概率论练习题第三章补充题

合集下载

概率练习册第三章答案

概率练习册第三章答案
(1)求在 的条件下 的条件概率密度函数
(2) 与 是否相互独立?说明理由。
(3)求
[解]
(1)
(2)显然 , 与 不相互独立
(3)
习题3-3二维随机变量函数的分布
1.设 相互独立,且同服从参数为 的泊松分布,即

(1)求 的分布律;
(2)求 的分布律;
(3)求 的分布律。
解:(1)
(2)
(3)
2.设 相互独立,且具有公共分布函数 ,
-1
1
0
1/15
1
1/5
2
1/5
3/10
则当 时,随机变量 与 独立。
(A) (B) (C) (D)
答案:C
因为:
3.设两个随机变量X与Y相互独立且同分布
则()
(A) (B)
(C) (D)
答案:A
4.设X和Y为两个随机变量,且 ,则
=( )
(A) (B) (C) (D)1
答案:C,因为
5.设随机变量 与 相互独立,且 ,则 仍具有正态分布,其分布为()
(7)求 。
解:(1)因为
(2)
(3)
(4)
(5)
当 时,
当 时,

所以
(6)

的概率密度为

的概率密度为
(7)
五设
(1)证明 不相互独立;(2)证明 相互独立。
证明:(1)
由对称性可知
因为 ,所以X和Y不独立
(2)
=
显然
所以 相互独立,即
相互独立。
六设某班车起点站上客人数 ,每位乘客在中途下车的概率为 ,且他们中途下车与否相互独立,以 表示在中途下车的人数,求:

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

最新概率论与数理统计第三章习题及答案

最新概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论第三章习题及答案

概率论第三章习题及答案

02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。

概率论与数理统计(经管类)第三章课后习题答案

概率论与数理统计(经管类)第三章课后习题答案
P Z 40 P X 20, Y 20 20 6
P Z 30 P X 10, Y 20 20 3
P Z 20 P X 20, Y 0 20
P Z 10 P X 10, Y 0 P X 20, Y
P Z 0 P X 10, Y 则 Z=X‐Y 的分布律为
2 10 20
Z=X‐Y ‐40 ‐30 ‐20 ‐10 0
4. 设随机变量 X,Y 相互独立,且服从[0,1]上的均匀分布,求 X+Y 的概率密度. 解: 因 X,Y 都服从[0,1]上的均匀分布,且相互独立 故fX x fY y 1, f x, y fX x fY y
设 Z=X+Y
当0 z 1时
Z ZX
FZ
f x, y dydx
Z ZX
1dydx
Z
z xdx
;
P X 1, Y 0 P X 1 P Y 0
;
P X 1, Y 1 P X 1 P Y 1
;
(X,Y)的分布律与边缘分布律为
Y
X
0
1

16
4
20
0
25 25 25
4
1
1
1
25 25
5

20 25
1 5
(2) 不放回抽样的情况:
P X 0, Y 0 P X 0 P Y 0
;
P X 0, Y 1 P X 0 P Y 1
0, 其他.
0, 其他.
关于 Y 的边缘密度为
fY y
1
√2 24xydx , 0 y
0, 其他.
1 , 6x, 0 √3 =
y
1,
√3
0, 其他.
注意积分限为 Y 的值域,后面却 要写 X 的值域哦~

概率论习题第三章答案

概率论习题第三章答案

第三章连续型随机变量3.1设随机变量 ξ 的分布函数为F (x ),试以F (x )表示下列概率: 。

)()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。

)(解:)0(1)()4();(1)()3();0()(P 2);()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ3.2函数x211F(x)+=是否可以作为某一随机变量的分布函数,如果在其它场合恰当定义。

在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞<<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能是随机变量的分布函数; (3)F(x)在),(-0∞内单调上升、连续且,若定义 ⎩⎨⎧≥<<∞=01)()(~x x X F x F -则)(~x F 可以是某一随机变量的分布函数。

3.3函数 sinx 是不是某个随机变量ξ的分布函数?如果ξ的取值范围为[]。

,);(,);(,)(⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ230302201 解:(1)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,sinx 0≥且1sin 20=⎰πxdx ,所以 sinx 可以是某个随机变量的分布密度; (2) 因为12sin 0≠=⎰πxdx ,所以sinx 不是随机变量的分布密度; (3) 当 ⎥⎦⎤⎢⎣⎡∈23,ππx 时,sinx<=0所以sinx 不是随机变量的分布密度。

3.4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有[][]。

--故上式右端=知由证:)1)(21a)P(1a)(3)P(1;-2F(a))(21)(1)1(,)(2)()()2(;)(21)()(1)(1)(1)(1)(1)()()1(.)(F 12)()3(;1)(2)()2(;(p 21)(1)()1(00000-=<=>-=-==<-=--=-=-=+=-==--=>-=<-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-∞-∞-∞-∞--∞-a F dxx p a F dx x p dx x p a P dx x p dx x p dx x p a F dx x p dxx p dx x p dx x p a F a a P a F a P dx x a F a F a a a a a aaaaaa ξξξξξ3.5设)(1x F 与)(2x F都是分布函数,证明F(x)=aF(x)+bF(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型? 证:因为)(1x F与 )(2x F 都是分布函数,于是F(x1)=aF1(x1)+bF2(x2)<= aF1(x1)+bF2(x2)= F(x2) 又F(x-0)= aF1(x1-0)+bF2(x2-0) = aF1(x)+bF2(x)= F(x) 所以,F(x)也是分布函数。

