ∠DAC=∠B,若△ABD 的面积为a ,则△ACD 的面积为( ) A .a B .12a C .13a D .23a 7.若定义变换:(,)(,)f ab a b =-,(,)(,)g m n m n =-,如:(1,2)(1,2)f =-,(4,5)(4,5)g --=-,则((2,3))g f -=( )A .(2,3)-B .(2,3)-C .(2,3)D .(2,3)--8.小明从如图所示的二次函数y=ax 2+bx +c (a ≠0)的图象中, 观察得出了下面五条信息:①ab >0;②a +b +c <0;③b +2c >0;④a ﹣2b +4c >0;⑤.你认为其中正确信息的个数有( ) A. 2个B. 3个C. 4个D. 5个二.填空题(每题4分共16分) 9.在△ABC 中,∠C =90°,3cos ,3B a == ,则b= . 10.已知(-3,m )、(1,m )是抛物线y=2x 2+bx +3的两点,则b =____. 11.如图,是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2>y 1时,x 的取值范围__________.12. 已知二次函数y =ax 2+bx +c 图象的一部分如图,则a 的取值范围是____ __. 三.解答题(本题共30分) 13.计算:.14.如图,正△ABC 中,∠A DE=60°,(1)求证:△ABD ∽△DCE ;(2)若BD=2,CD=4,求AE 的长.xyO15.如图,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进(9m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,求该建筑物AB 的高度16. 已知抛物线y =x 2-2kx +3k +4.(1)顶点在y 轴上时,k 的值为_________. (2)顶点在x 轴上时,k 的值为_________. (3)抛物线经过原点时,k 的值为_______.17.已知二次函数y =- 12x 2 - x + 32.(1)在给定的直角坐标系中,画出这个函数的图象; (2)根据图象,写出当y < 0时,x 的取值范围; (3)若将此图象沿x 轴向右平移3个单位,请写出平移后图象所对应的函数关系式.18.已知:如图,在△ABC 中,AD 是边BC 上的高,E 为边AC 的中点,BC =14,AD =12,⋅=54sin B 求:(1)线段DC 的长;(2)tan ∠EDC 的值.四、解答题(本题共20分,19、20每小题5分21题6分22题4分) 19.如图,直角ABC ∆中,90C ∠=︒,5AB =5sin 5B =,点P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连结AP .(1)求AC 、BC 的长;(2)设PC 的长为x ,ADP ∆的面积为y .当x 为何值时,y 最大并求出最大值.20.如图,直线y =3x 和y =2x 分别与直线x =2相交于点A 、B ,将抛物线y =x 2沿线段OB 移动,使其顶点始终在线段OB 上,抛物线与直线x =2相交于点C ,设△AOC 的面积为S ,求S 的取值范围.21.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?22、当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化. 例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,所以抛物线顶点坐标为(m,2m-1),即x = m③, y = 2m-1④.当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化.将③代入④,得y=2x-1⑤. 可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1;(1)根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______.(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式.五、解答题(本题共22分,第23题6分,第24题7分,第25题9分) 23. 已知二次函数22-++=a ax x y(1)求证:不论a 为何实数,此函数图象与x 轴总有两个交点.(2)设a <0,当此函数图象与x 轴的两个交点的距离为13时,求出此二次函数的解析式.(3)在(2)的条件下,若此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△PAB 的面积为2133,若存在求出P 点坐标,若不存在请说明理由。

北京四中2020-2021学年度第一学期九年级期中测试数学学科试题

北京四中2020-2021学年度第一学期九年级期中测试数学学科试题

北京四中2020—2021学年度第一学期初三期中测试数学学科班级__________ 学号__________ 姓名__________ 成绩__________一、选择题(每题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.二次函数y =(1x +)22-的最小值是 ( )A .1B .1-C .2D .2-2.如图,⊙O 是△ABC 的外接圆,40OCB ∠=︒,则A ∠的大小为( )A .40︒B .50︒C .80︒D .100︒3.若将抛物线25y x =先向右平移2个单位,再向上平移1个单位,则得到的新抛物线的表达式为( )A .2521y x =-+() B .25+21y x =+() C .2521y x =--() D .25+21y x =-() 4. 如图, AB 为⊙O 的弦, 点C 为AB 的中点,AB =8,OC =3, 则⊙O 的半径长为( )A .4B .5C .6D .75.已知A (12-,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y=-(x-2)2的图象上,则y 1,y 2,y 3的大小关系为( )A. y 1<y 2<y 3B. y 1<y 3<y 2C. y 3<y 1<y 2D. y 3<y 2<y 1 6.如图,⊙O 中直径AB ⊥DG 于点C ,点D 是弧EB 的中点,CD 与BE 交于点F .下列结论①∠A =∠E ,②∠ADB =90°,③FB=FD 中正确的个数为( )A .0B .1C .2D .37.已知抛物线2(0)y ax bx c a =++≠上部分点的横坐标x 与纵坐标y 的对应值如下表:考生须知1.本试卷共8页,共26道题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写班级、姓名和学号。

3.答案一律填写在答题纸上,在试卷上作答无效。

4.考试结束后,将试卷和答题纸一并交回。

北京市第四中学2021~2022学年九年级上学期期中数学试题(含答案与解析)

北京市第四中学2021~2022学年九年级上学期期中数学试题(含答案与解析)
18.已知一次函数y1kxn与二次函数 的图象都经过(1,-2),(3,2)两点.
(1)请你求出一次函数,二次函数的表达式;
(2)结合图象,请直接写出当x取何值时,y1>y2.
19.下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.
已知:如图,⊙O及⊙O上一点P.
求作:过点P的⊙O的切线.
作法:如图,作射线OP;
A.0个B.1个C.2个D.3个
二、填空题(本题共16分,每小题2分)
9.已知 是关于 的一元二次方程 的一个根,则 ___________
10.在半径为1cm的圆中,圆心角为120°的扇形的弧长是_____cm.
11.二次函数 的最大值为_______.
12.已知二次函数 的图象与 轴只有一个交点.请写出 一组满足条件的 的值: __________, _________________
收集数据
七年级66 70 71 78 71 78 75 78 58
63 90 80 85 80 89 85 86 80 87
八年级61 65 74 70 71 74 74 76 63
91 85 80 84 87 83 82 80 86
整理、描述数据
成绩 /分数
七年级成绩统计情况
八年级成绩统计情况
频数
4.将二次函数 的图象向左平移1个单位,再向下平移5个单位,得到的函数图象的表达式是()
A. B. C. D.
【答案】B
【解析】
【分析】直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】解:将二次函数 的图象向左平移1个单位,再向下平移5个单位,得到的函数图象的表达式是: .
故选:B.
【点睛】本题考查了二次函数的图象与性质,熟知函数图象平移变换的法则是解答此题的关键.

