高中数学必修五同步练习及答案08:等差数列的概念及通项公式
高中数学必修五-等差数列
等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。
高中数学必修5(人教A版)第二章数列2.3知识点总结含同步练习及答案
{ a = 7, 或 { a = 7, d = 4, d = −4.
因为数列{an }为单调递增的数列,所以 d > 0.因此
{ a = 7, d = 4.
所以
an = 4n − 1.
在等差数列{an }中,前 n 项和为 S n : (1)a2 = 1 ,a4 = 5 ,求数列{an }的前 5 项和 S 5 ; (2)S 5 = 25,a8 = 15 ,求 a21 . 解:(1)因为 {an }为等差数列,所以 a2 + a4 = 2a3 = 6 ,即 a3 = 3 .所以
S5 =
(2)设首项为 a1 ,公差为 d ,则
5(a1 + a5 ) 5 × 2a3 = = 15. 2 2
5×4 ⎧ d = 25, S 5 = 5a1 + ⎨ 2 ⎩ a8 = a1 + 7d = 15. { a1 = 1, d = 2.
解方程组,得
所以a21 = a1 + 20d = 41 . 在等差数列 {an } 中,a1 = 25 ,S 17 = S 9 ,求前 n 项 和 S n 的最大值. 解:因为 a1 = 25 ,S 17 = S 9 ,所以
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 在等差数列 {an } 中,已知 a5 + a7 = 10,S n 是数列 {an } 的前 n 项和,则 S 11 = ( A.45
答案: C 解析:
)
B.50
C.55
D.60
S 11 =
10 a1 + a11 a + a7 × 11 = 5 × 11 = × 11 = 55. 2 2 2 )
25 × 17 +
高考数学必修五 第二章 2.2 第1课时等差数列的概念及通项公式
§2.2 等差数列第1课时 等差数列的概念及通项公式学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一 等差数列的概念 思考 给出以下三个数列: (1)0,5,10,15,20; (2)4,4,4,4,…; (3)18,15.5,13,10.5,8,5.5. 它们有什么共同的特征?答案 从第2项起,每项与它的前一项的差是同一个常数.梳理 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)0,0;(4)a ,b . 答案 插入的数分别为3,2,0,a +b2.梳理 如果三个数a ,A ,b 组成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b2.知识点三 等差数列的通项公式思考 对于等差数列2,4,6,8,…,有a 2-a 1=2,即a 2=a 1+2;a 3-a 2=2,即a 3=a 2+2=a 1+2×2;a 4-a 3=2,即a 4=a 3+2=a 1+3×2. 试猜想a n =a 1+( )×2. 答案 n -1梳理 若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用累加法证明.1.若一个数列从第2项起每一项与前一项的差都是常数,则这个数列是等差数列.(×)2.任意两个实数都有等差中项.(√)3.从通项公式可以看出,若等差数列的公差d>0,则该数列为递增数列.(√)4.若三个数a,b,c满足2b=a+c,则a,b,c一定成等差数列.(√)类型一等差数列的概念例1判断下列数列是不是等差数列?(1)9,7,5,3,…,-2n+11,…;(2)-1,11,23,35,…,12n-13,…;(3)1,2,1,2,…;(4)1,2,4,6,8,10,…;(5)a,a,a,a,a,….考点等差数列的概念题点等差数列概念的理解运用解由等差数列的定义得(1),(2),(5)为等差数列,(3),(4)不是等差数列.反思与感悟判断一个数列是不是等差数列,就是判断该数列的每一项减去它的前一项差是否为同一个常数,但当数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n+1-a n(n≥1,n∈N*)是不是一个与n无关的常数.跟踪训练1数列{a n}的通项公式a n=2n+5,则此数列()A.是公差为2的等差数列B.是公差为5的等差数列C.是首项为5的等差数列D.是公差为n的等差数列考点等差数列的概念题点等差数列概念的理解运用答案 A解析∵a n+1-a n=2(n+1)+5-(2n+5)=2,∴{a n}是公差为2的等差数列.类型二等差中项例2 在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列. 考点 等差中项 题点 等差中项及其应用解 ∵-1,a ,b ,c,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7.反思与感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N *),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 考点 等差中项 题点 等差中项及其应用解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得m +n =6.所以m 和n 的等差中项为m +n2=3.类型三 等差数列通项公式的求法及应用 命题角度1 基本量(a 1,d )的计算例3 在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n . 考点 等差数列基本量的计算问题 题点 求等差数列的项解 由题意可得⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36.解得d =2,a 1=2. ∴a n =2+(n -1)×2=2n .反思与感悟根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n}中的每一项均可用a1和d表示,这里的a1和d就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3(1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?考点等差数列基本量的计算问题题点求等差数列的项解(1)由a1=8,a2=5,得d=a2-a1=5-8=-3,由n=20,得a20=8+(20-1)×(-3)=-49.(2)由a1=-5,d=-9-(-5)=-4,得这个数列的通项公式为a n=-5+(n-1)×(-4)=-4n-1.由题意,令-401=-4n-1,得n=100,即-401是这个数列的第100项.命题角度2等差数列的实际应用例4某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?考点等差数列的应用题题点等差数列的应用题解根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时a11=11.2+(11-1)×1.2=23.2.即需要支付车费23.2元.反思与感悟在实际问题中,若一组数依次成等数额增长或下降,则可考虑利用等差数列方法解决.在利用数列方法解决实际问题时,一定要确认首项、项数等关键因素.跟踪训练4在通常情况下,从地面到10 km高空,高度每增加1 km,气温就下降某一个固定数值.如果1 km高度的气温是8.5℃,5 km高度的气温是-17.5℃,求2 km,4 km,8 km高度的气温.考点等差数列的应用题题点等差数列的应用题解用{a n}表示自下而上各高度气温组成的等差数列,则a1=8.5,a5=-17.5,由a5=a1+4d=8.5+4d=-17.5,解得d=-6.5,∴a n=15-6.5n.∴a2=2,a4=-11,a8=-37,即2 km,4 km,8 km 高度的气温分别为2℃,-11℃,-37℃.1.下列数列不是等差数列的是( ) A.1,1,1,1,1 B.4,7,10,13,16 C.13,23,1,43,53 D.-3,-2,-1,1,2考点 等差数列的概念 题点 等差数列概念的理解运用 答案 D2.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( ) A.2 B.3 C.-2 D.-3 考点 等差数列的通项公式 题点 通项公式的综合应用 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2.3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A.30° B.60° C.90° D.120° 考点 等差中项 题点 等差中项及其应用 答案 B解析 因为A ,B ,C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B , 又因为A +B +C =180°, 所以3B =180°,从而B =60°.4.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A.52 B.62 C.-62D.-52考点 等差数列的通项公式 题点 通项公式的综合应用 答案 A解析 公差d =-2-(-5)=3,a 20=-5+(20-1)d =-5+19×3=52. 5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( )A.92B.47C.46D.45考点 等差数列的通项公式 题点 通项公式的综合应用 答案 C解析 d =-1-1=-2,设-89为第n 项,则-89=1+(n -1)d =1+(n -1)·(-2),∴n =46.1.判断一个数列是否为等差数列的常用方法(1)a n +1-a n =d (d 为常数,n ∈N *)⇔{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列; (3)a n =kn +b (k ,b 为常数,n ∈N *)⇔{a n }是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A.公差为1的等差数列 B.公差为13的等差数列C.公差为-13的等差数列D.不是等差数列 考点 等差数列的概念 题点 等差数列概念的理解运用 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1,即a n +1-a n =13.所以数列{a n }是公差为13的等差数列.2.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A.52 B.51 C.50 D.49 考点 等差数列的概念 题点 等差数列概念的理解运用答案 A解析 因为2a n +1-2a n =1,a 1=2,所以数列{a n }是首项a 1=2,公差d =12的等差数列,所以a 101=a 1+100d=2+100×12=52.3.若a ≠b ,则等差数列a ,x 1,x 2,b 的公差是( ) A.b -a B.b -a 2C.b -a 3D.b -a 4考点 等差数列基本量的计算问题 题点 等差数列公差有关问题 答案 C解析 由等差数列的通项公式,得b =a +(4-1)d , 所以d =b -a3.4.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( ) A.15 B.22 C.7 D.29考点 等差数列基本量的计算问题 题点 求等差数列的项 答案 A解析 设{a n }的首项为a 1,公差为d ,根据题意得⎩⎪⎨⎪⎧a 3+a 8=a 1+2d +a 1+7d =22,a 6=a 1+5d =7,解得a 1=47,d =-8.所以a 5=47+(5-1)×(-8)=15.5.等差数列20,17,14,11,…中第一个负数项是( ) A.第7项 B.第8项 C.第9项D.第10项考点 等差数列的通项公式 题点 通项公式的综合应用 答案 B解析 ∵a 1=20,d =-3, ∴a n =20+(n -1)×(-3)=23-3n ,∴a7=2>0,a8=-1<0.6.若5,x ,y ,z,21成等差数列,则x +y +z 的值为( ) A.26 B.29 C.39 D.52 考点 等差中项 题点 等差中项及其应用 答案 C解析 ∵5,x ,y ,z,21成等差数列,∴y 既是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26, ∴x +y +z =39.7.一个等差数列的前4项是a ,x ,b,2x ,则ab 等于( )A.14B.12C.13D.23 考点 等差中项 题点 等差中项及其应用 答案 C解析 ∵b 是x,2x 的等差中项,∴b =x +2x 2=3x 2,又∵x 是a ,b 的等差中项,∴2x =a +b , ∴a =x 2,∴a b =13.8.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ) A.15 B.30 C.31 D.64考点 等差数列基本量的计算问题 题点 求等差数列的项 答案 A解析 由⎩⎪⎨⎪⎧a 4=a 1+3d =1,a 7+a 9=2a 1+14d =16,得⎩⎨⎧a 1=-174,d =74,∴a 12=a 1+11d =-174+11×74=15.二、填空题9.若一个等差数列的前三项为a ,2a -1,3-a ,则这个数列的通项公式为________. 考点 等差数列的通项公式题点 求通项公式答案 a n =n 4+1,n ∈N * 解析 ∵a +(3-a )=2(2a -1),∴a =54. ∴这个等差数列的前三项依次为54,32,74, ∴d =14,a n =54+(n -1)×14=n 4+1,n ∈N *. 10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.考点 等差数列的应用题题点 等差数列的应用题答案 6766解析 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4, 解得⎩⎨⎧ a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766. 11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.考点 等差数列的通项公式题点 通项公式的综合应用答案 ⎝⎛⎦⎤83,3解析 设a n =-24+(n -1)d ,则⎩⎪⎨⎪⎧a 9=-24+8d ≤0,a 10=-24+9d >0,解得83<d ≤3. 三、解答题12.