[推荐学习]2019高考数学一轮复习第12章鸭部分4_4第1讲坐标系分层演练文
2019届高三数学一轮复习目录(理科)
2019届高三第一轮复习《原创与经典》(苏教版)(理科)第一章集合常用逻辑用语推理与证明第1课时集合的概念、集合间的基本关系第2课时集合的基本运算第3课时命题及其关系、充分条件与必要条件第4课时简单的逻辑联结词、全称量词与存在量词第5课时合情推理与演泽推理第6课时直接证明与间接证明第7课时数学归纳法第二章不等式第8课时不等关系与不等式第9课时一元二次不等式及其解法第10课时二元一次不等式(组)与简单的线性规划问题第11课时基本不等式及其应用第12课时不等式的综合应用第三章函数的概念与基本初等函数第13课时函数的概念及其表示第14课时函数的定义域与值域第15课时函数的单调性与最值第16课时函数的奇偶性与周期性9第17课时二次函数与幂函数第18课时指数与指数函数第19课时对数与对数函数第20课时函数的图象第21课时函数与方程第22课时函数模型及其应用第四章 导数第23课时 导数的概念及其运算(含复合函数的导数)第24课时 利用导数研究函数的单调性与极值第25课时 函数的最值、导数在实际问题中的应用第五章 三角函数 第26课时任意角、弧度制及任意角的三角函数 第27课时同角三角函数的基本关系式与诱导公式 第28课时两角和与差的正弦、余弦和正切公式 第29课时二倍角的三角函数 第30课时三角函数的图象和性质 第31课时函数sin()y A x ωϕ=+的图象及其应用 第32课时正弦定理、余弦定理 第33课时解三角形的综合应用第六章 平面向量 第34课时平面向量的概念及其线性运算 第35课时平面向量的基本定理及坐标表示 第36课时平面向量的数量积 第37课时平面向量的综合应用第七章 数 列 第38课时数列的概念及其简单表示法 第39课时等差数列 第40课时等比数列 第41课时数列的求和 第42课时等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时平面的基本性质及空间两条直线的位置关系第44课时直线、平面平行的判定与性质第45课时直线、平面垂直的判定与性质第46课时空间几何体的表面积与体积第47课时空间向量的应用——空间线面关系的判定第48课时空间向量的应用——空间的角的计算第九章平面解析几何第49课时直线的方程第50课时两直线的位置关系与点到直线的距离第51课时圆的方程第52课时直线与圆、圆与圆的位置关系第53课时椭圆第54课时双曲线、抛物线第55课时曲线与方程第56课时直线与圆锥曲线的位置关系第57课时圆锥曲线的综合应用第十章复数、算法、统计与概率第58课时抽样方法、用样本估计总体第59课时随机事件及其概率第60课时古典概型第61课时几何概型互斥事件第62课时算法的含义及流程图第63课时复数第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理第65课时排列与组合第66课时二项式定理第67课时离散型随机变量及其概率分布第68课时事件的独立性及二项分布第69课时离散型随机变量的均值与方差第十二章选修4系列第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识第71课时选修4-1 《几何证明选讲》圆的进一步认识第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量第74课时选修4-4《参数方程与极坐标》极坐标系第75课时选修4-4《参数方程与极坐标》参数方程第76课时选修4-5《不等式选讲》绝对值的不等式第77课时选修4-5《不等式选讲》不等式的证明。
2019高考数学文一轮分层演练:第12章选考部分 6 章末总结 含解析
章末总结(此不等式通常称为平面三角不等式)❷会用参数配方法讨论柯西不等式的一般情形:❸会用向量递归方法讨论排序不等式.考点考题考源坐标系与参数方程(2016·高考全国卷Ⅲ,T23,10分)在直角坐标系xOy中,曲线C1的参数方程为⎩⎨⎧x=3cos αy=sin α(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin⎝⎛⎭⎫θ+π4=22.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时点P的直角坐标.选修4-4 P15习题1.3 T5、P26习题2.1T4(4)、P28例1(2017·高考全国卷Ⅰ,T22,10分)在直角坐标系xOy中,曲线C的参数方程为⎩⎪⎨⎪⎧x=3cos θ,y=sin θ,(θ为参数),直线l的参数方程为⎩⎪⎨⎪⎧x=a+4t,y=1-t,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为17,求a.选修4-4P26习题2.1T4(1)绝对值不等式(2016·高考全国卷Ⅱ,T24,10分)已知函数f(x)=⎪⎪⎪⎪x-12+⎪⎪⎪⎪x+12,M为不等式f(x)<2的解集.(1)求M;(2)证明:当a,b∈M时,|a+b|<|1+ab|.选修4-5 P20习题1.2 T8(3)、P26习题2.2 T9(2017·高考全国卷Ⅲ,T23,10分)已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.选修4-5 P20习题1.2 T91.(选修4-4 P8习题1.1 T5、P15习题1.3 T5改编)圆C:x2+y2=1经过伸缩变换⎩⎨⎧x′=2xy′=2y得到曲线C 1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π3=12. (1)写出C 1的参数方程和l 的直角坐标方程;(2)设点M (1,0),直线l 与曲线C 1交于A ,B 两点,求|MA |·|MB |与|AB |. 解:(1)由已知得⎝⎛⎭⎫x ′22+⎝⎛⎭⎫y ′22=1,即x ′24+y ′22=1,即C 1:x 24+y 22=1.即C 1的参数方程为⎩⎨⎧x =2cos αy =2sin α(α为参数).由ρcos ⎝⎛⎭⎫θ+π3=12得 12ρcos θ -32ρsin θ=12. 则l 的直角坐标方程为x -3y -1=0.(2)点M (1,0)在直线l :x -3y -1=0上,直线l 的倾斜角为π6.所以l 的参数方程为⎩⎨⎧x =1+32ty =12t(t 为参数).代入C 1:x 24+y 22=1得5t 2+43t -12=0,所以t 1t 2=-125,t 1+t 2=-435,所以|MA |·|MB |=|t 1|·|t 2|=|t 1t 2|=125. |AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =⎝⎛⎭⎫-4352-4×⎝⎛⎭⎫-125=1225,所以|MA |·|MB |=125, |AB |=1225.2.(选修4-4 P 36例1改编)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数,α为l 的倾斜角),以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4cos θsin 2θ.(1)写出l 的普通方程与C 的直角坐标方程;(2)设点M 的极坐标为(1,0),直线l 与C 相交于A ,B 两点,求1|MA |+1|MB |的值.解:(1)l 的普通方程为x sin α-y cos α-sin α=0,C 的直角坐标方程为y 2=4x . (2)点M 的极坐标为(1,0),即M 的直角坐标为(cos 0,sin 0)=(1,0),显然M 在l 上.将⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数),代入y 2=4x 得 (sin 2α)t 2-(4cos α)t -4=0.Δ=16>0.所以t 1+t 2=4cos αsin 2α,t 1t 2=-4sin 2α,所以1|MA |+1|MB |=|t 1|+|t 2||t 1|·|t 2|=(t 1+t 2)2+2|t 1t 2|-2t 1t 2|t 1t 2|=⎝⎛⎭⎫4cos αsin 2α2+16sin 2α4sin 2α=1.所以1|MA |+1|MB |=1.3.(选修4-4 P 15习题1.3 T 4(4)、P 37例3改编)曲线C 的极坐标方程为ρ=2cos θ-4sin θ,过点M (1,0)的直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数,α为直线l 的倾斜角),直线l 与曲线C 相交于A ,B 两点.(1)求证:|MA |·|MB |为定值;(2)D 是曲线C 上一点,当α=45°时,求△DAB 面积的最大值. 解:(1)证明:C 的直角坐标方程为x 2+y 2-2x +4y =0.①将直线l :⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数)代入①得t 2+(4sin α)t -1=0.②所以|MA |·|MB |=|t 1t 2|=|-1|=1. 即|MA |·|MB |为定值1. (2)当α=45°时,②式即为 t 2+22t -1=0,t 1+t 2=-22,t 1t 2=-1,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2= (-22)2-4×(-1)=23.由①得(x -1)2+(y +2)2=5,所以曲线C 的参数方程为⎩⎨⎧x =1+5cos ry =-2+5sin r(r 为参数).可设点D 的坐标为(1+5cos r ,-2+5sin r ),直线l 的普通方程为x -y -1=0,点D 到l 的距离d =|1+5cos r +2-5sin r -1|2=|10cos (r +45°)+2|2.所以d max =5+2. 所以△DAB 面积的最大值为 S max =12|AB |·d max =12×23(5+2)=15+6.4.(选修4-4 P 28例1改编)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 与椭圆C 的极坐标方程分别为ρcos θ+2ρsin θ+32=0,ρ2=4cos 2θ+4sin 2θ.(1)求直线l 与椭圆C 的直角坐标方程;(2)若P 是直线l 上的动点,Q 是椭圆C 上的动点,求|PQ |的最小值,并求此时Q 点的坐标.解:(1)ρcos θ+2ρsin θ+32=0⇒x +2y +32=0, 即直线l 的直角坐标方程为x +2y +32=0. ρ2=4cos 2θ+4sin 2θ⇒ρ2cos 2θ+4ρ2sin 2θ=4⇒x 2+4y 2=4,即椭圆C 的直角坐标方程为x 24+y 2=1.(2)因为椭圆C :x 24+y 2=1的参数方程为⎩⎪⎨⎪⎧x =2cos αy =sin α(α为参数),所以可设Q (2cos α,sin α). 因此点Q 到直线l 的距离d =|2cos α+2sin α+32|12+22=22⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π4+325,所以当α=2k π+5π4,k ∈Z 时,d 取得最小值105,所以|PQ |的最小值为105. 此时点Q 的坐标为⎝⎛⎭⎫2cos ⎝⎛⎭⎫2k π+5π4,sin ⎝⎛⎭⎫2k π+5π4,k ∈Z , 即Q 的坐标为⎝⎛⎭⎫-2,-22. 5.(选修4-5 P 16例3、P 35例3改编)已知函数f (x )=|3x -1|.(1)设f (x )≤2的解集为M ,记集合M 中的最大元素为a max ,最小元素为a min ,求a max -a min ;(2)若a ,b ∈R +,且a +b =a max ,求1a +1b 的最小值.解:(1)f (x )≤2,即为 |3x -1|≤2,所以-2≤3x -1≤2,即-13≤x ≤1.所以M =⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤1. 即a max =1,a min =-13,a max -a min =1-⎝⎛⎭⎫-13=43. (2)由(1)知,a +b =1,且a ,b ∈R +, 所以(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2 b a ·ab=4. 当且仅当a =b =12时取等号,即1a +1b ≥4,所以1a +1b的最小值为4. 6.(选修4-5 P 20习题1.2 T 9、P 37习题3.1 T 8改编)(1)若关于x 的不等式|x -3|+|x -4|≤a 的解集不是空集,求a 的取值范围;(2)若g (x )=x ,且p >0,q >0,p +q =1,求证:pg (x 1)+qg (x 2)≤g (px 1+qx 2)(x 1,x 2∈[0,+∞)).解:(1)法一:|x -3|+|x -4|≥|(x -3)-(x -4)|=1. 即|x -3|+|x -4|的最小值为1.所以|x -3|+|x -4|≤a 的解集不是空集时,a ≥1. 法二:设f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧-2x +7,x <3,1,3≤x ≤4,2x -7,x >4.函数f (x )的图象为所以f (x )min =1.则f (x )≤a 的解集不是空集时,a ≥1. (2)证明:由p >0,q >0,p +q =1,要证不等式pg (x 1)+qg (x 2)≤g (px 1+qx 2)成立,即为证明p x 1+q x 2≤ px 1+qx 2成立.(*)法一:(分解法)要证(*)式成立,即证 (p x 1+q x 2)2≤(px 1+qx 2)2成立. 即证:p 2x 1+2pq x 1x 2+q 2x 2≤px 1+qx 2, 即证px 1(1-p )+qx 2(1-q )-2pq x 1x 2≥0. 因为p +q =1.只需证pqx 1+pqx 2-2pq x 1x 2≥0成立. 