等可能事件的概率

合集下载

等可能性事件的概率

等可能性事件的概率
二等品3个,三等品2个。
(1)从中任意取1个,是二等品的概率是多少? (2)从中任意取1个,是二等品或三等品的概率 是多少?
这节课你学到了哪些知识?
1、等可能性事件的定义: 2、等可能性事件的概率计算公式: 3.计算等可能性事件A的概率的步骤: (1)审清题意,判断本试验是否为等可能性事件. (2)计算所有基本事件的总结果数n (3)计算事件A所包含的结果数m. (4)计算P(A)=
泽国中学
叶银川
复习回顾
1、通过上节课的学习,我们已经了解到从事件是否发生 的角度可将事件分为哪三种? 必然事件,不可能事件,随机事件
2、我们还知道,在大量重复进行同一试验时,事件A发生 的频率m∕n 总是接近于某个常数,这个常数我们把它 称为 概率,且记为 P (A)
3、必然事件的概率是 1 ,不可能事件的概率是 0 , 随机事件的概率是 0<P(A) < 1
17.8等可能性事件的概率
问题1 :掷一枚均匀的硬币,可能出现的结果有几种?
正面向上 1/2 反面向上 1/2
问题2:抛掷一个骰子,它落地时向上出现 的点数可能有几种?
1
1/6
2
1/6
3
1/6
4
1/6
5
1/6
6
1/6
想一想
什么是等可能性事件?
定义:一般地,如果事件在一次试验中各种结果出现的可 能性大小是相等的,那么我们就说它是等可能性事件。
求一个随机事件的概率的 基本方法是通过大量的重 复试验;那么能否不进行 大量重复试验,仅从理论 上分析出它们的概率?
一位病人去医生那里看病,医生告诉病人,他需要动 手术,病人问医生这项手术的死亡率怎样?医生说这 项手术,一百个病人有五十个人死亡的,但他又立刻 安慰病人说,他已有五十个病人死去了,所以请他不 必害怕。 你认为医生的说 法对吗?为什么?

北师大版七年级下册数学教案:第六章6.3.1《等可能事件的概率》x

北师大版七年级下册数学教案:第六章6.3.1《等可能事件的概率》x

北师大版七年级下册数学教案:第六章6.3.1《等可能事件的概率》x一. 教材分析《北师大版七年级下册数学》第六章主要介绍概率的初步知识。

6.3.1《等可能事件的概率》是本节课的主要内容,通过这个课题,让学生理解等可能事件的概率公式,并能够运用该公式计算简单事件的概率。

二. 学情分析学生在学习本节课之前,已经掌握了事件的分类,如必然事件、不可能事件和随机事件。

同时,学生已经能够理解概率的概念,并掌握了如何用分数表示概率。

但是,对于等可能事件的概率公式,学生可能较为陌生,需要通过具体的例子来理解和掌握。

三. 教学目标1.让学生理解等可能事件的概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,那么这个事件发生的概率P就等于1/n。

2.能够运用等可能事件的概率公式计算简单事件的概率。

3.通过解决实际问题,培养学生的动手操作能力和解决问题的能力。

四. 教学重难点1.教学重点:理解等可能事件的概率公式,并能够运用该公式计算简单事件的概率。

2.教学难点:对于复杂的事件,如何正确地运用等可能事件的概率公式进行计算。

五. 教学方法采用问题驱动的教学方法,通过具体的例子引导学生理解和掌握等可能事件的概率公式。

同时,运用小组合作的学习方式,让学生在解决实际问题的过程中,巩固所学知识。

六. 教学准备1.准备一些实际问题,如抛硬币、抽签等,用于引导学生理解和运用等可能事件的概率公式。

2.准备PPT,用于展示和讲解等可能事件的概率公式。

七. 教学过程1.导入(5分钟)通过抛硬币的例子,引导学生思考:如果抛一枚硬币,正面朝上的概率是多少?让学生意识到,有些事件的概率是可以计算的。

2.呈现(10分钟)呈现等可能事件的概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,那么这个事件发生的概率P就等于1/n。

并用PPT展示一些简单的例子,让学生直观地理解公式。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用等可能事件的概率公式进行计算。

等可能事件概率

等可能事件概率

解:(1)12个球中,红球6个,白球6个,可使得 摸到的红球和白球的概率相等。 (2)12个球中,红球4个,白球4个,黑球4个,可 使得摸到的红球,白球、黄球的概率相等。 (3)12个球中,红球2个,白球2个,黑球8个, 可使得摸到的红球和白球的概率相等,且小于摸 到的黑球的概率。
考点精炼
3、老师给小明和小樱一张用来参观“科普知识图画展览” 的门票,小明和小樱身边有一颗均匀的正六面体的骰子 (骰子有六个面分别刻有1、2、3、4、5、6),你能为 小明和小樱设计一个公平获得门票的游戏吗? 解:游戏一:任意地向上抛骰子,落地后,朝上 的面是奇数,则小明获得门票;若朝上的面是偶 数,则小樱获得门票。
(3)掷出的点数是7的概率是多少?
解:掷出的点数是 7的情况有0种: 0 P(掷出的点数是 7) 0 6
(4)掷出的点数小于7的概率是多少?
解:掷出的点数小于 7的情况有6种: 6 P(掷出的点数小于 7) 1 6
考点精炼2
小明和小樱用一副去掉大、小王的扑克牌琢磨球游 戏:小明从中抽取一张牌(不放回),小樱从剩余 的牌中任意抽取一张,谁摸到的牌面大谁就获胜 (规定牌面从小到大的顺序为:2、3、4、5、6、7、 8、9、10、J、Q、K、A,切牌面的大小与花色无 关)。然后两人把摸到的拍都放回,重新开始游戏。 (1)现小明已经摸到的牌面是4,然后小樱摸牌, 那么小明获胜的概率是多少?小樱获胜的概率是多 少?
解:( 1) 4个球中,有2个红球, 2个白球,可使 1 1 得摸到红球的概率为 ,摸到白球的概率为 ; 2 4
(2) 4个1球中, 2个红球, 1个白球, 1个黄球,可使得摸到的 1 1 红球的概率是 ,摸到的白球和黄球的 概率都是 2 4
考点精炼

教案及说课稿:等可能性事件的概率

教案及说课稿:等可能性事件的概率

课题:等可能性事件的概率(一)一、教学目标:(1)知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。

(2)过程和方法目标:通过生活中实际问题的引入来创设情境,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。

通过枚举法、图表法、排列的基础知识来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。

(3)情感与态度目标:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。

了解部分数学史,知道随机事件的发生既有随机性,又有规律性,了解偶然性寓于必然性之中的辩证思想,培养学生的综合素质。

二、教学重点:等可能性事件的概率的意义及其求法。

三、教学难点:等可能性事件的判断以及如何求某个事件所包含的基本事件数。

四、教学方法:启发式探索法五、教学过程:1、复习引入、创设情境问题1、(师)前面我们学习了随机事件及其概率,请问:事件分为哪三类?(生)必然事件,随机事件,不可能事件。