在数列{a n }中,a 1=1,a n +1=2a n +2n ,设b n =a n 2n -1. (1)证明:数列{b n }是等差数列;(2)求数列{a n }的通项公式.考点 等差数列的概念题点 等差数列概念的理解运用(1)证明 由已知a n +1=2a n +2n,得b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1.又b 1=a 1=1,因此{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知数列{b n }的通项公式为b n =n ,又b n =a n 2n -1,所以数列{a n }的通项公式为a n =n ·2n -1. 13.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?试说明理由;(2)若a p ,a q (p ,q ∈N *)是数列{a n }中的项,则2a p +3a q 是数列{a n }中的项吗?并说明你的理由. 考点 等差数列的通项公式题点 通项公式的综合应用解 由题意可知,a 1=3,d =4,则a n =a 1+(n -1)d =4n -1.(1)令a n =4n -1=135,∴n =34,∴135是数列{a n }的第34项.令a n =4n -1=4m +19,则n =m +5∈N *,∴4m +19是数列{a n }的第m +5项.(2)∵a p ,a q 是数列{a n }中的项,∴a p =4p -1,a q =4q -1.∴2a p +3a q =2(4p -1)+3(4q -1)=8p +12q -5=4(2p +3q -1)-1,其中2p +3q -1∈N *,∴2a p +3a q 是数列{a n }的第2p +3q -1项.四、探究与拓展14.已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N *),则a 10=________. 考点 等差数列的概念题点 等差数列概念的理解运用答案 110解析 易知a n ≠0,∵数列{a n }满足a n -1-a n =a n a n -1(n ≥2),∴1a n -1a n -1=1(n ≥2),故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,公差为1,首项为1,∴1a 10=1+9=10,∴a 10=110. 15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N *),求数列{a n }的通项公式.考点 等差数列的通项公式 题点 求通项公式解 由a n -a n +2=2知,{a n }的奇数项,偶数项 分别构成公差为-2的等差数列. 当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k , ∴a n =12-(n +1)=11-n (n 为奇数). 当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2 =7-2k .∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧7-n ,n 为偶数,11-n ,n 为奇数.。
最新高一数学知识(必修5)专题精讲附解答: 等差数列
专题等差数列【知识导图】【目标导航】1.理解等差数列的概念;2.掌握等差数列的判定方法;3.掌握等差数列的通项公式及等差中项的概念,并能简单应用.4.记住等差数列的一些常见性质;5.会用等差数列的性质解答一些简单的等差数列问题.【重难点精讲】重点一、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.若公差d=0,则这个数列为常数列.重点二、等差数列的递推公式与通项公式已知等差数列{a n}的首项为a1,公差为d,则有:递推公式通项公式a n -a n -1=d (n ≥2)a n =a 1+(n -1)d重点三、等差中项 如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即A =a +b 2. 重点四、等差数列{a n }的一些简单性质(1)对于任意正整数n 、m 都有a n -a m =(n -m )d .(2)对任意正整数p 、q 、r 、s ,若p +q =r +s ,则a p +a q =a r +a s .特别地对任意正整数p 、q 、r 若p +q =2r ,则a p +a q =2a r .(3)对于任意非零常数b ,若数列{a n }成等差,公差为d ,则{ba n }也成等差数列,且公差为bd .(4)若{a n }与{b n }都是等差数列,c n =a n +b n ,d n =a n -b n 则{c n },{d n }都是等差数列.(5)等差数列{a n }的等间隔的项按原顺序构成的数列仍成等差数列.如a 1,a 4,a 7,…,a 3n -2,…成等差数列. 重点五、等差数列的单调性等差数列{a n }的公差为d ,则当d =0时,等差数列{a n }是常数列,当d <0时,等差数列{a n }是单调递减数列;当d >0时,等差数列{a n }是单调递增数列.【典题精练】考点1、等差数列的判断与证明 例1.已知数列{}n a 中,135a =,112n n a a -=- ()*2,n n N ≥∈,数列{}nb 满足11n n b a =-()*n N ∈。
北师大版高中数学必修5同步练习 第1课时 等差数列的概念及通项公式
[A 基础达标]1.下列命题:①数列6,4,2,0是公差为2的等差数列;②数列a,a -1,a -2,a -3是公差为-1的等差数列;③等差数列的通项公式一定能写成a n =kn +b 的形式(k,b 为常数);④数列{2n +1}是等差数列.其中正确命题的序号是( )A .①②B .①③C .②③④D .③④解析:选C.②③④正确,①中公差为-2.2.已知{a n }是等差数列,a 1与a 2的等差中项为1,a 2与a 3的等差中项为2,则公差d =( ) A .2B .32C .1D .12解析:选C.因为{a n }是等差数列,a 1与a 2的等差中项为1,a 2与a 3的等差中项为2,所以a 1+a 2=2,a 2+a 3=4,两式相减得a 3-a 1=2d =4-2,解得d =1.3.若数列{a n }是公差为d 的等差数列,则数列{da n }是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为d 2的等差数列D .公差为4d 的等差数列解析:选C.由于da n -da n -1=d(a n -a n -1)=d 2(n≥2,n ∈N +),故选C.4.若一个等差数列的首项a 1=1,末项a n =41(n≥3),且公差为整数,则项数n 的取值个数是( )A .6B .7C .8D .9解析:选 B.由a n =a 1+(n -1)d,得41=1+(n -1)d,解得d =40n -1.又d 为整数,n ≥3,则n =3,5,6,9,11,21,41,共7个.故选B.5.已知等差数列{a n }的首项a 1=125,第10项是第一个比1大的项,则公差d 的取值范围是( ) A .d >825 B .d <825C.875<d <325 D .875<d≤325解析:选D.设{a n }的通项公式为a n =125+(n -1)d, 由题意得⎩⎪⎨⎪⎧a 10>1,a 9≤1,即⎩⎪⎨⎪⎧125+9d >1,125+8d≤1,解得875<d≤325. 6.已知数列{a n }是等差数列,若a 4+a 7+a 10=15,2a 6=a 3+7,且a k =13,则k =____________.解析:设等差数列{a n }的首项为a 1,公差为d.所以a 4+a 7+a 10=15,即a 1+6d =5,①2a 6=a 3+7,即a 1+8d =7,②联立解①②组成的方程组得⎩⎪⎨⎪⎧a 1=-1,d =1, 所以a n =n -2,又因为a k =13,令k -2=13.所以k =15.答案:157.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 5=________. 解析:由题意1a 3+1,1a 5+1,1a 7+1成等差数列, 所以2×1a 5+1=12+1+11+1,解得a 5=75. 答案:758.已知a,b,c 成等差数列,那么二次函数y =ax 2+2bx +c(a≠0)的图像与x 轴的交点有________个. 解析:因为a,b,c 成等差数列,所以2b =a +c,又Δ=4b 2-4ac =(a +c)2-4ac =(a -c)2≥0,所以二次函数的图象与x 轴的交点有1或2个.答案:1或29.若等差数列{a n }的公差d≠0且a 1,a 2是关于x 的方程x 2-a 3x +a 4=0的两根,求数列{a n }的通项公式.解:由题意知,⎩⎪⎨⎪⎧a 1+a 2=a 3,a 1a 2=a 4, 所以⎩⎪⎨⎪⎧2a 1+d =a 1+2d ,a 1(a 1+d )=a 1+3d.解得⎩⎪⎨⎪⎧a 1=2,d =2, 所以a n =2+(n -1)×2=2n.故数列{a n }的通项公式a n =2n.10.已知函数f(x)=3x x +3,数列{x n }的通项由x n =f(x n -1)(n≥2且n∈N +)确定. (1)求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列; (2)当x 1=12时,求x 2 017. 解:(1)证明:因为x n =f(x n -1)=3x n -1x n -1+3(n≥2且n∈N +),所以1x n =x n -1+33x n -1=13+1x n -1, 所以1x n -1x n -1=13(n≥2且n∈N +), 所以⎩⎨⎧⎭⎬⎫1x n 是等差数列. (2)由第一问知1x n =1x 1+(n -1)×13=2+n -13=n +53. 所以1x 2 017=2 017+53=2 0223. 所以x 2 017=32 022. [B 能力提升]11.古代中国数学辉煌灿烂,在《张丘建算经》中记载:“今有十等人,大官甲等十人官赐金,以等次差降之.上三人先入,得金四斤持出;下四人后入,得金三斤持出;中央三人未到者,亦依等次更给.问:各得金几何及未到三人复应得金几何?”则该问题中未到三人共得金( )A.3726斤 B .4924斤 C .2斤D .8326斤 解析:选D.由题意可知等差数列{a n }中⎩⎪⎨⎪⎧a 1+a 2+a 3=4a 7+a 8+a 9+a 10=3, 即⎩⎪⎨⎪⎧3a 1+3d =44a 1+30d =3, 解得d =-778,所以a 4+a 5+a 6=(a 1+a 2+a 3)+9d =8326.故选D. 12.首项为-24的等差数列{a n },从第10项开始为正数,则公差d 的取值范围是________.解析:设等差数列的公差为d,则通项公式a n =-24+(n -1)d,由⎩⎪⎨⎪⎧a 9=-24+8d≤0,a 10=-24+9d>0, 解得83<d≤3,即公差的取值范围是⎝ ⎛⎦⎥⎤83,3. 答案:⎝ ⎛⎦⎥⎤83,3 13.在数列{a n }中,a 1=2,a n +1=a n +2n +1.(1)求证:数列{a n -2n }为等差数列;(2)设数列{b n }满足b n =2log 2(a n +1-n),求{b n }的通项公式.解:(1)证明:(a n +1-2n +1)-(a n -2n )=a n +1-a n -2n =1(与n 无关),故数列{a n -2n}为等差数列,且公差d =1.(2)由第一问可知,a n -2n =(a 1-2)+(n -1)d =n -1,故a n =2n +n -1,所以b n =2log 2(a n +1-n)=2n.14.(选做题)若数列{b n }对于n∈N +,都有b n +2-b n =d(d 为常数),则称数列{b n }是公差为d 的准等差数列.例如c n =⎩⎪⎨⎪⎧4n -1,n 为奇数4n +9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足:a 1=a,对于n∈N +,都有a n +a n +1=2n.(1)求证:数列{a n }为准等差数列;(2)求数列{a n }的通项公式.解:(1)证明:因为a n +a n +1=2n(n∈N +),①所以a n +1+a n +2=2(n +1),②②-①得a n +2-a n =2(n∈N +),所以数列{a n }是公差为2的准等差数列.(2)因为a 1=a,a n +a n +1=2n(n∈N +),所以a 1+a 2=2×1,即a 2=2-a.因为a 1,a 3,a 5,…是以a 为首项,2为公差的等差数列,a 2,a 4,a 6,…是以2-a 为首项,2为公差的等差数列,所以当n 为偶数时,a n =2-a +⎝ ⎛⎭⎪⎫n 2-1×2=n -a, 当n 为奇数时,a n =a +⎝ ⎛⎭⎪⎫n +12-1×2=n +a -1. 所以a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数n -a ,n 为偶数.。
2021年高中数学 2.2.1等差数列的概念与通项公式练习 新人教A版必修5