概率论课后习题答案第三章

概率论课后习题答案第三章

概率论课后习题答案第三章第三章概率论课后习题答案概率论是一门研究随机现象的数学学科,它在现代科学和工程领域中有着广泛的应用。

而习题则是巩固和加深对概率论知识的理解和应用的重要手段。

在第三章的习题中,我们将探讨一些与随机变量和概率分布相关的问题,并给出相应的答案和解析。

1. 设随机变量X服从参数为λ的指数分布,即X~Exp(λ),其概率密度函数为f(x) = λe^(-λx),x≥0。

求以下概率:(a) P(X > 2)(b) P(X ≤ 1)(c) P(1 ≤ X ≤ 3)答案:(a) P(X > 2) = ∫[2,∞] λe^(-λx) dx = e^(-2λ)(b) P(X ≤ 1) = ∫[0,1] λe^(-λx) dx = 1 - e^(-λ)(c) P(1 ≤ X ≤ 3) = ∫[1,3] λe^(-λx) dx = e^(-λ) - e^(-3λ)解析:根据指数分布的性质,我们可以利用概率密度函数求解概率。

对于(a),我们计算X大于2的概率,即求解X在区间[2,∞]上的概率密度函数的积分。

对于(b),我们计算X小于等于1的概率,即求解X在区间[0,1]上的概率密度函数的积分。

对于(c),我们计算X在1到3之间的概率,即求解X在区间[1,3]上的概率密度函数的积分。

2. 设随机变量X服从参数为μ和σ^2的正态分布,即X~N(μ,σ^2),其概率密度函数为f(x) = (1/(σ√(2π))) * e^(-(x-μ)^2/(2σ^2)),-∞<x<∞。

求以下概率:(a) P(X > μ)(b) P(X ≤ μ)(c) P(μ-σ ≤ X ≤ μ+σ)答案:(a) P(X > μ) = 1 - P(X ≤μ) = 1 - 0.5 = 0.5(b) P(X ≤ μ) = 0.5(c) P(μ-σ ≤ X ≤ μ+σ) = P(X ≤ μ+σ) - P(X ≤ μ-σ) = 0.6827 - 0.3173 =0.3654解析:对于正态分布,我们可以利用概率密度函数求解概率。

概率论与数理统计期末测试(新)第三章练习题

概率论与数理统计期末测试(新)第三章练习题

概率论与数理统计期末测试(新)第三章练习题一、选择题1、随机变量X 和Y 相互独立,且方差21()Var X σ=,22()Var Y σ=,(120,0σσ>>),12,k k 是已知常数,则12()Var k X k Y -等于( )。

(A) 221122k k σσ- (B) 221122k k σσ+ (C)22221122k k σσ- (D) 22221122k k σσ+2、随机变量X 与Y 相互独立,且方差()2Var X =,() 1.5Var Y =,则(321)Var X Y --等于( )。

(A) 9 (B) 24 (C) 25 (D) 23、已知随机变量X 与Y 的方差,()4Var X =,()9Var Y =,协方差cov(,)2X Y =,则(2)V a r X Y -等于( )。

(A) 25 (B) 13 (C) 17 (D) 214、已知随机变量X 与Y 的方差,()9Var X =,()16Var Y =,相关系数(,)0.5corr X Y =,则()Var X Y -等于( )。

(A) 19 (B)13 (C) 37 (D) 255、5个灯泡的寿命12345,,,,X X X X X 相互独立同分布且()i E X a =,()i Var X b =(1,2,3,4,5i =),则5个灯泡的平均寿命123451 ()5Y X X X X X =++++的方差()Var Y =( )。

(A) 5b (B) b (C) 0.2b (D) 0.04b6、如果随机变量X 与Y 不相关,则正确的是( )。

(A) ()()()Var aX bY aVar X bVar Y +=+ (B) ()()()Var X Y Var X Var Y -=- (C)()()()Var XY Var X Var Y = (D) ()()()E XY E X E Y =7、如果随机变量X 与Y 独立,则正确的是( )。

(完整版)概率论第三章第四章习题及答案

(完整版)概率论第三章第四章习题及答案
返回主目录
第三章 多维随机变量及其分布
n
解:(1)P{X n} P{X n,Y m}
m0
n e14 (7.14)m (6.86)nm
m0
m!(n m)!
e14 n
n! (7.14)m (6.86)nm
n! m0 m!(n m)!
e14 (7.14 6.86)n 14n e14 , n 0,1,2,
返回主目录
第三章 多维随机变量及其分布
(3)P{Y m | X 20} C2m0 0.51m0.4920m , m 0,1,2, ,20.
P{Y m | X n} Cnm 0.51m0.49nm , m 0,1,2, , n
返回主目录
第三章 多维随机变量及其分布
11.设随机变量(X,Y)的联合概率密度为
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
返回主目录
第四章 随机变量的数字特征
U 的密度函数为
nun1, x (0,1),
fU (u)
0,
其他.
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
E(U )
ufU (u)du
e14 (7.14)m (6.86)nm m!(n m)!
e
1414n n!
Cnm
7.14 14
m
6.86 14
nm
Cnm 0.51m0.49nm , m 0,1,2, , n
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2, , n; n 0,1,2, .
cxey ,0 x y ,

概率论与数理统计答案 第三章习题

概率论与数理统计答案 第三章习题


f
X
(
x)
fY
(
y)
2x(1
0,
|
y |),0
x 1,| y|1 其它
f (x, y)
故X和Y不相互独立.
14.设X和Y是相互独立的随机变量,X在(0,1)上服从均匀分布,
Y的概率密度为
fY
(
y)
1 2
e
y
2
,
y
0
(1)求X和Y的联合概率密度;
0, y 0
(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.
(X,Y)关于Y的边缘分布律可用Y= j时 X取所有可能取的值的概率相加而得. 也可以单独列表如下:
X0 1 2
pk 1 2 1
4 44
Y0 1 2 3
pk 1 3 3 1
8 88 8
X Y0123
012
1 10 0 88
0 220
88
00 11
88
1 P{Y=j} 8
3 8
3 8
1 8
P{X=i}
0 25/36 5/36 5/6
0 45/66 10/66 5/6
1 5/36 1/36 1/6
1 10/66 1/66 1/6
P{X=i} 5/6 1/6 1
P{X=i} 5/6 1/6 1
13(1)问第1题中的随机变量X和Y是否相互独立?(需说明理由) 解 (1)P{X=i,Y=j}=P{X=i}P{Y=j}对(X,Y)所有可能取值 (i,j)( i ,j =0,1)都成立,故放回抽样X和Y相互独立.
y)dy y (4)
4
(2)
2

