第四章 非线性回归模型的线性化
非线性回归模型的线性化
k 1 beatut yt
k 1 beatut yt
ln
k yt
1
ln b at
ut
令yt
ln
k yt
1
,
b
ln b
yt b at ut
此时可用最小二乘法估计b*和a。
钉螺存活率曲线 (生长曲线模型)
把一批钉螺埋入土中,以后每隔一个月取出部分钉螺,检 测存活个数,计算存活率。数据见表。
FOOD
3000
2000
1000
0 0
4000
8000
12000
INCOME 16000 20000
9.0 LOG(FOOD)
8.5
8.0
7.5
7.0
6.5
6.0 LOG(LOG(INCOME))
5.5 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30
以1为例
1
yt xt1
线性模型中的回归系数(边际系数)是对数线性回归模型中弹性
系数的一个分量。
应用柯布-道格拉斯生产函数模型评价台湾省农业生产 效率。利用台湾省1958-1972年农业生产总值yt、劳动力 投入xt1、资本投入xt2的数据估计模型如下:
Yˆt
0.035X
1.5 t1
X
0.49 t2
yt ke be at
yt ke be at
曲线的上限和下限分别为k和0 。
当a 0, Limyt k, 当a 0,b 0 , Limyt 0
t
t
曲线有拐点,坐标为 Lnb , k
a e
, 但曲线不对称于拐点。
一般情形,上限值k可事先估计,有了k值,龚伯斯曲线才 可以用最小二乘法估计参数。
(整理)计量经济学第四章非线性回归模型的线性化
(整理)计量经济学第四章⾮线性回归模型的线性化第四章⾮线性回归模型的线性化以上介绍了线性回归模型。
但有时候变量之间的关系是⾮线性的。
例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述⾮线性回归模型是⽆法⽤最⼩⼆乘法估计参数的。
可采⽤⾮线性⽅法进⾏估计。
估计过程⾮常复杂和困难,在20世纪40年代之前⼏乎不可能实现。
计算机的出现⼤⼤⽅便了⾮线性回归模型的估计。
专⽤软件使这种计算变得⾮常容易。
但本章不是介绍这类模型的估计。
另外还有⼀类⾮线性回归模型。
其形式是⾮线性的,但可以通过适当的变换,转化为线性模型,然后利⽤线性回归模型的估计与检验⽅法进⾏处理。
称此类模型为可线性化的⾮线性模型。
下⾯介绍⼏种典型的可以线性化的⾮线性模型。
4.1 可线性化的模型⑴指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。
显然x t 和y t 的关系是⾮线性的。
对上式等号两侧同取⾃然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。
其中u t 表⽰随机误差项。
010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =t+, (b < 0)⑵对数函数模型y t = a + b Ln x t+ u t(4.4)b>0和b<0两种情形的图形分别见图4.3和4.4。
x t和y t的关系是⾮线性的。
令x t* = Lnx t, 则y t = a + b x t* + u t(4.5)变量y t和x t* 已变换成为线性关系。
图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶幂函数模型y t= a x t b t u e(4.6) b取不同值的图形分别见图4.5和4.6。
4 第四章 非线性回归模型
解:根据经济理论,二者之间的关系可以用双曲线模 型来表示
1 y = β 0 + β1 + µ x
令 则
z = 1 x
y = β 0 + β1 z + µ
运用Eviews进行回归, 操作步骤为:quickempty groupprocsmake equation, 输出结果如下: 输出结果如下4.1.2
即可利用多元线性回归分析的方法处理了。
例如,描述税收与税率关系的拉弗曲线 例如, 拉弗曲线:抛物线 拉弗曲线 s = a + b r + c r2 c<0 s:税收; r:税率 设 z1 = r, z2 = r2, 则原方程变换为 s = a + b z1+ c z2 c<0
例4.1.1 某生产企业在1981-1995年间每年的产量和 总成本如下表(表4.1.1),试用回归分析法确定其 成本函数。 表4.1.1