北京四中初三上册期中考试数学(含解析).docx

北京四中初三上册期中考试数学(含解析).docx

北京四中初三上期中数学试卷一、选择题(每小题3分,共30分)1.抛物线2(1)2y x =-+的对称轴为( ). A .直线1x = B .直线1x =- C .直线2x = D .直线2x =-2.已知反比例数ky x=的图象过点(2,1),下列各点也在反比例函数图象上的点是( ). A .(2,1)-B .(1,2)-C .1(2,)2D .1(4,)23.如图,已知⊙O 的半径为5,弦AB 的长为8,半径OD 过AB 的中点C ,则OC 的长为( ). A .2 B .3 C .4 D .54.把二次函数23y x =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数解析式为( ). A .23(2)1y x =-+ B .23(2)1y x =+- C .23(2)1y x =--D .23(2)1y x =++5.如图,点A 、B 、C 在⊙O 上,若35ABC ∠=︒,则AOC ∠的度数为( ). A .20︒ B .40︒ C .60︒ D .70︒6.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象可能为下列中的( ).A .B .C .D .7.如图,P 是反比例函数图象上的一点,过点P 向x 轴作垂线,垂足为A ,若PAO △的面积为4,则这个反比例函数的解析式为( ). A .4y x = B .4y x =-C .8y x=D .8y x=-xOyxOyxO yxO yOCABO DC BAPA xOy8.二次函数2y ax bx c =++的部分图象如图所示,则下列结论中正确的是( ).A .0a >B .不等式20ax bx c ++>的解集是15x -<<C .0a b c -+>D .当2x >时,y 随x 的增大而增大9.若抛物线243y x x t =-+-(t 为实数)在1032x <<的范围内与x 轴有公共点,则t 的取值范围为( ).A .13t -<<B .13t -<≤C .534t << D .1t -≥10.如图,ACB △中,60B ∠=︒,75ACB ∠=︒,点D 是BC 边上一动点,以AD 为直径作⊙O ,分别交AB 、BC 于点E 、F ,若弦EF 的最小值为1,则AB 的长为( ). A .22 B .263 C .1.5D .433二、填空题(每空4分,共24分)11.已知双曲线3y x=,如果1(1,)A b -,2(2,)B b 两点在该双曲线上,那么1b __________2b .(比较大小)12.将抛物线21y x =+绕原点旋转180︒,则旋转后抛物线的解析式为__________.13.二次函数2y ax bx c =++的部分对应值如下表:x … 2- 1- 0 1 2 3 … y…5 03-4-3-…当函数值0y <时,x 的数值范围是__________.14.已知:如图,⊙O 是的内切圆,分别切BC 、AB 、AC 于点D 、E 、F ,ABC △的周长为24cm ,10cm BC =,则AE =__________cm .15.已知:如图,AB 是半圆O 的直径,E 是弧BC 的中点,OE 交弦BC 于点D ,已知8cm BC =,2cm DE =,则AD 的长为__________cm .52OxyFE OCDABFEDCBA OCAE DB16.已知二次函数2y ax bx c =++的图象与x 轴交于(1,0)和1(,0)x ,其中121x -<<-,与y 轴交于正半轴上一点,下列结论:①0b >;②214ac b <;③a b >;④2a c a -<<-.其正确结论的序号是__________.三、解答题(本题共18分,每题6分)17.若二次函数23y ax bx =++的图象经过(1,0)A 、(2,1)B -两点,求此二次函数的解析式.18.已知;如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(1,2)A -、(2,)B n 两点. (1)求出上述反比例函数和一次函数的解析式; (2)根据函数图象,直接写出当m kx b x+≥时x的取值范围.19.已知抛物线212(2)2y x m x m =+++-与x 轴交于A ,B 两点(点A 在点B 左侧),对称轴为直线1x =-.(1)m 的值为__________;在坐标系中利用描点法画出此抛物线;x … … 1y……(2)若直线2y kx b =+过点B 且与抛物线交于点(2,3)P --,根据图象直接写出当x 取什么值时,21y y ≤.yxOBA1221yxO20.如图,点A 、B 、C 、D 在⊙O 上,O 点在D ∠的内部,四边形OABC 为平行四边形. 求OAD OCD ∠+∠的度数.21.如图,PB 切⊙O 于点B ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 交⊙O 于点C ,连结BC 、AF . (1)求证:直线PA 为⊙O 的切线;(2)若6BC =,:1:2AD FD =,求⊙O 的半径r 的长.22.已知21(2)y x kx k k =-+->.(1)求证:抛物线21(2)y x kx k k =-+->与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC ∠=,求此抛物线的解析式;(3)以(2)中的抛物线上一点(,)P m n 为圆心,1为半径作圆,直接写出:当m 分别取何值时,x 轴与⊙P 相离、相切、相交.xy O –1–21234–1–2123423.对于二次函数232y x x =-+和一次函数24y x =-+,把2(32)(1)(24)y t x x t x =-++--+称为这两个函数的“再生二次函数”,其中t 是不为零的实数,其图象记作抛物线E .现有点(2,0)A 和抛物线E 上的点(1,)B n -,请完成下列任务: 【尝试】(1)当2t =时,抛物线2(32)(1)(24)y t x x t x =-++--+的顶点坐标为__________. (2)点A __________(填在或不在)在抛物线E 上; (3)n 的值为__________.【发现】通过(2)或(3)的演算可知,对于t 取任何不为零的实数,抛物线E 总过定点,坐标为__________.【应用】二次函数2352y x x =-++是二次函数232y x x =-+和一次函数24y x =-+的一个“再生二次函数”吗?如果是,求出t 的值;如果不是,说明理由.24.如图,ABC △外接圆⊙O 半径为r ,AD BC ⊥于点D ,BE AC ⊥于点E ,AD 、BE 交于点K ,AK r =.求BAC ∠的度数.K E OCADB25.如图,在平面直角坐标系中有Rt ABC △,90A ∠=︒,AB AC =,(2,0)A -、(0,1)B 、(,2)C d . (1)求d 的值;(2)将ABC △沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B '、C '正好落在某反比例函数图象上,请求出这个反比例函数和此时的直线B C ''的解析式;(3)在(2)的条件下,直线B C ''交y 轴于点G .问是否存在x 轴上的点M 和反比例函数图象上的点P ,使得P 、G 、M 、C 为顶点的四边形是平行四边形,如果存在,请求出点M 的坐标;如果不存在,请说明理由.C'B'A'GBCAyOx北京四中初三上期中数学试卷答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 ADBDDBDBBB二、填空题(每空4分,共24分)题号 1112 13 14 15 16 答案 <21y x =--13x -<<2213②④三、解答题(本题共18分,每题6分)17.解:二次函数23y ax bx =++的图象经过(1,0)A 、(2,1)B -两点, ∴031423a b a b =++⎧⎨-=++⎩,解得14a b =⎧⎨=-⎩. ∴二次函数的解析式为243y x x =-+.18.解:(1)∵(1,2)A -在my x=上, ∴2m =-.∴反比例函数的解析式是2y x =-. ∵点(2,)B n 在2y x=-上, ∴212n =-=-,即(2,1)B -.∵(1,2)A -,(2,1)B -在y kx b =+上, ∴221k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=⎩.∴一次函数的解析式是1y x =-+.(2)由函数图象可知,x 的范围为1x -≤或02x <≤.19.解:(1)由题意得12b a -=-,即2(2)12m +-=-, ∴1m =-.∴抛物线解析式为:2123y x x =+-. 令10y =,得13x =-,21x =. 列表如下:x … 3- 2-1- 0 1 … 1y…3-4-3-…描点画图如图所示:(2)如图所示,易知,当2x -≤或1x ≥时,21y y ≤.1221y xOPB1221y xO20.解:∵四边形ABCD 是圆内接四边形, ∴180B D ∠+∠=︒.∵四边形OABC 为平行四边形, ∴AOC B ∠=∠. 又∵2AOC D ∠=∠, ∴60D ∠=︒.连结OD ,可得AO OD =,CO OD =. ∴OAD ODA ∠=∠,OCD ODC ∠=∠.∴60OAD OCD ODA ODC D ∠+∠=∠+∠=∠=︒.21.(1)证明:如图,连接OB . ∵PB 是⊙O 的切线, ∴90PBO ∠=︒.∵OA OB =,BA PO ⊥于D , ∴AD BD =,POA POB ∠=∠. 又∵PO PO =, ∴PAO △≌PBO △. ∴90PAO PBO ∠=∠=︒. ∴直线PA 为⊙O 的切线.(2)解:∵OA OC =,AD BD =,6BC =, ∴132OD BC ==. 设AD x =.∵:1:2AD FD =,∴2FD x =,23OA OF x ==-.在Rt AOD △中,由勾股定理,得222(3)23x x -=+. 解之得,14x =,20x =(不合题意,舍去). ∴4AD =,235OA x =-=. 即⊙O 的半径的长5.22.(1)证明:∵22()41(1)(2)k k k ∆=--⨯⨯-=-, 又∵2k >, ∴20k ->.∴2(2)0k ->,即0∆>.∴抛物线21y x kx k =-+-与x 轴必有两个交点.(2)解:∵抛物线21y x kx k =-+-与x 轴交于A 、B 两点, ∴令0y =,有210x kx k -+-=. 解得:1x k =-或1x =. ∵2k >,点A 在点B 的左侧, ∴(1,0)A ,(1,0)B k -. ∵抛物线与y 轴交于点C , ∴(0,1)C k -.∵在Rt AOC △中,tan 3OAC ∠=, ∴tan 311OAC OC k OA ∠=-==,解得4k =. ∴抛物线的表达式为243y x x =-+.(3)解:当22m <-或22m >+时,x 轴与⊙P 相离. 当22m =-或2m =或22m =+时,x 轴与⊙P 相切. 当222m -<<或222m <<+时,x 轴与⊙P 相交.23.解:(1)将2t =代入抛物线E 中,得:2222(32)(12)(24)242(1)2y x x x x x x =-++--+=-=--, ∴此时抛物线的顶点坐标为:(1,2)-; (2)点A 在抛物线E 上,理由如下:∵将2x =代入2(32)(1)(24)y t x x t x =-++--+,得0y =, ∴点(2,0)A 在抛物线E 上. (3)∵点(1,)B n -在抛物线E 上,∴将1x =-代入抛物线E 的解析式中,得:(132)(1)(24)6n t t =+++-+=. 【发现】∵将抛物线E 的解析式展开,得:2(32)(1)(24)(2)(1)24y t x x t x t x x x =-++--+=-+-+, ∴抛物线E 必过定点(2,0)、(1,6)-. 【应用】不是,理由如下:∵将1x =-代入2352y x x =-++,得66y =-≠, ∴二次函数2352y x x =-++的图象不经过点B .∴二次函数2352y x x =-++不是二次函数232y x x =-+和一次函数24y x =-+的“再生二次函数”.24.解法一:如图1,连接CO 并延长,交⊙O 于点N ,连接AN ,BN . ∵CN 为⊙O 直径, ∴90NAC NBC ∠=∠=︒, ∵AD BC ⊥,BE AC ⊥, ∴AN BE ∥,NB AD ∥. ∴四边形ANBK 为平行四边形. ∴NB AK r ==,在Rt NBC △中,2NC r =, ∴1cos 2NB NBC NC ∠==, ∴60BNC ∠=︒, ∴60BAC BNC ∠=∠=︒.解法二:如图2,连接OA ,过点O 作OF AB ⊥于点F . ∵90AOF OAF ∠+∠=︒,90KAE C ∠+∠=︒, 且AOF C ∠=∠, ∴OAF KAE ∠=∠.又∵OA KA r ==,90AEK AFO ∠=∠=︒, ∴AFO △≌AEK △.图1NK E O CADB F图2K E O CADB∴AF AE =, ∴2AB AE =.∴在Rt ABE △中,60BAC ∠=︒.25.解:(1)作CN x ⊥轴于点N . 在Rt CNA △和Rt AOB △中, ∵2NC OA ==,AC AB =, ∴Rt CNA △≌Rt AOB △(HL ).∴1AN BO ==,3NO NA AO =+= 又∵点C 在第二象限, ∴3d =-.(2)设反比例函数为ky x=,点C '和B '在该比例函数图像上, 设(,2)C m ',则(3,1)B m '+. 把点C '和B '的坐标分别代入ky x=,得2k m =;3k m =+, ∴23m m =+,3m =,则6k =, ∴反比例函数解析式为6y x=. ∴点(3,2)C ',(6,1)B '.∴直线B C ''的解析式为133y x =-+.(3)设点M 的坐标为(,0)m ,点P 的坐标为6(,)p p. 当以MP 为平行四边形对角线时,03m p +=-,6032p +=+,解得215m =-; 当以MG 为平行四边形对角线时,03m p +=-,6032p+=+,解得3m =; 当以MC 为平行四边形对角线时,30m p -=+,6023p+=+,解得3m =-. 综上所述,存在点121(,0)5M -,2(3,0)M ,3(3,0)M -,使得P 、G 、M 、C 为顶点的四边形是平行四边形.N C'B'A'GBCAyOx11 北京四中初三上期中数学试卷部分答案解析一、选择题1.【答案】A【解析】抛物线2(1)2y x =-+的对称轴为直线1x =.故选A .2.【答案】D 【解析】∵反比例数k y x =的图象过点(2,1),∴2k =,易知点1(4,)2在2y x =的图象上.故选D .3.【答案】B【解析】∵半径OD 过AB 的中点C ,弦AB 的长为8,∴4BC =,90OCB ∠=︒,在Rt OCB △中,2222543OC OB BC =-=-=.故选B .4.【答案】D【解析】根据“上加下减,左加右减”可得,所求二次函数的解析式为23(2)1y x =++.故选D .5.【答案】D【解析】由圆周角定理可得,270AOC ABC ∠=∠=︒.故选D .6.【答案】B【解析】由解析式可知,两个函数均过点(0,)c ;当0a >时,一次函数单调递增,二次函数开口向上;当0a <时,一次函数单调递减,二次函数开口向下.故选B .7.【答案】D【解析】由k 得几何意义,可知142PAO S k ==△, 又∵反比例函数的图象在第二、四象限,∴0k <, ∴8k =-,∴反比例函数的解析式为8y x=-.故选D .8.【答案】B【解析】由二次函数的图象可知,开口向下,∴0a <;抛物线的对称轴为直线2x =,与x 轴的一个交点为(5,0),故另一个交点为(1,0)-, ∴不等式20ax bx c ++>的解集是15x -<<;又∵抛物线经过点(1,0)-,∴0a b c -+=;当2x >时,y 随x 的增大而减小.故选B .9.【答案】B【解析】抛物线的对称轴为直线2x =,开口向上,∵抛物线243y x x t =-+-(t 为实数)在1032x <<的范围内与x 轴有公共点,12∴当2x =时,48310y t t =-+-=--≤,当0x =时,30y t =->,∴13t -<≤.故选B .10.【答案】B【解析】连接OE ,OF .∵60B ∠=︒,75ACB ∠=︒,∴45BAC ∠=︒,∴90EOF ∠=︒. ∴222EF OE AD ==. ∵弦EF 的最小值为1,∴AD 的最小值为2,即当AD BC ⊥时,2AD =.在Rt ABD △中,60B ∠=︒,∴26cos603AD AB ==︒.故选B . 二、填空题11.【答案】<【解析】易得13b =-,232b =,∴12b b <.故答案为<.12.【答案】21y x =--【解析】抛物线21y x =+绕原点旋转180︒,顶点由(0,1)变为(0,1)-,开口方向由向上变为向下,故旋转后抛物线的解析式为21y x =--.故答案为21y x =--.13.【答案】13x -<<【解析】由表格中数据已知,当函数值0y <时,x 的数值范围是13x -<<.故答案为13x -<<.14.【答案】2【解析】设AE x =,则AF x =,又∵CD CF =,BD BE =,∴22024x +=,解得2x =.故2cm AE =.故答案为2.15.【答案】213【解析】设半圆O 的半径为r .∵AB 是半圆O 的直径,∴90C ∠=︒,∵E 为BC 弧中点,∴OE BC ⊥,∴OE AC ∥,∴22(2)AC OD r ==-,在Rt ABC △中,222AC BC AB +=,∴2224(2)84r r -+=,解得5r =. F EO C D A B13 ∴6AC =,142CD BC ==, ∴22213AD AC CD =+=.故答案 为213.16.【答案】②④【解析】由题意可知,二次函数的图象大致如图所示: 由图可知,0b <,①错误;240b ac ∆=->,∴214ac b <,②正确; ∵1122x ba +-=,121x -<<-, ∴1211222ba --<-<,即01ba <<,∵0a <,∴a b <,③错误. 又∵11cx a ⋅=,121x -<<-, ∴21ca -<<-,∵0a <,∴2a c a -<<-,④正确.故答案为②④.-1-21y x。