概率论第三章答案

概率论第三章答案

习题三1. 箱子里装有12只开关,其中只有2 只次品,从箱中随机地取两次,每次取一只,且设随机变量X ,Y 为⎩⎨⎧=⎩⎨⎧=.,1,0;,1,0若第二次取得次品若第二次取得正品若第一次取得次品若第一次取得正品,Y ,X试就放回抽样与不放回抽样两种情况,写出X 与Y 的联合分布律. 解:先考虑放回抽样的情况:.361122122}1,1{,3651210122}0,1{,3651221210}1,0{,362512101210}0,0{=⨯====⨯====⨯====⨯===Y X P Y X P Y X P Y X P则此种情况下,X 与Y 的联合分布律为再考虑不放回抽样的情况.661111122}1,1{,3351110122}0,1{,3351121210}1,0{,22151191210}0,0{=⨯====⨯====⨯====⨯===Y X P Y X P Y X P Y X P2. 将一硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示在三次中出现正面次数与出现反面次数之差的绝对值,试写出(X,Y )的联合分布律及边缘分布律.解:由已知可得:X 的取值可能为0,1,2,3;Y 的取值可能为1,3;则由硬币出现正面和反面的概率各为21,可知83212121}1,2{,0}3,1{,83212121}1,1{,81212121}3,0{(0}0,0{2313=⨯⨯=======⨯⨯====⨯⨯======C Y X P Y X P C Y X P Y X P Y X P 此种情况不可能发生).81212121}3,3{0}1,3{0}3,2{=⨯⨯=========Y X P Y X P Y X P3. 把三个球随机地投入三个盒子中去,每个球投入各个盒子的可能性是相同的,设随机变量X 与Y 分别表示投入第一个及第二个盒子中的球的个数,求二维随机变量(X,Y)的概率分布及边缘分布. 解:由已知可得:X 的取值可能为0,1,2,3;Y 的取值可能为0,1,2,3;则271313131}0,0{=⨯⨯===Y X P , 91313131}1,0{13=⨯⨯===C Y X P 91313131}2,0{23=⨯⨯===C Y X P ,271313131}3,0{=⨯⨯===Y X P91313131}0,1{13=⨯⨯===C Y X P ,92313131}1,1{1213=⨯⨯===C C Y X P 91313131}2,1{13=⨯⨯===C Y XP 0}3,1{===Y X P ,91313131}0,2{23=⨯⨯===C Y X P91313131}1,2{23=⨯⨯===C Y XP0}3,2{}2,2{======Y X P Y X P 271313131}0,3{33=⨯⨯===C Y X P 0}3,3{}2,3{}1,3{=========Y X P Y X P Y X P则二维随机变量(X,Y )的概率分布及边缘分布为4. 设(X,Y)的概率密度为⎪⎩⎪⎨⎧<<<<--=.,0,42,20),6(81),(其它y x y x y x f求:(1) P ﹛(x,y )∈D ﹜, 其中D=﹛(x,y )|x<1,y<3﹜; (2) P ﹛(x,y )∈D ﹜, 其中D=﹛(x,y )|x+y<3﹜. 解:(1) ∵D={(x,y)|x<1,y<3}∴83)6(81),(}),{(103213=--==∈⎰⎰⎰⎰∞-∞-dxdy y x dxdy y x f D y x P(2) ∵D={(x,y)|x+y<3}∴245)6(81),(}),{(1032=--==∈⎰⎰⎰⎰-xDdxdy y x dxdy y x f D y x P 5. 设(X,Y)的概率密度为⎪⎩⎪⎨⎧≤++-=.,0,),(),(22222其它R y x y x R c y x f 求:(1) 系数c ;(2) (X,Y)落在圆()R r r y x <≤+222内的概率. 解:(1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f ,得1)(22222=+-⎰⎰≤+dxdy y x R c R y x ,可求得33R c π=(2) 设222|),{(r y x y x D ≤+=,则)321(3)(3),(}),{(3223222R r R dxdy y x R R dxdy y x f D Y X P Dr y x -=+-==∈⎰⎰⎰⎰≤+ππ6. 已知随机变量X 和Y 的联合概率密度为⎩⎨⎧≤≤≤≤=.,0,10,10,4),(其他y x xy y x f求X 和Y 的联合分布函数.解:∵随机变量X 和Y 的联合概率密度为⎩⎨⎧≤≤≤≤=.,0,10,10,4),(其他y x xy y x f∴当x<0,或y<0时,F(x,y)=0; 当10,10≤≤≤≤y x 时,2204=y} Y x, P{X =y)F(x,y x XYdXdY x y⎰⎰=≤≤当1,10>≤≤y x 时,20104=y} Y x, P{X =y)F(x,x XYdXdY x ⎰⎰=≤≤当10,1≤≤>y x 时,21004=y} Y x, P{X =y)F(x,y XYdXdY y⎰⎰=≤≤当1,1>>y x 时,14=y} Y x, P{X =y)F(x,1010⎰⎰=≤≤XYdXdY综上可得,X 和Y 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤<<1,1 110,1 1,10 10,10 0,00=y)F(x,2222y x y x y y x x y x yx y x 或7. 设二维随机变量(X,Y)的概率密度为⎩⎨⎧<<<≤+=.,0,60,60),(),(其他y x y x k y x f(1) 求常数k ;(2) 求 P ﹛0<x<2,1<y ≤3﹜; (3) 求X,Y 的边缘概率密度; (4) 判断X 与Y 是否相互独立.解:(1) 由概率密度的性质有⎰⎰+∞∞-+∞∞=1),(dxdy y x f 即1)(6060⎰⎰=+dxdy y x k ,有2161=1216k k ∴= (2) ⎰⎰=+=≤<<<2031181)(2161}31,20{dxdy y x y x P (3) X 的边缘概率密度为⎰+∞∞-=dy y x f x f X ),()(∴当0≤x<6时,363)(2161)(6+=+=⎰x dy y x x f X 当x<0或x ≥6时,显然有0)(=x f X⎪⎩⎪⎨⎧<≤+=∴.,0,60,363)(其他x x x f XY 的边缘概率密度为⎰+∞∞-=dx y x f y f Y ),()( ∴当0<y<6时,363)(2161)(6+=+=⎰y dy y x y f Y 当y ≤0或x ≥6时,显然有0)(=y f Y⎪⎩⎪⎨⎧<<+=∴.,0,60,363)(其他y y y f Y(4) 的表达式易知,及从)()(y f x f Y X ),()()(y x f y f x f Y X ≠ ∴X 与Y 不相互独立.8.已知随机变量X 1和X 2的概率分布为而且P{X 1X 2=0}=1.(1) 求X 1和X 2的联合分布; (2) 问X 1和X 2是否独立?为什么? 解:由1}0{21==X X P ,可知021=X X 必然成立.0}0{21=≠∴X X P由}1,1{}1,0{}1,1{}1{2121212=======-===X X P X X P X X P X P 得21}1{}1,0{221=====X P X X P 同理可得:41}0,1{,41}0,1{2121=====-=X X P X X P , 而}0,1{}1,0{}0,1{}0,0{}0{2121212121==+==+=-=+====X X P X X P X X P X X P X X P 04141211}0,1{}1,0{}0,1{}0{}0,0{2121212121=---===-==-=-=-====X X P X X P X X P X X P X X P 综上可得,1X 和2X 的联合分布为(2)}0{}0{}0,0{2121==≠==X P X P X X P可知1X 和2X 不独立.9. 