即证(x 1-x 2)2≥0.因为(x 1-x 2)2≥0显然成立.所以原不等式成立.法二:(柯西不等式法)因为(p x 1+q x 2)2=(p ·px 1+q ·qx 2)2 ≤[(p )2+(q )2][(px 1)2+(qx 2)2] =(p +q )(px 1+qx 2). 又因为p +q =1.所以(p x 1+q x 2)2≤(px 1+qx 2). 所以p x 1+q x 2≤px 1+qx 2.即pg (x 1)+qg (x 2)≤g (px 1+qx 2).7.(选修4-5 P 17例5、P 26习题2.2 T 9改编)已知函数f (x )=|x +1|. (1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).解:(1)①当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;③当x ≥-12时,原不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |,所以,要证f (ab )>f (a )-f (-b ),只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2,即证a 2b 2-a 2-b 2+1>0,即证(a 2-1)(b 2-1)>0. 因为a ,b ∈M ,所以a 2>1,b 2>1, 所以(a 2-1)(b 2-1)>0成立, 所以原不等式成立.8.(选修4-5 P 41习题3.2 T 2、T 4改编)设a ,b ,c ∈R +,且a +b +c =3. (1)求1a +b +1b +c +1c +a的最小值; (2)求证:a 2+b 2+c 2≥3,且ab +bc +ca ≤3. 解:(1)因为a ,b ,c ∈R +,且a +b +c =3. 所以(a +b )+(b +c )+(c +a )=6. 由柯西不等式得[(a +b )+(b +c )+(c +a )]⎝⎛⎭⎫1a +b +1b +c +1c +a≥⎝ ⎛⎭⎪⎫a +b ·1a +b +b +c ·1b +c +c +a ·1c +a 2=9,即6⎝⎛⎭⎫1a +b +1b +c +1c +a ≥9.所以1a +b +1b +c +1c +a ≥32,即1a +b +1b +c +1c +a的最小值为32.(2)证明:因为a +b +c =3, 所以(a +b +c )2=9,①9=a 2+b 2+c 2+2ab +2bc +2ca , 9≤a 2+b 2+c 2+a 2+b 2+b 2+c 2+c 2+a 2, 即3(a 2+b 2+c 2)≥9, 所以a 2+b 2+c 2≥3.②9=a 2+b 2+c 2+2ab +2bc +2ca =a 2+b 22+b 2+c 22+c 2+a 22+2ab +2bc +2ca≥ab +bc +ca +2ab +2bc +2ca . 即3(ab +bc +ca )≤9,所以ab+bc+ca≤3.综上a2+b2+c2≥3且ab+bc+ca≤3成立.。
高考数学一轮复习 第12章 选修44 第1节 坐标系课件 文
前
自
x′=λx,
主 回 顾
把伸缩变换公式φ:y′=μy (λ,μ>0)代入上式得:
课 后
λ22x52+μ126y2=1,即5λ2x2+μ42y2=1,与x2+y2=1
限 时 集
课
训
堂
考 点 探 究
比较系数得5λ2=1, μ42=1,
所以λμ==54,.
返
首
12/11/2021
页
第三十页,共五十九页。
θ,0≤θ≤π4
限 时 集
课
堂 考 点
C.ρ=cos θ+sin θ,0≤θ≤π2
训
探
究
D.ρ=cos θ+sin θ,0≤θ≤π4
返
首
12/11/2021
页
第十八页,共五十九页。
19
课
前
自
主 回
A [∵y=1-x(0≤x≤1),
课
顾
后
∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1),
限
时
课
后
限
时
_ρ_si_n__θ_=__a_(0_<__θ_<__π_)_
集 训
返 首 页
第十四页,共五十九页。
15
课
一、思考辨析(正确的打“√”,错误的打“×”)
前
自
(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐
主
回 顾
标系中点与坐标也是一一对应关系.
( )课 后
(2)若点P的直角坐标为(1,- 3 ),则点P的一个极坐标是 限 时
限 时
集
课 极角,记为θ.
训
堂
考
点
③极坐标:有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,
2019高考数学文一轮课件:第12章选考部分 1 第1讲
系,把曲线 C 的极坐标方程化为直角坐标方程,R 点的极坐
标化为直角坐标;
(2)设 P 为曲线 C 上一动点,以 PR 为对角线的矩形 PQRS 的
一边垂直于极轴,求矩形 PQRS 周长的最小值,及此时 P 点
的直角坐标.
【解】 (1)因为 x=ρcos θ,y=ρsin θ, 所以曲线 C 的直角坐标方程为x32+y2=1, 点 R 的直角坐标为 R(2,2). (2)设 P( 3cos θ,sin θ), 根据题意可得|PQ|=2- 3cos θ,|QR|=2-sin θ, 所以|PQ|+|QR|=4-2sin(θ+60°), 当 θ=30°时,|PQ|+|QR|取最小值 2, 所以矩形 PQRS 周长的最小值为 4, 此时点 P 的直角坐标为32,12.
点的直角坐标为0,2
3
3.
所以Βιβλιοθήκη P点的直角坐标为1,
33,
则
P
点的极坐标为2
3
3,π6.
所以直线 OP 的极坐标方程为 θ=π6(ρ∈R).
考点三 曲线极坐标方程的综合应用
在极坐标系中,曲线 C 的方程为 ρ2=1+23sin2θ,点
R2
2,π4.
(1)以极点为原点,极轴为 x 轴的正半轴,建立平面直角坐标
【解】 (1)设(x1,y1)为圆上的点,在已知变换下变为曲线 C 上点(x,y),依题意,得xy==2xy1,1,由 x21+y21=1 得 x2+2y2=1, 故曲线 C 的方程为 x2+y42=1. (2)由x22x++y4y2-=21=,0解得xy==01,或xy==20.,
解:(1)由 ρcosθ-π3=1 得
1 ρ2cos
2019版高考数学一轮复习 第12章 选4系列 12.1 坐标系学案 文
12.1 坐标系[知识梳理] 1.伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎨⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).[诊断自测] 1.概念思辨(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)点P 的直角坐标为(-2,2),那么它的极坐标可表示为⎝⎛⎭⎪⎫2,3π4.( )(3)过极点作倾斜角为α的直线的极坐标方程可表示为θ=α或θ=π+α.( )(4)圆心在极轴上的点(a,0)处,且过极点O 的圆的极坐标方程为ρ=2a sin θ.( ) 答案 (1)× (2)√ (3)√ (4)× 2.教材衍化(1)(选修A4-4P 15T 4)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π4答案 A解析 ∵y =1-x (0≤x ≤1),∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1); ∴ρ=1sin θ+cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2.故选A.(2)(选修A4-4P 8T 5)通过平面直角坐标系中的平移变换和伸缩变换,可以把椭圆(x +1)29+(y -1)24=1变为圆心在原点的单位圆,求上述平移变换和伸缩变换,以及这两种变换的合成的变换.解 先通过平移变换⎩⎪⎨⎪⎧x ′=x +1,y ′=y -1,把椭圆(x +1)29+(y -1)24=1变为椭圆x ′29+y ′24=1;再通过伸缩变换⎩⎪⎨⎪⎧x ″=x ′3,y ″=y ′2,把椭圆x ′29+y ′24=1变为单位圆x ″2+y ″2=1.上述两种变换的合成变换是⎩⎪⎨⎪⎧x ″=x +13,y ″=y -12.3.小题热身(1)(2017·东营模拟)在极坐标系中,已知点P ⎝⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是( )A .ρsin θ=1B .ρsin θ= 3C .ρcos θ=1D .ρcos θ= 3 答案 A解析 先将极坐标化成直角坐标表示,P ⎝ ⎛⎭⎪⎫2,π6转化为点x =ρcos θ=2cos π6=3,y=ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1,再化为极坐标为ρsin θ=1.故选A.(2)(2016·北京高考)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.答案 2解析 将ρcos θ-3ρsin θ-1=0化为直角坐标方程为x -3y -1=0,将ρ=2cos θ化为直角坐标方程为(x -1)2+y 2=1,圆心坐标为(1,0),半径r =1,又(1,0)在直线x -3y -1=0上,所以|AB |=2r =2.题型1 平面直角坐标系中的伸缩变换典例将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.由题意找出(x ,y )与(x 1,y 1)的关系,采用代入法求解.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,故曲线C 的方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.方法技巧伸缩变换后方程的求法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.见典例.提醒:应用伸缩变换时,要分清变换前的点的坐标(x ,y )与变换后的坐标(x ′,y ′). 冲关针对训练求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y变换后所得曲线C ′的焦点坐标.解 设曲线C ′上任意一点P ′(x ′,y ′), 将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)即为所求.题型2 极坐标与直角坐标的互化典例(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.(1)用转化公式;(2)理解ρ1,ρ2的几何意义,化成ρ的二次方程后,利用韦达定理求ρ1,ρ2.解 (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1,所以△C 2MN 的面积为12.方法技巧极坐标方程与直角坐标方程的互化1.直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.2.极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.冲关针对训练(2016·北京高考改编)在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ.求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状.解 由C 1:ρcos θ-3ρsin θ-1=0, ∴x -3y -1=0,表示一条直线. 由C 2:ρ=2cos θ,得ρ2=2ρcos θ. ∴x 2+y 2=2x ,即(x -1)2+y 2=1. 所以C 2是圆心为(1,0),半径r =1的圆. 题型3 极坐标方程的应用典例(2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解方程组⎩⎪⎨⎪⎧θ=α,ρ2+12ρcos α+11=0,利用韦达定理求|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2即可.解 (1)由x =ρcos θ,y =ρsin θ,可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程,得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10,得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. 方法技巧极坐标方程及其应用的类型及解题策略1.求极坐标方程.可在平面直角坐标系中,求出曲线方程,然后再转化为极坐标方程. 2.求点到直线的距离.先将极坐标系下点的坐标、直线方程转化为平面直角坐标系下点的坐标、直线方程,然后利用直角坐标系中点到直线的距离公式求解.3.求线段的长度.先将极坐标系下的点的坐标、曲线方程转化为平面直角坐标系下的点的坐标、曲线方程,然后再求线段的长度.冲关针对训练在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =7cos α,y =2+7sin α(其中α为参数),曲线C 2:(x -1)2+y 2=1.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1的普通方程和曲线C 2的极坐标方程;(2)若射线θ=π6(ρ>0)与曲线C 1,C 2分别交于A ,B 两点,求|AB |.解 (1)由⎩⎨⎧x =7cos α,y =2+7sin α,得⎩⎨⎧x =7cos α,y -2=7sin α,所以曲线C 1的普通方程为x 2+(y -2)2=7.