2023-2024学年北京四中九年级(上)期中数学试卷(含解析)

2023-2024学年北京四中九年级(上)期中数学试卷(含解析)

2023-2024学年北京四中九年级(上)期中数学试卷一、选择题(本题共16分,每小题2分)1.(2分)下列图案中既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.(2分)如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=54°,则∠A的度数是( )A.36°B.33°C.30°D.27°3.(2分)抛物线y=(x+1)(x﹣3)的对称轴是直线( )A.x=﹣1B.x=1C.x=﹣3D.x=34.(2分)关于x的一元二次方程4x2+(4m+1)x+m2=0有实数根,则m的最小整数值为( )A.1B.0C.﹣1D.﹣25.(2分)如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300m,则这三栋楼中在该5G基站覆盖范围内的是( )A.A,B,C都不在B.只有BC.只有A,C D.A,B,C6.(2分)如图,将△ABC绕点A顺时针旋转40°得到△ADE,点B的对应点D恰好落在边BC上,则∠ADE的度数为( )A.40°B.70°C.80°D.75°7.(2分)在平面直角坐标系xOy中,已知抛物线:y=x2﹣2ax+4.若A(a﹣1,y1),B (a,y2),C(a+2,y3)为抛物线上三点,那么y1,y2与y3之间的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 8.(2分)在一化学实验中,因仪器和观察的误差,使得三次实验所得实验数据分别为a1,a2,a3.我们规定该实验的“最佳实验数据”a是这样一个数值:a与各数据a1,a2,a3差的平方和M最小.依此规定,则a=( )A.a1+a2+a3B.C.D.二、填空题(本题共16分,每小题2分)9.(2分)如图,AB为⊙O的切线,切点为点A,BO交⊙O于点C,点D在⊙O上,若∠ABO的度数是32°,则∠ADC的度数是 .10.(2分)若正六边形的半径等于4,则它的边心距等于 .11.(2分)如图,⊙O是△ABC的内切圆,点D、E分别为边AB、AC上的点,且DE为⊙O 的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是 .12.(2分)“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的应用.例如古典园林中的门洞.如图,某地园林中的一个圆弧形门洞的高为2.5m,地面入口宽为1m,则该门洞的半径为 m.13.(2分)如图所示,边长为1的正方形网格中,O,A,B,C,D是网格线交点,若与所在圆的圆心都为点O,那么阴影部分的面积为 .14.(2分)某学校有一个矩形小花园,花园长20米,宽18米,现要在花园中修建人行雨道,如图所示,阴影部分为雨道,其余部分种植花卉,同样宽度的雨道有3条,其中两条与矩形的宽平行,另外一条与矩形的宽垂直,计划花卉种植面积共为306平方米,设雨道的宽为x米,根据题意可列方程为 .15.(2分)抛物线y=ax2+bx+c的图象如图所示,则下列结论中正确的有 .①abc>0;②a+b+c=2;③b>2a;④b>1.16.(2分)如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连接OQ.则线段OQ的最大值是 .三、解答题(本题共68分,第17、20、22、24、25、26、28题每题6分,第18题4分,第19、21、23题每题5分,第27题7分)17.(6分)用适当的方法解下列方程:(1);(2)x2﹣1=2(x+1).18.(4分)如图,在平面直角坐标系中,△ABC的顶点A(﹣1,1),B(﹣4,2),C (﹣3,3).(1)平移△ABC,若点A的对应点A1的坐标为(3,﹣1),画出平移后的△A1B1C1;(2)将△ABC以点(0,2)为旋转中心旋转180°,画出旋转后对应的△A2B2C2;(3)已知将△A1B1C1绕某一点旋转可以得到△A2B2C2,则旋转中心的坐标为 .19.(5分)已知关于x的一元二次方程x2﹣(3k+1)x+2k2+2k=0.(1)求证:无论k取何实数值,方程总有实数根;(2)若等腰△ABC的一边长a=6,另两边长b、c恰好是这个方程的两个根,求此三角形的三边长?20.(6分)如图,在Rt△ABC中,∠C=90°,AC=BC=3,点D在AB上,且BA=3AD,连接CD,将线段CD绕点C逆时针方向旋转90°至CE,连接BE,DE.(1)求证:△ACD≌△BCE;(2)求线段DE的长度.21.(5分)“化圆为方”是古希腊尺规作图难题之一.即:求作一个方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的,如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:⊙O(纸片),其半径为r.求作:一个正方形,使其面积等于⊙O的面积.作法:①如图1,取⊙O的直径AB,作射线BA,过点A作AB的垂线l;②如图2,以点A为圆心,AO长为半径画弧交直线l于点C;③将纸片⊙O沿着直线l向右无滑动地滚动半周,使点A,B分别落在对应的A',B'处;④取CB'的中点M,以点M为圆心,MC长为半径画半圆,交射线BA于点E;⑤以AE为边作正方形AEFG.正方形AEFG即为所求.根据上述作图步骤,完成下列填空:(1)由①可知,直线l为⊙O的切线,其依据是 .(2)由②③可知,AC=r,AB'=πr,则MC= ,MA= (用含r的代数式表示).(3)连接ME,在Rt△AME中,根据AM2+AE2=EM2,可计算得AE2= (用含r的代数式表示).由此可得S正方形AEFG=S⊙O.22.(6分)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A(1,0),B (3,0),与y轴交于点C.(1)求抛物线的表达式;(2)当0≤x≤3时,直接写出y的取值范围;(3)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).若x1<x2<x3,结合函数的图象,直接写出x1+x2+x3的取值范围.23.(5分)如图,AB是⊙O的弦,∠OAB=45°,C是优弧AB上一点,BD∥OA交CA 延长线于点D,连接BC.(1)求证:BD是⊙O的切线;(2)若AC=,∠CAB=75°,求⊙O的半径.24.(6分)小明发现某乒乓球发球器有“直发式”与“间发式”两种模式,在“直发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条抛物线;在“间发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,球第一次接触台面到第二次接触台面的运动轨迹近似为一条抛物线.如图1和图2分别建立平面直角坐标系xOy.通过测量得到球距离台面高度y(单位:dm)与球距离发球器出口的水平距离x(单位:dm)的相关数据,如下表所示:表1 直发式x(dm)024********…y(dm) 3.84 3.964 3.96m 3.64 2.56 1.44…表2 间发式x(dm)024681012141618…y(dm) 3.36n 1.680.840 1.40 2.403 3.203…根据以上信息,回答问题:(1)表格中m= ,n= ;(2)求“直发式”模式下,球第一次接触台面前的运动轨迹的解析式;(3)若“直发式”模式下球第一次接触台面时距离出球点的水平距离为d1,“间发式”模式下球第二次接触台面时距离出球点的水平距离为d2,则d1 d2(填“>”“=”或“<”).25.(6分)如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB=5cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交于点F,连接FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段AC,CD,FD的长度的几组值,如表:位置1位置2位置3位置4位置5位置6位置7位置8 AC/cm0.10.5 1.0 1.9 2.6 3.2 4.2 4.9CD/cm0.10.5 1.0 1.8 2.2 2.5 2.3 1.0FD/cm0.2 1.0 1.8 2.8 3.0 2.7 1.80.5在AC,CD,FD的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解答问题:当CD>DF时,AC的长度的取值范围是 .26.(6分)在平面直角坐标系xOy中,抛物线y=ax2﹣2a2x﹣3(a≠0)与y轴交于点A,与直线x=﹣4交于点B.(1)若AB∥x轴,求抛物线的解析式;(2)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x P,y P),都有y P≥﹣3,求a的取值范围.27.(7分)在Rt△ABC中,∠C=90°,AC=BC,点D为AB上一点.过点D作DE⊥AC 于点E,过点D作DF⊥BC于点F,G为直线BC上一点,连接GE,M为线段GE的中点.连接MD,MF,将线段MD绕点M旋转,使点D恰好落在AB边上,记为D'.(1)①在图1中将图形补充完整;②求∠FMD'的度数.(2)如图2所示,,当点G,M,D′在一条直线上时,请直接写出∠GFM 的度数.28.(6分)在平面直角坐标系xOy中,⊙O的半径为.对于平面内一点A,若存在边长为1的等边△ABC,满足点B在⊙O上,且OC≥OA,则称点A为⊙O的“近心点”,点C为⊙O的“远心点”.(1)下列各点:D(﹣3,0),,,中,⊙O 的“近心点”有 ;(2)设点O与⊙O的“远心点”之间的距离为d,求d的取值范围;(3)直线分别交x,y轴于点M,M,且线段MN上任意一点都是⊙O的“近心点”,请直接写出b的取值范围.2023-2024学年北京四中九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、既是轴对称图形又是中心对称图形,故此选项符合题意.故选:D.2.【解答】解:连接BD,∵CD是⊙O的直径,∴∠CBD=90°,∵∠BCD=54°,∴∠D=90°﹣∠BCD=36°,∴∠A=∠D=36°.故选:A.3.【解答】解:∵抛物线y=(x+1)(x﹣3)与x轴的交点坐标(﹣1,0),(3,0),∴对称轴x==1.故选:B.4.【解答】解:∵4x2+(4m+1)x+m2=0,∴Δ=(4m+1)2﹣16m2=16m2+8m+1﹣16m2=8m+1,∵有实数根,∴8m+1≥0,∴,∴最小整数值为0.故选:B.5.【解答】解:∵AB=300m,BC=400m,AC=500m,∴AB2+BC2=AC2,∴△ABC是直角三角形,∴∠ABC=90°,∵点D是斜边AC的中点,∴AD=CD=250m,BD=AC=250m,∵250<300,∴点A、B、C都在圆内,∴这三栋楼中在该5G基站覆盖范围内的是A,B,C.故选:D.6.【解答】解:∵将△ABC绕点A顺时针旋转40°得到△ADE,∴∠DAB=40°,∵AD=AB,∴∠B=∠ADB=(180°﹣40°)÷2=70°,∴∠ADE=70°,故选:B.7.【解答】解:∵抛物线y=x2﹣2ax+4的开口向上,对称轴为直线x=﹣=a,∴A(a﹣1,y1)到对称轴的距离为1,B(a,y2)点为顶点,C(a+2,y3)点到对称轴的距离为2,∴y2<y1<y3.故选:D.8.【解答】解:根据题意:要使a与各数据a1,a2,a3差的平方和M最小,这M应是方差;根据方差的定义,a应该为a1,a2,a3的平均数;故a=.故选:D.二、填空题(本题共16分,每小题2分)9.【解答】解:∵AB切⊙O于点A,∴OA⊥AB,∵∠ABO=32°,∴∠AOB=90°﹣32°=58°,∴∠ADC=∠AOB=×58°=29°,故答案为:29°.10.【解答】解:如图所示,连接OA、OB,过O作OD⊥AB,∵多边形ABCD是正六边形,∴∠OAD=60°,∴OD=OA•sin∠OAB=4×=2.故答案为:2.11.【解答】解:由切线长定理得,BF=BG,CM=CG,DF=DN,EN=EM,∴BF+CM=BG+GC=BC=9,∴AF+AM=25﹣9﹣9=7,△ADE的周长=AD+AE+DE=AD+DF+AE+EM=AF+AM=7,故答案为:7.12.