∧
∧
即
1 x
s = (1.0086)(4.6794) t = (−0.2572)(4.3996**)
3、半对数模型和双对数模型 、 把函数形式为
ln y = β0 + β1x + µ
(4.1.5) (4.16)
y = β + β ln x + µ
称为半对数模型。 把函数形式为
ln y = ln β0 + β1 ln x + µ
第四章 非线性 回归模型
前面我们讨论的经济问题,都是假定作为因变量的经 济变量与作为解释变量的经济变量之间存在着线性关 系。由此建立线性回归模型进行线性回归分析。这里 所说的线性是指:(1)解释变量线性。(2)参数线 性。但是,在众多的经济现象中,分析经济变量之间 的关系,根据某种经济理论和对实际经济问题的分析, 所建立的经济模型往往不符合上面的线性要求,即模 型是非线性的,称为非线性模型(Non-linear Model)。 非线性模型的参数如何进行估计,如何进行分析,是 本章所要讨论的问题。
计量经济学第四章非线性回归模型的线性化
第四章 非线性回归模型的线性化以上介绍了线性回归模型。
但有时候变量之间的关系是非线性的。
例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述非线性回归模型是无法用最小二乘法估计参数的。
可采用非线性方法进行估计。
估计过程非常复杂和困难,在20世纪40年代之前几乎不可能实现。
计算机的出现大大方便了非线性回归模型的估计。
专用软件使这种计算变得非常容易。
但本章不是介绍这类模型的估计。
另外还有一类非线性回归模型。
其形式是非线性的,但可以通过适当的变换,转化为线性模型,然后利用线性回归模型的估计与检验方法进行处理。
称此类模型为可线性化的非线性模型。
下面介绍几种典型的可以线性化的非线性模型。
4.1 可线性化的模型⑴ 指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。
显然x t 和y t 的关系是非线性的。
对上式等号两侧同取自然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。
其中u t 表示随机误差项。
010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =tt u bx ae+, (b < 0)⑵ 对数函数模型y t = a + b Ln x t + u t (4.4)b >0和b <0两种情形的图形分别见图4.3和4.4。
x t 和y t 的关系是非线性的。
令x t * = Lnx t , 则y t = a + b x t * + u t (4.5)变量y t 和x t * 已变换成为线性关系。
图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶ 幂函数模型y t = a x t b t u e (4.6)b 取不同值的图形分别见图4.5和4.6。
非线性回归模型的线性化
例4.2:天津市GDP函数
Yˆ t
Yˆt = -10.46 + 1.02 X1t + 1.47 X2t
(-8.1) (34.7)
(6.2)
R2 = 0.9986, DW = 1.7, N = 17
因为1.02 + 1.47= 2.49,所以此生产函数属于规模报酬递增函数。
3、不可线性化的非线性回归模型估计方法(不要 求掌握)
则可将原模型化为标准的线性回归模型:
Y i* 0 1 X 1 * i 2 X 2 * i k X k * i u i
2019/11/30
18
例4.2 :天津市GDP函数(教材第95页)
对于柯布-道格拉斯(C-D)生产函数模型
Yi AKiLi eui i1,2, ,n
另一种多项式方程的表达形式是
yt = b0 + b1 xt + b2 xt2 + ut 令x 1t = xt,x 2t = xt 2,上式线性化为, yt = b0 + b1 x1t + b2 x2t + ut 如经济学中的边际成本曲线、平均成本曲线与左图相似。
( b1>0, b2>0)
(b1<0, b2 <0
如柯布-道格拉斯生产函数模型:Yi AKiLi eui
3 如果被解释变量Y与解释变量 X1,X2, ,Xk和未 知参数 0,1, ,p 之间都不存在线性关系,而且 也不能通过适当的变换将其化为标准的线性回归 模型,这种类型的非线性回归模型称为不可线性 化的非线性回归模型.