2021年高中数学 2.2.1等差数列的概念与通项公式练习新人教A版必修5►基础梳理1.(1)等差数列的定义:____________________.定义的数学式表示为__________________________.(2)判断下列数列是不是等差数列.①2,4,6,8,10;②1,3,5,8,9,10.2.(1)首项为a1公差为d的等差数列{a n}的通项公式为____________.(2)写出下列数列的通项公式:①2,4,6,8,10;②0,5,10,15,20,….3.(1)等差中项的定义:______________________.(2)求下列各组数的等差中项:①2,4;②-3,9.4.(1)等差数列当公差______时,为递增数列;当公差______时,为递减数列.(2)判断下列数列是递增还是递减数列.①等差数列3,0,-3,…;②数列{a n}的通项公式为:a n=2n-100(n∈N*).5.等差数列的图象的特点是________________.基础梳理1.(1)从第二项起,每一项与它前一项的差等于同一个常数a n-a n-1=d (与n无关的常数),n≥2,n∈N*(2)①是②不是2.(1)a n=a1+(n-1)d,n∈N*(2)①a n=2n,n=1,2,3,4,5②a n=5n-5,n∈N*3.(1)如果a,A,b成等差数列,则A叫a与b的等差中项(2)①所求等差中项为3 ②所求等差中项为34.(1)d>0 d<0(2)①递减数列②递增数列5.一条直线上的一群孤立点►自测自评1.下列数列不是等差数列的是( )A.a-d,a,a+dB.2,4,6,…,2(n-1),2nC.m,m+n,m+2n,2m+n(m≠2n)D.数列{a n}满足a n-1=a n-12(n∈N*,n>1)2.等差数列a-2d,a,a+2d,…的通项公式是( )A.a n=a+(n-1)d B.a n=a+(n-3)dC.a n=a+2(n-2)d D.a n=a+2nd3.已知数列{a n}对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上,则{a n}为( ) A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列自测自评1.解析:利用定义判断,知A,B,D是等差数列;对于C,m+n-m=n,(2m+n)-(m+2n)=m-n,且n≠m-n,∴该数列不是等差数列.故选C.答案:C2.解析:数列的首项为a-2d,公差为2d,∴a n=(a-2d)+(n-1)·2d=a+2(n-2)d.答案:C3.A►基础达标1.有穷等差数列5,8,11,…,3n+11(n∈N*)的项数是( )A.n B.3n+11C.n+4 D.n+31.解析:在3n+11中令n=1,结果为14,它是这个数列的第4项,前面还有5,8,11三项,故这个数列的项数为n+3.故选D.答案:D2.若{a n }是等差数列,则由下列关系确定的数列{b n }也一定是等差数列的是( )A .b n =a 2nB .b n =a n +n 2C .b n =a n +a n +1D .b n =na n2.解析:{a n }是等差数列,设a n +1-a n =d ,则数列b n =a n +a n +1满足:b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =2d .故选C.答案:C3.已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A. 3 B. 2 C.13 D.123.解析:a ,b 的等差中项为12×⎝ ⎛⎭⎪⎫13+2+13-2=12×(3-2+3+2)= 3. 答案:A4.下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个4.C5.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( )A .49B .50C .5D .525.解析:由2a n +1=2a n +1得a n +1-a n =12, ∴{a n }是等差数列,且公差为d =12,又a 1=2, ∴a 101=a 1+(101-1)d =2+100×12=52.故选D. 答案:D►巩固提高6.若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么a 2-a 1b 2-b 1=( )A.34B.43C.23D .不能确定 6.解析:a 2-a 1=13(y -x ),b 2-b 1=14(y -x ), ∴a 2-a 1b 2-b 1=43.故选B. 答案:B7.已知函数f (x )=2x ,等差数列{a n }的公差为 2.若f (a 2+a 4+a 6+a 8+a 10)=4,则log 2[f (a 1)·f (a 2)·f (a 3)·…·f (a 10)]=________.7.解析:∵f (a 2+a 4+a 6+a 8+a 10)=2a 2+a 4+a 6+a 8+a 10=4,∴a 2+a 4+a 6+a 8+a 10=2.又∵a 1+a 3+a 5+a 7+a 9=(a 2-d )+(a 4-d )+…+(a 10-d )=2-5d =-8,∴a 1+a 2+…+a 10=2+(-8)=-6.∴log 2[f (a 1)·f (a 2)·…·f (a 10)]=log 2(2a 1+a 2+…+a 10)=a 1+a 2+…+a 10=-6. 答案:-68.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.8.解析:利用等差数列的通项公式求解.设等差数列公差为d ,则由a 3=a 22-4,得1+2d =(1+d )2-4,∴d 2=4,∴d =±2.由于该数列为递增数列,∴d =2.∴a n =1+(n -1)×2=2n -1(n ∈N *).答案:2n -1(n ∈N *)9.有四个数成等差数列,它们的平方和等于276,第一个数与第四个数之积比第二个数与第三个数之积少32,求这四个数.9.解析:设四个数依次为a -3d ,a -d ,a +d ,a +3d ,∴⎩⎪⎨⎪⎧(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=276,(a -d )(a +d )-(a -3d )(a +3d )=32. ∴⎩⎪⎨⎪⎧a 2+5d 2=69,d 2=4.∴a =±7,d =±2. ∴所求的四个数依次为:1,5,9,13或13,9,5,1或-13,-9,-5,-1或-1,-5,-9,-13.10.已知函数f (x )=x ax +b(a ,b 为常数,a ≠0)满足f (2)=1,且f (x )=x 有唯一解. (1)求f (x )的表达式;(2)若数列{x n }由x n =f (x n -1)(n ≥2,n ∈N *)且x 1=1.①求证:数列⎩⎨⎧⎭⎬⎫1x n 是等差数列; ②求数列{x n }的通项公式.10.(1)解析:由f (2)=1,得22a +b=1,即2a +b =2. 由f (x )=x ,得x ax +b=x ,即ax 2+(b -1)x =0有唯一解, ∴Δ=(b -1)2=0,∴b =1.∴a =12. ∴f (x )=2x x +2. (2)①证明:当n ≥2时,x n =f (x n -1)=2x n -1x n -1+2. 又x 1=1>0,∴x n >0,即x n ≠0.∴1x n =x n -1+22x n -1=1x n -1+12,即1x n -1x n -1=12. 故数列⎩⎨⎧⎭⎬⎫1x n 是首项为1,公差为12的等差数列. ②解析:由①得1x n =1+12(n -1)=n +12, ∴x n =2n +1(n ∈N *).1.用好等差数列的定义与掌握好等差数列的通项公式是关键,写数列通项公式时注意n 的取值范围.2.注意等差数列与一次函数间的关系,如自测自评中第3题.3.题设中有三个数成等差数列时,一般设这三个数为a -d 、a 、a +d .若五个数成等差一般设为a -2d 、a -d 、a 、a +d 、a +2d .有时也直接设为等差数的通项形式,具体问题具体分析,设的目的是便于计算,要灵活选择设的方法.4.等差中项有广泛应用,要准确理解其含义.5.证明数列为等差数列的方法有:定义法、通项公式法、等差中项法.K29753 7439 琹35196 897C 襼.D27967 6D3F 洿40023 9C57 鱗34218 85AA 薪}l !I24395 5F4B 彋E。
苏教版必修5高中数学2.2.1《等差数列的概念及通项公式》练习题
苏教版必修5高中数学2.2.1《等差数列的概念及通项公式》练习题2.2.1 等差数列的概念及通项公式1.如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列叫做等差数列.这个常数叫做等差数列的公差.2.如果数列{an}是公差为d的等差数列,则a2=a1+d;a3=a2+d=a1+2d. 3.等差数列的通项公式为an=a1+(n-1)d.4.等差数列{an}中,an=a1+(n-1)d=a2+(n-2)d=a3+(n-3)d,因此等差数列的通项公式又可以推广到an=am+(n-m)d(n>m).5.由an=am+(n-m)d,得d=连线的斜率.6.如果在a与b之间插入一个数A,使a,A,b成等差数列,那么A可以用a,b表示为A=an-am,则d就是坐标平面内两点A(n,an),B(m,am)n-ma+b2,A称为a,b 的等差中项.7.如果数列{an}的通项公式an=a・n+b,则该数列是公差为a的等差数列. 8.等差数列的性质.若{an}是等差数列,公差为d,则:(1)an,an-1,…,a2,a1亦构成等差数列,公差为-d; (2)ak,ak+m,ak+2m,…(m∈N)也构成等差数列,公差为md;(3)λa1+μ,λa2+μ,…,λan+μ,…(λ,μ是常数)也构成等差数列,公差为λd; (4)an=am+(n-m)d(m,n∈N)是等差数列通项公式的推广,它揭示了等差数列中任意两项之间的关系,还可变形为d=***an-am; n-m(5)若m,n,k,l∈N,且m+n=k+l,则am+an=ak+al,即序号之和相等,则它们项的和相等,例如:a1+an=a2+an-1=… ?基础巩固一、选择题1.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为(B)A.1 B.2 C.3 D.4a1+a5解析:由等差中项的性质知a3==5,又a4=7,∴公差d=a4-a3=7-5=2.22.在-1和8之间插入两个数a,b,使这四个数成等差数列,则(A)A.a=2,b=5 B.a=-2,b=5 C.a=2,b=-5 D.a=-2,b=-5解析:考查项数与d之间关系.3.首项为-20的等差数列,从第10项起开始为正数,则公差d的取值范围是(C)A.d> B.d≤ C.<d≤ D.≤d<?a10>0,??-20+9d>0,20?5即?即<d≤.2??a9≤0,??-20+8d≤0,92209522095220952解析:由题意知?4.已知a,b,c成等差数列,则二次函数y=ax+2bx+c的图象与x轴的交点的个数为(D)A.1个 B.0个 C.2个 D.1个或2个解析:∵Δ=(2b)-4ac=(a+c)-4ac,∴Δ=(a-c)≥0.∴A与x轴的交点至少有1个.故选D.5.(2021・重庆卷)在等差数列{an}中,a1=2,a3+a5=10,则a7=(B)222A.5 B.8 C.10 D.14解析:设出等差数列的公差求解或利用等差数列的性质求解.方法一设等差数列的公差为d,则a3+a5=2a1+6d=4+6d=10,所以d=1,a7=a1+6d=2+6=8.方法二由等差数列的性质可得a1+a7=a3+a5=10,又a1=2,所以a7=8. 二、填空题6.在等差数列{an}中,a3+a7=37,则a2+a4+a6+a8=________.解析:根据等差数列的性质,a2+a8=a4+a6=a3+a7=37. ∴原式=37+37=74. 答案:747.(2021・广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.解析:由a3+a8=10得a1+2d+a1+7d=10,即2a1+9d=10, 3a5+a7=3(a1+4d)+a1+6d=4a1+18d=2(2a1+9d)=20.答案:208.在等差数列{an}中,a3=50,a5=30,则a7=________.解析:2a5=a3+a7,∴a7=2a5-a3=2×30-50=10. 答案:10 三、解答题9.在等差数列{an}中,已知a1+a6=12,a4=7. (1)求a9;(2)求此数列在101与1 000之间共有多少项.解析:(1)设首项为a1,公差为d,则2a1+5d=12, a1+3d=7,解得a1=1,d=2,∴a9=a4+5d=7+5×2=17.(2)由(1)知,an=2n-1,由101<an<1 000知 101<2n-1<1 000, 1 001∴51<n<. 2∴共有项数为500-51=449.111110.已知数列{an}中,a1=,=+,求an.2an+1an3111?1?111n+5解析:由=+知??是首项为2,公差为的等差数列,∴=2+(n-1)×=. an+1an3?an?3an33∴an=3*(n∈N). n+5?能力升级一、选择题11.数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N),若b3=-2,b10=12,则a8=(B)A.0 B.3 C.8 D.11解析:由b3=-2和b10=12得b1=-6,d=2,∴bn=2n-8,即an+1-an=2n-8,由叠加法得(a2-a1)+(a3-a2)+(a4-a3)+…+(a8-a7)=-6-4-2+0+2+4+6=0.∴a8=a1=3.12.等差数列{an}中,前三项依次为:151,,,则a101等于(D) x+16xx*12A.50 B.13 332C.24 D.83解析:由11511+=2×解得x=2,故知等差数列{an}的首项为,公差d=,故a101x+1x6x31211262=a1+100d=+100×==8. 3123313.已知数列-1,a1,a2,-4与数列1,b1,b2,b3,-5各自成等差数列,则等于(B)11A. B. 4211C.- D.-24解析:设数列-1,a1,a2,-4的公差是d,则a2-a1=d==-2,故知-4-(-1)-5+1=-1,b2=4-12a2-a1b2a2-a11=. b22二、填空题14.设数列{an},{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=________. 21-714解析:∵{an},{bn}都是等差数列,∴{an+bn}也是等差数列,其公差为==7.22∴a5+b5=7+(5-1)×7=35. 答案:3515.已知递增的等差数列{an}满足a1=1,a3=a2-4,则an=________.解析:利用等差数列的通项公式求解.设等差数列公差为d,则由a3=a2-4,得1+2d=(1+d)-4,∴d=4.∴d=±2.由于该数列为递增数列,∴d=2.∴an=1+(n-1)×2=2n-1(n∈N).答案:2n-1(n∈N) 三、解答题16.等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求数列{an}的通项公式.解析:由题设条件可得*2222??a1+a1+3d+a1+6d=15,? ?(a1+d)(a1+3d)(a1+5d)=45,???a1=-1,??d=2??a1=11,??d=-2.解得?或?*∴数列{an}的通项公式为an=2n-3或an=13-2n,n∈N. 17.已知111222,,是等差数列,求证:a,b,c是等差数列. b+cc+aa+b112+=, b+ca+bc +a证明:由已知条件,得∴2b+a+c2=. (b+c)(a+b)c+a∴(2b+a+c)(a+c)=2(b+c)(a+b).∴a+c=2b,即a,b,c是等差数列.222222感谢您的阅读,祝您生活愉快。
2020年高中数学 人教A版 必修5 同步作业本《等差数列的概念与通项公式》(含答案解析)