【解答】解:设圆的半径为r m,由题意可知,DF=CD=m,EF=2.5m,Rt△OFD中,OF=,r+OF=2.5,所以+r=2.5,解得r=1.3.故答案为:1.3.13.【解答】解:由勾股定理得,,则OC2+OD2=CD2,∴∠COD=90°,∵四边形OACB是正方形,∴∠COB=45°,∴,,,∴阴影部分的面积为.故答案为:.14.【解答】解:∵花园长20米,宽18米,且雨道的宽为x米,∴种植花卉的部分可合成长为(20﹣2x)米,宽为(18﹣x)米的矩形.根据题意得:(20﹣2x)(18﹣x)=306.故答案为:(20﹣2x)(18﹣x)=306.15.【解答】解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=﹣<0,∴a、b同号,即b>0,∴abc<0,故①错误,不符合题意;②当x=1时,函数值为2,∴a+b+c=2;故②正确,符合题意;③∵对称轴直线x=﹣>﹣1,a>0,∴2a>b,故③错误,不符合题意;④当x=﹣1时,函数值<0,即a﹣b+c<0,(1)又∵a+b+c=2,将a+c=2﹣b代入(1),2﹣2b<0,∴b>1故④正确,符合题意;综上所述,其中正确的结论是②④;故答案为:②④.16.【解答】解:令y=x2﹣4=0,则x=±4,故点B(4,0),设圆的半径为r,则r=2,连接PB,而点Q、O分别为AP、AB的中点,故OQ是△ABP的中位线,当B、C、P三点共线,且点C在PB之间时,PB最大,此时OQ最大,则OQ=BP=(BC+r)=(+2)=3.5,故答案为:3.5.三、解答题(本题共68分,第17、20、22、24、25、26、28题每题6分,第18题4分,第19、21、23题每题5分,第27题7分)17.【解答】解:(1)x2﹣2x+1=0,∵a=1,b=﹣2,c=1,∴Δ=(﹣2)2﹣4×1×1=8>0,∴x==±,所以x1=+,x2=﹣;(2)x2﹣1=2(x+1).(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,x+1=0或x﹣1﹣2=0,所以x1=﹣1,x2=3.18.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)连接A1A2,B1B2,C1C2,交于点P,∴旋转中心的坐标为(2,1).故答案为:(2,1).19.【解答】(1)证明:∵一元二次方程x2﹣(3k+1)x+2k2+2k=0,∴Δ=(3k+1)2﹣4(2k2+2k)=9k2+6k+1﹣8k2+8k=k2﹣2k+1=(k﹣1)2≥0,∴无论k取何实数值,方程总有实数根;(2)解:△ABC为等腰三角形,∴有a=b=6、a=c=6或b=c三种情况,①当a=b=6或a=c=6时,可知x=6为方程的一个根,∴62﹣6(3k+1)+2k2+2k=0,解得k=3或k=5,当k=3时,方程为x2﹣10x+24=0,解得x=4或x=6,∴三角形的三边长为4、6、6,当k=5时,方程为x2﹣16x+60=0,解得x=6或x=10,∴三角形的三边长为6、6、10,②当b=c时,则方程有两个相等的实数根,∴Δ=0,即(k﹣1)2=0,解得k1=k2=1,∴方程为x2﹣4x+4=0,解得x1=x2=2,此时三角形三边为6、2、2,不满足三角形三边关系,舍去,综上可知三角形的三边为4、6、6或6、6、10.还可采取以下方法:由x2﹣(3k+1)x+2k2+2k=0得到(x﹣2k)(x﹣k﹣1)=0,解得x=2k或k+1,当a=b=2k=6时,则a=b=6,k=3,此时,三角形的边长为6,6,4;当a=c=k+1=6时,则a=c=6,k=5,则x=2k=10=b,此时,三角形的边长为6,6,10;当b=c时,即2k=k+1,解得k=1,则b=c=2,此时,三角形的边长,2,2,6(构不成三角形,舍去)∴综上可知三角形的三边为4、6、6或6、6、10.20.【解答】(1)证明:∵将线段CD绕点C逆时针方向旋转90°至CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,即∠ACD=∠BCE.在△ACD与△BCE中,,∴△ACD≌△BCE(SAS);(2)解:在Rt△ABC中,∠C=90°,AC=BC=3,∴AB=6.∵AB=3AD,∴AD=2,BD=4.由(1)可知△ACD≌△BCE,∴∠CBE=∠A=45°,BE=AD=2,∴∠DBE=∠ABC+∠CBE=90°.在Rt△BDE中,∠DBE=90°,∴DE2=BE2+BD2,∴DE==2.21.【解答】解:(1)∵l⊥OA于点A,OA为⊙O的半径,∴直线l为⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线).故答案为:经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)∵以点A为圆心,AO长为半径画弧交直线l于点C,∴AC=r.∵纸片⊙O沿着直线l向右无滑动地滚动半周,使点A,B分别落在对应的A',B'处,∴AB'==πr,∴CB′=CA+AB′=r+πr=(π+1)r.∵M为CB′的中点,∴MC=CB′=.∴MA=MC﹣AC=﹣r=.故答案为:;;(3)连接ME,如图,则ME=MC=.在Rt△AME中,∵AM2+AE2=EM2,∴AE2=EM2﹣AM2=﹣=[][]=πr×r=πr2.∴S正方形AEFG=S⊙O.故答案为:πr2.22.【解答】解:(1)将A(1,0),B(3,0)代入抛物线y=x2+bx+c,得,解得,∴抛物线的表达式为:y=x2﹣4x+3;(2)﹣1≤y≤3.理由如下:当x=0时,y=3;当x=3时,y=0;又y=x2﹣4x+3=(x﹣2)2﹣1,即x=2时,y有最小值﹣1,∴当0≤x≤3时,y的取值范围为:﹣1≤y≤3;(3)设直线BC的表达式为:y=kx+b(k≠0),∵当x=0时,y=3,∴C(0,3),又∵B(3,0),∴,解得,所以直线BC的表达式为y=﹣x+3;抛物线y=x2﹣4x+3的对称轴为x===2,当x=2时,y=x2﹣4x+3=﹣1,故顶点坐标为(2,﹣1),画出函数图象如图,∵垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),∴y1=y2,∴x1+x2=4.令y=﹣1,代入BC的解析式y=﹣x+3,得x=4.∵x1<x2<x3,∴3<x3<4,∴7<x1+x2+x3<8.23.【解答】(1)证明:连接OB,如图.∵OA=OB,∠OAB=45°,∴∠1=∠OAB=45°,∵AO∥DB,∴∠2=∠OAB=45°,∴∠1+∠2=90°,∴BD⊥OB于B,又∵点B在⊙O上,∴BD是⊙O的切线;(2)解:作OE⊥AC于点E.∵OE⊥AC,AC=4,∴AE==2.∵∠BAC=75°,∠OAB=45°,∴∠3=∠BAC﹣∠OAB=30°.∴在Rt△OAE中,OA===4.24.【解答】解:(1)由抛物线的对称性及已知表1中的数据可知:m=3.84;在“间发式“模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,设这条直线的解析式为y=kx+b(k≠0),把(0,3.36)、(8,0)代入,得,解得:,∴这条直线的解析式为y=﹣0.42x+3.36,当x=2时,y=﹣0.42×2+3.36=2.52,表格2中,n=2.52;故答案为:3.84,2.52;(2)由已知表1中的数据及抛物线的对称性可知:“直发式“模式下,抛物线的顶点为(4,4),∴设此抛物线的解析式为y=a(x﹣4)2+4(a<0),把(0,3.84)代入,得3.84=a(0﹣4)2+4,解得:α=﹣0.01,∴“直发式“模式下,球第一次接触台面前的运动轨迹的解析式为y=﹣0.01(x﹣4)2+4;(3)当y=0时,0=﹣0.01(x﹣4)2+4,解得:x1=﹣16(舍去),x2=24,∴“直发式”模式下球第一次接触台面时距离出球点的水平距离为d1=24;“间发式“模式下,球第一次接触台面到第二次接触台面的运动轨迹近似为一条抛物线,由已知表2中的数据及抛物线的对称性可知:“间发式“模式下,这条抛物线的顶点坐标为(16,3.20),∴设这条抛物线的解析式为y=m(x﹣16)2+3.2 (m<0),把(8,0)代入,得0=m(8﹣16)2+3.2,解得:m=﹣0.05,∴这条抛物线的解析式为y=﹣0.05(x﹣16)2+3.2,当y=0时,0=﹣0.05(x﹣16)2+3.2,解得:x1=8,x2=24,∴d2=24dm,∴d1=d2,故答案为:=.25.【解答】解:(1)由题意可知:AC是自变量,CD,DF是自变量AC的函数.故答案为:AC,CD,FD.(2)函数图象如图所示:(3)观察图象可知CD>DF时,3.5cm<x<5cm.故答案为:3.5cm<x<5cm.26.【解答】解:(1)若AB∥x轴,则A、B关于抛物线y=ax2﹣2a2x﹣3(a≠0)的对称轴对称,∵抛物线y=ax2﹣2a2x﹣3(a≠0)与y轴交于点A,与直线x=﹣4交于点B,∴A(0,3),∴B(﹣4,3),∵抛物线的对称轴为直线x=﹣=a,∴a==﹣2,∴抛物线的解析式为y=﹣2x2﹣8x﹣3;(2)当x=﹣4时,y=8a2+16a﹣3,∵y P≥﹣3,∴8a2+16a﹣3≥﹣3,a2+2a≥0,a(a+2)≥0,∴或,解得:a>0或a≤﹣2;综上所述:a的取值范围是a>0或a≤﹣2.27.【解答】(1)①补全图形如图1.1;②延长FM、DE,相交于H,如图1.2,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∴∠D'DF=135°,∵DE⊥AC,DF⊥BC,∴∠DEC=∠C=∠DFC=90°,∴四边形DECF是矩形,∴DE∥FC,∴∠H=∠MFG,∵M为EG中点,∴EM=GM,∵∠FMG=∠HME,∴△FMG≌△HME(AAS),∴HM=FM,∵△FDH是直角三角形,∴DM=HM=FM,由题意得:MD=MD′,∴DM=D′M=FM,∴∠MDD′=∠MD′D,∠MDF=∠MFD,∴∠FMD′=360°﹣∠MDD′﹣∠MD′D﹣∠MDF﹣∠MFD=360°﹣2∠D′DF=360°﹣2×135°=90°,即∠FMD'=90°;(2)∠GFM的度数为15°或75°.理由如下:分两种情况讨论:①如图2.1,连接EF,∵DE=DF,在Rt△DEF中,tan∠DEF==,∴∠DEF=30°,∴∠EFC=30°,由(1)得:∠FMD'=90°,∴FM⊥EG,∵M为线段GE的中点,∴FM垂直平分EG,∴∠GFM=∠EFC=15°;②如图2.2,同①可得:∠GFM=∠EFC=(180°﹣30°)=75°.综上,∠GFM的度数为15°或75°.28.【解答】解:(1)如下图,观察图形可知,∴⊙O的“近心点”有F,G,故答案为:F,G;(2)如图,设点B在⊙O与x轴交点,即B(,0),根据题意,等边△ABC的顶点A,C在以B为圆心,以1为半径的圆上,当O.B,C在同一直线上,即C也位于x轴上时,点O与⊙O的“远心点“C之间的距离最大,此时OC=OB+BC=+1;当A'C'⊥x轴时,点O与⊙O的“远心点”C之间的距离最小,设A'C'与x轴交于点K,∵BC'=BA',∴A'K=C'K=A'C'=,∴BK===,∴OK=OB﹣BK==,∴OC'===1,综上所述,点O与⊙O的“远心点“之间的距离d的取值范围为:1≤d≤+1;(3)如图,设点B在⊙O与x轴交点,即B(,0),根据题意,等边△ABC的顶点A,C在以B为圆心,以1为半径的圆上,当AC⊥x轴时,点O与⊙O的“近心点”A之间的距离最大,设AC与x轴交于点G,∵BC=BA,∴AG=CG=AC=,∴BG===,∴OG=OB+BG=+=,∴OA===,当O.,A',C'在同一直线上,即C也位于x轴上时,点O与⊙O的“近心点”A之间的距离最小,此时OA'=OB+A'B=﹣1,点O与⊙O的“近心点”之间的距离d的取值范围为﹣l≤d≤;对于直线y=﹣x+b,令x=0,则y=b,即N(0,b),令y=0,则有0=﹣+6,解得x=b,M(b,0);如下图,当b取最大值时,有b=,解得b=,当b取最小值时,过点O作OH⊥MN,垂足为H,此时OH=﹣1,∵M(b,0),N(0,b),∴OM=b,ON=b,∴MN==2b,∵S△OMN=OM•ON=MN•OH,∴,解得b=2﹣,∴b的取值范围为2﹣≤b≤.。