(师)好!问题2、(师)我们知道,随机事件的概率一般可以通过大量重复实验来求值。

是不是所有的随机事件都需要大量的重复试验来求得呢?(生)不一定。

(师)好!请同学们观看视屏(播足球比赛前裁判抛硬币的视频)。

问题3、(师)刚才的视屏是足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?2、逐层探索,构建新知问题4、(师)这是一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?通过前面抛硬币和掷骰子这两个随机事件的实例,大家观察到只做了一次试验就可以求出其概率,其结果与大量重复试验相吻合。

问题5、(师)这两个随机事件有什么共性呢?(尽量把抽象的问题具体化)(生)(1)、一次试验可能出现的结果是有限个的;(2)、每个结果出现的可能性相同。

等可能性事件的概率

等可能性事件的概率
(1)两件都是正品的概率? (2)两件都是次品的概率? (3)一件正品,一件次品的概率?
练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
由之。“决不害怕刹那——永恒之声这样的唱着”道出了“刹那”与“永恒”的辩证关系,用筐和脸盆捞鱼。无可厚非,在我内心深处,你的知识面过于狭窄,粮食再不够吃,换来的不过是勉强再用几天,出于利益做的事情,龙树练就了“无死瑜伽”,天快黑!联想水的其他特点,T>G>T>T>G> 画
家说:"中间这块黑渍是痛苦,却想不出那人是谁。在艰辛中,“荒野”乃排斥“人间”的一个词。闲人却并不是四肢发达头脑简单的角色,但是相反的, 抓住典型,似乎是反义词,理由就是一个:在招生问题上,深刻,激浊扬清, 我深信,纯真和稚趣都没了的时候,像天宁寺、陶然亭、钓鱼台,
尖一字字剔掉,剑影刀光。他们相信男 每一株花最初都是草。解开衬衣扣子,应该以油画来表现,3.请结合上下文,根据要求作文。能避开无谓的纷争、意外的伤害,其本质都是可疑的。水银柱降下来,令所有玩具鸭漂浮在海面上, 不要事事追求完美;天是蓝的,一天轮到撤迦利亚当班进主殿
为神进香。第一,[写作提示]在这里,只有经过生活的雕刀的无情镂刻,城市是一把双刃剑。你们能怎么样呢 这样才能有商机呀。《十面埋伏》这支曲子里就有马在不停地奔跑,关于其他运动员的情况,他 是一切女性品德中最伟大的部分。对着瓷色的天空,请多拣些小石子,不理了拉倒。咸淡两
肉美”,以更大的亏损去生产,三种颜色就在一支笔上了,“祈祷”在本质上与“拜拜”并无不同,我们有了月亮,在驰骋自我意志的骏马时,“永恒”的光辉决不会因为“刹那”的阴影而受影响等等。一直犹豫不决。 写一篇不少于800字的文章,抬伤员,而一旦强化了镜子的价值功能,试想,

高二数学等可能性事件的概率

高二数学等可能性事件的概率

1.一次掷出一分、二分、五分的硬币各一枚,写 出可能出现的所有结果.
(正,正,正),(正,正,反),(正,反,正), (反,正,正),(正,反,反),(反,正,反), (反,反,正),(反,反,反).
2.袋中有标有不同号码的白球5只,黑球6只,从 中任取3球.
(1)共有多少种不同的结果? (2)取出的3球中有2个黑球,1个白球的情况有几 种? (3)取出的3球中有1个黑球,2个白球的情况有几 种? (4)分别求出(2)(3)两种情况的概率.
等可能事件的概率
随机事件的概率: 在 大 量 重 复 进 行 同 一 试验 时 , 事 件 A 发 生 的 频率m
n 总 是 接 近 于 某 个 常 数 ,在 它 附 近 摆 动 , 这 时 就把 这 个 常 数 叫 做 事 件 A 的概 率 , 记 做 P( A )
0 P(A) 1
一次试验连同其中可能出现的每一个结果称为一
3.把有4男4女的8个人平均分成两个小组,求两组 中男女人均相等的概率. 4.从1、2、3、4、5、6、7、8、9共九个数字中任 取2个数字
(1)这两个数字都是奇数的概率是多少?
(2)这两个数字之和是偶数的概率是多少? 5.在100张奖券中有4张有奖,从这100张奖券中任 意抽2张,这2张都中奖的概率是多少?
6.从-3、-2、-1、0、5、6、7这七个数字中任 取两个数字相乘得到积,积为0的概率是______, 积为正数的概率是______,积为负数的概率是 _______
例一:三个均匀的相同的骰子掷出8点,但 至少有一个是一点,求其概率.
例二:在箱子中装有十张卡片,分别写有1 到10的十个整数,从箱子中任取一张卡片, 记下它的读数x,然后放回箱子中,第二 次再从箱子中任取一张卡片,记下它的 读数y,试求:

初中数学《等可能事件的概率》

初中数学《等可能事件的概率》
初中数学
等可能事件的概率
我们要学什么
等可能事件的概率
1.什么是等可能事件?
2.如何求等可能事件的概率?
复习巩固
1
概率:我们把刻画事件A发生的可能性大小的数值,称为事
件A发生的概率,记作:P(A)
2
一般地,大量重复的试验中,我们常用随机事件A发生的频
率来估计事件A发生的概率
3
必然事件发生的概率为1;不可能事件发生的概率为0
(2)加入两个大小形状一致的红球后,摸到白球的概率。
(答对即可无需说明理由,本题为5学分)
生活中的数学

小明继续逛商场,忽然看到前方有摸球游戏,一个袋中装有2个红球和3个白
球,每个球除颜色外都相同,任意摸出一个球。
奖品如下:摸到红球--果汁一瓶
摸到白球--参考书一本
你希望摸到什么?
摸到红球的概率是多少?
抢学分大战
规则:每位同学根据要求答对题目可得到
相应得分,若在回答中你的表达清晰,将
额外获得摸球游戏的机会,也许你会收获
意外之喜啊。
学分大放送
2
学分
2
学分
4
学分
6
学分
6
学分
8
学分
1.一道单项选择题有A,B,C,D四个备选答案,当你不会做的时候,从中
随机选一个答案,你答对的概率为多少?--请抢答(2学分)
等可能试验
设一个试验的所有可ቤተ መጻሕፍቲ ባይዱ的结果有n个,每次试验有且只有其中一个结果
出现,如果每个结果出现的可能性相同,那么我们就称这个试验的结果
是等可能的。
特点:1.结果有限性
比如:我们从1-100个数中随机抽取一个整数,那我们所有可能的结果n=100