把x =ρcos θ,y =ρsin θ代入(x -1)2+y 2=1,得(ρcos θ-1)2+(ρsin θ)2=1,化简得曲线C 2的极坐标方程为ρ=2cos θ.(2)依题意可设A ⎝⎛⎭⎪⎫ρ1,π6,B ⎝ ⎛⎭⎪⎫ρ2,π6. 因为曲线C 1的极坐标方程为ρ2-4ρsin θ-3=0, 将θ=π6(ρ>0)代入曲线C 1的极坐标方程,得ρ2-2ρ-3=0,解得ρ1=3.同理,将θ=π6(ρ>0)代入曲线C 2的极坐标方程,得ρ2=3,所以|AB |=|ρ1-ρ2|=3- 3.1.(2017·南阳期末)直线l :y +kx +2=0与曲线C :ρ=2cos θ有交点,则k 的取值范围是( )A .k ≤-34B .k ≥-34C .k ∈RD .k ∈R 但k ≠0 答案 A解析 由曲线C :ρ=2cos θ化为ρ2=2ρcos θ, ∴x 2+y 2=2x ,联立⎩⎪⎨⎪⎧x 2+y 2=2x ,y +kx +2=0,化为(1+k 2)x 2+(4k -2)x +4=0.∵直线l 与曲线C 有交点, ∴Δ=(4k -2)2-16(1+k 2)≥0, 化为16k ≤-12, 解得k ≤-34.∴k 的取值范围是k ≤-34.故选A.2.(2017·甘谷期末)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为( )A.⎝ ⎛⎭⎪⎫-2,3π4B.⎝ ⎛⎭⎪⎫2,3π4C.⎝ ⎛⎭⎪⎫-2,7π4 D.⎝⎛⎭⎪⎫2,7π4 答案 B解析 由⎩⎪⎨⎪⎧ρ=2sin θ,ρcos θ=-1,可得sin2θ=-1,再根据0≤θ<2π求得2θ=3π2,∴θ=3π4,∴ρ=2sin θ=2,∴曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为⎝⎛⎭⎪⎫2,3π4.故选B. 3.(2017·大庆期中)已知A ,B 两点的极坐标为⎝⎛⎭⎪⎫6,π3和⎝ ⎛⎭⎪⎫8,4π3,则线段AB 中点的直角坐标为( )A.⎝ ⎛⎭⎪⎫12,-32B.⎝ ⎛⎭⎪⎫-32,12C.⎝⎛⎭⎪⎫32,-12 D.⎝ ⎛⎭⎪⎫-12,-32答案 D解析 ∵A 点的极坐标为⎝⎛⎭⎪⎫6,π3,∴x A =6×cos π3=3,y A =6×sin π3=33,∴A (3,33);同理可得B (-4,-43).设线段AB 的中点为M (m ,n ),由线段的中点坐标公式可得⎩⎪⎨⎪⎧m =-4+32=-12,n =-43+332=-32,∴线段AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32.故选D.4.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.[基础送分 提速狂刷练]1.(2018·延庆县期末)在极坐标方程中,与圆ρ=4sin θ相切的一条直线的方程是( )A .ρsin θ=2B .ρcos θ=2C .ρcos θ=4D .ρcos θ=-4 答案 B解析 ρ=4sin θ的普通方程为x 2+(y -2)2=4, 选项B :ρcos θ=2的普通方程为x =2.圆x 2+(y -2)2=4与直线x =2显然相切.故选B.2.(2017·渭滨区月考)在极坐标系中,A ⎝ ⎛⎭⎪⎫5,π2,B ⎝ ⎛⎭⎪⎫-8,11π6,C ⎝ ⎛⎭⎪⎫3,7π6,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .钝角三角形 答案 C解析 B ⎝⎛⎭⎪⎫8,5π6,∴OA =5,OB =8,OC =3,∴∠AOB =5π6-π2=π3,∠BOC =7π6-5π6=π3,∠AOC =7π6-π2=2π3,在△AOB 中,由余弦定理可得AB =25+64-2×5×8×12=7,同理可得,BC =64+9-2×8×3×12=7,AC =25+9-2×5×3×⎝ ⎛⎭⎪⎫-12=7, ∴AB =BC =AC ,∴△ABC 是等边三角形.故选C.3.牛顿在1736年出版的《流数术和无穷级数》中,第一个将极坐标系应用于表示平面上的任何一点,牛顿在书中验证了极坐标和其他九种坐标系的转换关系.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22. (1)求O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. 解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为x 2+y 2-x -y =0,直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为x -y +1=0. (2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎪⎫1,π2.4.(2018·郑州模拟)在极坐标系中,曲线C 1,C 2的极坐标方程分别为ρ=-2cos θ,ρcos ⎝⎛⎭⎪⎫θ+π3=1.(1)求曲线C 1和C 2的公共点的个数;(2)过极点作动直线与曲线C 2相交于点Q ,在OQ 上取一点P ,使|OP |·|OQ |=2,求点P 的轨迹,并指出轨迹是什么图形.解 (1)C 1的直角坐标方程为(x +1)2+y 2=1,它表示圆心为(-1,0),半径为1的圆,C 2的直角坐标方程为x -3y -2=0,所以曲线C 2为直线,由于圆心到直线的距离为d =32>1,所以直线与圆相离,即曲线C 1和C 2没有公共点.(2)设Q (ρ0,θ0),P (ρ,θ),则⎩⎪⎨⎪⎧ρρ0=2,θ=θ0,即⎩⎪⎨⎪⎧ρ0=2ρ,θ0=θ.①因为点Q (ρ0,θ0)在曲线C 2上, 所以ρ0cos ⎝ ⎛⎭⎪⎫θ0+π3=1,②将①代入②,得2ρcos ⎝⎛⎭⎪⎫θ+π3=1,即ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3为点P 的轨迹方程,化为直角坐标方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +322=1,因此点P 的轨迹是以⎝ ⎛⎭⎪⎫12,-32为圆心,1为半径的圆.5.(2017·湖北模拟)在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝ ⎛⎭⎪⎫θ-π3=32,C 与l 有且仅有一个公共点. (1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =π3,求|OA |+|OB |的最大值.解 (1)曲线C :ρ=2a cos θ(a >0),变形ρ2=2aρcos θ, 化为x 2+y 2=2ax ,即(x -a )2+y 2=a 2. ∴曲线C 是以(a,0)为圆心,a 为半径的圆.由l :ρcos ⎝ ⎛⎭⎪⎫θ-π3=32,展开为12ρcos θ+32ρsin θ=32,∴l 的直角坐标方程为x +3y -3=0.由题可知直线l 与圆C 相切,即|a -3|2=a ,解得a =1.(2)不妨设A 的极角为θ,B 的极角为θ+π3,则|OA |+|OB |=2cos θ+2cos ⎝ ⎛⎭⎪⎫θ+π3=3cos θ-3sin θ =23cos ⎝⎛⎭⎪⎫θ+π6,当θ=-π6时,|OA |+|OB |取得最大值2 3.6.(2018·沈阳模拟)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知圆C 的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎪⎫θ-π4+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P (x ,y )在圆C 上,求x +y 的最大值和最小值.解 (1)由ρ2-42ρcos ⎝⎛⎭⎪⎫θ-π4+6=0,得 ρ2-42ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4+6=0, 即ρ2-42ρ⎝ ⎛⎭⎪⎫22cos θ+22sin θ+6=0, ρ2-4ρcos θ-4ρsin θ+6=0,即x 2+y 2-4x -4y +6=0为所求圆的普通方程,整理为圆的标准方程(x -2)2+(y -2)2=2,令x -2=2cos α,y -2=2sin α. 得圆的参数方程为⎩⎨⎧x =2+2cos α,y =2+2sin α(α为参数). (2)由(1)得, x +y =4+2(cos α+sin α)=4+2sin ⎝ ⎛⎭⎪⎫α+π4, ∴当sin ⎝⎛⎭⎪⎫α+π4=1时,x +y 的最大值为6, 当sin ⎝⎛⎭⎪⎫α+π4=-1时,x +y 的最小值为2. 故x +y 的最大值和最小值分别是6和2.。
近年高考数学一轮复习第12章选考部分章末总结演练文(2021年整理)
2019高考数学一轮复习第12章选考部分章末总结分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第12章选考部分章末总结分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第12章选考部分章末总结分层演练文的全部内容。
第12章选考部分章末总结了解当n为大于1的实数时贝努利不等式也成立.❸会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.❹了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.柯西不等式与排序不等式❶了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1)柯西不等式的向量形式:|α|·|β|≥|α·β|.(2)(a2+b2)(c2+d2)≥(ac+bd)2.(3)错误!+错误!≥错误!.(此不等式通常称为平面三角不等式)❷会用参数配方法讨论柯西不等式的一般情形:❸会用向量递归方法讨论排序不等式.考点考题考源坐标系与参数方程(2016·高考全国卷Ⅲ,T23,10分)在直角坐标系xOy中,曲线C1的参数方程为{x=3cos α,y=sin α(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin错误!=2错误!.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时点P的直角坐标.选修4。
4 P15习题1.3 T5、P26习题2.1 T4(4)、P28例1(2017·高考全国卷Ⅰ,T22,10分)在直角坐标系xOy中,曲线C的参数方程为错误!(θ为参数),直线l的参数方程为错误!(t为参数).选修4.4P26习题2.1T4(1)1.(选修4。
高考数学大一轮复习 第十二章 系列4选讲 12.2 坐标系与参数方程(第1课时)坐标系教案(含解析)
第1课时坐标系考情考向分析极坐标方程与直角坐标方程互化是重点,主要与参数方程相结合进行考查,以解答题的形式考查,属于低档题.1.平面直角坐标系在平面上,取两条互相垂直的直线的交点为原点,并确定一个长度单位和这两条直线的方向,就建立了平面直角坐标系.它使平面上任意一点P都可以由唯一的有序实数对(x,y)确定,(x,y)称为点P的坐标.2.极坐标系(1)极坐标与极坐标系的概念一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.点O称为极点,射线Ox称为极轴.平面内任一点M的位置可以由线段OM的长度ρ和从射线Ox到射线OM的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M的极坐标.ρ称为点M 的极径,θ称为点M的极角.一般认为ρθ的取值X围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们约定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M为平面内的任一点,它的直角坐标为(x,y),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0),这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝⎛⎭⎪⎫-π2≤θ<π2圆心为⎝⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线θ=α(ρ∈R )或θ=π+α(ρ∈R )过点(a,0),与极轴垂直的直线ρcos θ=a ⎝⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( × )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( √ )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( √ ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( × ) 题组二 教材改编2.[P11例5]在直角坐标系中,若点P 的坐标为(-2,-6),则点P 的极坐标为________.答案 ⎝⎛⎭⎪⎫22,4π3 解析 ρ=(-2)2+(-6)2=22,tan θ=-6-2=3,又点P 在第三象限,得θ=4π3,即P ⎝⎛⎭⎪⎫22,4π3. 3.[P32习题T4]若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为________________________.答案 ρ=1cos θ+sin θ⎝⎛⎭⎪⎫0≤θ≤π2解析 ∵y =1-x (0≤x ≤1),∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2.4.[P32习题T5]在极坐标系中,圆ρ=-2sin θ(ρ≥0,0≤θ<2π)的圆心的极坐标是________.