2020年高中数学 人教A 版 必修5 同步作业本《等差数列的概念与通项公式》一、选择题1.有穷等差数列5,8,11,…,3n +11(n∈N *)的项数是( )A .nB .3n +11C .n +4D .n +32.若{a n }是等差数列,则由下列关系确定的数列{b n }也一定是等差数列的是( )A .b n =aB .b n =a n +n 2C .b n =a n +a n +1D .b n =na n 2n 3.数列{a n }中,a n +1=,a 1=2,则a 4为( )an 1+3anA. B. C. D.87851652194.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .975.若lg 2,lg(2x -1),lg(2x +3)成等差数列,则x 的值等于( )A .0B .log 25C .32D .0或326.已知x≠y,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则等于( )a2-a1b2-b1A. B. C. D.m n m +1n +1n m n +1m +1二、填空题7.已知a ,b ,c 成等差数列,那么二次函数y=ax 2+2bx +c(a≠0)的图象与x 轴的交点有______个.8.若关于x 的方程x 2-x +m=0和x 2-x +n=0(m ,n ∈R ,且m≠n)的四个根组成首项为的等差14数列,则m +n 的值为________.9.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.10.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(,)都在直线x -y -an an -13=0上,则a n =________.三、解答题11.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ;(2)已知a 1+a 6=12,a 4=7,求a 9.12.若等差数列{a n }的公差d≠0且a 1,a 2是关于x 的方程x 2-a 3x +a 4=0的两根,求数列{a n }的通项公式.13.已知函数f(x)=,数列{x n }的通项由x n =f(x n -1)(n≥2且x∈N *)确定.3x x +3(1)求证:是等差数列;{1xn}(2)当x 1=时,求x 2 015.12答案解析1.答案为:D ;解析:在3n +11中令n=1,结果为14,它是这个数列的第4项,前面还有5,8,11三项,故这个数列的项数为n +3.2.答案为:C ;解析:{a n }是等差数列,设a n +1-a n =d ,则数列b n =a n +a n +1满足:b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =2d.3.答案为:D ;解析:因为=,所以=+3,所以-=3,1an +11+3an an 1an +11an 1an +11an所以=+3(n -1),=+3(4-1)=,所以a 4=.1an 121a4121922194.答案为:C ;解析:由已知,所以a 1=-1,d=1,a 100=a 1+99d=-1+99=98,故选C.{9a1+36d =27,a1+9d =8,)5.答案为:B ;解析:依题意得2lg(2x -1)=lg 2+lg(2x +3),所以(2x -1)2=2(2x +3),所以(2x )2-4·2x -5=0,所以(2x -5)(2x +1)=0,所以2x =5或2x =-1(舍),所以x=log 2 5.6.答案为:D ;解析:设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2,第一个数列共(m +2)项,所以d 1=;y -x m +1第二个数列共(n +2)项,所以d 2=,这样可求出==.y -x n +1a2-a1b2-b1d1d2n +1m +17.答案为:1或2;解析:因为a ,b ,c 成等差数列,所以2b=a +c ,又因为Δ=4b 2-4ac=(a +c)2-4ac=(a -c)2≥0所以二次函数的图象与x 轴的交点有1或2个.8.答案为:;3172解析:设x 2-x +m=0,x 2-x +n=0的根分别为x 1,x 2,x 3,x 4,则x 1+x 2=x 3+x 4=1.设数列的首项为x 1,则根据等差数列的性质,数列的第4项为x 2,由题意知x 1=,14所以x 2=,数列的公差d==,所以数列的中间两项分别为+=,+=.3434-144-116141651251216712所以x 1·x 2=m=.x 3·x 4=n=×=.所以m +n=+=.316512712351443163514431729.答案为:5;解析:a n =2+(n -1)×3=3n -1,b n =-2+(n -1)×4=4n -6,令a n =b n ,得3n -1=4n -6,所以n=5.10.答案为:3n 2解析:由题意得-=,所以数列{}是首项为,公差为的等差数列,an an -13an 33所以= n ,a n =3n 2.an 311.解:(1)因为a 5=-1,a 8=2,所以解得{a1+4d =-1,a1+7d =2,){a1=-5,d =1.)(2)设数列{a n }的公差为d.由已知得,解得{a1+a1+5d =12,a1+3d =7,){a1=1,d =2.)所以a n =1+(n -1)×2=2n -1,所以a 9=2×9-1=17.12.解:由题意知{a1+a2=a3,a1a2=a4,)所以解得{2a1+d =a1+2d ,a1(a1+d )=a1+3d.){a1=2,d =2,)所以a n =2+(n -1)×2=2n.故数列{a n }的通项公式为a n =2n.13. (1)证明:因为f(x)=,数列{x n }的通项,x n =f(x n -1),3x x +3所以x n =,所以=+,所以-=,3xn -1xn -1+31xn 1xn -1131xn 1xn -113所以是等差数列.{1xn}(2)解:x 1=时,=2,121x1所以=2+(n -1)=,所以x n =,1xn 13n +533n +5所以x 2 015=.32 020。
苏教版数学必修五2.2等差数列的通项公式(学案含答案)
苏教版数学必修五2.2等差数列的通项公式(学案含答案)高中数学 等差数列的通项公式知识点课标要求 题型 说明 等差数列的通项公式 1. 掌握等差数列的通项公式; 2. 能运用通项公式解决一些简单问题; 3. 了解等差数列与一次函数的关系 填空题 选择题等差数列是最简单最基础的数列,也是以后知识的基础,应认真体会求通项的方法,同时也是求和的一种重要方法 重点:等差数列通项公式的应用。
难点:灵活运用通项公式、性质解决问题。
考点一:等差数列的通项公式(1)通项公式:*1(1)()()n m a a n d a n m d m n N =+-=+-∈、。
(2)公式的推导:由1n n a a d --=,可知:将它们相加得1(1)n a a n d -=-,即1(1)n a a n d =+-(3)等差中项公式:,,a A b 成等差数列,则A叫做a 与b 的等差中项,且2a b A +=。
【核心突破】1. 从函数角度研究等差数列{a n }a n =a 1+(n -1)d =dn +(a 1-d )是关于数列。
5. {}n a 的公差为d ,则{}0n d a >⇔为递增数列; {}0n d a <⇔为递减数列;{}0nd a =⇔为常数列。
利用等差数列的性质可使有些问题的解题过程更为简洁。
考点三:判断等差数列的方法判断一个数列为等差数列的常用方法:(1)定义法:1n n a a d --=(常数){}*()n n N a ∈⇔为等差数列。
(2)中项法:{}*122()n n n n a a a n N a ++=+∈⇔为等差数列。
(3)通项法:n a 为n 的一次函数{}n a ⇔为等差数列。
(4)求和法:{}n a 为等差数列2n S An Bn ⇔=+(其中n S 为{}n a 的前n 项和)。
注意:在解答题中判断等差数列用(1)或(2),不能用(3)和(4)。
【规律总结】1. 等差数列的设项方法(1)通项法:设数列的通项公式,即设*1(1)()n a a n d n N =+-∈;(2)对称设:当等差数列的项数n 为奇数项时,可设中间一项为a ,再以公差为d 向两边分别设项:…,2a d -,a d -,a ,a d +,2a d +,…;当项数n为偶数项时,可设中间两项为a d-,a d+,再以2d为公差向两边分别设项:…,3-,a d-,a d+,a d+,…3a d2. 构造辅助数列求通项观察递推数列的结构特征,构造恰当的辅助数列使之转化为等差数列问题。
【苏教版】高中数学必修5同步辅导与检测:第2章2.2-2.2.2等差数列的通项公式(含答案)
第2章数列2.2 等差数列2.2.1等差数列的概念2.2.2 等差数列的通项公式A级基础巩固一、选择题1.已知等差数列{a n}的通项公式a n=3-2n,则它的公差d为()A.2 B.3 C.-2 D.-3解析:d=a n+1-a n=3-2(n+1)-3+2n=-2.选C.答案:C2.已知等差数列{a n}的首项a1=4,公差d=-2,则通项公式a n=()A.4-2n B.2n-4 C.6-2n D.2n-6解析:a n=a1+(n-1)d=4+(n-1)×(-2)=-2n+6.答案:C3.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.9解析:由题意2m +n =10,2n +m =8,两式相加得3m +3n =18,所以m +n =6.所以m +n 2=3. 答案:B4.在首项为81,公差为-7的等差数列中,值最接近零的项是( )A .第11项B .第12项C .第13项D .第14项解析:由a n =a 1+(n -1)d 得a n =-7n +88,令a n ≥0,解得n ≤887=1247.而a 12=4,a 13=-3,故a 13的值最接近零.答案:C5.若数列{a n }满足3a n +1=3a n +1,则数列是( )A .公差为1的等差数列B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列解析:因为3a n +1=3a n +1,所以3a n +1-3a n =1.所以a n +1-a n =13.故数列{a n}为公差为1的等差数列.3答案:B二、填空题6.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.解析:根据等差数列的性质,a2+a8=a4+a6=a3+a7=37.所以原式=37+37=74.答案:747.在等差数列{a n}中,已知a3+a8=10,则3a5+a7=______.解析:由a3+a8=10得a1+2d+a1+7d=10,即2a1+9d=10,3a5+a7=3(a1+4d)+a1+6d=4a1+18d=2(2a1+9d)=20.答案:208.若a,b,c成等差数列,则二次函数y=ax2-2bx+c的图象与x轴的交点的个数为________.解析:因为a,b,c成等差数列,所以a+c=2b.又Δ=(2b)2-4ac=(a+c)2-4ac=(a-c)2≥0,所以二次函数y=ax2-2bx+c的图象与x轴的交点个数为1个或2个.答案:1或2三、解答题9.在等差数列{a n}中,已知a1+a6=12,a4=7.(1)求a9;(2)求此数列在101与1 000之间共有多少项.解:(1)设首项为a 1,公差为d ,则2a 1+5d =12,a 1+3d =7,解得a 1=1,d =2,所以a 9=a 4+5d =7+5×2=17.(2)由(1)知,a n =2n -1,由101<a n <1 000知101<2n -1<1 000,所以51<n <1 0012. 所以共有项数为500-51=449.10.已知数列{a n }中,a 1=12,1a n +1=1a n +13,求a n . 解:由1a n +1=1a n +13知⎩⎨⎧⎭⎬⎫1a n 是首项为2,公差为13的等差数列,所以1a n =2+(n -1)·13=n +53. 所以a n =3n +5(n ∈N *). B 级 能力提升一、选择题11.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:由b 3=-2和b 10=12得b 1=-6,d =2,所以b n =2n -8,即a n +1-a n =2n -8,由叠加法得(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a 8-a 7)=-6-4-2+0+2+4+6=0.所以a 8=a 1=3.答案:B12.等差数列{a n }中,前三项依次为:1x +1,56x ,1x,则a 101等于( )A .5013B .1323C .24D .823解析:由1x +1+1x=2×56x 解得x =2,故知等差数列{a n }的首项为13,公差d =112,故a 101=a 1+100d =13+100×112=263=823. 答案:D13.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样的一道题目,把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和.则最小的1份为( ) A.53 B.56 C.103 D.116解析:设这5份分别为a -2d ,a -d ,a ,a +d ,a +2d (d >0),则有17(a +a +d +a +2d )=a -2d +a -d ,a -2d +a -d +a +a +d +a +2d =100,故a =20,d =556,则最小的一份为a -2d =20-553=53. 答案:A二、填空题14.设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.解析:因为{a n },{b n }都是等差数列,所以{a n +b n }也是等差数列,其公差为21-72=142=7. 所以a 5+b 5=7+(5-1)×7=35.答案:3515.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.解析:设等差数列公差为d ,则由a 3=a 22-4,得1+2d =(1+d )2-4,所以d 2=4.所以d =±2.由于该数列为递增数列,所以d =2.所以a n =1+(n -1)·2=2n -1(n ∈N *).答案:2n -1(n ∈N *)三、解答题16.“三个数成递减等差数列,且三数和为18,三数的积为66”,求这三个数.解:法一:设三个数分别为a 1,a 2,a 3.依题意,得⎩⎨⎧a 1+a 2+a 3=18,a 1·a 2·a 3=66,所以⎩⎨⎧3a 1+3d =18,a 1·(a 1+d )·(a 1+2d )=66, 解得⎩⎨⎧a 1=11,d =-5.或⎩⎨⎧a 1=1,d =5.因为数列{a n }是递减等差数列,所以d <0.所以d =-5,a 1=11,所以a 2=6.a 3=1.所以这三个数为11,6,1.法二:设等差数列{a n }的前三项依次为a -d ,a ,a +d ,则⎩⎨⎧(a -d )+a +(a +d )=18,(a -d )·a ·(a +d )=66,解得⎩⎨⎧a =6,d =±5.又因为{a n }是递减等差数列,所以d <0,所以取a =6,d =-5.所以这三个数分别为11,6,1.17.已知1b +c ,1c +a ,1a +b是等差数列,求证:a 2,b 2,c 2是等差数列.证明:由已知条件,得1b +c +1a +b =2c +a, 所以2b +a +c(b +c )(a +b )=2c +a. 所以(2b +a +c )(a +c )=2(b +c )(a +b ).所以a 2+c 2=2b 2,即a 2,b 2,c 2是等差数列.。