5
4.2线性化方法
1、非标准线性回归模型的线性化方法 非标准线性回归模型的线性化方法是变量替换法。
非线性回归模型的线性化讲解
( b1>0, b2>0)
(b1<0, b2 <0
(2) 双曲函数模型
1 1 ui 双曲函数模型的一般形式为: Yi Xi 1 1 令 * * Yi , Xi Yi Xi
则可将原模型化为标准的线性回归模型
Yi X ui
* * i
双曲线函数还有另一种表达方式,
ln GDP i ln A ln Ki ln Li ui
Yi ln GDP i , X 1i ln Ki , X 2i ln Li
0 ln A, 1 , 2 则可将C-D生产函数模型转换成标准的二元线性回归模型
Yi 0 1 X1i 2 X 2i ui
Z p f p ( X1, X 2 ,, X k )
Y 0 1Z1 2 Z2 p Z p u
7
下面介绍在经济问题时经常遇到的几种非标准线性 回归模型 (1)多项式函数模型
多项式函数模型的一般形式为:
Yi 0 1 X i 2 X i2 k X ik ui
首先对上式做倒数变换得:
1 e X i ui Yi
令
1 Yi , X i* e X i Yi
*
则可将原模型化为标准的线性回归模型
Yi* X i* ui
15
2 可线性化的非线性回归模型的线性化方法
下面几种在研究经济问题时经常遇到的可线性化的非线性 回归模型 (1)指数函数模型
yt = b0 +b1 x 1t + b2 x 2t + b3 x 3t + ut 这是一个三元线性回归模型。如经济学中的总成本与产 品产量曲线与左图相似。
计量经济学-第四章-非线性回归模型的线性化25页
(1)指数函数模型
Yi AebXiui 取对数 ln Y i ln AbiX ui
令
Y* i
lnYi,alnA则
Yi*abX i ui
(2)幂函数模型
Y i A1 i1 X X 2 2 i1 X k kieui
lY i n lA n 1 lX n 1 i 2 lX n 2 i k lX n k i u i
2. 非线性回归模型可分为几类?
第一类:非标准的线性回归模型; 第二类:可线性化的非线性回归模型; 第三类:不可线性化的非线性回归模型。
第一节 变量间的非线性关系
第一类:非标准的线性化模型 Y与解释变量 X1,X2,,Xk 之间不存在线性关系,
但与未知参数 0,1,2,之,间p 存在线性关系。
Y 01f1 (X 1 ,X 2 , ,X k)2f2 (X 1 ,X 2 , ,X k) 举例:总成 本 函数pf模k(X 型1 ,X 2 , ,X k) u
C 01 X 2 X 23 X 3 u
第一节 变量间的非线性关系
第二类:可线性化的非线性回归模型
此类模型可通过适当的变换化为标准的线性回归模型。 如,柯布—道格拉斯(Cobb-Dauglas)生产函数模型,简 称C-D生产函数模型:
YA K Leu
其中,Y 表示产出量,K 表示资金投入量,L 表示劳动投入
Y i AiK L ieui,i1 ,2 , ,n
其中,Y 表示产出量,K 表示资金投入量,L表示劳
动投入量,u 表示随机误差项,A、、为未知参
数。试利用天津市1980年~2019年间的有关统计资 料,估计天津市全社会的C-D生产函数模型。 解:详见教材。
第二节 线性化方法
3. 不可线性化的非线性回归模型的线性化估计方法
04-非线性回归模型的线性化.
对此方程采用对数变换 logM=loga+blog(r-2)
令Y=logM, X=log(r-2), β1= loga, β2=b
则变换后的模型为:
β β Y = + X + u 2020/10/1
t 1 2t t
15
将OLS法应用于此模型,可求得β1和β2的估计
值 ˆ1, ˆ2,从而可通过下列两式求出a和b估计值:
log(aˆ) ˆ1 (aˆ eˆ1 ) bˆ ˆ2
应当指出,在这种情况下,线性模型估计量 的性质(如BLUE,正态性等)只适用于变换后的参 数估计量 ˆ1和ˆ2 ,而不一定适用于原模型参数的估
计量 aˆ 和 bˆ 。
是重要的,因为变量的非线性可通过适当的重新
定义来解决。例如,对于
Y 1X12 2
X2
3
X3 X4
...
只需定义
Z1
X
2 1
,
Z2
X2 ,
Z3
X3 X4
...
该关系即可以重写为:
Y 1Z1 2Z2 3Z3 ... 此方程的变量和参数都是线性的。
2020/10/1
13
参数的非线性是一个严重得多的问题,因为它不
(2)参数的线性
因变量Y是各参数的线性函数。
2020/10/1
3
4.1.2. 非线性模型中变量间的关系
非线性模型的一般形式是 Yt f ( X1t , X 2t ,..., X kt ; 1, 2 ,..., m ) ut
其中f是关于解释变量和未知参数的一个非线性函
数。
上式中解释变量的个数k与参数个数m不一定相 等,
模型形式:
2表020示/10什/1 么意义呢?(思考)
第四章 非线性回归模型的线性化讲解
线性回归模型 最小二乘法求解 若不是线性回归模型,又该如何求解呢?