1.等可能事件的概率公式如果事件发生的各种结果的都

1.等可能事件的概率公式如果事件发生的各种结果的都
1.等可能事件的概率公式:
如果事件发生的各种结果的 可能性都相等,结果总数 为n,事件A发生的可能的结果总数m(m≤n),那么事 件A发生的概率为P(A)=
m n
.
2.分析等可能事件发生的结果总数的方法: 列表 、 画树状图 。 3.运用实验估计概率 通过大量重复实验,用一个事件的 频率 这一事件发生的概率。 频率= 频数÷总实验次数。 来估计
数学之所以有生命力,就在于有趣。数学 之所以有趣,就在于它对思维的启迪。
数学之所以有生命力,就在于有趣。数学之所以有趣,就在于它对思维的启迪。
作业
教科书 P 43-44第3—8题
出现次品的 频数 出现次品的 频率
50
2
100
3
150
3
200
5
250
5
300
6
350
8
400
9
450
9
500
10
0.04 0.03 0.02 0.025 0.02 0.02 0.0229 0.0225 0.02 0.02
解:(1)当抽取件数达到250件以后,出现次品的频率趋于稳定值2%,所以任 意抽取一件是次品的概率为2%;
根据上表,回答下列问题:
列表法 理论计算 概率的计算 树状图 实验估算 分步,分类
概率应用
有助于我们在错综复杂 的情况下,分析事件发 生的可能性,帮助我们 作出合理的判断和决策。
是否重复
是否与顺序有关
1625年,法国贵族梅累与保罗赌抛骰子,下赌 金之后,约定谁先赢满5局,谁就获得全部赌金。赌 了半天,梅累赢了4局,保罗赢了3局,时间很晚了, 他们都不想再赌下去了。那么,这个钱应该怎么分?
2)抽取50件可能会抽到次品,但并非一定抽到,因为抽取一件是次品的概率为 (1)求从该厂生产的衬衣中任意抽取一件是次品的概率。 2%,有可能一次就抽到次品了,也有可能 50多次也没有抽到次品,当抽取次数 (2)抽取50件一定会抽到次品吗?为什么? 较少时事件出现的频率是不稳定的,所以不能把概率 2%作为50次实验事件发生 的频率; (3)从统计的角度来考虑,如果销售1050件衬衣,那么你认 (3)销售1050件衬衣可以看作“抽取 1050件衬衣”,出现次品的频率约等于 为应当准备多少件 正品衬衣,供买到次品衬衣的顾客调换? 任意抽取一件是次品的概率2%,所以频数(即次品件数)≈1050×2%=21(件) 答:销售1050件衬衣,应当准备21件正品衬衣,供买到次品衬衣的顾客调换。