苏教版高中数学必修五第5课时等差数列的概念和通项公式.docx
第5课时 等差数列的概念和通项公式【分层训练】1.已知等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9等于( )A.30B.27C.24D.212.在等差数列{}n a 中,已知254,33,n a a a +==11,3a =则n 是( ) A.48 B.49 C.50 D.51 3.在公差为正数的等差数列{}n a 中,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A.120B.105C.90D.75 4.已知a ,b ,c 成等差数列,则二次函数y=ax 2+2bx+c 的图象与x 轴交点个数是( )A 、 0B 、1C 、2D 、1或2 5.已知数列{a n }的通项公式是a n = 4n 2 + 3n+ 2(n ∈N *),则47是数列{a n }的( ) A .第二项 B .第三项C .第四项D .第五项 6.一个直角三角形三边的长组成等差数列,则这个直角三角形三边长的比为 7. 三个数成等差数列,它们的和是15,它们的平方和等于83,则这三个数分别为 8.在等差数列{}n a 中,已知183a =,498a =,则这个数列共有 项在300到400(不含300和400)之间.【拓展延伸】9.一种变速自行车后齿轮组由5个齿轮组成,它们的齿数成等差数列,其中最小和最大的齿轮的齿数分别为12和28,求中间三个齿轮的齿数.10. 10.1934年,东印度(今孟加拉国)学者森德拉姆(sundaram)发现了“正方形筛子”: 4 7 10 13 167 12 17 22 2710 17 24 31 3813 22 31 40 49 16 27 38 49 60(1) 这个“正方形筛子”的每一行有什么特点?每一列呢?(2) “正方形筛子”中位于第100行的第100个数是多少?【师生互动】学生质疑教师释疑。
人教新课标版数学高二-2014版数学必修五练习2-2等差数列的概念及通项公式(1)
2.2 等差数列第1课时 等差数列的概念及通项公式双基达标(限时20分钟) 1.数列{a n }的通项公式a n =2n +5,则此数列( ).A .是公差为2的等差数列B .是公差为5的等差数列C .是首项为5的等差数列D .是公差为n 的等差数列解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2, ∴{a n }是公差为2的等差数列. 答案 A2.等差数列的前三项依次是x -1,x +1,2x +3,则其通项公式为( ).A .a n =2n -5B .a n =2n -3C .a n =2n -1D .a n =2n +1解析 ∵x -1,x +1,2x +3是等差数列的前三项, ∴2(x +1)=x -1+2x +3,解得x =0. ∴a 1=x -1=-1,a 2=1,a 3=3,∴d =2, ∴a n =-1+2(n -1)=2n -3,故选B. 答案 B3.在△ABC 中,三内角A ,B ,C 成等差数列,则角B 等于( ).A .30°B .60°C .90°D .120°解析 ∵A ,B ,C 为等差数列, ∴B =A +C 2,即A +C =2B .又A +B +C =180°,∴3B =180°, 即B =60°. 答案 B4.在数列{a n }中,若a 1=1,a n +1=a n +2,则该数列的通项a n =________.解析 由a n +1=a n +2(n ≥1)可得数列{a n }是公差为2的等差数列,又a 1=1,所以a n =2n -1. 答案 2n -15.若x ≠y ,两个数列x ,a 1,a 2,a 3,y 和x ,b 1,b 2,b 3,b 4,y 都是等差数列,则a 2-a 1b 4-b 3=________.解析 设两个数列的公差分别为d 1,d 2,则⎩⎪⎨⎪⎧y -x =4d 1,y -x =5d 2,∴d 1d 2=54,∴a 2-a 1b 4-b 3=d 1d 2=54. 答案 546.已知等差数列{a n }中,a 10=29,a 21=62,试判断91是否为此数列中的项. 解 设等差数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧a 10=a 1+9d =29,a 21=a 1+20d =62, 解得a 1=2,d =3, ∴a n =2+(n -1)×3=3n -1. 令a n =3n -1=91,得n =923∉N *.∴91不是此数列中的项.综合提高 (限时25分钟)7.一个等差数列的前4项是a ,x ,b,2x ,则ab 等于( ).A.14B.12C.13D.23解析 ⎩⎪⎨⎪⎧2x =a +b ,2b =x +2x ,∴a =x 2,b =32x .∴a b =13.答案 C8.设函数f (x )=(x -1)2+n (x ∈[-1,3],n ∈N *)的最小值为a n ,最大值为b n ,记c n =b n 2-a n ·b n ,则{c n }是( ).A .常数列B .摆动数列C .公差不为0的等差数列D .递减数列解析 ∵f (x )=(x -1)2+n (x ∈[-1,3]), ∴a n =n ,b n =n +4,∴c n =b n 2-a n ·b n =b n (b n -a n )=4(n +4)=4n +16. 答案 C9.已知数列{a n }满足a n +12=a n 2+4,且a 1=1,a n >0,则a n =________. 解析 由已知a n +12-a n 2=4,∴{a n 2}是等差数列,且首项a 12=1,公差d =4, ∴a n 2=1+(n -1)·4=4n -3. 又a n >0,∴a n =4n -3.答案4n -310.若数列{a n }是公差为d 的等差数列,则数列{a n +2a n +2}是公差为________的等差数列. 解析 (a n +1+2a n +3)-(a n +2a n +2)=(a n +1-a n )+2(a n +3-a n +2)=d +2d =3d . 答案 3d11.已知数列{a n }满足a 1=2,a n +1=2a n a n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解 数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:∵a 1=2,a n +1=2a na n +2,∴1a n +1=a n +22a n =12+1a n ,∴1a n +1-1a n =12(常数). ∴⎩⎨⎧⎭⎬⎫1a n 是以1a 1=12为首项,公差为12的等差数列.12.(创新拓展)对数列{a n },规定{Δa n }为数列{a n }的一阶差分数列,其中Δa n =a n +1-a n .对正整数k ,规定{Δk a n }为{a n }的k 阶差分数列,其中Δk a n =Δk -1a n +1-Δk -1a n =Δ(Δk-1an )(k ≥2).(1)试写出数列1,2,4,8,15,26的一阶差分数列;(2)已知数列{a n }的通项公式a n =n 2+n ,试判断{Δa n },{Δ2a n }是否为等差数列,为什么? 解 (1)由题意,可以得到此数列的一阶差分数列为1,2,4,7,11. (2)Δa n =a n +1-a n =(n +1)2+(n +1)-(n 2+n )=2n +2, ∴{Δa n }是首项为4,公差为2的等差数列.Δ2a n=2(n+1)+2-(2n+2)=2,∴{Δ2a n}是首项为2,公差为0的等差数列.。
高中数学必修5等差数列知识点总结和题型归纳
等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2ba A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S aS a +=奇偶.②若项数为()*21n n -∈N,则()2121n n Sn a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .523.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( )A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) (A )12 (B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 2 5、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( ) (A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)12 7、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=519、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n 项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( ) A. 0991>+a a B. 0991<+a a C. 0991=+a a D. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S ,则=n 。
2.2等差数列的概念、通项公式、性质练习含答案
2.2 等差数列概念、通项公式、性质第1课时 等差数列的概念及通项公式题型一 等差数列的概念例1 判断下列数列是不是等差数列?(1)9,7,5,3,…,-2n +11,…;(2)-1,11,23,35,…,12n -13,…;(3)1,2,1,2,…;(4)1,2,4,6,8,10,…;(5)a ,a ,a ,a ,a ,….跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( )A .是公差为2的等差数列B .是公差为5的等差数列C .是首项为5的等差数列D .是公差为n 的等差数列题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列.跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项.题型三 等差数列通项公式的求法及应用例3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项.(2)若a 2=11,a 8=5,求a 10.跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n ,且a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列;(2)求数列{a n }的通项公式.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3).(1)判断数列{a n }是否为等差数列?说明理由;(2)求{a n }的通项公式.【课堂练习】1.下列数列不是等差数列的是( )A .1,1,1,1,1B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,22.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( )A .2B .3C .-2D .-33.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( )A .30°B .60°C .90°D .120°4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( )A .公差为1的等差数列B .公差为13的等差数列 C .公差为-13的等差数列 D .不是等差数列 5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( )A .92B .47C .46D .451.判断一个数列是否为等差数列的常用方法(1)a n +1-a n =d (d 为常数,n ∈N +)⇔{a n }是等差数列;(2)2a n +1=a n +a n +2(n ∈N +)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N +)⇔{a n }是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.【巩固提升】一、选择题1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( )A .4B .3C .2D .12.已知等差数列-5,-2,1,…,则该数列的第20项为( )A .52B .62C .-62D .-523.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( )A .52B .51C .50D .494.若5,x ,y ,z ,21成等差数列,则x +y +z 的值为( )A .26B .29C .39D .525.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( )A .15B .22 C7 D .296.等差数列20,17,14,11,…中第一个负数项是( )A .第7项B .第8项C .第9项D .第10项7.一个等差数列的前4项是a ,x ,b ,2x ,则a b等于( ) A.14 B.12 C.13 D.238.在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( ) A.12 B.13 C.14 D.16二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为__________________.10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.12. 已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N +),则a 10=________.三、解答题13.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式.14.