(一)变量关系非线性问题:
若:(1)、变量
Y 和
X 1 , X K
之间不存在
多元线性随机函数关系
Y 0 1 X 1 K X K
那么我们如何估计出模型中的未知参数呢?
Dependent Variable: Y Method: Least Squares Date: 10/08/08 Time: 13:51 Sample: 1980 1996 Included observations: 17 Variable Coefficient C -10.46551 X1 1.021132 X2 1.472202 R-squared Adjusted R-squared S.E. of regression
(2)可线性化的非线性回归模型: 虽然被解释变量Y与解释变量X1X 2 .....X k以及与未知 参数 0 1...... k 之间都不存在线性关系,但是可以转化 为线性函数。例如: 生产函数模型: Y AK L e 转化为: ln Y LnA LnK LnL (3)不可线性化的非线性回归模型: 被解释变量Y与解释变量X1X 2 .....X k以及与未知 参数 0 1...... k 之间都不存在线性关系,而且无法转化 为线性函数。 例如:Y 0 1e 1x1 2 e 2 x2
0.99841 S.D. dependent var 0.029873 Akaike info criterion
变量间的非线性关系
(1)非标准线性回归模型: 虽然被解释变量Y与解释变量X1X 2 .....X k 之间 不存在线性关系,但与未知参数 0 1...... k 之间 存在线性关系。例如: 根据平均成本与产量为U型曲线理论,总成本C 可以用产量X的三次多项式来近似表示,得到总成 本函数模型如下: C 0 1 X 2 X 2 3 X 3
第四章 非线性回归模型的线性化
变量间的非线性关系
(1)非标准线性回归模型: 虽然被解释变量Y与解释变量X1X 2 .....X k 之间 不存在线性关系,但与未知参数 0 1...... k 之间 存在线性关系。例如: 根据平均成本与产量为U型曲线理论,总成本C 可以用产量X的三次多项式来近似表示,得到总成 本函数模型如下: C 0 1 X 2 X 2 3 X 3
-10.46385643
1.287009777
-8.130362812
1.1E-06
X Variable 1
1.021123591
0.029404208
34.72712407
5.5E-15
X Variable 2
1.471943365
0.239290421
6.151284117
2.5E-05
(2)Eviews3.1结果:
0 =lnA 1 =
2 =
X1=lnK
X2=lnL
新生成的线性回归模型为: Y= 0 +1X1+ 2 X2+
对于非线性模型的解决方法:以生产函数为例
案例分析:见Excel表格
解答: (1)Excel回归 (2)Eviews3.1
(1)EXcel回归结果
回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值 0.99930353 1 0.99860754 8 0.99840862 6 0.02991798 5 17
第四章 非线性回归模型的线性化
陈修兰
线性回归模型 最小二乘法求解 若不是线性回归模型,又该如何求解呢?