设随机变量X 与Y 相互独立,且都服从()b b ,- 上的均匀分布,求方程02=++Y tX t 有实根的概率.解:方程02=++Y tX t 有实根的充要条件是042≥-Y X ,由于随机变量X 与Y 相互独立,所以随机变量(X ,Y )的联合概率密度为⎪⎩⎪⎨⎧<<-<<-=其他,0,,,41),(2b y b b x b by x f下面分两种情况讨论: (1)当40≤<b 时,如图24214),(}4{4222b dy dx b dxdy y x f y X P Dbbx b+===≥⎰⎰⎰⎰-- (2) 当4>b 时,如图bdy dx b dxdy b dxdy b dxdy y x f y X P Dbbbx D D32141414),(}4{224222221-=-=-===≥⎰⎰⎰⎰⎰⎰⎰⎰-综上可得:方程02=++Y tX t 有实根的概率为⎪⎪⎩⎪⎪⎨⎧>-≤<+=≥-.4,321,40,2421}04P{2b bb bY X另解:方程02=++Y tX t 有实根的充要条件是 042≥-Y X令),(,121x F X Z Z 其分布函数为=),(,422x F Y Z Z 其分布函数为-= 则当x<0时,0)(1=x F Z 则当0≤x ≤b 2时{}x X x P x X P X Z P x F Z ≤≤-=≤=≤=}{}{)(211由于X 与Y 都服从()b b ,-上的均匀分布,即其密度函数各为⎪⎩⎪⎨⎧≤≤-=⎪⎩⎪⎨⎧≤≤-=其他其他,0,21)(,0,21)(Y by b by f bx b bx f X 当0≤x ≤b 2时,bxdt b x F xx Z ==⎰-21)(1 当x >b 2时显然有.1)(1=x F Z∴Z 1的概率密度函数为⎪⎩⎪⎨⎧≤≤=.00,2)(21其他b x bxx F Z而当时,b x 4≥1)4(01}4{1}4{)(2=-≤--=-<-=≤-=b x x Y P x Y P x F Z 当-4b<x<4b 时,bxb x b dt b x Y P x F xb Z 821)4(211}4{1)(42+=≤-≤--=-<-=⎰--当x ≤-4b 时,0)4(11}4{1)(2=≥--=-<-=b xx Y P x F Z∴Z 2的概率密度函数为⎪⎩⎪⎨⎧≤≤-=.44,81)(2其他b x b b x F Z又由于随机变量X 与Y 相互独立,∴Z 1 和Z 2也相互独立. 又设Z= Z 1 +Z 2,,则,分布函数为其密度函数为dx x z f x f f x F x Z Z Z Z Z ⎰+∞∞--=)()()z ()()(f 而⎰∞--=-=≥=≥-02)(1)0(1}0{}04{dz z f F Z P Y X P Z Z ∵b>0,而当z ≤-4b ,]4,4[b b x -∈时,04≤+b z 此时0)(=z f Zb dx b xb z f b b z b b z Z 818121)(44402=⋅=-≤<-⎰+时,当 即⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥-≤<-+-≤=.4,81,44,84,4,0)(222b b z bb b z b b bz b z z f Z ),时,(即当04402≤-≤<b b b242182112181841}04P{04442222bb b dz b dz bb z Y X b b bb b+=+--=-+-=≥-⎰⎰--- ),时,(即》当0442>-b b b bdz b b z Y X b321841}04P{0422-=+-=≥-⎰- 综上可得:方程02=++Y tX t 有实根的概率为⎪⎪⎩⎪⎪⎨⎧>-≤<+=≥-.4,321,40,2421}04P{2b bb bY X10. 设(X,Y )的概率密度为⎩⎨⎧<<=-.,0,0,),(其他y x e y x f y求边缘概率密度和{}.1≤+Y X P 解:X 的边缘概率密度为⎰+∞∞-=dy y x f x f X ),()(,当x ≤0时,0)(=x f X 当x>0时,⎰+∞--==x x y X e dy e x f )( Y 的边缘概率密度为⎰+∞∞-=dx y x f y f Y ),()(当x ≤0时,0)(=y f Y ,当y>0时,⎰--==yy y Y ye dx e y f 0)(⎩⎨⎧>≤=⎩⎨⎧>≤=∴--000)(.000)(y yey y f x ex x f yY xX而⎰⎰⎰⎰⎰-------+=-==≤+==≤+2102111210121)(}1|),{((),(1}Y P{X ee dx e e dy e dx y x y x D dxdy y xf x x xxy D其中11. 设X,Y 相互独立,其概率密度为⎩⎨⎧≤>=⎩⎨⎧≤≤=-.0,0,0,)(.,0,10,1)(y y e y f x x f y Y X 其他求Z=X+Y 的概率密度.解:由已知得 ⎰+∞∞--=dx x z f x f z f Y X Z )()()( 当z<0时,)0,10(0)(≤-≤≤=x z x z f Z 时当 当0≤z ≤1时,z z z x Z e dx e z f ---==⎰1)(0 当z >1时,z z x Z e e dx e z f ---==⎰)1()(1∴Z=X+Y 的概率密度为⎪⎩⎪⎨⎧>-≤≤-<=--1)1(10100)(z e e z e z z f z zZ12. 设随机变量(X,Y )的概率密度为⎩⎨⎧<<<<=.,0,10,0,3),(其他x x y x y x f求Z=X —Y 的概率密度. 解:∵Z=X —Y 的分布函数为 ⎰⎰⎰⎰≤-+∞∞-+∞-==≤-=≤=zY X zx Z dyy x f dx dxdy y x f z Y X P z Z P z F ),(),(}{}{)(∴Z=X —Y 的概率密度为⎰+∞∞--==dx z x x f z F z f Z Z ),()()('⎩⎨⎧<<<<=.,0,10,0,3),(其他x x y x y x f0)(,0x 1=∴≤-≥z f z z Z 时,当, ,0)(,x 0=∴≥-≤z f x z z Z 时,当),1(23xdx 3)(1021z z f z Z Z -==<<⎰时,当 ∴Z=X —Y 的概率密度为⎪⎩⎪⎨⎧<<-=.,0,10),1(23)(2其他z z z f Z13. 设随机变量(X,Y )的概率密度为(),,21),(22222+∞<<∞-=+-y x ey x f y x σπσ求22Y X Z +=的概率密度.解:设22Y X Z +=的分布函数为)(z F Z当0≤Z 时,0}{}{)(22=≤+=≤=z Y X P z Z P z F Z 当0>Z 时,222222222222022222212121}{)(σπσσσπσθπσz zY X y x y x Z erdred dxdy ez Z P z F -≤++-+-===≤=⎰⎰⎰⎰∴22Y X Z +=的概率密度⎪⎩⎪⎨⎧>≤=-.0,21,0,0)(222z ez z F z Z σσ14. 设二维随机变量(X,Y )在矩形(){}10,20|,≤≤≤≤=y x y x G 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度f(s). 