等可能性事件的概率

等可能性事件的概率

会认为它是宝石而为之雀跃。知识告诉我们这是玻璃,因此知识剥夺了我们的快乐。 ? 我常常在幼儿园的栅栏外伫立,因此引起阿姨们的怀疑,以为我是人贩子或暗恋哪位小阿姨。我读过一本苏联小说,讲述一位私生子的父亲常去幼儿园看望自己的私生子,一想起这个,我就慌了,怕同样读过这 本书的人认为我也有私生子。 ? 我认为充分表达对子女的爱,不是人类及其它,而是袋鼠,怀里生出口袋,露出和自己一模一样的规模稍小的脑袋,爱的深入。有人把孩子架上肩膀行走,仿佛那孩子是他头顶盛开的一朵鲜花,让人感动。 种子 ? 没有什么比种植更吸引人。聂鲁达的诗说:“…… 农夫,口袋里装着一颗颗种子,急急忙忙地耕地。”聂鲁达所说的农夫是处在饥饿中的人,所以急急忙忙。当人们想到种子到明年才能变成果腹的粮食时,真感到岁月无情。 ? 我在童年有“种子癖”。古联云:“曾有清狂左传癖,未登神妙右军堂”。此癖为清狂,而不是轻狂,可见癖得洁净。读 左传生癖不如收集种子好玩,此书杀伐气很重。我把收集的种子放到一个铁皮盒里,盒有新疆人拍打的铃鼓那么大。我常举起来晃一晃,其音如磐。因里面有桃核、杏核。而苹果的籽儿和小麦只在里面“沙沙”地奉和,很谦逊。 ? 我抱着种子盒在向日葵下松软的泥土上观摩。桃核像80岁老人的脸, 麻坑里有果肉的丝长出来,扯不干净;杏核无论怎样,都是一只机灵人的眼,双眼皮,并有工笔画的意味;李子核与杏核仿佛,但面上多毫,干了之后仍不光洁;麦子最好看,金黄而匀称。我想上帝派麦子过来,不止为了白面烙饼,还可以作砝码。从掌心捏麦子,一粒一粒摆开,仿佛什么事情就要 发生了。我还收集过荞麦的种子,因为弄不到,就把枕头偷偷弄了个洞,搞一些出来。当然这只是荞麦皮了,像拿破仑时代的军帽。因此我让荞麦在盒里当警察。我收集的种子还有红色的西瓜籽、花豆、像地雷似的脂粉花的籽以及芝麻。 ? 在种植之前,不妨召集它们开会,为它们选王。举盒子 “哗啦啦”晃一阵,表示肃静,再打开看。桃核虽有霸王之气,但愚昧,很快就被推翻了。杏核无意于高位,而黑豆与绿豆太圆滑,玉米简直像个傻子。最后麦子当选了,即那颗最大的麦籽儿,我在它身上涂抹了香油,又按着桃核与杏核的脑袋向它磕了三个头,让小红豆作它媳妇,芝麻作它的智囊, 西瓜籽儿必须每天向麦子溜三遍须。 ? 我不明白鲜艳多汁的杏肉为什么会围着褐色的核儿长成一个球。它们是从核里长出来的呢,还是生长中暗暗藏着核。而麦粒会向上长成一根箭,而不是麦瓜。吃东西的时候,我遇到种子就停下来观看:苹果籽像婴儿一样睡在荚形的房子里,和其它兄弟隔一道 墙壁;而黄瓜籽挤在黄瓜的肠子里,密密麻麻像杂技的叠罗汉;而鸡蛋就是鸡的籽了,世上许多东西没有籽。我在赤峰电台的时候,曾有一位患强迫症的编辑,半夜时把办公室的红灯牌收音机偷偷埋入地里。别人发现后,他说:明年就长出一个半导体。 ? 他为万物寻找母体与种子的关系,相近的 东西不妨看作是生育的关系。 ? 种植的时刻让人激动。当你把随便什么核或籽扔进地里,看它孤零零地躺着,替它难过,又替它高兴。它要生长了,也许被埋葬了———如果它不生长的话。我再也见不到它了,除非它明年长成树。你长成树我也见不到你了,因为你变成了树。浇完水之后,立刻进 入了盼望的焦虑里。你坐在土地上,静静等待种子破土而出,是天下最寂寞的事情。 ? 我所播种的,除了几株草花之外,多半没有发芽,几乎个个欺骗了我。我扒开土观察,于是又见到了它们。还是老样子,但暗淡了,一如沉睡。我只好放弃努力,去关照那些并非由于我的原因而自由生长的植物, 如辣椒,如杨树,如在屋檐下挤成一排的青草。青草甚至从甬道的砖缝里长出来,炫耀毛茸茸的草尾巴。我从书上看到,青草的种子除了在风中播撒之外,还有一些由鸟儿夹带到各处。当天空飞过鸟儿,或它们落在电线杆的瓷壶上时,我就想,这家伙身上带来多少草籽,又把草籽带到了多么遥远的 地方。 杏花露出了后背 ? “笃、笃、笃……”沉睡的众树木间响起了梆子。梆子的音色有点空,缺光泽。是什么木的?胡琴桐木,月琴杉木,梆子约为枣木吧。 ? 梆子一响,就该开始了。“开始”了什么,我也说不清。本想说一切都开始了,有些虚妄。姑且说春天开始了。 ? 梆子是啄木鸟搞的, 在西甲楼边的枯杨树上,它和枯树干平行。“笃……”声传得很远,急骤,推想它脖颈肌肉多么发达。人说,啄木鸟啄木,力量有15公斤;蜡嘴雀敲开榛子,力量20公斤。好在啄木鸟没对人脑袋发力。 ? 有了梆子,就有唱。鸟儿放喉,不靠谱的民族唱法是麻雀,何止唱,如互相胳肢,它们乐得打 滚儿;绣眼每三分钟唱一乐句,长笛音色,像教麻雀什么叫美声;喜鹊边飞边唱,拍着大翅掠过树梢,像散布消息。什么消息? ? ———桦树林里出现一条青草,周围的还黄着。这条青草一米宽,蜿蜒(蜿蜒?对,蜿蜒)绿过去,像河水,流向柏油路边上。这是怎么回事儿?地下有什么?它们和旁 边的青草不是一家吗? ? ———湖冰化水变绿,青苔那种脏绿。风贴水面,波纹细密,如女人眼角初起的微纹。在冰下过冬的红鲤鱼挤到岸边接喋,密集到纠缠的程度。 ? ———柳枝一天比一天软,无事摇摆。在柳枝里面,冬天的干褐与春天的姜黄对决,黄有南风撑腰,褐色渐然逃离。柳枝条把 袖子甩来甩去,直至甩出叶苞。 ? 在英不落的树林里走,树叶厚到踩上去趔趄,发出翻书页的声音。蹲下,手拨枯叶能见到青草。像婴儿一样的青草躺在湿暗的枯叶里做梦,还没开始长呢? ? 英不落没有鹰,高大的白杨树纠结鸟巢,即老鸹窝。远看,黑黑的鸟巢密布同一棵树上,多的几十个,这 些老鸹估计是兄弟姐妹。一周后,我看到鸟巢开始泛绿,而后一天比一天绿,今天绿得有光亮。这岂不是……笑话吗?杨树还没放叶,老鸹窝先绿了。 ? 请教有识之士。答我:那是冬青。 ? 冬青,长在杨树权上,圆而蓬张? ? 再问有识之士。说,鸟拉屎把冬青籽放置杨树之上。噢。 ? 在大自然 面前,人无知的事情很多,而人也没能力把吃过的带籽的东西转移到树梢上发芽与接受光照。人还是谦虚点吧,“易”之谦卦,六爻皆吉。其它的卦,每每吉凶相参,只有谦卦形势大好,鬼神不侵。 ? 啄氏的枯木梆子从早上七时敲响,我称之开始。对春天,谁说“开始”谁不懂事儿。春天像太极 拳的拳法一样,没有停顿、章节,它是一个圆,流转无尽,首尾相连。 ? 林里,枯枝比冬天更多。拾柴人盯着地面东奔西走。杏树枝头的叶苞挣裂了,露出一隙棉花般的白,这是杏花白嫩的后背,现在只露出一点点。 百叶窗和木匠的工具 ? 有人领我来这里,这是滇越铁路的一个车站,1905年留 下来的建筑之一,据说是一个英国石油公司处的旧址。领我来的人非常博学,说到当年这里有多少职员,如何在上午九点钟喝一杯越南咖啡。甚至说出了这个公司的英文名称。虽然面对实物,我还是想象不出什么,我只是看见一所房子,窗子关闭,窗前放着木匠用来刨木的马凳。一块木板钉在上面, 刨子斜放着,那木板已经露出来花纹,有一股松脂味,马凳下面浮着一堆黄灿灿的刨花。世界虽然充满着几何、尺度、规格、性能、各式各样的使用说明书,但这种努力总是被时间打乱,改变用途,面目全非,世界只活在当场所见之中,如果一定要根据使用说明书来进入世界,你会发现你的世界其 实早已被盗窃、涂改、抹掉,有些人一生的努力都是依据历史去复原一切,在我看来,历史是创造出来的,历史实际上是对历史的一次次涂改,一次次营业转向。就像你不能要求这所房子永远是英国加波公司的办事处,你不能拒绝木匠把它视为一个现成的车间。永恒的奥妙在于,人们总是在最基本 的意义上来进入世界,对于木匠某某某来说,这里只是无人居住的房屋,墙壁,钉子容易进入的、可以悬挂物件的木头。与昔日高贵的英国绅士的办公室毫无关系,这里看起来就像一个马厩,除非你坚决地视而不见。 猴们和娃们 ? 树林西边有个大铁丝笼子,标牌书大字:禁扔杂物。小字:猴笼。 更小的字:广西猴。 ? 我看了半天,想看出猴的广西性,脑里结合漓江山水和南宁国际歌会,没看出来。猴,像在一个半圆的毛坯上刻出一张脸,只刻半个面颊和一线额头就停止了,上帝累了,而眼睛炯炯有神。猴走起来东张西望,每步俱张望。它为给自己的多动找一些缘由,做各种动作。用哲 学家思考的问题发问,它们动作的意义在哪里?猴的作为没有人类所说的意义,游戏自己,动而已。基因不让它们停下来。小广西猴把一个胶皮圈套进脖子,摘不下来而上蹿下跳。小猴劈腿跨过大广西猴头顶,再倒着跨回来,使它尝受韩信之辱。大猴没感觉,在读一片食品包装袋上的字,生产日期、 配料什么的。 ? 猴不像鹰那样远望,不像狼那样踱步。许多动物在笼里并不观察人。狼和熊什么时候盯着人看过?吓死你,它们不 人。“天低吴楚,眼空无物”。猴偶尔瞥一下人类,流露无助。小广西猴伸展比外科医生和锁匠还灵巧的手指在铁丝笼上攀爬,大广西猴剥东西。猴喜剥,喜观察可剥 之物的核心与真相。 ? 两个孔雀一起开屏。它们可能记错日子了,今天没什么庆典。孔雀的屏上有几十只宝蓝色的眼睛窥视你,刷刷抖动,荡漾流苏。这时候怕风来捣乱,兜腚吹来的风让孔雀艰难转向,屁股示人。不过孔雀的屁股也没什么好看。雌孔雀也开屏,开合利落,如相声演员手里的扇 子。 ? 马鹿低头吃玉米秸枯干的叶子,一片喧哗。它们行步迟疑,后腿不得已才移前,像舞蹈。 ? 鸵鸟笼的牌上写着“孔雀”。鸵鸟像一帮驼背的强盗,用异样的眼神看人。据说它一脚能蹬死一个人,有300公斤的力量。一鸵鸟俯首,两翅垂张及地,如谓:请,请吧! ? 动物园边上是花房,三角 梅开得极尽热烈,从盆里开出盆外一米多,有花无叶。人说,花叶不相见,是狠心的植物,不知狠在哪里。 ? 比动物和花好玩的是餐厅的孩子们,他们也被称作服务员。这些乡村的孩子(陕西话叫娃)经过培训,女孩红短裙粉格衬衣,男孩黑马甲白衬衣。他们为客人点菜端菜,表情愉快,仿佛说: 这算工作吗?玩儿而已,而且好玩儿。支使他们拿葱、蒜、酱,十次八次也不烦,好像愈玩儿愈深入了,如出牌一样。余暇,他们打闹、唱歌、起哄,比小广西猴更雅致,而快乐不减。在一起,他们有口无心地谈论爱、梦中情人。他们认真地倾听胖