(一)变量关系非线性问题:
若:(1)、变量
第4章非线性回归模型的
• 移项整理后得到
p f f Y f ( X 1 , X 2 , X k ; 1, 0 , 2, 0 , p , 0 ) i , 0 i i 1 i 0 i 1 i 0 p
• 令
f Y Y f ( X 1 , X 2 , X k ; 1,0 , 2,0 , p , 0 ) i , 0 i 0 i 1
• 不断重复上述过程,直至参数估计值收 敛为止。即l+1组参数估计值与第l组参数 估计值没有显著差别时为止。 • 这个方法的一个优点是计算效率比较高, 另一个优点是因为每一次迭代都是一次 线性回归,因此可以进行标准的显著性 检验、拟合优度检验等各种统计检验。
具体步骤
• 第一步, • 根据经济理论和历史统计资料,选定 ( , , ) 作为未知参数(1, , 2, , p, )的一组初始估计值。接 着将模型 Y f ( X1, X 2 , X k ; 1, 2 , p ) 中的非线 性函数f在这组初始估计值附近作泰勒极数展开, 得 (*)
第4章非线性回归模型的线性化
1 变量间的非线性关系 2 线性化方法 3 案例分析
4.1 变量间的非线性关系
对于非线性回归模型,按其形式和估计方法的不 同,可以分为三种类型: 1 非标准线性回归模型 Y 例: f ( X , X ,, X ) f ( X , X ,, X ) f ( X , X ,, X ) 2 可线性化的非线性回归模型 例: Y AK L e 3 不可线性化的非线性回归模型 x x 例: Y 0 1e 2e
p
f f f Z1 , Z2 ,Zp p 0 1 0 2 0
4非线性回归模型的线性
变量间的非线性关系 变量非线性 变量与参数非线性(可线性化) 变量与参数非线性(不可线性化) 线性化方法(可线性化模型)
变量替换法 函数变换法 级数展开法
案例分析
第一节 变量间的非线性关系
一般的非线性回归模型的表示形式:
Y f ( X 1 , X 2 , , X k , 0 , 1 , , k ) u
i
ui
当b>0和b<0时的图形如图,Xt与Yt的关系是非线性的。
Y i a bLnX
i
ui
(b 0)
Y i a bLnX
i
ui
(b 0)
令LnXi = Xi*,则
Yi = a + bXi* + ui
变量Yi和Xi*已变换成为线性关系。
4、S-型曲线模型
Yi 1
*
* 0
1 X 1i 2 X 2i u i
* *
——线性模型
用OLS法估计后,再返回到原模型。若参数:
1 + 2 = 1,称模型为规模报酬不变型; 1 + 2 > 1,称模型为规模报酬递增型;
1 + 2 < 1,称模型为规模报酬递减型。
对于对数线性模型,LnYi = Ln0 + 1 LnX1i + 2 LnX2i + ui ,1和2称作弹
性系数。以1为例:
1
LnY LnX
i 1i
Yi
1
Yi
X 1i X 1i
1
X i Yi Yt X 1 i
Yi / Yi X 1i / X 1i
计量经济学第四章非线性回归模型的线性化
第四章 非线性回归模型的线性化以上介绍了线性回归模型。
但有时候变量之间的关系是非线性的。
例如 y t = 0 +11βt x + u ty t =0 tx e 1α+ u t上述非线性回归模型是无法用最小二乘法估量参数的。
可采纳非线性方式进行估量。
估量进程超级复杂和困难,在20世纪40年代之前几乎不可能实现。
运算机的显现大大方便了非线性回归模型的估量。
专用软件使这种计算变得超级容易。
但本章不是介绍这种模型的估量。
另外还有一类非线性回归模型。
其形式是非线性的,但能够通过适当的变换,转化为线性模型,然后利用线性回归模型的估量与查验方式进行处置。
称此类模型为可线性化的非线性模型。
下面介绍几种典型的能够线性化的非线性模型。
可线性化的模型⑴ 指数函数模型 y t = tt u bx ae+b >0 和b <0两种情形的图形别离见图和。
显然x t 和y t 的关系是非线性的。
对上式等号双侧同取自然对数,得Lny t = Lna + b x t + u t令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t 变量y t * 和x t 已变换成为线性关系。
其中u t 表示随机误差项。
010203040501234XY 1图 y t =tt u bx ae+, (b > 0) 图 y t =tt u bx ae+, (b < 0)⑵ 对数函数模型y t = a + b Ln x t + u tb >0和b <0两种情形的图形别离见图和。
x t 和y t 的关系是非线性的。