解:由已知可得随机变量(X,Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤=.,010,20,21),(其他,y x y x f设边长为X 和Y 的矩形面积S 的分布函数为F(s),则 ⎰⎰≤=≤=≤=sxy )f(x,s}{}{)dxdy y XY P s S P s F (∴.0)0=≤s F S (时,当2)ln 2(ln 2222121)y ,()20220102ss s s dx x s dy dx dy dx dy x f dx s F S sx s s s x s +-=+=+==<<∴⎰⎰⎰⎰⎰⎰⎰(时,当)1(121)22≥==≥⎰⎰xsdy dx s F S x s(时,当 ∴矩形面积S 的概率密度⎪⎩⎪⎨⎧≥≤<<-=2,0,020),ln 2(ln 21)(s s s s s f 或15.设X 和Y 为两个随机变量,且{}{},740{}0,730,0=≥=≥=≥≥Y P X P Y X P 求{}.0),max(≥Y X P解:{}{}0,00,0}0{<≥+≥≥=≥Y X P Y X P X P {}{}173740,0}0{0,0=-=≥≥-≥=<≥∴Y X P X P Y X P 同理可求{}710,0=≥<Y X P{}{}{}{}10,00,00,00,0=<<+≥<+<≥+≥≥Y X P Y X P Y X P Y X P 又{}7271717310,0=---<<∴Y X P {}{}{}.757210,010),max(10),max(=-=<<-=<-=≥∴Y X P Y X P Y X P16. 设(X,Y )的联合概率密度为 (),,10021),(1001002122+∞<<∞-•=⎪⎪⎭⎫ ⎝⎛+-y x ey x f y x π求:(1){};Y X P < (2)边缘概率密度; (3) ).|(|x y f X Y 解:(1)由已知,得⎰⎰⎰⎰<∞+∞-∞+⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-•=•=<yxy x y x dy edx dxdy e Y X P x 100100211001002122221002110021}{ππ同理可知⎰⎰∞+∞-∞+⎪⎪⎭⎫ ⎝⎛+-•=>yy x dx edy Y X P 100100212210021}{π}{}{Y X P Y X P >=<∴而0}{==Y X P又1}{}{}{==+>+<Y X P Y X P Y X P21}{}{=>=<∴Y X P Y X P (2)X 的边缘概率密度为)(210110021),()(20010010021222+∞<<-∞=•==-∞+∞-⎪⎪⎭⎫ ⎝⎛+-∞+∞-⎰⎰x edy edy y x f x f x y x X ππ由于f(x,y)关于x,y 地位的对称性,得)(2101)(2002+∞<<-∞=-y ey f y Y π17. 设X,Y 是相互独立且服从同一分布的两个随机变量,已知X 的分布律为),3,2,1(31}{===i i X P 又设},,min{},,max{Y X Y X ==ηξ试写出变量),(ηξ的分布律及边缘分布律并求}.{ηξ==P解:由已知得:,913131}1{}1{}1,1{}1,1{=⨯=========Y P X P Y X P P ηξ0}3,1{}2,1{======ηξηξP P,9231313131}2{}1{}1{}2{}2,1{}1,2{}1,2{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ,913131}2{}2{}2,2{}2,2{=⨯=========Y P X P Y X P P ηξ,0}3,2{===ηξP,9231313131}3{}1{}1{}3{}3,1{}1,3{}1,3{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ,9231313131}3{}2{}2{}3{}3,2{}2,3{}2,3{=⨯+⨯===+=====+=====Y P X P Y P X P Y X P Y X P P ηξ913131}3,3{}3,3{=⨯======Y X P P ηξ则变量),(ηξ的分布律及边缘分布律为:而.31919191}{=++===ηξP18. 设X 关于Y 的条件概率密度为⎪⎩⎪⎨⎧<<=其他,,0,0,3)|(32|y x yx y x f Y X而Y 的概率密度为⎩⎨⎧<<=其他,,0,10,5)(4y y y f Y求.21⎭⎬⎫⎩⎨⎧>X P解:由已知得:⎩⎨⎧<<<<=•=其他,010,0,15)()|(),(2|y y x y x y f y x f y x f Y Y X ⎰⎰⎰⎰==+∞<<-∞>==>∴121212644715}),21x {D (),(}21{P Y Dydx x y dxdy y x f X 其中19. 设(X,Y )的概率密度为 ⎩⎨⎧≤≤≤≤+=其他,0,10,10,),(y x y x y x f求:(1)},max{Y X Z =的概率密度; (2)},min{Y X Z =的概率密度.解:(1) 设},max{Y X Z =的分布函数为)(z F Z ,概率密度为)(z f Z ,则当0≤Z 时,0),(}},{max{}{)(},max{==≤=≤=⎰⎰≤zY X Z dxdy y x f z Y X P z Z P z F当10≤<Z 时,33302},max{22)2()(),(}{)(z zz dx xz z dyy x dx dxdy y x f z Z P z F zz zzY X Z =+=+=+==≤=⎰⎰⎰⎰⎰≤当z>1时, ⎰⎰≤≤≤≤=+=≤=10101)(}{)(y x Z dxdy y x z Z P z F},max{Y X Z =∴的概率密度为⎩⎨⎧≤≤=.,0,10,3)(2其他z z z f Z(2) 设},min{Y X Z =的分布函数为的分布函数为)(z F Z ,概率密度为)(z f Z ,则当1≥Z 时,101},{1}}{min{1}{1}{)(=-=>>-=><-=>-=≤=Z Y Z X P Z Y X P z Z P z Z P z F Z 则当0≤Z 时,11},{1}}{min{1}{1}{)(=-=>>-=><-=>-=≤=Z Y Z X P Z Y X P z Z P z Z P z F Z 则当10<<Z 时,⎰⎰-+=+-=>>-=≤=1132)(1},{1}{)(zz Z z z z dy y x dx Z Y Z X P z Z P z F},min{Y X Z =∴的概率密度为⎩⎨⎧≤≤-+=.,0,10,321)(f 2其他z z z z Z20. 假设一电路装有三个同种电器元件,其工作状态相互独立,且无故障工作时间都服从参数为0>λ的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作.试求电路正常工作的时间T 的概率分布.解:用)3,2,1(=i X i 表示第i 个电气元件无故障工作的时间,则321,,X X X相互独立且同分布,其分布函数为⎩⎨⎧≤>-=-0,00,1)(x x e x F x λ 设G(t)是T 的分布函数.当t ≤0时,G(t)=0;当t>0时,有t e t F t X P t X P t X P t X t X t X P t T P t T P t G λ333213211)](1[1}{}{}{1},,{1}{1}{)(--=--=>>>-=>>>-=>-=≤=⎩⎨⎧≤>-=∴-.0,0,0,1)(3t t e t G t λ 电器正常工作的时间T 的概率分布服从参数为λ3的指数分布.友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