答案 ⎝⎛⎭⎪⎫1,3π2解析 由ρ=-2sin θ,得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝⎛⎭⎪⎫1,3π2.题组三 易错自纠5.在极坐标系中,已知点P ⎝⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是________.答案 ρsin θ=1解析 先将极坐标化成直角坐标,P ⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y=ρsin θ=2sin π6=1,即P (3,1),过点P (3,1)且平行于x 轴的直线为y =1,再化为极坐标为ρsin θ=1.6.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为____________. 答案 x 2+y 2-2y =0解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0.7.在极坐标系下,若点P (ρ,θ)的一个极坐标为⎝ ⎛⎭⎪⎫4,2π3,求以⎝ ⎛⎭⎪⎫ρ2,θ2为坐标的不同的点的极坐标.解 ∵⎝⎛⎭⎪⎫4,2π3为点P (ρ,θ)的一个极坐标.∴ρ=4或ρ=-4.当ρ=4时,θ=2k π+2π3(k ∈Z ),∴ρ2=2,θ2=k π+π3(k ∈Z ). 当ρ=-4时,θ=2k π+5π3(k ∈Z ), ∴ρ2=-2,θ2=k π+5π6(k ∈Z ). ∴⎝⎛⎭⎪⎫ρ2,θ2有四个不同的点:P 1⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z ),P 2⎝ ⎛⎭⎪⎫2,2k π+4π3(k ∈Z ),P 3⎝⎛⎭⎪⎫-2,2k π+5π6(k ∈Z ),P 4⎝⎛⎭⎪⎫-2,2k π+11π6(k ∈Z ).题型一 极坐标与直角坐标的互化1.(2018·某某模拟)在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π3,圆心C 为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-3与极轴的交点,求圆C 的极坐标方程.解 以极点为坐标原点,极轴为x 轴建立平面直角坐标系, 则直线方程为y =3x -23,点P 的直角坐标为(1,3), 令y =0,得x =2,所以C (2,0),所以圆C 的半径PC =(2-1)2+(0-3)2=2,所以圆C 的方程为(x -2)2+(y -0)2=4,即x 2+y 2-4x =0, 所以圆C 的极坐标方程为ρ=4cos θ.2.(2019·某某省某某一中月考)在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝⎛⎭⎪⎫θ-π6=a 截得的弦长为23,某某数a 的值.解 因为圆C 的直角坐标方程为(x -2)2+y 2=4, 直线l 的直角坐标方程为x -3y +2a =0, 所以圆心C 到直线l 的距离d =|2+2a |2=|1+a |,因为圆C 被直线l 截得的弦长为23,所以r 2-d 2=3. 即4-(1+a )2=3,解得a =0或a =-2.3.(2018·某某期中)已知在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =r cos θ+2,y =r sin θ+2(θ为参数,r >0).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ+π4+1=0.(1)求圆C 的圆心的极坐标;(2)当圆C 与直线l 有公共点时,求r 的取值X 围.解 (1)由C :⎩⎪⎨⎪⎧x =r cos θ+2,y =r sin θ+2,得(x -2)2+(y -2)2=r 2,∴曲线C 是以(2,2)为圆心,r 为半径的圆, ∴圆心的极坐标为⎝⎛⎭⎪⎫22,π4.(2)由直线l :2ρsin ⎝ ⎛⎭⎪⎫θ+π4+1=0, 得直线l 的直角坐标方程为x +y +1=0,从而圆心(2,2)到直线l 的距离d =|2+2+1|2=522.∵圆C 与直线l 有公共点,∴d ≤r ,即r ≥522.思维升华(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换. 题型二 求曲线的极坐标方程例1将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C .(1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与直线l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的任一点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的标准方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线的斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.思维升华求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式. (3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.跟踪训练1已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),射线OM 的极坐标方程为θ=3π4.(1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 解 (1)∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 圆C 的直角坐标方程为x 2+y 2+2x -2y =0, ∴ρ2+2ρcos θ-2ρsin θ=0,∴圆C 的极坐标方程为ρ=22sin ⎝⎛⎭⎪⎫θ-π4. 又直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),消去t 后得y =x +1,∴直线l 的极坐标方程为sin θ-cos θ=1ρ.(2)当θ=3π4时,OP =22sin ⎝ ⎛⎭⎪⎫3π4-π4=22,∴点P 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,OQ =122+22=22,∴点Q 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,故线段PQ 的长为322.题型三 极坐标方程的应用例2在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足OM ·OP =16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0).由题意知OP =ρ,OM =ρ1=4cos θ.由OM ·OP =16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题意,知OA =2,ρB =4cos α,于是△OAB 的面积S =12·OA ·ρB ·sin∠AOB=4cos α·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3. 思维升华极坐标应用中的注意事项(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴正半轴重合;③取相同的长度单位.(2)若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题. (3)由极坐标的意义可知平面上点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系. 跟踪训练2在极坐标系中,求直线ρsin ⎝⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长.解 由ρsin ⎝⎛⎭⎪⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2,可化为x +y -22ρ=4可化为x 2+y 2=16,圆心(0,0)到直线x +y -22=0的距离d =|22|2=2,由圆中的弦长公式,得弦长l =2r 2-d 2=242-22=4 3.故所求弦长为4 3.1.(2018·某某省某某师X 大学附属中学模拟)在极坐标系中,已知圆C :ρ=22cos θ和直线l :θ=π4(ρ∈R )相交于A ,B 两点,求线段AB 的长.解 圆C :ρ=22cos θ的直角坐标方程为x 2+y 2-22x =0, 即(x -2)2+y 2=2,直线l :θ=π4(ρ∈R )的直角坐标方程为y =x ,圆心C 到直线l 的距离d =|2-0|2=1, 所以AB =2(2)2-1=2.2.在极坐标系中,圆C 的极坐标方程为ρ2-8ρsin ⎝⎛⎭⎪⎫θ-π3+13=0,已知A ⎝⎛⎭⎪⎫1,3π2,B ⎝⎛⎭⎪⎫3,3π2,P 为圆C 上一点,求△PAB 面积的最小值. 解 圆C 的直角坐标方程为x 2+y 2+43x -4y +13=0, 即(x +23)2+(y -2)2=3,由题意,得A (0,-1),B (0,-3),所以AB =2.P 到直线AB 距离的最小值为23-3=3,所以△PAB 面积的最小值为12×2×3= 3.3.(2018·某某省姜堰、某某、前黄中学联考)圆C :ρ=2cos ⎝ ⎛⎭⎪⎫θ-π4,与极轴交于点A (异于极点O ),求直线CA 的极坐标方程.解 圆C :ρ2=2ρcos ⎝ ⎛⎭⎪⎫θ-π4=2ρcos θ+2ρsin θ,所以x 2+y 2-2x -2y =0, 所以圆心C ⎝⎛⎭⎪⎫22,22,与极轴交于A (2,0). 直线CA 的直角坐标方程为x +y =2, 即直线CA 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=1.4.在以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若OP =3OQ ,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=21-sin θ化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意知21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,∴直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).5.在极坐标系中,P 是曲线C 1:ρ=12sin θ上的动点,Q 是曲线C 2:ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6上的动点,求PQ 的最大值.解 对曲线C 1的极坐标方程进行转化,∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0, 即x 2+(y -6)2=36.对曲线C 2的极坐标方程进行转化, ∵ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6,∴ρ2=12ρ⎝⎛⎭⎪⎫cos θcosπ6+sin θsin π6, ∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36, ∴PQ max =6+6+(33)2+32=18.6.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即MN = 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形, 所以△C 2MN 的面积为12.7.(2018·某某江阴中学调研)在极坐标系中,设圆C :ρ=4cos θ与直线l :θ=π4(ρ∈R )交于A ,B 两点,求以AB 为直径的圆的极坐标方程.解 以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,则由题意,得圆C 的直角坐标方程为x 2+y 2-4x =0,直线l 的直角坐标方程为y =x .由⎩⎪⎨⎪⎧ x 2+y 2-4x =0,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧ x =2,y =2,所以交点的坐标分别为(0,0),(2,2).所以以AB 为直径的圆的直角坐标方程为(x -1)2+(y -1)2=2,即x 2+y 2=2x +2y , 将其化为极坐标方程为ρ2=2ρ(cos θ+sin θ),即ρ=2(cos θ+sin θ).8.以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的方程为ρsin ⎝⎛⎭⎪⎫θ-2π3=-3,⊙C 的极坐标方程为ρ=4cos θ+2sin θ.(1)求直线l 和⊙C 的直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求弦AB 的长.解 (1)直线l :ρsin ⎝⎛⎭⎪⎫θ-2π3=-3, ∴ρ⎝⎛⎭⎪⎫sin θcos 2π3-cos θsin 2π3=-3, ∴y ·⎝ ⎛⎭⎪⎫-12-x ·32=-3,即y =-3x +2 3. ⊙C :ρ=4cos θ+2sin θ,ρ2=4ρcos θ+2ρsin θ,∴x 2+y 2=4x +2y ,即x 2+y 2-4x -2y =0.(2)⊙C :x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.