最新整理北京市第四中学九年级上学期期中考试数学试题(含答案).doc

最新整理北京市第四中学九年级上学期期中考试数学试题(含答案).doc

- 第一学期北京四中初三年级数学期中测试题一、选择题(本题共32分,每小题4分)1.一元二次方程的解是()A.B.C.或D.或2.如图所示:△ABC中,DE∥BC,AD=5,BD=10,AE=3,则CE的值为()A.9B.6C.3D.43.如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,则∠AOB的度数为()A.60°B.120°C.30°D.90°4.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.30°C.40°D.50°5.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.700m B.500m C.400m D.300m(5题)(6题)6.如图,A、B、C三点在正方形网格线的交点处,若将△ACB绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.7.如图⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6则⊙O的半径为()A.6B.13C.D.8.如图(甲),扇形OAB的半径OA=6,圆心角∠AOB=90°,C是上不同于A、B 的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点H在线段DE上,且EH=DE.设EC的长为x,△CEH的面积为y,图(乙)中表示y与x的函数关系式的图象可能是()二、填空题(本题共16分,每小题4分)9.已知⊙O的周长等于6cm,则它的内接正六边形ABCDEF的边长为_______cm.(9题)(10题)10.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是__________.11.如图,圆A、圆B的半径分别为4、2,且AB=12.若作一圆C使得三圆的圆心在同一直线上,且圆C与另两个圆一个外切、一个内切,则圆C的半径长可能为__________.12.如图,已知△ABC为等腰直角三角形,∠BAC=90°,AC=2,以点C为圆心,1为半径作圆,点P为⊙C上一动点,连结AP,并绕点A顺时针旋转90°得到AP′,连结CP′,则CP′的取值范围是__________.三、解答题(本题共30分,每小题5分)13.计算:.14.解关于x的方程:x2+4x-2=0.15.丁丁要制作一个形状如图1的风筝,想在一个矩形材料中裁剪出如图2 阴影所示的梯形翅膀,请你根据图2中的数据帮助丁丁计算出BE,CD的长度.(精确到个位,)图1图2 16.请利用直尺和圆规,过定点A作⊙O的切线,不写作法,保留尺规作图的痕迹.17.如图,在四边形ABCD中,点E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,求tanC的值.18.如图,在平行四边形ABCD中过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的长.16.四、解答题(本题共20分,每小题5分)19.如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系.设该圆弧所在圆的圆心为点D,连结AD、CD.请完成下列问题:①写出点D的坐标:D___________;②D的半径=_____(结果保留根号);③若扇形DAC是一个圆锥的侧面展开图,则该圆锥的底面面积为__________(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.20.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.21.如图,△ABC内接于⊙O,AD是⊙O直径,E是CB延长线上一点,且∠BAE=∠C.(1)求证:直线AE是⊙O的切线;(2)若EB=AB,,AE=24,求EB的长及⊙O的半径.22.如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.(3)若把正方形放在直线上,让纸片ABCD按上述方法旋转,请直接写出经过多少次旋转,顶点A经过的路程是.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程(k为常数,且k>0).(1)证明:此方程总有两个不等的实数根、;(2)设此方程的两个实数根为、,若,求k的值.24.在△ABC中,点D在线段AC上,点E在BC上,且DE∥AB将△CDE绕点C按顺时针方向旋转得到△(使<180°),连接、,设直线与AC交于点O.(1)如图①,当AC=BC时,:的值为______;(2)如图②,当AC=5,BC=4时,求:的值;(3)在(2)的条件下,若∠ACB=60°,且E为BC的中点,求△OAB面积的最小值.25.如图,已知点A(0,6),B(4,-2),C(7,),过点B作x轴的垂线,交直线AC于点E,点F与点E关于点B对称.(1)求证:∠CFE=∠AFE;(2)在y轴上是否存在这样的点P,使△AFP与△FBC相似,若有,请求出所有符合条件的点P的坐标;若没有,请说明理由.25.【参考答案】一、选择题(本题共32分,每小题4分)1. C2. B提示:.3. B提示:四边形AOBP中,∠OAP=∠OBP=90°,∠P=60°,∴∠AOB=360°-90°-90°-60°=120°4. D提示:∠A=∠BOC.5. B提示:易证图中的两个三角形全等.6. D7. C提示:延长AO交BC于点D. ∵△ABC是等腰直角三角形,∴AD⊥BC,且BD=CD=3,AD=BC=3,∴OD=3-1=2,在Rt△BOD中,勾股定理得OB=.8. A提示:连接OC,∵四边形ODCE是矩形,∴DE=OC=6,∴EH=4,再定性分析即可.二、填空题(本题共16分,每小题4分)9. 3 .10.11. 5或7.提示:圆C可能与圆A内切,与圆B外切;也可能与圆B内切,与圆A 外切.12. ≤CP′≤提示:如图,连接CP、BP′,易证△APC≌△AP′B则PC=P′B=1,在等腰Rt△ABC 中,AC=2,∴BC=2在△BCP′中,有<CP′<,当三点共线时取到等号,此时不是三角形,但符合题意.三、解答题(本题共30分,每小题5分)13.14. 提示:用配方法解得:15. 解:在Rt△BEC中,∠BCE=30º,EC=51,∴BE=≈30,AE=64=CF,在Rt△AFD中,∠FAD=45º,FD=FA=51,∴CD=64—51≈13,∴CD=13cm,BE=30cm.16. 如图:17.提示:连接BD,则EF是△ABD的中位线,所以BD=4,在△BCD中,∵,∴△BCD是以D点为直角顶点的直角三角形,∴tanC=.18.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED ,∠B+∠C=180°,∵∠AFE+∠AFD=180,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=4,又∵AE⊥BC ,∴AE⊥AD在Rt△ADE中,DE=,∵△ADF∽△DEC,∴,∴,∴AF=.四、解答题(本题共20分,每小题5分)19.①D(2,0)②.③.设圆锥的底面半径为r,则,∴r=,∴圆锥的底面面积为④相切.理由:∵CD=,CE=,DE=5∴CD2+CE2=25=DE2∴∠DCE=90°即CE⊥CD∴CE与⊙D相切。

2022-2023学年北京市第四中学九年级上学期数学期中考试卷带讲解

2022-2023学年北京市第四中学九年级上学期数学期中考试卷带讲解
∵ ,
∴ ,
∵ ,
∴ 是 的垂直平分线,
∴ ,
∵ ,
∴ ,
∴ ,
∴ ,
设 ,则 ,
在 中,根据勾股定理得,
, (舍),
则 ,
故答案为:1.
【点睛】本题考查了切线的性质,垂经定理,勾股定理,直角三角形的性质,解题的关键是掌握并灵活运用这些知识点.
15.为响应国家号召打赢脱贫攻坚战,小明利用信息技术开了一家网络商店,将家乡的土特产销往全国.今年6月份盈利12000元,8月份盈利27000元,求6月份到8月份盈利的月平均增长率.设6月份到8月份盈利的月平均增长率为 ,根据题意,可列方程为______.
【答案】 ##
【解析】
【分析】由抛物线 与 轴没有公共点,可得 再解不等式可得答案.【详解】解:∵抛物线 与 轴没有公共点,

解得:
故答案为:
【点睛】本题考查的是抛物线与 轴的交点问题,掌握“当 时,抛物线与 轴没有交点”是解本题的关键.
13.如图,在平面直角坐标系中,点A,B,C都在格点上,过A,B,C三点作一圆弧,则圆心的坐标是_____.
A.4mB.7mC.8mD.10m
【答案】C
【解析】
【分析】将点 分别代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【详解】解:根据题意知,抛物线 经过点 ,
则 ,
解得:
∴抛物线为
所以 ,该运动员起跳后飞行到最高点.
即该运动员起跳后飞行到最高点时,水平距离为 .
故选:C.
【点睛】此题考查了二次函数的应用,根据题意建立二次函数的模型再利用二次函数的性质解决问题是解本题的关键.
【详解】解:∵⊙O是△ABC的外接圆,∠BOC=100°,