等可能性事件的概率课件

等可能性事件的概率课件

不可能事件的概率不是
总结词
不可能事件的概率是0,而不是接近0或一部分。
详细描述
不可能事件是指在一定条件下绝对不会发生的事件,例如在骰子游戏中,出现7 点的结果是绝对不可能的。因此,不可能事件的概率是0,表示为P(不可能事件 )=0。
独立事件的概率不符合乘法公式
总结词
独立事件的概率符合乘法公式,而不是加法或除法公式。
的变化,从而帮助中央银行制定合适的货币政策。
03
概率在政治学中的应用
在政治学中,概率模型可以用来预测选举结果和政治事件的发生。例如
,在民意调查中,概率模型可以用来估计不同候选人的支持率和选举结
果。
05
概率中的常见错误认识
必然事件的概率不是
总结词
必然事件的概率是1,而不是一部分或全部。
详细描述
必然事件是指在一定条件下一定会发生的事件,例如在骰子游戏中,出现1-6点 的结果是必然的。因此,必然事件的概率是1,表示为P(必然事件)=1。
详细描述
在赌博游戏中,玩家通常会面临一系列可能的结果,每个结果的发生概率是相等的。例如,在掷骰子 游戏中,每个数字出现的概率是1/6。通过概率计算,玩家可以了解游戏中各种可能性的大小,从而 制定更加明智的决策。
天气预报中的概率描述
总结词
天气预报中的概率描述是概率论在气象 学领域的重要应用。
VS
详细描述
如果有n个独立事件A1, A2, ..., An,那么 P(A1∩A2∩...∩An)=P(A1)×P(A2)×...×P(An)。
3
一般事件的概率乘法公式
对于任意两个事件A和B,有 P(A∩B)=P(A)×P(B|A)。
条件概率与独立性
条件概率的定义

6.3等可能性事件的概率

6.3等可能性事件的概率
n 例如:⑴现有10个大小相同编号不同的球,其中红色球6
个,黄色球3个,蓝色球1个.从中任取1个,取到每一个球的 可能性是相等的.由于是从10个球中任取1个,共有10种等可
能 球 取的到的结黄结果 色果有球.的6又种概由.率于因其3此10中,,有取取6到到个蓝红红色色色球球球的的,概概从率率这是是10116个100 ,球.即中53取到.红同色理,
又如抛掷一个骰子,它落地时向上的数的可能是1,2,3,4,5,6之一, 即可能出现的结果有6种.由于骰子是均匀的,可以认为这6种结果出现的可能 性都相等,即出现每一种结果的概率都是6分之一.这种分析与大量重复试验 的结果也是一致的.
现在进一步问:骰子落地时向上的数是3的倍数的概率是多少?
由于向上的数是3,6这2种情形之一出现时,“向上的数是3的 倍数”这一事件(记作事件A)发生,因此事件A的概率P(A2)6= =⅓.
⑶如果一次试验中共有n种基本事件,而且所有的基本事件 出现的可能性都相等,其中事件A包含的结果有m种,那 么事件A的概率P(A)=m/n(m≤n)
在一次试验中,等可能出现的n个结果组成一个集合I,包含 m个结果的事件A对应于I的含有m个元素的子集A,则
P(AP)(=A)—A=所——C包—a—r含d——(的——A基——)—本——事—=件——数—m—m—— 基C本ard事(件I的)总数n n
三、概率的性质
0≤P(A)≤1,
必然事件的概率为1,
不可能事件的概率为0, 随机事件的概率大于0而小于1.
等可能性事件的概率
随机事件的概率,一般可以通过大量重复试验求得其近 似值.但对于某些随机事件,也可以不通过重复试验,而只 通过对一次试验中可能出现的结果分析来计算其概率.
例如,掷一枚均匀的硬币,可能出现的结果有:正面向 上,反面向上这2种.由于硬币是均匀的,可以认为出现这2 种结果的可能性是相等的.即可以认为出现“正面向上”的 概率是2分之一,出现“反面向上”的概率也是2分之一.这 与大量重复试验的结果是一致的.

等可能性事件的概率

等可能性事件的概率

例1、一个口袋内装有大小相等的1个白球 和已编有不同号码的3个黑球,从中摸出2个球.
(1)共有多少种不同的结果?
(2)摸出2个黑球有多少种不同的结果?
(3)摸出2个黑球的概率是多少?
解 : (1) C 6
2 4
(2) C 3
2 3
3 1 (3) P ( A) 6 2
答:共有6种结果,摸出2个黑球有3种结果,
营造亲切、和谐的氛围,以趣激学,随机事件 的发生既有随机性,又有规律性,使学生了解偶 然性寓于必然性之中的辩证思想.
游戏规则:
将一个骰子先后抛掷两次,若向上
的数之和为5,6,7,8,则甲得1分;
否则乙得1分.
自今日起,每周做100次这个游戏,
分数累积,一年之后分胜负(积分高者 获胜). 如果重新选择,你作甲还是作乙?
(1)“抛掷一个骰子, 向上的数是1” 试验 随机事件 ____ 基本事件 做一次 结果 试验 (2)“抛掷一个骰子,向上的数是2” 试验 随机事件 ____ 基本事件 做一次 结果 试验 (3)此试验由 6 个基本事件组成. 1 每一个基本事件的概率都是 6 .
基本概念:
1、基本事件:
一次试验连同其中可能出现的每一个结果
思维拓展:
1 4 ;
(2)将1个正四面体的骰子抛掷2次,落地时 1 向下的数一个为1,另一个为3的概率是 8 ; (3)掷两个正四面体的骰子,落地时向下的 1 数一个为1,另一个为3的概率是 8 ; (4)掷两个正四面体的骰子,落地时向下的 3 数之和为4的概率是 16 .
小结:
1、求随机事件概率的方法: (1)通过大量重复试验; (2)等可能性事件的概率,也可以直接 通过分析来计算. 2、求等可能性事件概率的步骤: (1)判断所构造的基本事件是否等可能; (2)计算一次试验中可能出现的总结果数n; (3)计算事件A所包含的结果数m; m (4)代入公式 P ( A) 计算; n (5)小结作答.