令x t * = Lnx t , 则y t = a + b x t * + u t变量y t 和x t * 已变换成为线性关系。
图 y t = a + b Lnx t + u t , (b > 0) 图 y t = a + b Lnx t + u t , (b < 0)⑶ 幂函数模型y t = a x t b t u eb 取不同值的图形别离见图和。
第四章非线性回归模型的线性化
1 0 ln A, 1 m , 2 m(1 ), 3 m (1 ) 2
• 得到一个简单的线性回归模型
Z 0 1 X1 2 X 2 3 X 3
1、CES函数的参数估计
• 其中:
ˆ ˆ Ae 0
ˆ
ˆ ˆ 1 2
(1)多项式函数模型
• 多项式函数模型的一般形式:
Yi 0 1 X i 2 X i 2 ... k X k k
令:
Z1i X i ,...Zki X ik
则原模型化为标准的线性回归模型:
Yi 0 1Z1i 2 Z2i ... k Zki
第四章 非线性回归模型的线性化
第一节 变量间的非线性关系 第二节 线性化方法 第三节 案例分析
第一节 变量间的非线性关系
1、第一种类型(非标准线性回归模型) 2、第二种类型(可线性化的非线性回归模型) 3、第三种类型(不可线性化的非线性回归模型)
第一节 变量间的非线性关系
在实际经济活动中,经济变量的关系是复杂的,直 接表现为线性关系的情况并不多见。 如著名的恩格尔曲线(Engle curves)表现为幂函数曲线 形式、宏观经济学中的菲利普斯曲线(Pillips cuves)表现 为双曲线形式等。 但是,大部分非线性关系又可以通过一些简单的数学 处理,使之化为数学上的线性关系,从而可以运用线性回 归的方法进行计量经济学方面的处理。
1、第一种类型(非标准线性回归模型)
• 非标准线性回归模型一般可以表示成如下形式:
Z1 f1 ( X 1 , X 2 ,... X K ) Z 2 f 2 ( X 1 , X 2 ,... X K ) ...... Z f ( X , X ,... X ) P 1 2 K p Y 0 f1 ( X 1 , X 2 ,... X K
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、CES函数的参数估计
ˆ • 其中: A e ˆ0
ˆ
ˆ1 ˆ1 ˆ 2
ˆ ˆ ˆ 2 3 (1 2 )
ˆ
ˆ1 ˆ 2
ˆ ˆ ˆ m 1 2
2、倒数模型、多项式模型与变量的直接置换法
(1)多项式函数模型
• 多项式函数模型的一般形式:
Y i 0 1 X i 2 X i ... k X k
2 k
令: Z X , ... Z X k 1i i ki i 则原模型化为标准的线性回归模型:
Y i 0 1 Z 1 i 2 Z 2 i ... k Z ki
• 非标准线性回归模型的线性化方法是变量替换法。 设非标准线性回归模型的一般形式:
Y 0 1 f 1 ( X 1 , X 2 , ... X K ) 2 f 2 ( X 1 , X 2 , ... X K ) ... P f P ( X 1 , X 2 , ... X K ) i
•令 • 则对数函数模型即可化为标准的线性回 归模型:
X i ln X i
*
Yi X i i
*
(4) S-型曲线模型
• S-型曲线模型的一般形式为:
Yi 1
e
Yi
*
Xi
i
* Xi
•令 Y • 则S-型曲线模型即可化为标准的线性回 归模型: Y * X *
2
1、CES函数的参数估计
• 令:Z
ln Y , X 1 ln K , X 2 ln L , X 3 [ln ( K L )]
2
0 ln A , 1 m , 2 m (1 ), 3
1 2
m (1 )
• 得到一个简单的线性回归模型
(2)双曲函数模型
• 双曲函数模型的一般形式:
令: Y * 1 , X * 1 i i
Yi Xi
1
1 Xi
Yi
i
则双曲函数模型即可化为标准的线性回归模型:
Yi X i i
* *
(3)对数函数模型
• 对数函数模型一般形式:
Y i ln X i i
i
1
,Xi e
i
i
i
2、可线性化的非线性回归模型的线性化方法
• 如果一般的非线性回归模型可以通过适 当的变换实现线性化,则称之为可线性 化的非线性回归模型。 • 下面是经常遇到的几种可线性化的非线 性回归模型。
(1)指数函数模型
• 指数函数模型的一般形式
Yi A e
bX i i
ln • 两边取对数得: Yi ln A b X i i * • 令:Y i ln Y i , ln A • 则 指数函数模型即可变为标准的线性回 归模型: Y * b X i i i
1、第一种类型(非标准线性回归模型)