概率论与数理统计 第三章习题

概率论与数理统计 第三章习题

x1
1 8
x2
1 8
( ) P Y = y j = p j
1 6
1
【思路】
利用边缘分布律的求法及独立性来进行,例如,从
p11
+
1 8
=
1 6
,
求得
p11
=
1 24
,

利用独立性知 p11 =
p1

1 6
.
从而知
p1
= 1 , 等等. 4
【解】 利用 pi = pij ; p j = pij 以及
所以
f
( x, y) =
fX
(x)
fY
(
y
)
=
1, 0
0
x 1, 0 其他
y 1
6、设相互独立的随机变量 X , Y 分别服从参数为 1 的 0 −1分布和参数为 1 的 0 −1分布,
2
3
则 t2 + 2Xt + Y = 0 中 t 有相同实根的概率为( B )
A、 1 3
B、 1 2
而且 P{XY = 0} = 1
Y0 1 P1 1
22
(1)求随机变量 X 和 Y 的联合分布;(2)判断 X 与Y 是否相互独立?
解:因为 PXY = 0 = 1 ,所以 PXY 0 = 0
(1)根据边缘概率与联合概率之间的关系得出
Y
X -1

1
0
1
0
1
1
4
1
4
2
1
0
4
0
1
2
1
1
1
4
2
球,设 X ,Y 分别表示黑球和红球的个数,求( X ,Y )的联合分布概率

概率论第三章补充练习答案

概率论第三章补充练习答案

《概率论》第三章 练习答案一、填空题:1.设随机变量ξ与η相互独立且具有同一分布律:则随机变量ηξζ+=的分布律为: 。

2.随机变量ξ服从(0,2)上均匀分布,则随机变量ξη2=在(0,4)的密度函数为⎪⎩⎪⎨⎧=041)(yy f η 其他4〈〈y o )()()()()()()()()(,0)20(,21)(),2,0(~2y F y F y p y p y y p y p y p y F f U --=-≤-≤=≤≤-=≤=≤=⎪⎩⎪⎨⎧<<=ξξηξξξξηξξξ其他yyO yy F y f 41212121)()(/=∙+∙==ηη3.设x 表示10次独立重复射击命中目标的次数,每次射中的概率为0.4,则x 2的数学期望E (x 2) = DX+(EX )2=2.4+16=18.4 。