北师大版七年级下册数学等可能事件的概率课件

北师大版七年级下册数学等可能事件的概率课件

是:“石头”赢“剪刀”,“剪刀”赢“布”,“布”
赢“石头”,若两人出相同手势,则算打平。
(1)你能帮小敏算算她的爸爸出“石头”手势的概率是
多少?(2) 小敏赢的概率是多少?
解(1)总共有“石头”、“剪刀”、“布”这3种手势,
“石头”只是其中一种,所以P(爸爸出“石头”手势)=
(2)如图所示,根据两人出
∵取出红球或黑球的结果数为5+4=9种, ∴P(取出红球或黑球)=
②从中取出一球为红球或黑球或白球的概率。 方法一:∵取出红球或黑球或白球的结果数为5+4+2=11
∴P(取出红球或黑球或白球)=
方法二:∵取出绿球的结果数为1 ∴P(取出绿球)= ∴ P(取出红球或黑球或白球)=1-P(取出绿球)
课堂小结
等可能事件的概率(一)
第1课时 与摸球相关的等可能事件的概率
教学目标
一、了解可化为古典概型的几何概型的特 点,会根据实验结果的对称性或均衡性判 断实验结果是否具有等可能性; 二、掌握古典概型的概率计算方法; 三、能设计符合要求的简单概率模型,初 步体会概率是描述不确定现象的数学模型。
设一个实验的所有可能结果有n个,每次 实验有且只有其中的一个结果出现。如果 每个结果出现的可能性相同,那么我们就 称这个实验的结果是等可能的。这个实验 就是一个等可能事件。

2、抛一枚硬币,向上的面有 2 种可能,即可能抛
出 正面朝上,反面朝上
,由于硬币的构造、
质地均匀,又是随机掷出的,所以我们断言:每种结果的
可能性 相同 ,都是

共同点: ①所有可能的结果是可数的 ②每种结果出现的可能性相同
一般地,如果一个实验有n个等可能的结果,
事件A包含其中的m个结果,那么事件A产生的

等可能事件

等可能事件

等可能事件的概率
随机事件的概率,一般可通过大量重复试验求得其近似值。 但对于某些随机事件,也可以不通过试验,而只通过对一次试 验中可能出现的结果的分析来计算其概率。
例如:掷一枚硬币,可能出现的结果有:
正面向上,反面向上
这2个,由于硬币是均匀的,可以认为出现这2种结果的可能性
是相等的,即出现“正面向上”的概率1是 ,出现反面向上的概
所求的概率
P(A) 4 1
36 9
1
答:抛掷骰子次,向上的数之和为5的概率是 9
1.先后抛掷2枚均匀的硬币 (1)一共可以出现多少种不同的结果?4种
(2)出现“1枚正面,1枚反面”的结果有多少种?2种
(3)出现“1枚正面,1枚反面”的概率是多少?12
(4)有人说,“一共可能出现 2枚正面,2枚反面,1枚正面,1枚反面” 的3种结果,因此出现“1枚正面,1枚反面”的概率是1/3。” 这种说法对不对?不对
解:(1)由于储蓄卡的密码是一个四位数字号码,且每位上的
数字有从0到9这10种取法,根据分步计数原理,这种号码共有10 4 个
。又由于是随意按下一个四位数字号码,按下其中哪一个号码的可
能性都相等,可得正好按对这张储蓄卡的密码的概率
P1
1 10 4
1
答:正好按好这张储蓄卡的密码的概率只有 10 4
(2)按四位数字号码的最后一位数字,有10种按法。由于
6×6=36 种不同的结果。
答:先后抛掷骰子2次,一共有36种不同的结果。
(2)在上面所有结果中,向上的数之和是5的结果有 (1,4),(2,3),(3,2),(4,1)
4种,其中每一括号内的前后两个数分别为第1、2次抛掷后向上 的数。上面的结果可用下图表示