∴圆心C (2,1),半径R =5,∴⊙C 的圆心C 到直线l 的距离 d =|1+23-23|(3)2+12=12, ∴AB =2R 2-d 2=25-⎝ ⎛⎭⎪⎫122=19. ∴弦AB 的长为19.9.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎪⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解 (1)∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1, 点R 的直角坐标为R (2,2).(2)设P (3cos θ,sin θ),根据题意,设PQ =2-3cos θ,QR =2-sin θ,∴PQ +QR =4-2sin ⎝⎛⎭⎪⎫θ+π3, 当θ=π6时,PQ +QR 取最小值2, ∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 10.(2018·某某)在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎪⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.解 因为曲线C 的极坐标方程为ρ=4cos θ,所以曲线C 是圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为 ρsin ⎝ ⎛⎭⎪⎫π6-θ=2, 则直线l 过点A (4,0),且倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.如图,连结OB .因为OA 为直径,从而∠OBA =π2, 所以AB =4cos π6=2 3. 因此,直线l 被曲线C 截得的弦长为2 3.11.已知曲线C 的参数方程为⎩⎨⎧ x =2+5cos α,y =1+5sin α(α为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程; (2)若直线l 的极坐标方程为ρ(sin θ+cos θ)=1,求直线l 被曲线C 截得的弦长. 解 (1)曲线C 的参数方程为⎩⎨⎧ x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5.将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入并化简得ρ=4cos θ+2sin θ,即曲线C 的极坐标方程为ρ=4cos θ+2sin θ.(2)∵l 的直角坐标方程为x +y -1=0,∴圆心C (2,1)到直线l 的距离d =22=2, ∴弦长为25-2=2 3.12.在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝⎛⎭⎪⎫θ-π3=32,C 与l 有且仅有一个公共点.(1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =π3,求OA +OB 的最大值. 解 (1)曲线C :ρ=2a cos θ(a >0),变形为ρ2=2aρcos θ,化为x 2+y 2=2ax ,即(x -a )2+y 2=a 2,∴曲线C 是以(a,0)为圆心,以a 为半径的圆.由l :ρcos ⎝⎛⎭⎪⎫θ-π3=32, 展开为12ρcos θ+32ρsin θ=32, ∴l 的直角坐标方程为x +3y -3=0.由题意,知直线l 与圆C 相切,即|a -3|2=a , 又a >0,∴a =1.(2)由(1)知,曲线C :ρ=2cos θ.不妨设A 的极角为θ,B 的极角为θ+π3, 则OA +OB =2cos θ+2cos ⎝⎛⎭⎪⎫θ+π3 =3cos θ-3sin θ=23cos ⎝⎛⎭⎪⎫θ+π6, 当θ=11π6时,OA +OB 取得最大值2 3.。
【精品】2019高考数学文一轮分层演练:第12章选考部分6章末总结
章末总结会用向量递归方法讨论排序不等式.1.(选修44 P 8习题1.1 T 5、P 15习题1.3 T 5改编)圆C :x 2+y 2=1经过伸缩变换⎩⎨⎧x ′=2xy ′=2y得到曲线C 1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=12. (1)写出C 1的参数方程和l 的直角坐标方程;(2)设点M (1,0),直线l 与曲线C 1交于A ,B 两点,求|MA |·|MB |与|AB |.解:(1)由已知得⎝ ⎛⎭⎪⎫x ′22+⎝ ⎛⎭⎪⎫y ′22=1,即x ′24+y ′22=1,即C 1:x 24+y 22=1.即C 1的参数方程为⎩⎨⎧x =2cos αy =2sin α(α为参数).由ρcos ⎝ ⎛⎭⎪⎫θ+π3=12得 12ρcos θ -32ρsin θ=12. 则l 的直角坐标方程为x -3y -1=0.(2)点M (1,0)在直线l :x -3y -1=0上,直线l 的倾斜角为π6.所以l 的参数方程为⎩⎪⎨⎪⎧x =1+32t y =12t (t 为参数).代入C 1:x 24+y 22=1得5t 2+43t -12=0,所以t 1t 2=-125,t 1+t 2=-435,所以|MA |·|MB |=|t 1|·|t 2|=|t 1t 2|=125.|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫-4352-4×⎝ ⎛⎭⎪⎫-125=1225,所以|MA |·|MB |=125,|AB |=1225.2.(选修44 P 36例1改编)已知直线l的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数,α为l 的倾斜角),以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4cos θsin 2θ. (1)写出l 的普通方程与C 的直角坐标方程;(2)设点M 的极坐标为(1,0),直线l 与C 相交于A ,B 两点,求1|MA |+1|MB |的值.解:(1)l 的普通方程为x sin α-y cos α-sin α=0,C 的直角坐标方程为y 2=4x . (2)点M 的极坐标为(1,0),即M 的直角坐标为(cos 0,sin 0)=(1,0),显然M 在l 上.将⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数),代入y 2=4x 得(sin 2α)t 2-(4cos α)t -4=0.Δ=16>0.所以t 1+t 2=4cos αsin 2α,t 1t 2=-4sin 2α, 所以1|MA |+1|MB |=|t 1|+|t 2||t 1|·|t 2|=(t 1+t 2)2+2|t 1t 2|-2t 1t 2|t 1t 2|=⎝ ⎛⎭⎪⎫4cosαsin 2α2+16sin 2α4sin 2α=1.所以1|MA |+1|MB |=1.3.(选修44 P 15习题1.3 T 4(4)、P 37例3改编)曲线C 的极坐标方程为ρ=2cos θ-4sin θ,过点M (1,0)的直线l的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数,α为直线l的倾斜角),直线l 与曲线C 相交于A ,B 两点.(1)求证:|MA |·|MB |为定值;(2)D 是曲线C 上一点,当α=45°时,求△DAB 面积的最大值. 解:(1)证明:C 的直角坐标方程为x 2+y 2-2x +4y =0.①将直线l :⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数)代入①得t 2+(4sin α)t -1=0.②所以|MA |·|MB |=|t 1t 2|=|-1|=1. 即|MA |·|MB |为定值1. (2)当α=45°时,②式即为t 2+22t -1=0,t 1+t 2=-22,t 1t 2=-1,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 = (-22)2-4×(-1)=23. 由①得(x -1)2+(y +2)2=5, 所以曲线C 的参数方程为⎩⎨⎧x =1+5cos r y =-2+5sin r(r 为参数).可设点D 的坐标为(1+5cos r ,-2+5sin r ),直线l 的普通方程为x -y -1=0,点D 到l 的距离d =|1+5cos r +2-5sin r -1|2=|10cos (r +45°)+2|2.所以d max =5+2. 所以△DAB 面积的最大值为S max =12|AB |·d max =12×23(5+2)=15+6.4.(选修44 P 28例1改编)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 与椭圆C 的极坐标方程分别为ρcos θ+2ρsin θ+32=0,ρ2=4cos 2θ+4sin 2θ. (1)求直线l 与椭圆C 的直角坐标方程;(2)若P 是直线l 上的动点,Q 是椭圆C 上的动点,求|PQ |的最小值,并求此时Q 点的坐标.解:(1)ρcos θ+2ρsin θ+32=0⇒x +2y +32=0, 即直线l 的直角坐标方程为x +2y +32=0.ρ2=4cos 2θ+4sin 2θ⇒ρ2cos 2θ+4ρ2sin 2θ=4⇒x 2+4y 2=4, 即椭圆C 的直角坐标方程为x 24+y 2=1.(2)因为椭圆C :x 24+y 2=1的参数方程为⎩⎪⎨⎪⎧x =2cos αy =sin α(α为参数),所以可设Q (2cos α,sin α). 因此点Q 到直线l 的距离 d =|2cos α+2sin α+32|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α+π4+325,所以当α=2k π+5π4,k ∈Z 时,d 取得最小值105,所以|PQ |的最小值为105. 此时点Q 的坐标为⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫2k π+5π4,sin ⎝ ⎛⎭⎪⎫2k π+5π4,k ∈Z , 即Q 的坐标为⎝ ⎛⎭⎪⎫-2,-22. 5.(选修45 P 16例3、P 35例3改编)已知函数f (x )=|3x -1|.(1)设f (x )≤2的解集为M ,记集合M 中的最大元素为a max ,最小元素为a min ,求a max-a min ;(2)若a ,b ∈R +,且a +b =a max ,求1a +1b的最小值.解:(1)f (x )≤2,即为 |3x -1|≤2,所以-2≤3x -1≤2,即-13≤x ≤1.所以M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-13≤x ≤1. 即a max =1,a min =-13,a max -a min =1-⎝ ⎛⎭⎪⎫-13=43.(2)由(1)知,a +b =1,且a ,b ∈R +,所以(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4. 当且仅当a =b =12时取等号,即1a +1b ≥4,所以1a +1b的最小值为4.6.(选修45 P 20习题1.2 T 9、P 37习题3.1 T 8改编)(1)若关于x 的不等式|x -3|+|x -4|≤a 的解集不是空集,求a 的取值范围;(2)若g (x )=x ,且p >0,q >0,p +q =1,求证:pg (x 1)+qg (x 2)≤g (px 1+qx 2)(x 1,x 2∈[0,+∞)).解:(1)法一:|x -3|+|x -4|≥|(x -3)-(x -4)|=1. 即|x -3|+|x -4|的最小值为1.所以|x -3|+|x -4|≤a 的解集不是空集时,a ≥1. 法二:设f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧-2x +7,x <3,1,3≤x ≤4,2x -7,x >4.函数f (x )的图象为所以f (x )min =1.则f (x )≤a 的解集不是空集时,a ≥1. (2)证明:由p >0,q >0,p +q =1,要证不等式pg (x 1)+qg (x 2)≤g (px 1+qx 2)成立,即为证明p x 1+q x 2≤ px 1+qx 2成立.(*)法一:(分解法)要证(*)式成立,即证 (p x 1+q x 2)2≤(px 1+qx 2)2成立. 即证:p 2x 1+2pq x 1x 2+q 2x 2≤px 1+qx 2, 即证px 1(1-p )+qx 2(1-q )-2pq x 1x 2≥0. 因为p +q =1.只需证pqx 1+pqx 2-2pq x 1x 2≥0成立. 即证(x 1-x 2)2≥0.因为(x 1-x 2)2≥0显然成立.所以原不等式成立.法二:(柯西不等式法)因为(p x 1+q x 2)2=(p ·px 1+q ·qx 2)2≤[(p )2+(q )2][(px 1)2+(qx 2)2] =(p +q )(px 1+qx 2). 又因为p +q =1.所以(p x 1+q x 2)2≤(px 1+qx 2). 所以p x 1+q x 2≤ px 1+qx 2. 即pg (x 1)+qg (x 2)≤g (px 1+qx 2).7.(选修45 P 17例5、P 26习题2.2 T 9改编)已知函数f (x )=|x +1|. (1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).解:(1)①当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;③当x ≥-12时,原不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以,要证f (ab )>f (a )-f (-b ),只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2, 即证a 2b 2+2ab +1>a 2+2ab +b 2,即证a 2b 2-a 2-b 2+1>0,即证(a 2-1)(b 2-1)>0. 因为a ,b ∈M ,所以a 2>1,b 2>1, 所以(a 2-1)(b 2-1)>0成立, 所以原不等式成立.8.(选修45 P 41习题3.2 T 2、T 4改编)设a ,b ,c ∈R +,且a +b +c =3. (1)求1a +b +1b +c +1c +a的最小值; (2)求证:a 2+b 2+c 2≥3,且ab +bc +ca ≤3. 解:(1)因为a ,b ,c ∈R +,且a +b +c =3. 所以(a +b )+(b +c )+(c +a )=6. 由柯西不等式得[(a +b )+(b +c )+(c +a )]⎝⎛⎭⎪⎫1a +b +1b +c +1c +a≥⎝⎛⎭⎪⎫a +b ·1a +b +b +c ·1b +c +c +a ·1c +a 2=9, 即6⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a ≥9.所以1a +b +1b +c +1c +a ≥32, 即1a +b +1b +c +1c +a 的最小值为32. (2)证明:因为a +b +c =3, 所以(a +b +c )2=9,①9=a 2+b 2+c 2+2ab +2bc +2ca , 9≤a 2+b 2+c 2+a 2+b 2+b 2+c 2+c 2+a 2, 即3(a 2+b 2+c 2)≥9, 所以a 2+b 2+c 2≥3.②9=a 2+b 2+c 2+2ab +2bc +2ca =a 2+b 22+b 2+c 22+c 2+a 22+2ab +2bc +2ca≥ab +bc +ca +2ab +2bc +2ca . 即3(ab +bc +ca )≤9, 所以ab +bc +ca ≤3.综上a 2+b 2+c 2≥3且ab +bc +ca ≤3成立.。