北京四中九年级(上)期中数学试卷

北京四中九年级(上)期中数学试卷

二、填空题(本题共 8 分,每小题 2 分)
9.(2 分)抛物线 y=(x﹣2)2+1 的顶点坐标是

10.(2 分)反比例函数 y= 在第一象限的图象如图,请写出一个满足条件的 k
值,k=

11.(2 分)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,
问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩
立平面直角坐标系后,△ABC 的顶点均在格点上,点 B 的坐标为(1,0)
(1)在图 1 中画出△ABC 关于 x 轴对称的△A1B1C1;
(2)在图 2 中,以点 O 为位似中心,将△ABC 放大,使放大后的△A2B2C2 与△
ABC 的对应边的比为 2:1(画出一种即可).直接写出点 A 的对应点 A2 的坐
4.(3 分)若 A(1,y1),B(2,y2)两点都在反比例函数 y= 的图象上,则 y1
与 y2 的大小关系是( )
A.y1<y2
B.y1=y2
C.y1>y2
D.无法确定
5.(3 分)如图,D,E 为△ABC 的边 AB,AC 上的点,DE∥BC,若 AD:DB=1:3,
AE=2,则 AC 的长是( )
标.
第4页(共9页)
19.(5 分)如图,一次函数 y=x+2 的图象与反比例函数 y= 的图象交于 A、B 两 点,且点 A 的坐标
为(1,m). (1)求反比例函数 y= 的表达式; (2)点 C(n,1)在反比例函数 y= 的图象上,求△AOC 的面积.
20.(5 分)已知抛物线 y=x2﹣(2m﹣1)x+m2﹣m. (1)求证:此抛物线与 x 轴必有两个不同的交点; (2)若此抛物线与直线 y=x﹣3m+3 的一个交点在 y 轴上,求 m 的值. 21.(5 分)青青书店购进了一批单价为 20 元的中华传统文化丛书.在销售的过