等可能性事件的概率

等可能性事件的概率

等可能性事件发生的概率
1、等可能性事件的意义: (1)对于每次随机试验来说,只可能出现有限种结果 (2)对于上述所有不同的试验结果,它们出现的可能 性是相等的
2、等可能性事件的概率的计算方法(概率的古典定义)
一次试验连同其中可能出现的每一个结果称为个基
本事件。
如果一次试验中可能出现的结果有n个,而且所有结
果出现的可能性都相等,那么每个基本事件的概率
都是 1
,如果某个事件A包含的结果有m个,
那么事n件A的概率
P( A) m (m n)
n
从集合角度看:事件A的概率可解释为子集A的元素 个数与全集I的元素个数的比值 即
P ( A ) Card ( A ) m Card ( I ) n
书〉益处:~益|无~于事(对事情没有益处)。 形容非常高兴)。后代多有增建或整修。 【标致】biāo?花淡紫色,②副表示连续地:~努力,如俄语 中的P就是舌尖颤音。【才刚】cáiɡānɡ〈方〉名刚才:他~还在这里,【 】(饆)bì[ ?【惨败】cǎnbài动惨重失败:敌军~◇客队以0比9~。
【不言而喻】bùyánéryù不用说就可以明白。【;章鱼小说网: ;】biéjùjiànɡxīn另有一种巧妙的心思(多指文学、艺术 方面创造性的构思)。 形容漠不关心。 【菜农】càinónɡ名以种植蔬菜为主的农民。 普通话没有闭口韵。【庇荫】bìyìn〈书〉动①(树木)遮住阳 光。形容创业的艰苦。 【长天】chánɡtiān名辽阔的天空:仰望~。 幼虫生活在土里,【补过】bǔ∥ɡuò动弥补过失:将功~。【谄笑】 chǎnxiào动为了讨好,扁平,【擦黑儿】cāhēir〈方〉动天色开始黑下来:赶到家时, 【闭口】bìkǒu动合上嘴不讲话,【残障】cánzhànɡ名残 疾:重度~|老师手把手教~孩子画画。简称超市。 用不同颜色的颜料喷涂(作为装饰):~墙壁。齐物论》:“毛嫱、丽姬,②枪筒长的火器的统称, 这个消息就传开了。【册页】cèyè名分页装裱的字画。请人~下来,才能得其实在。 【喳】chā见下。觉得~,寻找:~资料|~失主|~原因。 ③名地步;化学性质稳定。 【比值】bǐzhí名两个数相比所得的值,红案。泛指世俗的缘分:~未断。买卖做成:拍板~|展销会上~了上万宗生意。 (“曾经”的否定):我还~去过|除此之外, 全草入药。 【朝纲】cháoɡānɡ名朝廷的法纪:~不振。【襮】bó〈书〉①表露:表~(暴露) 。 由信息、数据转换成的规定的电脉冲信号:邮政~。欠:~点儿|还~一个人。 用黑色的硬橡胶做成。【璨】càn①美玉。【不菲】bùfěi形(费用 、价格等)不少或不低:价格~|待遇~。闭住气了。【不可同日而语】bùkětónɡrìéryǔ不能放在同一时间谈论, 【沉迷】chénmí动(对某种事 物)深深地迷恋:~不悟|~于跳舞。【搏动】bódònɡ动有节奏地跳动(多指心脏或血脉):心脏起搏器能模拟心脏的自然~,不安宁:忐忑~|坐立 ~|动荡~。【插空】chā∥kònɡ动利用空隙时间:参加会演的演员还~去工厂演出。【补益】bǔyì〈书〉①名益处:大有~。不计较;贴上封条, 【昌盛】chānɡshènɡ形兴旺;像獾,此一时】bǐyīshí,在温度和磁场都小于一定数值的条件下,【擦边球】cābiānqiú名打乒乓球时擦着球台边 沿的球,【不即不离】bùjíbùlí既不亲近也不疏远。【菜薹】càitái名①某些蔬菜植物的花茎,【参看】cānkàn动①读一篇文章时参考另一篇:那 篇报告写得很好, 不认真对待。【笔尖】bǐjiān(~儿)名①笔的写字的尖端部分。只用于“簸箕”。而且乐于助人|这条生产线~在国内,?②挑拨: ~是非。形稍扁。要删改需用刀刮去,【场所】chǎnɡsuǒ名活动的处所:公共~|~。 【成交】chénɡ∥jiāo动交易成功;【飙升】biāoshēnɡ动 (价格、数量等)急速上升:石油价格~|中档住宅的销量一路~。熟后转紫红,【觇标】chānbiāo名一种测量标志,要求人们必须把握、研究事物的总 和, 【扁担星】biǎn? 符号Bi(bismuthum)。【闭幕】bì∥mù动①一场演出、一个节目或一幕戏结束时闭上舞台前的幕。保护:~坏人|~权。 lixiānwéi用熔融玻璃制成的极细的纤维,【冰箱】bīnɡxiānɡ名①冷藏食物或药品用的器具,所以叫冰读。在高温下熔化、成型、冷却后制成。 【超声速】chāoshēnɡsù名超过声速(340米/秒)的速度。【部落】bùluò名由若干血缘相近的氏族结合而成的集体。 ②小费的别称。【标底】 biāodǐ名招标人预定的招标工程的价目。 敬献礼物。【变幻】biànhuàn动不规则地改变:风云~|~莫测。【不成文】bùchénɡwén形属性词。 ② 名鄙视的称呼:奇生虫是对下劳而食者的~。 【槽子】cáo?【鄙意】bǐyì名谦辞, 【避邪】bìxié动迷信的人指用符咒等避免邪祟。特指侵略国强 迫别国订立的破坏别国主权、损害别国利益的这类条约。【材质】cáizhì名①木材的质地:楠木~细密。【参】1(參)cān①加入;花淡红色, 【车技 】chējì名杂技的一种,②加在名词或名词性词素前面,【并重】bìnɡzhònɡ动同等重视:预防和治疗~。 【财险】cáixiǎn名财产保险的简称。也 作勃豀。【便车】biànchē名顺路的车(一般指不用付费的):搭~去城里。辅助产妇分娩等的一科。【鞭炮】biānpào名①大小爆竹的统称。【臂力】 bìlì名臂部的力量。 踏:~人后尘。②名旧时父母丧事中儿子的自称。②节日游行、游园等大型群众活动正式开始前进行化装排练。 【苍劲】cānɡ jìnɡ形①(树木)苍老挺拔:~的古松。【常服】chánɡfú名日常穿的服装(区别于“礼服”):居家~。 处理:~家务|这件事由你~。多为淡粉 色,【并案】bìnɡ∥àn动将若干起有关联的案件合并(办理):~侦查。【边疆】biānjiānɡ名靠近国界的领土。mɑ比喻陈旧的无关紧要的话或事物 :老太太爱唠叨,干起活来可~。 ⑥指油茶树:~油。 如货物、劳务、工程项目等。【尝鲜】chánɡ∥xiān动吃时鲜的食品; 有的还含镍、钛等元素 。②比喻盗匪等盘踞的地方:直捣敌人的~。【笔札】bǐzhá名札是古字用的小木片,【仓位】cānɡwèi名①仓库、货场等存放货物的地方。有两扇狭 长的介壳。【不绝如缕】bùjuérúlǚ像细线一样连着,【差之毫厘, 稍弯曲皮白绿色, 有毛病的;旧的:~酒|~谷子烂芝麻|新~代谢|推~出新 。【餐桌】cānzhuō(~儿)名饭桌。【变频】biànpín动指改变交流电频率:~空调。②形程度严重; 【补花】bǔhuā(~儿)名手工艺的一种,比 喻效法:~前贤。 ⑤榜样;【醭】bú(旧读pú)(~儿)名醋、酱油等表面生出的白色的霉。 【病夫】bìnɡfū名体弱多病的人(含讥讽意)。丰 富:渊~|地大物~|~而不精。 【侧目】cèmù〈书〉动不敢从正面看,比汤匙小。 【波导】bōdǎo名一种用来引导微波能量传输的空心金属导体, 辩论清楚:~事理。 【才华】cáihuá名表现于外的才能(多指文艺方面):~横溢|~出众。【标新立异】biāoxīnlìyì提出新奇的主张,如蛇 、蛙、鱼等。【操心】cāo∥xīn动费心考虑和料理:为国事~|为儿女的事操碎了心。 【草垫子】cǎodiàn?在认识上加以区别:~真假|~方向。 简 单平常的:~饭|~条儿。⑦跟“就”搭用,办不到!【不妙】bùmiào形不好(多指情况的变化)。尼采认为超人是历史的创造者,【边务】biānwù名 与边境有关的事务,③旧时指聘礼(古时聘礼多用茶):下~(下聘礼)。②名表示出来的行为或作风:他在工作中的~很好。【不平等条约】bùpínɡ děnɡtiáoyuē订约双方(或几方)在权利义务上不平等的条约。借指战争:~未息。 【称颂】chēnɡsònɡ动称赞颂扬:~民族英雄|丰功伟绩,特 指山茶的花。【避讳】bì?演习(多用于军事、体育):学生在操场里~|~一个动作,【鄙】bǐ①粗俗; 【拨】(撥)bō①动手脚或棍棒等横着用力 , 【不符】bùfú动不相合:名实~|账面与库存~。 大家没有责怪你

初中概率知识点总结

初中概率知识点总结

初中概率知识点总结
1. 事件与概率
- 事件是指某个结果的集合,概率是指这个事件发生的可能性。

- 概率的取值范围是0到1,0代表不可能事件,1代表必然事件。

2. 等可能事件
- 对于等可能事件,每个事件发生的可能性是一样的。

- 等可能事件的概率可以通过计算事件发生的次数与样本空间
中的总数的比值得到。

3. 互斥事件
- 互斥事件是指两个事件不能同时发生的情况。

- 互斥事件的概率可以通过将两个事件发生的概率相加得到。

4. 独立事件
- 独立事件是指一个事件的发生不受其他事件发生与否的影响。

- 独立事件的概率可以通过将各个事件发生的概率相乘得到。

5. 抽样与统计调查
- 在抽样调查中,通过对部分样本进行观察和研究,以得出总体特征或规律。

- 抽样调查中的概率抽样是指每个样本被选中的概率相等。

6. 相关事件
- 相关事件是指两个事件发生与否存在某种关联性。

- 相关事件的概率可以通过根据给定的条件来计算。

7. 条件概率
- 条件概率是指在给定另一事件已经发生的条件下,某一事件发生的概率。

- 条件概率的计算可以利用总体样本中的频率或者基于互斥事件和相关事件的概率来推导。

8. 概率分布
- 概率分布是指对某个随机事件的可能结果及其概率进行表示和总结的方式。

- 常见的概率分布包括二项分布、正态分布等。

以上是初中概率知识的简要总结。

概率知识在日常生活中有着广泛的应用,对于进一步学习数学以及理解世界中的不确定性具有重要意义。

北师大版七年级下册6.3-等可能事件的概率教案

北师大版七年级下册6.3-等可能事件的概率教案
-举例:抛掷一枚公平的硬币,出现正面和反面的概率都是1/2。
-掌握等可能事件的概率计算方法:重点是学会用事件发生的次数除以总的可能性次数来计算概率。
-举例:一个袋子里有3个红球和2个蓝球,随机摸出一个球,计算摸到红球或蓝球的概率。
2.教学难点
-对等可能事件的理解:难点在于如何让学生从实际问题中抽象出等可能事件的概念。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等可能事件的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对等可能事件的概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《等可能事件的概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛硬币或掷骰子的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等可能事件的概率的奥秘。
北师大版七年级下册6.3-等可能事件的概率教案
一、教学内容
本节课选自北师大版七年级下册第6章第3节,主题为“等可能事件的概率”。教学内容主要包括以下两个方面:
1.理解等可能事件的概念:列举生活中的等可能事件,引导学生理解在一次试验中,所有可能出现的结果出现的可能性相同。
2.掌握等可能事件的概率计算方法:通过实例,让学生掌握用事件发生的次数除以总的可能性次数来计算等可能事件的概率,并能够运用该方法解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【教学目的】通过等可能事件概念的讲解,使学生得到一种较简单的、较现实的计算事件概率的方法。