2019-2020【提分必做】高考数学一轮复习 第12章 选考部分 4-4 第1讲 坐标系分层演练 文
4-4 第1讲 坐标系1.(2018·山西省高三考前质量检测)已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φy =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.解:(1)C 1:ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)因为M (3,0),N (0,1),所以P ⎝ ⎛⎭⎪⎫32,12, 所以OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6. 所以|PQ |=|ρ2-ρ1|=1,即P ,Q 两间点的距离为1.2.在直角坐标系xOy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,设⊙C 的极坐标方程为ρ=2sin θ,点P 为⊙C 上一动点,点M 的极坐标为⎝⎛⎭⎪⎫4,π2,点Q 为线段PM的中点.(1)求点Q 的轨迹C 1的方程;(2)试判定轨迹C 1和⊙C 的位置关系,并说明理由.解:(1)由⊙C 的极坐标方程为ρ=2sin θ得ρ2=2ρsin θ, 所以⊙C 的直角坐标方程为x 2+y 2-2y =0,又点M 的极坐标为⎝⎛⎭⎪⎫4,π2,所以点M 的直角坐标为(0,4). 设点P (x 0,y 0),点Q (x ,y ), 则有x 20+(y 0-1)2=1.(*) 因为点Q 为线段PM 的中点,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=2y -4,代入(*)得轨迹C 1的方程为x 2+⎝ ⎛⎭⎪⎫y -522=14.(2)因为⊙C 的直角坐标方程为x 2+(y -1)2=1,圆心为(0,1),半径为1, 而轨迹C 1是圆心为⎝ ⎛⎭⎪⎫0,52,半径为12的圆, 所以两圆的圆心距为32,等于两圆半径和,所以两圆外切.3.在极坐标系中,圆C 是以点C ⎝ ⎛⎭⎪⎫2,-π6为圆心,2为半径的圆. (1)求圆C 的极坐标方程; (2)求圆C 被直线l :θ=-5π12(ρ∈R )所截得的弦长. 解:法一:(1)设所求圆上任意一点M (ρ,θ),如图, 在Rt △OAM 中,∠OMA =90°,∠AOM =2π-θ-π6,|OA |=4.因为cos ∠AOM =|OM ||OA |,所以|OM |=|OA |·cos ∠AOM ,即ρ=4cos ⎝ ⎛⎭⎪⎫2π-θ-π6=4cos ⎝⎛⎭⎪⎫θ+π6, 验证可知,极点O 与A ⎝ ⎛⎭⎪⎫4,-π6的极坐标也满足方程,故ρ=4cos ⎝⎛⎭⎪⎫θ+π6为所求.(2)设l :θ=-5π12(ρ∈R )交圆C 于点P ,在Rt △OAP 中,∠OPA =90°, 易得∠AOP =π4,所以|OP |=|OA |cos ∠AOP =22.法二:(1)圆C 是将圆ρ=4cos θ绕极点按顺时针方向旋转π6而得到的圆,所以圆C的极坐标方程是ρ=4cos ⎝⎛⎭⎪⎫θ+π6. (2)将θ=-5π12代入圆C 的极坐标方程ρ=4cos ⎝ ⎛⎭⎪⎫θ+π6,得ρ=22,所以圆C 被直线l :θ=-5π12(ρ∈R )所截得的弦长为22.4.在极坐标系中,曲线C 1,C 2的极坐标方程分别为ρ=-2cos θ,ρcos ⎝ ⎛⎭⎪⎫θ+π3=1. (1)求曲线C 1和C 2的公共点的个数;(2)过极点作动直线与曲线C 2相交于点Q ,在OQ 上取一点P ,使|OP |·|OQ |=2,求点P 的轨迹,并指出轨迹是什么图形.解:(1)C 1的直角坐标方程为(x +1)2+y 2=1,它表示圆心为(-1,0),半径为1的圆.C 2的直角坐标方程为x -3y -2=0,所以曲线C 2为直线,由于圆心到直线的距离为d =|-1-2|2=32>1,所以直线与圆相离,即曲线C 1和C 2没有公共点.(2)设Q (ρ0,θ0),P (ρ,θ),则⎩⎪⎨⎪⎧ρρ0=2,θ=θ0,即⎩⎪⎨⎪⎧ρ0=2ρ,θ0=θ.① 因为点Q (ρ0,θ0)在曲线C 2上, 所以ρ0cos ⎝ ⎛⎭⎪⎫θ0+π3=1.②将①代入②,得2ρcos ⎝⎛⎭⎪⎫θ+π3=1,即ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3为点P 的轨迹方程,化为直角坐标方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +322=1,因此点P 的轨迹是以⎝ ⎛⎭⎪⎫12,-32为圆心,1为半径的圆.5.已知曲线C 1的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎪⎫θ-π4.以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系.(1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)依题意得ρ=22cos ⎝⎛⎭⎪⎫θ-π4=2()cos θ+sin θ,即ρ2=2()ρcos θ+ρsin θ,可得x 2+y 2-2x -2y =0,故C 2的直角坐标方程为()x -12+(y -1)2=2. (2)曲线C 1的极坐标方程为 ρcos ⎝⎛⎭⎪⎫θ-π3=-1, 即ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=-1,化为直角坐标方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32>r =2, 于是直线与圆相离,所以动点M 到曲线C 1的距离的最大值为3+3+222.6.在直角坐标系xOy 中,半圆C 的直角坐标方程为(x -1)2+y 2=1(0≤y ≤1).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=53,射线OM :θ=π3与半圆C的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)由x =ρcos θ,y =ρsin θ,所以半圆C 的极坐标方程是ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(2)设(ρ1,θ1)为点P 的极坐标,则有⎩⎪⎨⎪⎧ρ1=2cos θ1,θ1=π3, 解得⎩⎪⎨⎪⎧ρ1=1,θ1=π3,设(ρ2,θ2)为点Q 的极坐标,则有⎩⎪⎨⎪⎧ρ2(sin θ2+3cos θ2)=53,θ2=π3,解得⎩⎪⎨⎪⎧ρ2=5,θ2=π3,由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=4, 所以线段PQ 的长为4.1.在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的方程为y =(tan α)x ,其中α为直线l 的倾斜角,l 与C 交于A ,B 两点,|AB |=10,求tan α的值.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得 ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153.2.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎪⎫2,π3.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝ ⎛⎭⎪⎫ρ2,θ0+π2,若A 、B 都在曲线C 1上,求1ρ21+1ρ22的值. 解:(1)因为C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,所以C 1的普通方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a ·cos θ(a 为半径),将D ⎝⎛⎭⎪⎫2,π3代入,得2=2a ×12,所以a =2,所以圆C 2的圆心的直角坐标为(2,0),半径为2, 所以C 2的直角坐标方程为(x -2)2+y 2=4.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即ρ2=44sin 2θ+cos 2θ. 所以ρ21=44sin 2θ0+cos 2θ0, ρ22=44sin 2⎝ ⎛⎭⎪⎫θ0+π2+cos 2⎝ ⎛⎭⎪⎫θ0+π2=4sin 2θ0+4cos 2θ0. 所以1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54.。
近年高考数学一轮复习第12章选4系列12.1坐标系学案理(2021年整理)
2019版高考数学一轮复习第12章选4系列12.1 坐标系学案理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第12章选4系列12.1 坐标系学案理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第12章选4系列12.1 坐标系学案理的全部内容。
12.1 坐标系[知识梳理]1.伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:错误!的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.3.极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ,θ),则它们之间的关系为:错误!错误![诊断自测]1.概念思辨(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)点P的直角坐标为(-错误!,错误!),那么它的极坐标可表示为错误!。
( )(3)过极点作倾斜角为α的直线的极坐标方程可表示为θ=α或θ=π+α。
()(4)圆心在极轴上的点(a,0)处,且过极点O的圆的极坐标方程为ρ=2a sinθ.( )答案(1)×(2)√(3)√(4)×2.教材衍化(1)(选修A4-4P15T4)若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y=1-x(0≤x≤1)的极坐标方程为( ) A.ρ=错误!,0≤θ≤错误!B.ρ=错误!,0≤θ≤错误!C.ρ=cosθ+sinθ,0≤θ≤π2D.ρ=cosθ+sinθ,0≤θ≤π4答案A解析∵y=1-x(0≤x≤1),∴ρsinθ=1-ρcosθ(0≤ρcosθ≤1);∴ρ=错误!错误!。
2019高考数学一轮复习 第12章 选考部分章末总结分层演练 文