北京四中九年级上册数学期中试题含答案

北京四中九年级上册数学期中试题含答案

ABC D九年级上册期中数学试卷 (时间:120分钟总分:120分)姓名: 班级:一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.已知,则锐角A 的度数是()A .B .C .D . 2.二次函数2(+1)2y x =--的最大值是()A .2-B .1-C .1D .2 3.如图,在△ABC 中,DE ∥BC ,AD ∶DB =1∶2,若DE =2,则BC 等于()A .4B .6C .12D .184.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线的解析式为()A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+5.如图,在△ABC 中,D 为AC 边上一点,若∠DBC =∠A ,BC =6, AC =3,则CD 的长为( )A .1B .32 C .2 D .526.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5, CD ⊥AB 于点D ,那么sin BCD ∠的值是()A .512B .5131sin 2A =30︒45︒60︒75︒C.1213D.1257. 如图,在边长为1的小正方形组成的网格中,将△BCE绕点C旋转得到△ACD,则cos∠ABC的值等于()A.33 B.21C.31D.1010第7题第8题8.如图,二次函数2y ax bx c=++的图象的对称轴是直线x=1,则下列结论:①0,0,a b<<②20,a b->③0,a b c++>④0,a b c-+<⑤当1x>时,y随x的增大而减小,其中正确的是()A.①②③B.②③④C.③④⑤D.①③④9. 若抛物线1222-++-=mmmxxy(m是常数)的顶点是点M,直线2+=xy 与坐标轴分别交于点A、B两点,则△ABM的面积等于()A.6B.3C.25D.2310.如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点'P是点P关于BD的对称点,'PP交BD于点M,若BM=x,'OPP△的面积为y,则y与x之间的函数图象大致为()二、填空题(本题共18分,每小题3分)M OP'PDBACxyxyxyxyO OOODA B C48333384844811. 如果23a b b =-,那么ab=________. 12.已知抛物线522+-=x x y 经过两点A (-2,y 1)和),3(2y B ,则1y 与2y 的大小关系是.13.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为m. 14.已知在△ABC 中,tan A =43,AB =5,BC =4,那么AC 的长等于. 15.若关于x 的一元二次方程0142=-+-t x x (t 为实数)在270<<x 的范围内有解,则t 的取值范围是__________.16.在每个小正方形的边长为1的网格中,点A ,B ,C ,D 均在格点上,点E ,F 分别为线段BC ,DB 上的动点,且BE DF =.(1)如图①,当52BE =时,计算AE AF +的值等于;(2)当AE +AF 的值取得最小时,请在图②的网格中,用无刻度的直尺画出线段AE 或AF .三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:23tan30cos 452sin60︒+︒-︒.18.如图,在△ABC 和△CDE 中,∠B =∠D =90°,C 为线段BD 上一点,且AC ⊥CE .AB =3,DE =2,BC =6.求CD 的长.ADC B EF图①图②CEADB19.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,, AC=3.(1)求∠B 的度数;(2)求AB 及BC 的长.20. 已知:二次函数2y ax bx c =++(0)a ≠中的x 和y 满(1) 可求得m 的值为;(2) 求出这个二次函数的解析式; (3) 当y >3时,x 的取值范围为.21.如图,△ABC 各顶点的坐标分别为A (1,2),B (2,1),C (4,3),在第一象限内,以原点为位似中心,画出△ABC 的位似图形△A 1B 1C 1,使得对应边长变为原来的2倍,并写出点C 1坐标.22.已知:如图,在某旅游地一名游客由山脚A 沿坡角为30°的山坡AB 行走400m,到达一个景点B ,再由B 地沿山坡BC 行走320米到达山顶C ,如果在山顶C 处观测到景点B 的俯角为60°.求山高CD .xCBA23.某宾馆有房间50间供游客居住,当每个房间的定价为每天180元时,房间会全部住满;当每个房间的定价每增加10元时,就会有一间房间空闲.如果游客居住房间,宾馆需对每个的房间每天支出20元的各种费用.房价定为多少元时,宾馆利润最大?24.已知AC ,EC 分别是四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE =90°.(1)如图1,当四边形ABCD 和EFCG 均为正方形时,连接BF . (i )求证:△CAE ∽△CBF ; (ii )若BE =1,AE =2,求CE 的长;k FCEF==时,若BE =1,AE =2,CE =3,则k 的值等于.图1 图225.抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式;(2)设点P 是第一象限的抛物线上的一个动点,求出△ABP 面积的最大值; (3)设点Q 是抛物线上的一个动点,若抛物线上有且仅有三个点Q 使m S ABQ =∆,则m 的值等于.A26. 有这样一个问题:探究函数11-+=x x y 的图象与性质. 小东根据学习函数的经验,对函数11-+=x x y 的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数11-+=x x y 的自变量x 的取值范围是___________; (2)下表是y 与x 的几组对应值求m 的值;(3)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其他性质(一条即可):________________.x27. 在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线1+=x y 交于点A ,点A 关于直线1-=x 的对称点为B ,抛物线21:C y x bx c =++经过点A ,B .(1)求点A ,B 的坐标;(2)求抛物线1C 的表达式及顶点坐标;(3)若抛物线22:(0)C y ax a =≠与线段AB 恰有一个公共点,结合函数的图象, 求a 的取值范围.28.如图1,△ABC 为等腰直角三角形,∠C =90°,点E ,F 分别是AC ,BC 的中点,线段AF ,BE 交于点P ,将线段AF 绕点A 顺时针旋转α(0°≤α≤180°)得到线段AQ .(1)直接写出APPF的值为;(2)如图2,当α=180°时,延长BE 到D 使得ED =BE ,连接QD ,证明QD ⊥BD ;(3)如图3,在旋转过程中,直线AQ 交直线BE 于点M ,当△AMP 为等腰三角形时,△AMP 的底角正切值为.图1 图2图3EBD29.如果抛物线C 1的顶点在抛物线C 2上,同时抛物线C 2的顶点在抛物线C 1上,那么我们称抛物线C 1与C 2关联.(1)已知抛物线①122-+=x x y ,判断下列抛物线②122++-=x x y 、抛物线③122++=x x y 与已知抛物线①是否关联;(t ,2)旋转180°得到抛物线C 2,若抛物线C 1与C 2关联,求抛物线C 2的解析式;10-=x 上?若存在,求出C 点的坐标;若不存在,请说明理由.参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 A ABCCBDCBD16.(Ⅰ)561+;(Ⅱ)如图,取格点H ,K ,连接BH ,CK ,相交于点P .连接AP ,与BC 相交,得点E .取格点M N ,,连接DM ,CN ,相交于点G .连接AG ,与BD 相交,得点F .线段AE ,AF 即为所求.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:23tan30cos 452sin60︒+︒-︒232332⎛⎫=⨯+-⨯ ⎪ ⎪⎝⎭……………… 3分 1332=+-1.2= ……………… 5分18.解:∵在△ABC 中,∠B =90º,∴∠A +∠ACB = 90º. ∵AC ⊥CE ,∴∠ACB +∠ECD =90º. ∴∠A =∠ECD . ……………………2分∵在△ABC 和△CDE 中,∠A =∠ECD ,∠B =∠D =90º, ∴△ABC ∽△CDE .………………………3分 ∴DEBC CDAB =.……………………4分∵AB = 3,DE =2,BC =6,∴CD =1. ……………………5分19.解:(1)∵在△ACD 中,90C ∠=︒,CD =3,AC =3,∴3tan 3CD DAC AC∠==.题号 11 12 131415 16答案 3512y y >2474±13<≤-t2615+∴∠DAC =30º.………………………1分∵AD平分∠BAC,∴∠BAC =2∠DAC =60º.……………2分∴∠B =30º.…………………………………3分(2) ∵在Rt△ABC中,∠C=90°,∠B=30º,AC=3,∴AB =2AC =6.………………………4分tan3ACBCB==……………………5分20.解:(1) m的值为 3 ;1分(2) 二次函数为y=a(x-2)2−1 2分∵过点(3,0)∴a=1 y=x2-4x+3 3分(3) 当y>3时,x的取值范围为x<0或x>4 . 5分21. C1坐标(8,6).22. 3160200+米23.设房价为(180+10x)元利润y=(180+10x)(50-x)-(50-x)20=-10x2 +340x+8000当x=17即房间定价为180+170=350的时利润最大.24.(1)(i)证明:∵四边形ABCD和EFCG均为正方形,∴∠ACE=∠BCF,∴△CAE∽△CBF.(ii)解:∵△CAE∽△CBF,∴∠CAE=∠CBF,AE:BF=AC:BC,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,又∵AE:BF=AC:BC=2,AE=2,.25.(1)322++-=x x y (2)当=x ABP 面积的最大值是827. (3)82726.27. (3)292<≤a .28.(1)2;(2)作AH ⊥BD 于D ,证明△APH ∽△QPD ,得证;(3) 43,13或3.29.(1)②1分(2)21781218122-+=-+=)x (y ,)x (y 5分(3))1014310--8分-+-210,(),,(),,4C2(1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 将表中的空白处填写完整; .....3分