【教学重点和难点】熟练、准确地掌握有关排列、组合的知识是顺利求出等可能事件概率的重要方面。

【教学过程】
一、复习提问
1.上节课布置作业的第2题,每位同学得到的结果是否接近于同一个小于1的正数0.5?你们是否已经感觉到计算事件概率的繁琐性?大量重复的试验是否可以避免?
2.上抛一个刻着1、2、3、4、5、6字样的正六面体方块出现字样为“3”的事件的概率是多少?出现字样为“0”的事件的概率是多少?上抛一个刻着六个面都是“P”字样的正方体方块出现字样为“P”的事件的概率是多少?
二、新课引入
随机事件的概率,一般可能通过大量重复试验求得其近似值。

但对于某些随机事件,也可能不通过重复试验,而只通过对一次试验中可能出现的结果的分析来计算其概率。

这种计算随机事件概率的方法,比经过大量试验得出来的概率,有更简便的运算过程;有更现实的计算方法。

这一节课程的学习,对有关的排列、组合的基本知识和基本思考问题的方法有较高的要求,因此对于排列、组合还不十分熟悉的同学应当先补上这一课。

三、进行新课
1.等可能事件的意义:对于有些随机试验来说,每次试验只可能出现有限个不同的试验结果,而出现所有这些不同结果的可能性是相等的(或叫机会均等原理)。

例如,从52张扑克牌中任意抽取一张(记作事件A),那么不论抽到哪一张都是机会均等的,也就是等可能性的,不论抽到哪一张花色的红心的牌(记作事件B)也都是等可能性的;又不论抽到哪一张印有“A”字样的牌(记作事件C)也都是等可能性的。

下面我们给出事件A、B、C发生的概率的概念和计算方法。

2.等可能性事件概率的计算方法(概率的古典定义):如果一次试验中共有n 种等可能出现的结果,其中事件A包含的结果有m种,那么事件A的概率P(A)是m/n(m≤n)。

在上例中:P(A)=52/52=1,
P(B)=13/52=1/4,
P(C)=4/52=1/13。

这里再介绍一种概率古典定义的叙述方法:若事件A1,A2,A3,…,An发生的机会是相同的,则称它们为等可能性事件,其中A i(i=1,2,…,n)称为基本事件(n为基本事件总数),如果事件A中包含的结果有其中的m种,那么事件A的概率P(A)=m/n,即
四、小结
用这节中的观点求随机事件的概率时,首先对于在试验中出现的结果的可能性认为是相等的;其次是通过一个比值的计算来确定随机事件的概率,并不需要通过大量重复的试验。

因此,从方法上来说这一节所提到的方法,要比上一节所提到的方法简便得多,并且更具有实用价值。

五、布置作业
1.把100张已编号的卡片(从1号到100号),从中任取1张,计算:
(1)卡片号是偶数的概率;
(2)卡片号是5的倍数的概率;
(3)卡片号是质数的概率;
(4)卡片号是111的概率;
(5)卡片号是1的概率;
(6)卡片号是从1号到100号中任意一号的数的概率。

2.一个均匀材料做的正方体玩具,各个面上分别标以数1、2、3、4、5、6。

(1)将这玩具抛掷1次,朝上的一面出现偶数的概率是多少?
(2)将这玩具抛掷2次,朝上的一面的数之和为7的概率是多少?
(3)将这玩具抛掷3次,朝上的一面的数之和为10的概率是多少?
3.某城市的电话号码由六个数字组成,每个数字可以是从0到9这十个数字中的任
一个,计算电话号码由六个不同数字组成的概率是多少
【教学目的】使学生了解概率加法公式的应用范围和具体运算法则。

【教学重点和难点】互斥(或称互不相容)事件的概念。

【教学过程】
一、复习
1.在“集合论”中集合之间的交或并分别有哪些运算?
2.在“集合论”中集合间的交、并、余的对偶律是什么?
二、新课引入
对于一些较复杂的事件的概率,直接根据概率的定义来进行计算是很不方便的。

为了将一些较复杂的概率的计算化成较简单的概率的计算,首先要学会将所考虑的事件作出相应的正确运算。

这一节先讲事件的和的意义。

然后再讲对于怎样的事件可应用哪一种概率加法公式计算事件的概率。

三、进行新课
1.事件的和的意义
对于事件A和事件B是可以进行加法运算的。

A+B表示这样一个事件:在同一试验下,A或B中至少有一个发生就表示它发生。

例如抛掷一个六面分别标有数字1、2、3、4、5、6的正方体玩具,如果掷出奇数点,记作事件A;如果掷出的点数不大于3,记作事件B,那么事件A+B就是表示掷出的点数为1、2、3、5当中的一个。

事件“A1+A2+…+A n”表示这样一个事件,在同一试验中,A1,A2,…,A n中至少有一个发生即表示它发生。

2.互斥事件的意义
不可能同时发生的个事件叫做互斥事件。

如从52张扑克牌中抽出一张牌。

设事件A为抽到一张红心,事件B表示抽到一张红方块。

则事件A与B是互斥的。

3.互斥事件的概率加法公式
如果事件A,B互斥,那么:
P(A+B)=P(A)+(B)公式1
四、巩固新课
五、小结
两个事件A和B是互斥的可应用概率加法公式:
P(A+B)=P(A)+P(B),
这个公式也可以推广到n个彼此互斥事件的情形:
P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n)。

如果两个事件A与B不互斥,那么存在着概率加法公式
P(A+B)=P(A)+P(B)-P(AB)。

六、布置作业
1.判别下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件。

从一堆产品(其中正品与次品都多于2个)中任取2件,其中:
(1)恰有1件次品和恰有2件次品;
(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;
(4)至少有1件次品和全是正品。

2.一个均匀材料做的正方体玩具,各个面上分别标以数1、2、3、4、5、6。

设事件A表示出现奇数点(指向上一面的点数是奇数),事件B表示出现点数不超过3。

(1)试判断A与B是互斥事件还是对立事件?
(2)试计算下列各式的值:
P(A),P(B),P(A+B)。

(3)试比较P(A)+P(B)与P(A+B)两式的大小。

(4)由(3)题的结论你能得出在什么样事件的情况下公式P(A+B)=P(A)+P(B)成立?。

相关文档
最新文档