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)求数列{a n }的通项公式.15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N +),求数列{a n }的通项公式.2.2.1答案例1.由等差数列的定义得(1)(2)(5)为等差数列,(3)(4)不是等差数列.跟踪训练1 .A例2. ∵-1,a ,b ,c ,7成等差数列,∴b 是-1与7的等差中项,∴b =-1+72=3. 又a 是-1与3的等差中项,∴a =-1+32=1. 又c 是3与7的等差中项,∴c =3+72=5. ∴该数列为-1,1,3,5,7.跟踪训练2 解 由m 和2n 的等差中项为4,得m +2n =8.又由2m 和n 的等差中项为5,得2m +n =10.两式相加,得3m +3n =18,即m +n =6.所以m 和n 的等差中项为m +n 2=3.例3 解 (1)因为⎩⎪⎨⎪⎧ a 1+4d =15.a 1+16d =39,解得⎩⎪⎨⎪⎧ a 1=7,d =2,所以a n =7+2(n -1)=2n +5.令2n +5=91,得n =43.因为43为正整数,所以91是此数列中的项.(2)设{a n }的公差为d ,则⎩⎪⎨⎪⎧ a 1+d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧ a 1=12,d =-1.∴a n =12+(n -1)×(-1)=13-n ,所以a 10=13-10=3.跟踪训练3 解 (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3,由n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100,即-401是这个数列的第100项.典例1 (1)证明 由a n +1=3a n +3n ,两边同时除以3n +1,得a n +13n +1=a n 3n +13,即a n +13n +1-a n 3n =13. 由等差数列的定义知,数列⎩⎨⎧⎭⎬⎫a n 3n 是以a 13=13为首项,13为公差的等差数列. (2)解 由(1)知a n 3n =13+(n -1)×13=n 3, 故a n =n ·3n -1,n ∈N +.典例2 解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2,而a 2-a 1=0不满足a n -a n -1=2(n ≥3),∴{a n }不是等差数列.(2)当n ≥2时,a n 是等差数列,公差为2.当n ≥2时,a n =1+2(n -2)=2n -3,又a 1=1不适合上式,∴{a n }的通项公式为a n =⎩⎪⎨⎪⎧ 1,n =1,2n -3,n ≥2.课堂练习DCBBC巩固提升1—8 DAACABCA9. a n =n 4+1 10. 6766 11. ⎝ ⎛⎦⎥⎤83,3 12. 11013. 解 设数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+2d =-6,a 1+5d =0,解得⎩⎪⎨⎪⎧ a 1=-10,d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =-10+(n -1)×2=2n -12.14. (1)证明 由1a n +1-2=16a n -4a n +2-2=a n +2(6a n -4)-2(a n +2) =a n +24a n -8=(a n -2)+44(a n -2)=1a n -2+14, 得1a n +1-2-1a n -2=14,n ∈N +, 故数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列. (2)解 由(1)知1a n -2=1a 1-2+(n -1)×14=n +34, 所以a n =2n +10n +3,n ∈N +. 15.解 由a n -a n +2=2知,{a n }的奇数项,偶数项分别构成公差为-2的等差数列.当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k ,∴a n =12-(n +1)=11-n (n 为奇数).当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2=7-2k .∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧ 7-n ,n 为偶数,11-n ,n 为奇数.2.2第2课时 等差数列的性质题型一 a n =a m +(n -m )d 的应用例1 在等差数列{a n }中,已知a 2=5,a 8=17,求数列的公差及通项公式.跟踪训练1 {b n }为等差数列,若b 3=-2,b 10=12,则b 8=________.题型二 等差数列性质的应用例2 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.引申探究1.在例2中,不难验证a 1+a 4+a 7=a 2+a 4+a 6,那么,在等差数列{a n }中,若m +n +p =q +r +s ,m ,n ,p ,q ,r ,s ∈N +,是否有a m +a n +a p =a q +a r +a s ?2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.跟踪训练2 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值.题型三 等差数列的设法与求解例3 已知三个数成单调递增等差数列,它们的和等于18,它们的平方和等于116,求这三个数.跟踪训练3 三个数成等差数列,这三个数的和为6,三个数之积为-24,求这三个数.数列问题如何选择运算方法典例 等差数列{a n }中,a 3+a 7+2a 15=40,求a 10.【课堂练习】1.在等差数列{a n }中,已知a 3=10,a 8=-20,则公差d 等于( )A .3B .-6C .4D .-32.在等差数列{a n }中,已知a 4=2,a 8=14,则a 15等于( )A .32B .-32C .35D .-353.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( )A .3B .-3C .32D .-324.设公差为-2的等差数列{a n },如果a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( )A .-182B .-78C .-148D .-825.在等差数列{a n }中,已知a 2+2a 8+a 14=120,则2a 9-a 10=________.1.在等差数列{a n }中,每隔相同数目的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.2.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可根据a 1,d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.【巩固提升】一、选择题1.已知数列{a n }为等差数列,a 3=6,a 9=18,则公差d 为( )A .1B .3C .2D .42.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( )A .45B .75C .180D .3003.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .12B .8C .6D .44.等差数列{a n }中,a 3+a 7-a 10=-1,a 11-a 4=21.则a 7等于( )A .7B .10C .20D .305.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .±3C .-33 D .- 36.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 15=30,则a 9等于( )A .12B .24C .16D .327.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为( )A .0B .1C .2D .1或28.已知{a n }是公差为正数的等差数列,a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13的值为() A .105 B .120 C .90 D .75二、填空题9.在等差数列{a n }中,已知a m =n ,a n =m ,m ,n ∈N +,则a m +n 的值为________.10.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.11.在下面的数表中,已知每行、每列中的数都成等差数列.第1列 第2列 第3列 …第1行 1 2 3 …第2行 2 4 6 …第3行 3 6 9 …… … … … …那么位于表中的第n 行第n +1列的数是__________.12.若等差数列{a n }满足a n +1+a n =4n -3,则{a n }的通项公式为__________________.三、解答题13.在等差数列{a n }中,(1)若a 2+a 4+a 6+a 8+a 10=80,求a 7-12a 8;(2)已知a 1+2a 8+a 15=96,求2a 9-a 10.14.已知{a n }为等差数列,且a 1+a 3+a 5=18,a 2+a 4+a 6=24.(1)求a 20的值;(2)若b n =32a n -412,试判断数列{b n }从哪一项开始大于0.15.已知两个等差数列{a n}:5,8,11,…与{b n}:3,7,11,…,它们的项数均为100,则它们有多少个彼此具有相同数值的项?2.2.2答案例1 在等差数列{a n}中,已知a2=5,a8=17,求数列的公差及通项公式.解因为a8=a2+(8-2)d,所以17=5+6d,解得d=2.又因为a n=a2+(n-2)d,所以a n=5+(n-2)×2=2n+1.跟踪训练1 . 8例2 解方法一因为a1+a7=2a4,a1+a4+a7=3a4=15,所以a4=5.又因为a2a4a6=45,所以a2a6=9,所以(a4-2d)(a4+2d)=9,即(5-2d)(5+2d)=9,解得d=±2.若d=2,a n=a4+(n-4)d=2n-3,n∈N+;若d=-2,a n=a4+(n-4)d=13-2n,n∈N+.方法二设等差数列的公差为d,则由a1+a4+a7=15,得a1+a1+3d+a1+6d=15,即a1+3d=5. ①由a2a4a6=45,得(a1+d)(a1+3d)(a1+5d)=45,将①代入上式,得(5-2d)×5×(5+2d)=45,即(5-2d)(5+2d)=9,②联立①②解得a1=-1,d=2或a1=11,d=-2,即a n=-1+2(n-1)=2n-3;或a n=11-2(n-1)=-2n+13.引申探究1.解设公差为d,则a m=a1+(m-1)d,a n=a1+(n-1)d,a p=a1+(p-1)d,a q=a1+(q-1)d,a r=a1+(r-1)d,a s=a1+(s-1)d,∴a m+a n+a p=3a1+(m+n+p-3)d,a q+a r+a s=3a1+(q+r+s-3)d,∵m +n +p =q +r +s ,∴a m +a n +a p =a q +a r +a s .2.20解析 ∵a 3+a 8=10,∴a 3+a 3+a 8+a 8=20. ∵3+3+8+8=5+5+5+7,∴a 3+a 3+a 8+a 8=a 5+a 5+a 5+a 7,即3a 5+a 7=2(a 3+a 8)=20.跟踪训练2解 方法一 ∵(a 2+a 5+a 8)-(a 1+a 4+a 7)=3d , (a 3+a 6+a 9)-(a 2+a 5+a 8)=3d ,∴a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列. ∴a 3+a 6+a 9=2(a 2+a 5+a 8)-(a 1+a 4+a 7)=2×33-39=27.方法二 ∵a 1+a 4+a 7=a 1+(a 1+3d )+(a 1+6d ) =3a 1+9d =39,∴a 1+3d =13, ①∵a 2+a 5+a 8=(a 1+d )+(a 1+4d )+(a 1+7d ) =3a 1+12d =33.∴a 1+4d =11,② 联立①②解得⎩⎪⎨⎪⎧ d =-2,a 1=19.∴a 3+a 6+a 9=(a 1+2d )+(a 1+5d )+(a 1+8d ) =3a 1+15d =3×19+15×(-2)=27.例3. 解 设这三个数分别为a -d ,a ,a +d ,且d >0.由题意可得⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=18,(a -d )2+a 2+(a +d )2=116,解得⎩⎪⎨⎪⎧ a =6,d =2或⎩⎪⎨⎪⎧ a =6,d =-2.∵d >0,∴a =6,d =2.∴这个数列是4,6,8.跟踪训练3. 解 设这三个数分别为a -d ,a ,a +d .由题意可得⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=6,(a -d )·a ·(a +d )=-24, 解得⎩⎪⎨⎪⎧ a =2,d =4或⎩⎪⎨⎪⎧ a =2,d =-4.∴所求三个数为-2,2,6或6,2,-2.典例 解 方法一 设{a n }的公差为d .则a 3+a 7+2a 15=a 1+2d +a 1+6d +2(a 1+14d ) =4a 1+36d =4(a 1+9d )=4a 10=40,∴a 10=10.方法二 ∵a 3+a 7+2a 15=a 3+a 7+a 15+a 15=a 10+a 10+a 10+a 10=40, ∴a 10=10.课堂练习 BCAD 30巩固提升1—8CCBCDADA9.010.-2111. n2+n12. an =2n -5213.解 (1)a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16,∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8. (2)∵a 1+2a 8+a 15=4a 8=96,∴a 8=24. ∴2a 9-a 10=a 10+a 8-a 10=a 8=24.14.解 (1)因为a 1+a 3+a 5=18,a 2+a 4+a 6=24, 所以a 3=6,a 4=8,则公差d =2, 所以a 20=a 3+17d =40.(2)由(1)得a n =a 3+(n -3)d =6+(n -3)×2=2n ,所以b n =32×2n -412=3n -412. 由b n >0,即3n -412>0,得n >416, 所以数列{b n }从第7项开始大于0. 15. 解 因为a n =3n +2(n ∈N *),b k =4k -1(k ∈N *),两数列的共同项可由3n +2=4k -1求得,所以n =43k -1.而n ∈N *,k ∈N *, 所以设k =3r (r ∈N *),得n =4r -1.由已知⎩⎪⎨⎪⎧ 1≤3r ≤100,1≤4r -1≤100,且r ∈N *,可得1≤r ≤25. 所以共有25个相同数值的项.。