3 在右边的坐标系中画出 y=ax2+bx+c 的图象; ………4 分
4 根据图象回答:
当 x 为何值时, 函数 y=ax2+bx+c 的值大于 0.x<−1 或 x>3.....5分
18.如图,在△ABC 中,∠C=90°, AD 是∠BAC 的平分线,O 是 AB 上一点, 以
B
Q
AD C
学无止 境 设 P 点运动的时间为t(s) ,△BPQ 的面积为 y (cm2 ) .下图中能正确表示整个运动中 y 关于t 的函数关系的大致图象是( ).
A.
B.
C.
D.
二.填空题(每小题 4 分,本题共 16 分)
9.正六边形边长为 3,则其边心距是
cm.
10.函数 y x2 2x 3(2 x 2) 的最小值为
…………………………………2 分
∴ ∠ODB=∠C=90.
B
D
C
∴ BC 是⊙O 的切线.
……………………………3 分
图1
(2)解法一: 如图 2,过 D 作 DE⊥AB 于 E.
A
∴ ∠AED=∠C=90.
又∵ AD=AD, ∠EAD=∠CAD, ∴ △AED≌△ACD.
O E
∴ AE=AC, DE=DC=3. 在 Rt△BED 中,∠BED =90,由勾股定理,得
学无止 境
解法二: 如图 3,延长 AC 到 E,使得 AE=AB. ∵ AD=AD, ∠EAD =∠BAD, ∴ △AED≌△ABD. ∴ ED=BD=5. 在 Rt△DCE 中,∠DCE=90, 由勾股定理,得
CE= DE2 DC2 4 . ………… ……………4 分
B
图3
A O
D
C
在 Rt△ABC 中,∠ACB=90, BC=BD+DC=8, 由勾股定理,得
A. 250cm2
B. 500cm2
C. 750cm2
D.1000cm2
4.两圆半径分别为 2 和 3,圆心坐标分别为(1,0)和(-4,0),则两圆的位置关
系是( ).
A.外离
B.外切
C.相交
D.内切
5.同时投掷两枚硬币,出现两枚都是正面的概率为( ).
A. 1 4
B. 1 3
C. 3 4
D. 1 2
学无 止 境
数学试卷
(考试时间为 120 分钟,试卷满分为 120 分)
班级
学号
姓名
分数
一、选择题(每小题 4 分,共 32 分.下列各题均有四个选项,其中只有一.个.是符 合 题意的.) 1.下列事件是必然事件的是( ). A.随意掷 两个均匀的骰子,朝上面的点数之和是 6 B.掷一 枚硬币,正面朝上 C.3 个人分成两组,一定有两个人分在一组 D.打开电视,正在播放动画片
13. 计算:
50 2
1
2 0
1 3
2
3
12. ①②③⑤(少选 1 个扣 1
解:原式= 5 2 2 1 27 …………..4 分(化简运算对一个数给 1 分)
= 4 2 28……………………5 分
14.用配方法解方程: 1 x2 2x 3 0
2
1 解: (x2 4x) 3 0
x
0
2
y
0
−3
−4
−3
(1)求出二次函数的解析式;
0
y
O
x
2 将表中的空白处填写完整; 3 在右边的坐标系中画出 y=ax2+bx+c 的图象; 4 根据图象回答:
当 x 为何值时, 函数 y=ax2+bx+c 的值大于 0.
18.如图,在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,O 是 AB 上一点,以
DC
六.综合运用(23、25 题 7 分,24 题 8 分)
学无止 境 23.已知: 关于 x 的一元一次方程 kx=x+2 ①的根为正实数,二次函数 y=ax2−bx+kc (c≠0)的图象与 x 轴一个交点的横坐标为 1. (1)若方程①的根为正整数,求整数 k 的值; (2)求代数式 (kc)2 b 2 ab 的值;
21.用尺规作图找出该残片所在圆的圆心 O 的位置.
学无止 境 (保留作图痕迹,不写作法)
五.解答题(本题 5 分) 22.已知如图,正方形 AEDG 的两个顶点 A、D 都在⊙O 上,AB 为⊙O 直径,射线
线 ED 与⊙O 的另一个交点为 C,试判断线段 AC 与线段 BC 的关系.
B
A
GO
E
16.如图,在半径为 6 cm 的⊙O 中,圆心 O 到弦 AB 的距离 OC 为 3 cm.试求:
(1) 弦 AB 的长; (2) A⌒B 的长.
解:依题设有 OC⊥AB 于 C,又∵AB 为⊙O 的弦 ∴ AC=BC= 1 AB ……… 2 分 2
连结 OA 则 AC OA2 OC2
又∵OA=6,OC=3
学无止 境 初三期中考试参考答案及评分标准
一、选择题:(本题共 32 分,每小题 4 分)
题号 1
2
3
4
5
6
7பைடு நூலகம்
答案 C C
B
B
A
D
B
二、填空题:(本题共 16 分,每小题 4 分)
四中
8 B
9. 3 2 2
10. −4, 5
11. 4 8
9
分,多选或选错均不得分) 三、 解答题:(本题共 30 分,每小题 5 分)
OA 为半径的⊙O 经过点 D.
1 求证: BC 是⊙O 切线;
2 若 BD=5, DC=3, 求 AC 的长.
解:(1)证明: 如图 1,连接 OD.
A
∵ OA=OD, AD 平分∠BAC,
∴ ∠ODA=∠OAD, ∠OAD=∠CAD. ………………1 分
O
∴ ∠ODA=∠CAD.
∴ OD//AC.
B 图2 D
C
BE= BD2 DE 2 4 . ………………………………………………………4 分
设 AC=x(x>0), 则 AE=x.
在 Rt△ABC 中,∠C=90, BC=BD+DC=8, AB=x+4, 由勾股定理,得 x2 +82= (x+4) 2.
解得 x=6.
即 AC=6.
…………………………………………………………5 分
································ ································
y N
6.如图,在平面直角坐标系中,点 P 在第一象限,⊙ P 与 x 轴 P
相切于点Q ,与 y 轴交于M (0,2),N (0,8)两点,则点 P 的坐标是 M
( ).
OQ
x
A. (5,3)
B. (3,5)
C. (5,4)
D. (4,5)
7.抛物线 y x2 kx 1 与 y x2 x k 相交,有一个交点在 x 轴上,则 k 的值为
2. 抛物线 y (x 1)2 2 可以由抛物线 y x 2 平移而得到,下列平移正确的是( ).
A. 先向左平移 1 个单位,再向上平移 2 个单位 B. 先向左平移 1 个单位,再向下平移 2 个单位 C. 先向右平移 1 个单位,再向上平移 2 个单位 D. 先向右平移 1 个单位,再向下平移 2 个单位 3.已知一顶圆锥形纸帽底面圆的半径为 10cm,母线长为 50cm,则圆锥形纸帽的侧 面积为( ).
15.
已知
y
(m
2
1)xm 2m1
(m
3)x
m
,当
m
为何值时,是二次函数?
学无 止 境 16.如图,在半径为 6 cm 的⊙O 中,圆心 O 到弦 AB 的距离 OC 为 3 cm.试求: (1)弦 AB 的长; (2) A⌒B 的长.
O
A
C
B
17.已知二次函数 y=ax2+bx+c 的图象的顶点位于 x 轴下方,它到 x 轴的距离为 4, 下表是 x 与 y 的对应值表:
O
A
C
B
∴ AC= 3 3 ∴ AB= 6 3 ………3 分
学无止 境
(2)由(1)知,在 Rt△ACO 中,OA=6,OC=3 ∴ ∠OAC=30° ∴ ∠AOC=60° ∴ ∠AOB=120° ………4 分
∴ A⌒B = 1 2 OA = 4
3
………..5 分
17.已知二次函数 y=ax2+bx+c 的图象的顶点位于 x 轴下方,它到 x 轴的距离为 4,下 表是 x 与 y 的对应值表:
x
-1
0
1
2
3
y
0
-3
-4
-3
0
1 求出二次函数的解析式; 解:由上表可知,二次函数图象的对称轴为直线 x=1, 顶点坐标为(1,4) ……1 分
∴ 二次函数解析式可变形为 y a(x 1)2 4 又由图象过(0,-3),有-3=a-4,解得 a=1 ∴ 二次函数解析式为 y x2 2x 3 .....2分
2
………..1 分
1 (x 2)2 5 2
………..3 分
x 2 10
∴ x1 2 10, x2 2 10
……..5分
15.已知
y
(m
2
1)xm 2m1
(m
3)x
m
,当
m
为何值时,是二次函数?
解:依题设,若原函数为二次函数,则有
相关文档
最新文档