第12章选考部分章末总结会用向量递归方法讨论排序不等式.1.(选修44 P 8习题1.1 T 5、P 15习题1.3 T 5改编)圆C :x 2+y 2=1经过伸缩变换⎩⎨⎧x ′=2xy ′=2y得到曲线C 1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=12. (1)写出C 1的参数方程和l 的直角坐标方程;(2)设点M (1,0),直线l 与曲线C 1交于A ,B 两点,求|MA |·|MB |与|AB |.解:(1)由已知得⎝ ⎛⎭⎪⎫x ′22+⎝ ⎛⎭⎪⎫y ′22=1,即x ′24+y ′22=1,即C 1:x 24+y 22=1.即C 1的参数方程为⎩⎨⎧x =2cos αy =2sin α(α为参数).由ρcos ⎝ ⎛⎭⎪⎫θ+π3=12得 12ρcos θ -32ρsin θ=12. 则l 的直角坐标方程为x -3y -1=0.(2)点M (1,0)在直线l :x -3y -1=0上,直线l 的倾斜角为π6.所以l 的参数方程为⎩⎪⎨⎪⎧x =1+32t y =12t (t 为参数).代入C 1:x 24+y 22=1得5t 2+43t -12=0,所以t 1t 2=-125,t 1+t 2=-435,所以|MA |·|MB |=|t 1|·|t 2|=|t 1t 2|=125.|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =⎝ ⎛⎭⎪⎫-4352-4×⎝ ⎛⎭⎪⎫-125=1225,所以|MA |·|MB |=125,|AB |=1225.2.(选修44 P 36例1改编)已知直线l的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数,α为l 的倾斜角),以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4cos θsin 2θ. (1)写出l 的普通方程与C 的直角坐标方程;(2)设点M 的极坐标为(1,0),直线l 与C 相交于A ,B解:(1)l 的普通方程为x sin α-y cos α-sin α=0,C 4x . (2)点M 的极坐标为(1,0),即M 的直角坐标为(cos 0,sin 0)在l 上.将⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数),代入y 2=4x 得 (sin 2α)t 2-(4cos α)t -4=0. Δ=16>0.所以t 1+t 2=4cos αsin 2α,t 1t 2154(4)P 37例3改编)曲线C 的极坐标方程为ρ=2cos θ-4sin θ,过点M (1,0)的直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数,α为直线l 的倾斜角),直线l 与曲线C 相交于A ,B 两点.(1)求证:|MA |·|MB |为定值;(2)D 是曲线C 上一点,当α=45°时,求△DAB 面积的最大值. 解:(1)证明:C 的直角坐标方程为x 2+y 2-2x +4y =0.①将直线l :⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数)代入①得t 2+(4sin α)t -1=0.②所以|MA |·|MB |=|t 1t 2|=|-1|=1. 即|MA |·|MB |为定值1. (2)当α=45°时,②式即为t 2+22t -1=0,t 1+t 2=-22,t 1t 2=-1,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 = (-22)2-4×(-1)=23. 由①得(x -1)2+(y +2)2=5, 所以曲线C 的参数方程为⎩⎨⎧x =1+5cos ry =-2+5sin r(r 为参数).可设点D 的坐标为(1+5cos r ,-2+5sin r ),直线l 的普通方程为x -y -1=0,点D 到l 的距离d =|1+5cos r +2-5sin r -1|2=|10cos (r +45°)+2|2.所以d max =5+2. 所以△DAB 面积的最大值为S max =12|AB |·d max =12×23(5+2)=15+6.4.(选修44 P 28例1改编)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 与椭圆C 的极坐标方程分别为ρcos θ+2ρsin θ+32=0,ρ2=4cos 2θ+4sin 2θ. (1)求直线l 与椭圆C 的直角坐标方程;(2)若P 是直线l 上的动点,Q 是椭圆C 上的动点,求|PQ |的最小值,并求此时Q 点的坐标.解:(1)ρcos θ+2ρsin θ+32=0⇒x +2y +32=0, 即直线l 的直角坐标方程为x +2y +32=0.ρ2=4cos 2θ+4sin 2θ⇒ρ2cos 2θ+4ρ2sin 2θ=4⇒x 2+4y 2=4, 即椭圆C 的直角坐标方程为x 24+y 2=1.(2)因为椭圆C :x 24+y 2=1的参数方程为⎩⎪⎨⎪⎧x =2cos αy =sin α(α为参数),所以可设Q (2cos α,sin α). 因此点Q 到直线l 的距离d =|2cos α+2sin α+32|12+22所以当α=2k π+5π4,k ∈Z 所以|PQ |的最小值为105. 此时点Q 的坐标为⎝ ⎛⎭2cos ⎝ ⎛2k π即Q 的坐标为⎝ ⎛⎭⎪⎫-2,-22.)=|3x -1|.M 中的最大元素为a max ,最小元素为a min ,求a max -a min ; ,求1a +1b的最小值.即a max =1,a min =-13,a max -a min =1-⎝ ⎛⎭⎪⎫-13=43.(2)由(1)知,a +b =1,且a ,b ∈R +,所以(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4. 当且仅当a =b =12时取等号,即1a +1b ≥4,所以1a +1b的最小值为4.6.(选修45 P 20习题1.2 T 9、P 37习题3.1 T 8改编)(1)若关于x 的不等式|x -3|+|x -4|≤a 的解集不是空集,求a 的取值范围;(2)若g (x )=x ,且p >0,q >0,p +q =1,求证:pg (x 1)+qg (x 2)≤g (px 1+qx 2)(x 1,x 2∈[0,+∞)).解:(1)法一:|x -3|+|x -4|≥|(x -3)-(x -4)|=1. 即|x -3|+|x -4|的最小值为1.所以|x -3|+|x -4|≤a 的解集不是空集时,a ≥1. 法二:设f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧-2x +7,x <3,1,3≤x ≤4,2x -7,x >4.函数f (x )的图象为所以f (x )min =1.则f (x )≤a 的解集不是空集时,a ≥1. (2)证明:由p >0,q >0,p +q =1,要证不等式pg (x 1)+qg (x 2)≤g (px 1+qx 2)成立,即为证明p x 1+q x 2≤ px 1+qx 2成立.(*) 法一:(分解法)要证(*)式成立,即证 (p x 1+q x 2)2≤(px 1+qx 2)2成立. 即证:p 2x 1+2pq x 1x 2+q 2x 2≤px 1+qx 2, 即证px 1(1-p )+qx 2(1-q )-2pq x 1x 2≥0. 因为p +q =1.只需证pqx 1+pqx 2-2pq x 1x 2≥0成立. 即证(x 1-x 2)2≥0.因为(x 1-x 2)2≥0显然成立.所以原不等式成立.法二:(柯西不等式法)因为(p x 1+q x 2)2=(p ·px 1+q ·qx 2)2≤[(p )2+(q )2][(px 1)2+(qx 2)2] =(p +q )(px 1+qx 2). 又因为p +q =1.所以(p x 1+q x 2)2≤(px 1+qx 2).所以p x 1+q x 2≤ px 1+qx 2. 即pg (x 1)+qg (x 2)≤g (px 1+qx 2).7.(选修45 P 17例5、P 26习题2.2 T 9改编)已知函数f (x )=|x +1|. (1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).解:(1)①当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;③当x ≥-12时,原不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以,要证f (ab )>f (a )-f (-b ),只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2, 即证a 2b 2+2ab +1>a 2+2ab +b 2,即证a 2b 2-a 2-b 2+1>0,即证(a 2-1)(b 2-1)>0. 因为a ,b ∈M ,所以a 2>1,b 2>1, 所以(a 2-1)(b 2-1)>0成立, 改编)设a ,b ,c ∈R +,且a +b +c =3. bc +ca ≤3. b +c =3. . [(a +b )+(b +c )+(c +a )]⎝⎛⎭⎪⎫a +b +1b +c +1c +a≥⎝⎛⎭⎪⎫a +b ·1a +b +b +c ·1b +c +c +a ·1c +a 2=9, 即6⎝ ⎛⎭⎪⎫1a +b +1b +c +1c +a ≥9.所以1a +b +1b +c +1c +a ≥32,即1a+b+1b+c+1c+a的最小值为32.(2)证明:因为a+b+c=3,所以(a+b+c)2=9,①9=a2+b2+c2+2ab+2bc+2ca,9≤a2+b2+c2+a2+b2+b2+c2+c2+a2,即3(a2+b2+c2)≥9,所以a2+b2+c2≥3.②9=a2+b2+c2+2ab+2bc+2ca=a2+b22+b2+c22+c2+a22+2ab+2bc+2ca≥ab+bc+ca+2ab+2bc+2ca.即3(ab+bc+ca)≤9,所以ab+bc+ca≤3.综上a2+b2+c2≥3且ab+bc+ca≤3成立.。
推荐2019高考数学一轮复习第12章鸭部分4_4第1讲坐标系分层演练文
4-4 第1讲 坐标系1.(2018·山西省高三考前质量检测)已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φy =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.解:(1)C 1:ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)因为M (3,0),N (0,1),所以P ⎝ ⎛⎭⎪⎫32,12, 所以OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6. 所以|PQ |=|ρ2-ρ1|=1,即P ,Q 两间点的距离为1.2.在直角坐标系xOy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,设⊙C 的极坐标方程为ρ=2sin θ,点P 为⊙C 上一动点,点M 的极坐标为⎝⎛⎭⎪⎫4,π2,点Q 为线段PM的中点.(1)求点Q 的轨迹C 1的方程;(2)试判定轨迹C 1和⊙C 的位置关系,并说明理由.解:(1)由⊙C 的极坐标方程为ρ=2sin θ得ρ2=2ρsin θ, 所以⊙C 的直角坐标方程为x 2+y 2-2y =0,又点M 的极坐标为⎝⎛⎭⎪⎫4,π2,所以点M 的直角坐标为(0,4). 设点P (x 0,y 0),点Q (x ,y ), 则有x 20+(y 0-1)2=1.(*) 因为点Q 为线段PM 的中点,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=2y -4,代入(*)得轨迹C 1的方程为x 2+⎝ ⎛⎭⎪⎫y -522=14.(2)因为⊙C 的直角坐标方程为x 2+(y -1)2=1,圆心为(0,1),半径为1, 而轨迹C 1是圆心为⎝ ⎛⎭⎪⎫0,52,半径为12的圆, 所以两圆的圆心距为32,等于两圆半径和,所以两圆外切.3.在极坐标系中,圆C 是以点C ⎝ ⎛⎭⎪⎫2,-π6为圆心,2为半径的圆. (1)求圆C 的极坐标方程; (2)求圆C 被直线l :θ=-5π12(ρ∈R )所截得的弦长. 解:法一:(1)设所求圆上任意一点M (ρ,θ),如图, 在Rt △OAM 中,∠OMA =90°,∠AOM =2π-θ-π6,|OA |=4.因为cos ∠AOM =|OM ||OA |,所以|OM |=|OA |·cos ∠AOM ,即ρ=4cos ⎝ ⎛⎭⎪⎫2π-θ-π6=4cos ⎝⎛⎭⎪⎫θ+π6, 验证可知,极点O 与A ⎝ ⎛⎭⎪⎫4,-π6的极坐标也满足方程,故ρ=4cos ⎝⎛⎭⎪⎫θ+π6为所求.(2)设l :θ=-5π12(ρ∈R )交圆C 于点P ,在Rt △OAP 中,∠OPA =90°, 易得∠AOP =π4,所以|OP |=|OA |cos ∠AOP =22.法二:(1)圆C 是将圆ρ=4cos θ绕极点按顺时针方向旋转π6而得到的圆,所以圆C的极坐标方程是ρ=4cos ⎝⎛⎭⎪⎫θ+π6. (2)将θ=-5π12代入圆C 的极坐标方程ρ=4cos ⎝ ⎛⎭⎪⎫θ+π6,得ρ=22,所以圆C 被直线l :θ=-5π12(ρ∈R )所截得的弦长为22.4.在极坐标系中,曲线C 1,C 2的极坐标方程分别为ρ=-2cos θ,ρcos ⎝ ⎛⎭⎪⎫θ+π3=1. (1)求曲线C 1和C 2的公共点的个数;(2)过极点作动直线与曲线C 2相交于点Q ,在OQ 上取一点P ,使|OP |·|OQ |=2,求点P 的轨迹,并指出轨迹是什么图形.解:(1)C 1的直角坐标方程为(x +1)2+y 2=1,它表示圆心为(-1,0),半径为1的圆.C 2的直角坐标方程为x -3y -2=0,所以曲线C 2为直线,由于圆心到直线的距离为d =|-1-2|2=32>1,所以直线与圆相离,即曲线C 1和C 2没有公共点.(2)设Q (ρ0,θ0),P (ρ,θ),则⎩⎪⎨⎪⎧ρρ0=2,θ=θ0,即⎩⎪⎨⎪⎧ρ0=2ρ,θ0=θ.① 因为点Q (ρ0,θ0)在曲线C 2上, 所以ρ0cos ⎝ ⎛⎭⎪⎫θ0+π3=1.②将①代入②,得2ρcos ⎝⎛⎭⎪⎫θ+π3=1,即ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3为点P 的轨迹方程,化为直角坐标方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +322=1,因此点P 的轨迹是以⎝ ⎛⎭⎪⎫12,-32为圆心,1为半径的圆.5.已知曲线C 1的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎪⎫θ-π4.以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系.