2020年高中数学 人教A版 必修5 课后作业本《等差数列的概念和通项公式》(含答案解析)
2020年高中数学人教A版必修5 课后作业本《等差数列的概念和通项公式》一、选择题1.等差数列a-2d,a,a+2d,…的通项公式是( )A.a n=a+(n-1)d B.a n=a+(n-3)dC.a n=a+2(n-2)d D.a n=a+2nd2.已知数列3,9,15,…,3(2n-1),…,那么81是它的第几项( )A.12 B.13 C.14 D.153.在等差数列{a n}中,a2=-5,a6=a4+6,则a1等于( )A.-9 B.-8 C.-7 D.-44.在数列{a n}中,a1=1,a n+1=a n+1,则a2 017等于( )A.2 009 B.2 010 C.2 018 D.2 0175.若等差数列{a n}中,已知a1=13,a2+a5=4,a n=35,则n=( )A.50 B.51 C.52 D.536.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值是( )A.52 B.51 C.50 D.497.在等差数列中,a m=n,a n=m(m≠n),则a m+n为( )A.m-n B.0 C.m2 D.n2二、填空题8.lg(3-2)与lg(3+2)的等差中项是________.9.等差数列的第3项是7,第11项是-1,则它的第7项是________.10.已知48,a,b,c,-12是等差数列的连续5项,则a,b,c的值依次是________.11.已知1,x,y,10构成等差数列,则x,y的值分别为________.12.等差数列的首项为125,且从第10项开始为比1大的项,则公差d的取值范围是________.三、解答题13.在等差数列{a n}中,已知a1=112,a2=116,这个数列在450到600之间共有多少项?14.一个各项都是正数的无穷等差数列{a n},a1和a3是方程x2-8x+7=0的两个根,求它的通项公式.15.已知递减等差数列{a n}的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗?16.已知无穷等差数列{a n},首项a1=3,公差d=-5,依次取出项数被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第110项是{a n}的第几项?答案解析1.答案为:C ;解析:数列的首项为a-2d ,公差为2d ,∴a n =(a-2d)+(n-1)·2d=a+2(n-2)d.2.答案为:C ;解析:由已知数列可知,此数列是以3为首项,6为公差的等差数列, ∴a n =3+(n-1)×6=3(2n -1)=6n-3,由6n-3=81,得n=14.3.答案为:B ;解析:法一:由题意,得⎩⎪⎨⎪⎧a 1+d =-5,a 1+5d =a 1+3d +6,解得a 1=-8.法二:由a n =a m +(n-m)d(m ,n ∈N *),得d=a n -a m n -m ,∴d=a 6-a 46-4=66-4=3.∴a 1=a 2-d=-8.4.答案为:D ;解析:由于a n +1-a n =1,则数列{a n }是等差数列,且公差d=1, 则a n =a 1+(n-1)d=n ,故a 2 017=2 017.5.答案为:D ;解析:依题意,a 2+a 5=a 1+d +a 1+4d=4,将a 1=13代入,得d=23.所以a n =a 1+(n-1)d=13+(n-1)×23=23n-13,令a n =35,解得n=53.6.答案为:A ;解析:∵2a n +1=2a n +1,∴2(a n +1-a n )=1.即a n +1-a n =12.∴{a n }是以12为公差的等差数列.a 101=a 1+(101-1)×d=2+50=52.7.答案为:B ;解析:法一:设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 1+m -1d =n ,a 1+n -1d =m ,解得⎩⎪⎨⎪⎧a 1=m +n -1,d =-1.∴a m +n =a 1+(m +n-1)d=m +n-1-(m +n-1)=0.故选B.法二:因结论唯一,故只需取一个满足条件的特殊数列:2,1,0,便可知结论,故选B.8.答案为:0;解析:等差中项A=lg3-2+lg 3+22=lg 12=0.9.答案为:3;解析:设首项为a 1,公差为d ,由a 3=7,a 11=-1得,a 1+2d=7,a 1+10d=-1, 所以a 1=9,d=-1,则a 7=3.10.答案为:33,18,3;解析:∵2b=48+(-12),∴b=18,又2a=48+b=48+18,∴a=33,同理可得c=3.11.答案为:4,7;解析:由已知,x 是1和y 的等差中项,即2x=1+y ,①y 是x 和10的等差中项,即2y=x +10②由①,②可解得x=4,y=7.12.答案为:875<d≤325;解析:由题意得⎩⎪⎨⎪⎧a 10>1,a 9≤1,∴⎩⎪⎨⎪⎧125+9d>1,125+8d≤1,∴875<d≤325. 13.解:由题意,得d=a 2-a 1=116-112=4,所以a n =a 1+(n-1)d=112+4(n-1)=4n +108. 令450≤a n ≤600, 解得85.5≤n≤123.又因为n 为正整数,所以共有38项.14.解:由题意,知a 1+a 3=8,a 1a 3=7,又{a n }为正项等差数列,∴a 1=1,a 3=7, 设公差为d ,∵a 3=a 1+2d ,∴7=1+2d , 故d=3,a n =3n-2.15.解:法一:设等差数列{a n }的前三项分别为a 1,a 2,a 3.依题意得⎩⎪⎨⎪⎧ a 1+a 2+a 3=18,a 1·a 2·a 3=66,∴⎩⎪⎨⎪⎧3a 1+3d =18,a 1·a 1+d ·a 1+2d =66.解得⎩⎪⎨⎪⎧a 1=11,d =-5,或⎩⎪⎨⎪⎧a 1=1,d =5.∵数列{a n }是递减等差数列,∴d<0.故取a 1=11,d=-5, ∴a n =11+(n-1)·(-5)=-5n +16,即等差数列{a n }的通项公式为a n =-5n +16. 令a n =-34,即-5n +16=-34,得n=10. ∴-34是数列{a n }的项,且为第10项.法二:设等差数列{a n }的前三项依次为:a-d ,a ,a +d , 则⎩⎪⎨⎪⎧ a -d +a +a +d =18,a -d ·a·a +d =66,解得⎩⎪⎨⎪⎧a =6,d =±5. 又∵{a n }是递减等差数列,即d<0, ∴取a=6,d=-5.∴{a n }的首项a 1=11,公差d=-5.∴通项公式a n =11+(n-1)·(-5),即a n =-5n +16. 令a n =-34,解得n=10.即-34是数列{a n }的项,且为第10项.16.解:(1)∵a 1=3,d=-5,∴a n =3+(n-1)×(-5)=8-5n(n ∈N *).数列{a n }中项数被4除余3的项是{a n }的第3项,第7项,第11项,…, 所以其首项b 1=a 3=-7,b 2=a 7=-27.(2)设{a n }中的第m 项是{b n }的第n 项, 即b n =a m ,则m=3+4(n-1)=4n-1, ∴b n =a m =a 4n-1=8-5(4n-1)=13-20n.∵b n -b n-1=-20(n≥2,n ∈N *),∴{b n }是等差数列,其通项公式为b n =13-20n ,n ∈N *. (3)设它是{a n }中的第m 项,由(2)知m=4n-1, 又n=110,则m=439.故{b n }中的第110项是{a n }的第439项.。
苏教版高中数学必修五第二学生同步练习第课时等差数列的概念和通项公式
让学生学会学习第3课时 等差数列的概念和通项公式【分层训练】 1. 1.2005是数列7,13,19,25,31,,L 中的第( )项.A. 332B. 333C. 334D. 335 2.若数列{}n a 的通项公式为25n a n =+,则此数列是( )A.公差为2的等差数列B. 公差为5的等差数列C.首项为5的等差数列D. 公差为n 的等差数列3.等差数列3,7,11,,---L 的一个通项公式为( )A. 47n -B. 47n --C. 41n +D. 41n -+4.若{}n a 是等差数列,则123a a a ++,456a a a ++,789a a a ++,L ,32313n n n a a a --++,是( )A.一定不是等差数列B. 一定是递增数列C.一定是等差数列D. 一定是递减数列5.已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则n a = .6. 如果等差数列{}n a 的第5项为5,第10项为5-,则此数列的第1个负数项是第 项.7. 等差数列{}n a 中,350a =,530a =,则7a = .8.若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8= . 【拓展延伸】9.判断数52,27()k k N ++∈是否是等差数列{}n a :5,3,1,1,,---L 中的项,若是,是第几项?10. 在等差数列{}n a 中,(1)已知3a =31,3a =76,求1a 和d; (2)已知1a +6a =12,4a =7,求9a .。
人教A版高中数学高一必修5作业 2-2-1等差数列的概念、通项公式
课时作业(九)1.已知等差数列{a n}的通项公式a n=3-2n,则它的公差为()A.2 B.3C.-2 D.-3答案 C解析可得a n+1-a n=-2或a2-a1=(3-4)-(3-2)=-2.2.已知数列{a n}满足a1=2,a n+1-a n+1=0,则数列的通项a n等于() A.n2+1 B.n+1C.1-n D.3-n答案 D3.等差数列-3,-1,1,…,的第1 000项为()A.1 990 B.1 995C.2 010 D.2 015答案 B4.等差数列1,-1,-3,-5,…,-89,它的项数为()A.92 B.47C.46 D.45答案 C5.等差数列20,17,14,11,…中第一个负数项是()A.第7项B.第8项C.第9项D.第10项答案 B6.{a n}是首项a1=1,公差d=3的等差数列,若a n=2 011,则n等于()A.671 B.670C .669D .668答案 A7.lg(3-2)与lg(3+2)的等差中项为( ) A .0B .lg 3-23+2C .lg(5-26)D .1答案 A解析 等差中项为lg (3-2)+lg (3+2)2 =lg[(3-2)(3+2)]2=lg12=0. 8.一个首项为23,公差为整数的等差数列,第7项开始的负数,则它的公差是( )A .-2B .-3C .-4D .-6答案 C9.若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1,d 2,则d 1d 2=( )A.32B.23C.43D.34答案 C解析 ∵d 1=b -a 4-1,d 2=b -a 5-1,∴d 1d 2=43.10.首项为-24的等差数列,从第10项起为正数,则公差d 的取值范围是( )A .d >83B .d <3 C.83≤d <3 D.83<d ≤3答案 D解析 从第10项起为正数,则a 10>0且,a 9≤0,由⎩⎨⎧-24+9d >0,-24+8d ≤0,可得83<d ≤3.11.等差数列2,5,8,…,107共有________项.答案 3612.{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 答案 -12解析 法一 由于a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1,则a 1=1,又由于a 3=a 1+2d =1+2d =0,解得d =-12.法二 a 7=a 3+4d =4d ,a 4=a 3+d =d ,代入条件即可得d . 13.首项为18,公差为3的等差数列从第________项开始大于100. 答案 2914.已知一个等差数列的第8,第9,第10项分别为b -1,b +1,2b +3,则通项公式an =________.答案 2n -17解析 由(b -1)+(2b +3)=2(b +1),可得b =0. ∴a 8=-1,a 9=1,a 10=3.∴d =2,a 1=-15,∴an =2n -17.15.已知f (n +1)=f (n )-14(n ∈N*),且f (2)=2,则f (101)=____________. 答案 -914解析 ∵{f (n )}为等差数列,公差为-14, ∴f (1)=f (2)-(-14)=2+14=94.∴f (101)=f (1)+100·d =94+100×(-14)=-914. 16.已知等差数列5,2,-1,…. (1)求数列的第20项; (2)问-112是它的第几项? (3)数列从第几项开始小于-20? (4)在-20到-40之间有多少项?答案 (1)-52 (2)第40项 (3)从第10项开始 (4)6项17.有一个阶梯教室,共有座位25排,第一排离教室地面高度为17 cm ,前16排前后两排高度差8 cm ,从17排起,前后两排高度差是10 cm(含16,17排之间高度差).求最后一排离教室地面的高度.解析 设从第一排起,各排的高度组成数列{a n },则a 1=17,∴a 16=a 1+15d 1=17+15×8=137.∴a 25=a 16+10·d 2=137+10×10=237(cm). ►重点班·选作题18.一个等差数列{a n }中,a 1=1,末项a n =100(n ≥3),若公差为正整数,则项n 的取值有________种可能.答案 519.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值. 答案 501.(2011·重庆)在等差数列{a n }中,a 2=2,a 3=4,则a 10等于( ) A .12 B .14 C .16 D .18答案 D解析 设{a n }的公差为d ,∵a 2=2,a 3=4,∴d =a 3-a 2=2. ∴a 10=a 2+(10-2)d =2+8×2=18.2.已知数列{an }为等差数列,且a 5=11,a 8=5,求an . 解析 设公差为d ,则由a 5=11,a 8=5,得⎩⎨⎧a 1+4d =11,a 1+7d =5,解得⎩⎨⎧a 1=19,d =-2.∴an =19+(n -1)(-2),即an =-2n +21.3.甲虫是行动较快的昆虫之一,下表记录了某种类型的甲虫的爬行速度:时间t (s)123... ? (60)距离s (cm) 9.8 19.6 29.4 … 49 … ?(1)关系吗?(2)利用建立的模型计算,甲虫1 min 能爬多远?它爬行49 cm 需要多长时间?解析 (1)由题目表中数据可知,该数列从第2项起,每一项与前一项的差都是常数9.8,所以是一个等差数列模型.因为a 1=9.8,d =9.8,所以甲虫的爬行距离s 与时间t 的关系是s =9.8t .(2)当t =1(min)=60(s)时, s =9.8t =9.8×60=558(cm). s =49(cm)时,t =s 9.8=494.8=5 (s).。