4.2,4),4.0,10(~===npq DX EX b X 则4.设随机变量x 服从 [1, 3 ] 上的均匀分布,则E (X1)=⎰=∙32121113Ln dx x5.设DX =4,DY =9,P XY =0.5,则D (2x – 3y) =4Dx+9Dy-2cov(2x,3y)=61 。

3),cov(,32),cov(5.0=∴⨯==Y X Y X ρ6.若X 与Y 独立,其方差分别为6和3,则D(2X -Y)=___27_______。

),cov(44)2(Y X DY DX Y X D -+=-二、单项选择:1.设离散型随机变量(ηξ,)的联合分布律为:若ξ与η独立,则α与β的值为: ( A ) A .α=92,β=91 B .α=91,β=92C .α=61,β=61D .α=185,β=18131)311819161(1=+++-=+βα还原为(ηξ,):2. 设(X ,Y )是一个二元随机变量,则X 与Y 独立的充要条件是:( D ) A 、 cov (X,Y )= 0 B 、)()(i j i ij X Y P X P P = C 、 P = 0 D 、j i ij P P P ⨯=3.已知(X ,Y )的联合密度为=)(x ϕ 04xy其它1,0≤≤y x ,则F (0.5,2)=( B )A 、0B 、0.25C 、0.5D 、0.1{})(41442,5.025.015.005.001利用图像),(===≤≤=⎰⎰⎰⎰ydy xdx xydxdy Y X P F4.如果X 与Y 满足D (X +Y )=D (X -Y ),则必有 ( )A .X 与Y 独立B .X 与Y 不相关C .D (Y )=0 D .D (X )D (Y )=0BEY Y EX X E 故选),())((00cov 0=⇒=⇒=--ρηξ5.对任意两个随机变量X 和Y ,若E (X ,Y )=E (X )E (Y ),则( B )A .D (XY )=D (X )D (Y )B .D (X +Y )=DX +DYC .X 和Y 独立D .X 与Y 不独立6.设DX =4,DY =9,P XY =0.5,则D (2X -3Y )=____。

概率论与数理统计课程第三章练习题及解答

概率论与数理统计课程第三章练习题及解答

第三章 多维随机变量及其分布一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、若X ,Y 均服从正态分布,则(X ,Y )服从二维正态分布 ( × )2、随机变量(X ,Y )的概率密度为22,1(,)0,k x y f x y ⎧+≤=⎨⎩其它,则π1=k (√ )3、有限个相互独立的正态随机变量的线性组合仍然服从正态分布。

(√) 二、单选题1、随机变量X ,Y 相互独立且~(0,1)X N ,~(1,1)Y N ,则下列各式成立的是( B )A .21}0{=≤+Y X P ; B .21}1{=+≤Y X P ; C .21}0{=≥+Y X P ; D .-≤=1{1}2P X Y 。

分析 因X ,Y 相互独立,它们又都服从正态分布,因此X +Y 与X -Y 也都服从正态分布,且(1,2)X Y N + ,(1,2)X Y N --,由于1{1}(0)2P X Y +≤=Φ=Φ=,选B2、设随机变量21,X X 的分布律为:101111424iX p- i =1,2且满足1}0{21==X X P ,则==}{21X X P ( A )A .0;B .41;C .21; D .1。

分析 从1}0{21==X X P ,可知12{0}0P X X ≠=,即12121212{1,1}{1,1}{1,1}{1,1}0P X X P X X P X X P X X =-=-==-====-==== 根据联合分布与边缘分布的关系,求出21,X X 的联合概率分布12121212{}{1,1}{0,0}{1,1}0P X X P X X P X X P X X ===-=-+==+===,选A 3、设随机变量X ,Y 相互独立且同分布:1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,则下列各式成立的是( A )A .1{}2P X Y ==; B .{}1P X Y ==; C .1{0}4P X Y +==; D .1{1}4P XY ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设随机变量1X ,2X ,3X ,...,n X 相互独立,均服从参数为λ的指数分布,
),,,, m in(321n X X X X Y =,求Y 的分布密度函数和数学期望。

2. 设随机向量(X ,Y )服从二元正态分布)0;4,1;0,0(N ,求)(X Y D -和)0(>XY P 。

3. 设随机向量(X ,Y )联合分布密度
),(y x f =⎩⎨
⎧<<<-其他0
0,21y
x xe xy 求(1)条件密度函数)(x y f X Y ; (2)条件概率⎪⎭⎫ ⎝⎛
=≤231X Y P 和概率()X Y P >;
(3))cov(Y X ,; (4)判断X ,Y 的相关性与独立性(说明理由)。

(以上为历届试题)
1.设随机变量ξ,η相互独立,ξ,η的分布列分别如下表所示.
ξ -3 -2 -1 P
0.25 0.25 0.5
η
1 2 3 P
0.4
0.2
0.4
求(1)(ξ,η)的联合分布列;(2)ηξ+的分布列。

2.已知ξ,η有联合分布列如下,
(1)求ξ,η的边缘分布; (2)ξ,η独立吗? (3)求ηξ+的分布。

3.设二维随机变量(ξ,η)的分布密度为:
),(y x f =⎩
⎨⎧≤≤≤≤+其它,020,10),3(2y x xy x A
求:(1)系数A ;(2)ξ,η相互独立吗;(3)求)1(≤+ηξP
4.设X ,Y 是随机变量,若ξ =a X +b ,η =cY +d ,其中a ,b ,c ,d 是常数. 求证:)cov(ηξ,=),cov(Y X ac
5.设随机变量ξ ,η 相互独立,其概率密度分别是
⎩⎨⎧≤>=-0
002)(2x x e x p x ,,ξ , 82
π221
)(x e y p -=η,
记132+-=ηξζ,求ζE ,ζD .
6.若 ξ1 ,ξ2 ,ξ3 ,ξ4 , 独立同分布,且 ξk ~U[0, 1] , k=1,2,3,4,令∑=
=4
1
5
1k k k ξη,则
E ξk = ; D ξk = ; E ξ2k = , E η= ; D η= 。