• 非标准线性回归模型一般可以表示成如下形式:
Z 1 f 1 ( X 1 , X 2 , ... X K ) Z 2 f 2 ( X 1 , X 2 , ... X K ) ...... Z f ( X , X , ... X ) P 1 2 K p Y 0 f 1 ( X 1 , X 2 , ... X
• 可线性化的非线性回归模型 Cobb-Dauglas生产函数: 幂函数 Q = AKL
Q:产出量,K:投入的资本;L:投入的劳动
方程两边取对数: ln Q = ln A + ln K + ln L
3、第三种类型(不可线性化的非线性回归模 型)
无法线性化模型的一般 形式为:
Y f ( X 1 , X 2 , , X k )
Z 1 f 1 ( X 1 , X 2 , ... X K ) 令: Z f ( X , X , ... X ) 2 2 1 2 K ...... Z p f P ( X 1 , X 2 , ... X K )
则一个标准的多元线性回归模型
Y 0 1 Z 1 ... P Z P
•Thanks A Lot
ln X , j 1, 2 ...k • • 则幂函数模型即可变为标准的线性回归 模型:
ji ji
Y i 0 1 X 1 i 2 X 2 i ... k X ki i
* * * *
3、不可线性化的非线性回归模型的线性化估计方法
• 如果非线性化回归模型无论采用什么样的变换 都不可能实现其线性化,则称为不可线性化的 非线性回归模型。 • 对于此类模型通常采用以下三种方法进行参数 估计: • 第一、直接搜索法(Direct Search Method) • 第二、直接优化法(Direct Optimization Method) • 第三、迭代线性化法(Iterative Linearation Method)
描述税收与税率关系的拉弗曲线:抛物线 s = a + b r + c r2 c<0 s:税收; r:税率 设X1 = r,X2 = r2, 则原方程变换为 s = a + b X1 + c X2 c<0
3、幂函数模型、指数函数模型与对数变换法
Cobb-Dauglas生产函数:幂函数 Q = AKL Q:产出量,K:投入的资本;L:投入的劳动 方程两边取对数: ln Q = ln A + ln K + ln L
第三节 案例分析
• 一、两要素不变替代弹性(CES)生产函 数的参数估计
1、CES函数的参数估计
Q A ( 1 K
2L
)
1
e
(1+2=1)
Q:产出量,K:资本投入,L:劳动投入
:替代参数, 1、2:分配参数
方程两边取对数后,得到:
LnQ LnA
1
(2)幂函数模型
• 幂函数模型的一般形式 • 两边取对数得:
Y 令: i ln Yi , 0 ln A , X
* *
Y i A X 1 i 1 X 2 i2 ... X ki k e
i
ln Y i ln A 1 ln X 1 i 2 ln X 2 i ... k ln X ki i
K
其中 f 1 , f 2 ... f p 是关于
X 1 , X 2 , ... X
K
的P个已知的非线性函数,
0 , 1 , ... p
是(p+1)个未知参数。
2 3 例如:总成本函数: C 0 1 X 2 X 3 X
2、第二种类型(可线性化的非线性回归模型)
Ln ( 1 K
2L
)
将式中ln(1K- + 2L-)在=0处展开台劳级数,取关于 的线性项,即得到一个线性近似式。 如取0阶、1阶、2阶项,可得
ln Y ln A 1 m ln K 2 m ln L 1 K m 1 2 ln 2 L
其中,f(x1,x2,…,Xk)为非线性函数。如:
Y 0 1e
1 X 1
2e
2 X 2
第二节 线性化方法
1、第一种类型(非标准线性回归模型)的线性化 2、第二种类型(可线性化的非线性回归模型)的线性化 3、第三种类型(不可线性化的非线性回归模型)的线性化
1、非标准线性回归模型的线性化
第四章 非线性回归模型的线性化
第一节 变量间的非线性关系 第二节 线性化方法 第三节 案例分析
第一节 变量间的非线性关系
1、第一种类型(非标准线性回归模型) 2、第二种类型(可线性化的非线性回归模型) 3、第三种类型(不可线性化的非线性回归模型)
第一节 变量间的非线性关系
在实际经济活动中,经济变量的关系是复杂的,直 接表现为线性关系的情况并不多见。 如著名的恩格尔曲线(Engle curves)表现为幂函数曲线 形式、宏观经济学中的菲利普斯曲线(Pillips cuves)表现 为双曲线形式等。 但是,大部分非线性关系又可以通过一些简单的数学 处理,使之化为数学上的线性关系,从而可以运用线性回 归的方法进行计量经济学方面的处理。