新高中数学(苏教版,必修五)同步练习:2.2.1-2.2.2等差数列(2)(含答案解析)
等差数列的观点(二)等差数列的通项公式( 二 )课时目标 1.进一步娴熟掌握等差数列的通项公式.2.娴熟运用等差数列的常用性质.1.等差数列的通项公式 a n=a1+(n- 1)d,当 d=0 时, a n是对于 n 的常函数;当 d≠0时,a n是对于 n 的一次函数;点 (n,a n)散布在以 ____为斜率的直线上,是这条直线上的一列孤立的点.a m- a n 2.已知在公差为 d 的等差数列 {a n} 中的第 m 项 a m和第 n 项 a n(m≠ n),则m-n= ____. 3.对于随意的正整数m、 n、 p、 q,若 m+ n= p+ q.则在等差数列{a n} 中, a m+ a n与 a p +a q之间的关系为 ________________ .一、填空题1.若 {a n} 是等差数列, a15=8, a60=20,则 a75= ______________________________.12.在等差数列 {a n} 中,若 a2+ a4+ a6+ a8+ a10= 80,则 a7-2a8的值为 ________.3.已知数列 {a n} 为等差数列且a1+a7+a13= 4π,则 tan(a2+a12)的值为 ________.4.已知 {a n} 为等差数列, a1+ a3+ a5= 105, a2+a4+ a6= 99,则 a20= ________. 5.已知等差数列{a n} 的公差为d(d ≠ 0),且 a3+ a6+ a10+ a13= 32,若 a m= 8,则 m 为________.6.假如等差数列{a n} 中, a3+ a4+ a5= 12,那么 a1+ a2++a7等于________.17.已知a n是等差数列,且a4=6,a6=4,则a10=____________.8.设公差为- 2 的等差数列 {a n} ,假如 a1+a4+ a7++ a97= 50,那么 a3+ a6+ a9++a99等于 ________.9.若数列 {a n} 为等差数列,a p= q, a q=p(p ≠q),则 a p+q的值为 ________.10.已知方程 (x2- 2x+ m)(x 2- 2x+ n)= 0 的四个根构成一个首项为1的等差数列,4则 |m- n|=________.二、解答题11.等差数列 {a n} 的公差 d≠0,试比较 a4a9与 a6a7的大小.12.已知等差数列{a n} 中, a1+ a4+ a7= 15,a2a4a6= 45,求此数列的通项公式.能力提高13.已知两个等差数列{a n} : 5,8,11,,{b n}:3,7,11,,都有100项,试问它们有多少个共同的项?14.下表给出一个“等差数阵”:47()()()a1j712()()()a2j()()()()()a3j()()()()()a4ja i1a i2a i3a i4a i5a ija ij ij(1)a45(2)a ija m an1{a n}m n da m a n(m n)d.2{a n}3{a n}m n p q a n a m a p a q(n m p q N * ) m n 2p a n a m 2a p.2. 2.1等差数列的观点(二 )2. 2.2等差数列的通项公式(二)答案知识梳理1. d 2.d 3.a m+ a n= a p+ a q作业设计1. 24∵ a60= a15+45d,∴ d=4分析15,∴a75= a60+ 15d= 20+ 4= 24.2. 8分析由 a2+ a4+ a6+ a8+ a10= 5a6= 80,∴ a6=1111=8. 16,∴ a7-a8= (2a7- a8)= (a6+ a8- a8 )= a622223.- 3分析由等差数列的性质得a1+ a7+ a13= 3a7= 4π,∴ a7=4π3 .∴ tan(a2+ a12)= tan(2a7)= tan 8π2π= tan=- 3. 334. 1分析∵ a1+ a3+ a5= 105,∴3a3= 105, a3= 35.∴a2+ a4+ a6= 3a4= 99.∴a4= 33,∴ d= a4- a3=- 2.∴a20= a4+ 16d= 33+ 16×(-2) =1.5. 8分析由等差数列性质a3+a6+ a10+ a13= (a3+ a13)+ (a6+ a10) =2a8+2a8= 4a8= 32,∴a8= 8,又 d≠0,∴m= 8.6. 28分析∵ a3+ a4+ a5= 3a4= 12,∴a4= 4.∴ a1+a2+ a3++ a7= (a1+ a7)+ (a2+ a6)+ (a3+ a5)+ a4=7a4= 28.127. 511111分析a6-a4=4-6= 2d,即 d=24.所以1=1+ 4d=1+1=5,所以 a10= 12. a10a64 6 1258.- 82分析a3+ a6+a9++a99=(a1+ 2d)+ (a4+ 2d)+ (a7+ 2d)++ (a97+ 2d)=(a1+ a4++ a97)+ 2d×33=50+2×(- 2) ×33=- 82.9. 0分析∵d=a p -aq= q-p=-1,p- q p-q∴a p+q= a p+qd= q+q×(- 1)= 0.110.2分析由题意设这 4 个根为1,1+d,1+ 2d,1+ 3d. 4444则1+1+ 3d =2,∴ d=1,∴这 4 个根挨次为1, 3,5,7,4424444∴ n=17735=15或 n=15, m=7,4× =,m=×161641644161∴ |m- n|=2.11.解设a n=a1+(n-1)d,则 a4a9- a6a7= (a1+3d)(a 1+ 8d)- (a1+ 5d)(a1+6d) = (a21+ 11a1d+ 24d2)- (a21+ 11a1d+ 30d2)2=- 6d <0 ,所以 a4a9<a6a7.12.解∵ a1+a7=2a4,a1+a4+a7=3a4=15,∴a4= 5.又∵ a2a4a6= 45,∴ a2a6=9,即 (a4- 2d)(a4+ 2d)= 9, (5- 2d)(5 +2d)= 9,解得 d=±2.若 d=2, a n= a4+ (n- 4)d= 2n- 3;若d=- 2, a n= a4+ (n- 4)d=13- 2n.13.解在数列{a n}中,a1=5,公差d1=8-5=3.∴a n= a1+ (n- 1)d1= 3n+ 2.在数列 {b n} 中, b1= 3,公差 d2= 7- 3= 4,∴b n=b1+(n -1)d2=4n- 1.令 a n= b m,则 3n+ 2= 4m- 1,∴n=4m3- 1.∵m、 n∈N *,∴ m=3k(k ∈ N * ),0<m≤ 100又,解得 0<m≤75.0<n ≤ 100∴ 0<3k≤75,∴ 0<k≤25,∴ k=1,2,3 ,, 25∴两个数列共有 25 个公共项.14.解(1)经过察看“等差数阵”发现:第一行的首项为4,公差为 3;第二行首项为7,公差为 5.概括总结出:第一列 (每行的首项 )是以 4 为首项, 3 为公差的等差数列,即3i + 1,各行的公差是以 3 为首项, 2为公差的等差数列,即2i+ 1.所以 a45在第 4 行,首项应为 13,公差为 9,从而得出 a45= 49.(2)该“等差数阵”的第一行是首项为4,公差为 3 的等差数列: a1j= 4+ 3(j - 1);第二行是首项为 7,公差为 5 的等差数列:a2j= 7+ 5(j- 1);第 i 行是首项为 4+3(i - 1),公差为 2i+ 1 的等差数列,所以, a ij= 4+ 3(i -1)+ (2i+ 1)(j - 1)= 2ij + i+ j= i(2j + 1)+ j.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修五同步练习及答案:等差数列的概念及其通项公式
1.若2、a 、b 、c 、9成等差数列,则c a -=____________.
2.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是
3.已知数列{}n a 中,732,1a a ==,且数列1{}1
n a +为等差数列,则5a = _________ 4.在如下数表中,已知每行、每列中的数都成等差数列,那么,位于下表中的第n 行第n+1列的数是 .
5.在等差数列{}n a 中,已知1083=+a a ,则=+753a a .
6.已知等差数列{}n a 中,28=a ,313=a ,则=2014a __________
7.已知{}n a 是等差数列,若75230a a --=,则9a 的值是 .
8.等差数列{}n a 中,158,2a a ==,若在每相邻两项之间各插入一个数,使之成为等差数列,
那么新的等差数列的公差是 .
9.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为
10.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14
的等差数列,则|m -n |=________.
11.已知等差数列{a n }的首项为a 1,公差为d ,且a 11=-26,a 51=54,求a 14的值.你能知道该数列从第几项开始为正数吗?
12.(创新拓展)已知数列{a n }的通项公式为a n =pn 2
+qn (常数p ,q ∈R ).
(1)当p 和q 满足什么条件时,数列{a n }是等差数列?
(2)求证:对任意的实数p 和q ,数列{a n +1-a n }都是等差数列.
参考答案 123… 246… 369…
…………
第1列 第2列 第3列 ……
第1行
第2行
第3行
1.72
. 【解析】 试题分析:易知2,b,9也成等差数列,所以有2b=2+9,得112b =
,又2、a 、b 及b 、c 、9均成等差数列,
所以有2a=2+b,及2c=9+b,解得1529,44a c ==,所以c a -=72
. 考点:等差中项关系式,等差数列性质.
2.15
【解析】
试题分析:方法一:在等差数列}{n a 中,由794161a a a +=⎧⎨=⎩即112141631a d a d +=⎧⎨+=⎩解得11747
4
a d ⎧=-⎪⎪⎨⎪=⎪⎩所以12117711111544
a a d =+=-+⨯=.答案为15. 方法二:在等差数列}{n a 中798216a a a +==,所以88a =,又因为8447d a a =-=,所
以12848715a a d =+=+=.答案为15.
考点:1.等差数列的通项公式;2.等差数列的性质.
3.75
【解析】 试题分析:由数列1{}1n a +为等差数列,则有375112111
a a a +=+++,可解得575a =. 故答案为75
. 考点:等数列的性质的应用.
4.n+n 2.
【解析】
试题分析:从表格可知,第n 行的等差数列的首项为n ,公差也为n ,根据等差数列的通项
公式,其位于第n+1个数是n+(n-1)n= n+n 2,所以位于下表中的第n 行第n+1列的数是n+n 2.
考点:等差数列的通项公式,观察与归纳的能力.
5.20.
【解析】
试题分析:根据等差数列下标和性质5372a a a =+,则
=+753a a 375735735682()()()a a a a a a a a a a a a a a +++=++=+++=++
382()21020a a =+=⨯=.
考点:等差数列下标和性质.
6.403.2
【解析】 试题分析:公差,515813=-=
a a d 则=2014a .5.4035120062)82014(8=⨯+=⋅-+d a 考点:等差数列.
7.3.
【解析】由等差数列的性质,得9572a a a +=,所以75230a a --=可化为039=-a ,即39=a .
考点:等差数列.
8.-34
【解析】 试题分析:51112832512514a a d --⎛⎫⎛⎫=⋅=⋅=- ⎪ ⎪--⎝⎭⎝⎭ 考点:公差的计算.
9.解析 由等差数列的性质得a 1+a 7+a 13=3a 7=4π,
∴a 7=4π3
. ∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3. 答案 - 3
10.解析 由题意设这4个根为14,14+d ,14+2d ,14
+3d . 则14+⎝ ⎛⎭
⎪⎫14+3d =2,∴d =12, ∴这4个根依次为14,34,54,74
, ∴n =14×74=716,m =34×54=1516或n =1516,m =716
, ∴|m -n |=12
. 答案 12
11.
解 法一 由等差数列a n =a 1+(n -1)d 列方程组:
⎩⎪⎨⎪⎧ a 1+10d =-26,a 1+50d =54,解得⎩⎪⎨⎪⎧ a 1=-46,d =2.
∴a 14=-46+13×2=-20.
∴a n =-46+(n -1)·2=2n -48. 令a n ≥0,即2n -48≥0⇒n ≥24. ∴从第25项开始,各项为正数. 法二 在等差数列{a n }中,根据a n =a m +(n -m )d , ∴a 51=a 11+40d ,
∴d =140
(54+26)=2. ∴a 14=a 11+3d =-26+3×2=-20. ∴a n =a 11+(n -11)d =-26+2(n -11), ∴a n =2n -48.显然当n ≥25时,a n >0. 即从第25项开始各项为正数.
12. (1)解 设数列{a n }是等差数列, 则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2
+qn )=2pn +p +q , 若2pn +p +q 是一个与n 无关的常数, 则2p =0,即p =0.
∴当p =0时,数列{a n }是等差数列.
(2)证明 ∵a n +1-a n =2pn +p +q , ∴a n +2-a n +1=2p (n +1)+p +q , ∴(a n +2-a n +1)-(a n +1-a n )=[2p (n +1)+p +q ]-(2pn +p +q )=2p (常数). ∴对任意的实数p 和q ,数列{a n +1-a n }都是等差数列.。