7.设( ξ, η )的联合分布列为
(1).求ξ, η 各自的边沿分布列; (2).判断ξ与η是否相互独立; (3).求P( ξη >1 ).
8.若(ξ ,η)联合分布密度函数为:
p x y Ax ,x ;
(,)=<⎧⎨
⎩ 0<x <1 , y 0 , ;
其它 试求 : (1) 常数A ; (2) p ξ(x),p η(y) ; (3) p η | ξ (y |x) ; (4) E ξ ,E η ; (5) cov (ξ ,η) 。

9.若R.V .ηξ,独立,都服从 [0 , 1] 上的均匀分布,求 , 32ηξζ+=的分布密度。

10.若R.V.(ξ,η)的联合分布密度),(y x f =⎩⎨
⎧+∞
<<+∞<<+-其他
0,0)
(2y x Ae y x
求: ⑴常数A ; ⑵)(x f ξ ; ⑶ξE ; ⑷)(x y f ξη 11.设随机变量)1(~e X ,且x X =(0>x )条件下,Y 的密度函数为
)(x y f X Y =⎪⎩⎪⎨⎧<<其他
,,001x
y x
,试求随机向量)Y X ,(的密度函数。

12.设随机变量+∞<<∞-=-x ke x f X x
,)(~,试求(1)常数k ;(2)EX 和DX ;
(3)X 与X 的协方差,并判断X 与X 的相关性。

13.设R.V.ξ,η相互独立,均服从参数为α=1的指数分布,求ηξ2-的分布密度。

14. 从(0,1)随机取两个数,求 (1) 两数之积小于四分之一的概率; (2) 两数之和小
于五分之六的概率。

15.将长度为1m 的木棒随机地截为两段,求两段长度的相关系数。

16.某路公共汽车每5分钟发车一辆,而每位乘客都是等可能地在五分钟内的任意时刻到站等车。

求某一天等车的 225 名乘客中,等车时间超过4 分钟的人所占的比例不超过 16 % 的概率。

[ Φ0 ( 1.5 ) = 0.93319,Φ0 ( 4.83 ) = 1.0000 ]
17.设随机向量(X ,Y )服从二元正态分布,其密度函数为
)(2001
222001
),(y x e y x +-=π
ϕ ,+∞<<∞-x ,+∞<<∞-y 。

(1)求概率 )(Y X P <及随机向量(X ,Y )的协差阵V 。

( 0.5 ; ⎪⎪⎭⎫ ⎝⎛10000100
))
18.设随机向量(X ,Y )服从二元均匀分布,且 X +Y 与 X -Y 相互独立, 已知 E (X +Y ) = 4,与E (X -Y ) = 2;D (X +Y )= 2,与D (X -Y ) = 2, 求(1)EX ,DX ,EY ,DY ,XY ρ ;(2)判断X 与Y 的独立性和相关性。

以下为考研试题
1*.设随机变量X 和Y 的联合分布是正方形(){}3,1,≤≤=y x y x G 上的均匀分布,试求随机变量Y X Z -=的概率密度函数)(x f 。

解 X 和Y 的联合密度是
),(y x f =⎪⎩⎪⎨⎧≤≤其他,
03
,1,4
1
y x 因为 )()(z Z P z F ≤= 当 0<z 时,0)(=z F ;
当 20<≤z 时,⎰⎰≤-=
≤-=z
y x dxdy z Y X P z F 41
)()( ])2(4[412z --==2)2(4
1
1z --; 当 z ≤2时,1)(=z F
所以
⎪⎩⎪⎨⎧≤<≤--<=z z z z z F 2120,)2(4
1
100)(2,



)(z f =⎪⎩⎪⎨⎧<<-其他,
02
0),2(2
1
z z 2*. 一条生产线的产品成箱包装,每箱重量是随机的。

设每箱平均重50千克,标准
差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱才能保证不超载的概率大于0.977.())(77.902=Φ 解 设i X 是第i 箱的重量(单位:千克)(i =1,2,…,n ),则i X 独立同分布。

n 箱重
n n X X X S +++= 21
由题设 50=i X ,25=i DX 于是 n ES n 50=,n DS n 25=
由中心极限定理 )25,50(~n n N S a
n ,即
)1,0(~550N n
n S a
n - )5505000550(
)5000(n n n n S P S P n n -≤-=≤977.0)101000(0>-Φ≈n n
查标准正态分布表 2101000>-n
n
解得 0199.98<n 即最多装98箱。

3*.设随机变量U 在区间]22[,-上服从均匀分布,随机变量
⎩⎨⎧->-≤-=1111U U X 若,若,,⎩
⎨⎧>≤-=1111U U Y 若,若,
试求:(1)X 和Y 的联合分布;(2)()Y X D +。

解 (1)随机向量()Y X ,有四个可能取值)11(--,,)11(,-,)11(-,,)11(,。

)11(-=-=Y X P ,=)11(≤-≤U U P ,=
4
1
)11(=-=Y X P ,=)11(>-≤U U P ,= 0
)11(-==Y X P ,=)11(≤->U U P ,=2
1
)11(==Y X P ,=)11(>->U U P ,=
4
1 所以 ()Y X ,有分布律
(2)()Y X E +=4)11(⨯--+0)11(⨯+-+21)11(⨯-+41
)11(⨯+=0
()2
Y X E +=41)11(2⨯--+0)11(2⨯+-+21)11(2⨯-+41)11(2⨯+=2
()Y X D +=()2
Y X E +=2。

相关文档
最新文档