(1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)依题意得ρ=22cos ⎝⎛⎭⎪⎫θ-π4=2()cos θ+sin θ,即ρ2=2()ρcos θ+ρsin θ,可得x 2+y 2-2x -2y =0,故C 2的直角坐标方程为()x -12+(y -1)2=2. (2)曲线C 1的极坐标方程为 ρcos ⎝⎛⎭⎪⎫θ-π3=-1, 即ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=-1,化为直角坐标方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32>r =2, 于是直线与圆相离,所以动点M 到曲线C 1的距离的最大值为3+3+222.6.在直角坐标系xOy 中,半圆C 的直角坐标方程为(x -1)2+y 2=1(0≤y ≤1).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=53,射线OM :θ=π3与半圆C的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)由x =ρcos θ,y =ρsin θ,所以半圆C 的极坐标方程是ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(2)设(ρ1,θ1)为点P 的极坐标,则有⎩⎪⎨⎪⎧ρ1=2cos θ1,θ1=π3, 解得⎩⎪⎨⎪⎧ρ1=1,θ1=π3,设(ρ2,θ2)为点Q 的极坐标,则有⎩⎪⎨⎪⎧ρ2(sin θ2+3cos θ2)=53,θ2=π3,解得⎩⎪⎨⎪⎧ρ2=5,θ2=π3,由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=4, 所以线段PQ 的长为4.1.在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的方程为y =(tan α)x ,其中α为直线l 的倾斜角,l 与C 交于A ,B 两点,|AB |=10,求tan α的值.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得 ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153.2.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎪⎫2,π3.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝ ⎛⎭⎪⎫ρ2,θ0+π2,若A 、B 都在曲线C 1上,求1ρ21+1ρ22的值. 解:(1)因为C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,所以C 1的普通方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a ·cos θ(a 为半径),将D ⎝⎛⎭⎪⎫2,π3代入,得2=2a ×12,所以a =2,所以圆C 2的圆心的直角坐标为(2,0),半径为2, 所以C 2的直角坐标方程为(x -2)2+y 2=4.。
教育最新K122019高考数学一轮复习 第12章 选考部分 4-4 第2讲 参数方程分层演练 文
4-4 第2讲 参数方程1.(2018·宝鸡质量检测(一))极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,已知曲线C 的极坐标方程为ρ=2(cos θ+sin θ).(1)求C 的直角坐标方程;(2)直线l :⎩⎪⎨⎪⎧x =12t y =1+32t (t 为参数)与曲线C 交于A ,B 两点,与y 轴交于点E ,求|EA |+|EB |.解:(1)由ρ=2(cos θ+sin θ)得ρ2=2ρ(cos θ+sin θ), 得曲线C 的直角坐标方程为x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2.(2)将l 的参数方程代入曲线C 的直角坐标方程,化简得t 2-t -1=0,点E 对应的参数t =0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=1,t 1t 2=-1,所以|EA |+|EB |=|t 1|+|t 2|=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=5.2.已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=14,求直线l 的倾斜角α的值. 解:(1)由ρ=4cos θ,得(x -2)2+y 2=4.(2)将⎩⎪⎨⎪⎧x =1+t cos αy =t sin α代入圆的方程得(t cos α-1)2+(t sin α)2=4, 化简得t 2-2t cos α-3=0,设A ,B 两点对应的参数分别为t 1,t 2,则⎩⎪⎨⎪⎧t 1+t 2=2cos αt 1t 2=-3,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12=14, 所以4cos 2α=2,cos α=±22,α=π4或3π4.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y , 所以x 2+(y -3)2=3.(2)设P ⎝ ⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值, 此时,点P 的直角坐标为(3,0).4.(2018·西安八校联考)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ,θ∈[0,2π).(1)求曲线C 的直角坐标方程;(2)在曲线C 上求一点D ,使它到直线l :⎩⎨⎧x =3t +3y =-3t +2(t 为参数)的距离最短,并求出点D 的直角坐标.解:(1)由ρ=2sin θ,θ∈[0,2π),可得ρ2=2ρsin θ. 因为ρ2=x 2+y 2,ρsin θ=y ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0(或x 2+(y -1)2=1.) (2)因为直线l 的参数方程为⎩⎨⎧x =3t +3,y =-3t +2(t 为参数),消去t 得直线l 的普通方程为y =-3x +5.因为曲线C :x 2+(y -1)2=1是以C (0,1)为圆心、1为半径的圆,(易知C ,l 相离) 设点D (x 0,y 0),且点D 到直线l :y =-3x +5的距离最短, 所以曲线C 在点D 处的切线与直线l :y =-3x +5平行. 即直线CD 与l 的斜率的乘积等于-1,即y 0-1x 0×(-3)=-1,又x 20+(y 0-1)2=1, 可得x 0=-32(舍去)或x 0=32,所以y 0=32, 即点D 的坐标为⎝⎛⎭⎪⎫32,32. 5.(2018·成都第一次诊断性检测)在平面直角坐标系xOy 中,倾斜角为α(α≠π2)的直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcos 2θ-4sin θ=0.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点P (1,0).若点M 的极坐标为⎝⎛⎭⎪⎫1,π2,直线l 经过M 且与曲线C 相交于A ,B两点,设线段AB 的中点为Q ,求|PQ |的值.解:(1)因为直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =t sin α(t 为参数),所以直线l 的普通方程为y =tan α·(x -1).由ρcos 2θ-4sin θ=0得ρ2cos 2θ-4ρsin θ=0,即x 2-4y =0. 所以曲线C 的直角坐标方程为x 2=4y .(2)因为点M 的极坐标为⎝⎛⎭⎪⎫1,π2,所以点M 的直角坐标为(0,1). 所以tan α=-1,直线l 的倾斜角α=3π4.所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t y =22t (t 为参数).代入x 2=4y ,得t 2-62t +2=0. 设A ,B 两点对应的参数分别为t 1,t 2. 因为Q 为线段AB 的中点, 所以点Q 对应的参数值为t 1+t 22=622=32.又点P (1,0),则|PQ |=⎪⎪⎪⎪⎪⎪t 1+t 22=32.6.(2018·湘中名校联考)已知直线l :⎩⎪⎨⎪⎧x =1+12ty =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12,纵坐标压缩为原来的32,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 的距离d 的最小值.解:(1)l 的普通方程为y =3(x -1),C 1的普通方程为x 2+y 2=1, 联立⎩⎨⎧y =3(x -1)x 2+y 2=1,解得l 与C 1的交点坐标分别为(1,0),⎝ ⎛⎭⎪⎫12,-32, 所以|AB |=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0+322=1. (2)C 2的参数方程为⎩⎪⎨⎪⎧x =12cos θy =32sin θ(θ为参数),故点P 的坐标是⎝ ⎛⎭⎪⎫12cos θ,32sin θ,从而点P 到直线l 的距离d =⎪⎪⎪⎪⎪⎪32cos θ-32sin θ-32=34⎣⎢⎡⎦⎥⎤2sin (θ-π4)+2, 由此当sin ⎝⎛⎭⎪⎫θ-π4=-1时,d 取得最小值,且最小值为64(2-1).1.在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为θ=π4(ρ∈R ),曲线C 的参数方程为⎩⎨⎧x =2cos θy =sin θ. (1)写出直线l 的直角坐标方程及曲线C 的普通方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若|MA |·|MB |=83,求点M的轨迹.解:(1)直线l :y =x ,曲线C :x 22+y 2=1.(2)设点M (x 0,y 0),过点M 的直线为l 1:⎩⎪⎨⎪⎧x =x 0+2t2y =y 0+2t 2(t 为参数), 由直线l 1与曲线C 相交可得3t 22+2tx 0+22ty 0+x 20+2y 20-2=0.由|MA |·|MB |=83,得⎪⎪⎪⎪⎪⎪⎪⎪x 20+2y 20-232=83, 即x 20+2y 20=6,x 2+2y 2=6表示一椭圆,设直线l 1为y =x +m ,将y =x +m 代入x 22+y 2=1得,3x 2+4mx +2m 2-2=0, 由Δ>0得-3<m <3,故点M 的轨迹是椭圆x 2+2y 2=6夹在平行直线y =x ±3之间的两段椭圆弧. 2.(2018·兰州市实战考试)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t y =5+22t (t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的方程为ρ=25sin θ.(1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P 坐标为(3,5),圆C 与直线l 交于A 、B 两点,求|PA |+|PB |的值. 解:(1)由⎩⎪⎨⎪⎧x =3-22t y =5+22t 得直线l 的普通方程为x +y -3-5=0.又由ρ=25sin θ得圆C 的直角坐标方程为x 2+y 2-25y =0, 即x 2+(y -5)2=5.(2)把直线l 的参数方程代入圆C 的直角坐标方程,得 ⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1、t 2是上述方程的两实数根, 所以t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),A 、B 两点对应的参数分别为t 1、t 2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=32.。
2019版高考数学一轮复习 第12章 选4系列 12.1 坐标系课件 文
题型1 平面直角坐标系中的伸缩变换
典例 将圆x2+y2=1上每一点的横坐标保持不变,纵
坐标变为原来的2倍,得曲线C. (1)求曲线C的标准方程; (2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标
原点为极点,x轴正半轴为极轴建立极坐标系,求过线段 P1P2的中点且与l垂直的直线的极坐标方程.
2.极坐标
一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意 实数.
3.极坐标与直角坐标的互化 设M是平面内任意一点,它的直角坐标是(x,y),极坐 标是(ρ,θ),则它们之间的关系为:
[诊断自测] 1.概念思辨 (1)平面直角坐标系内的点与坐标能建立一一对应关 系,在极坐标系中点与坐标也是一一对应关系.( × ) (2)点P的直角坐标为(- 2 , 2 ),那么它的极坐标可 表示为2,34π.( √ )
解析 ∵y=1-x(0≤x≤1), ∴ρsinθ=1-ρcosθ(0≤ρcosθ≤1); ∴ρ=sinθ+1 cosθ0≤θ≤π2.故选A.
(2)(选修A4-4P8T5)通过平面直角坐标系中的平移变换
和伸缩变换,可以把椭圆
x+12 9
+
y-412=1变为圆心在原
点的单位圆,求上述平移变换和伸缩变换,以及这两种变
(3)过极点作倾斜角为α的直线的极坐标方程可表示为θ =α或θ=π+α.( √ )
(4)圆心在极轴上的点(a,0)处,且过极点O的圆的极坐 标方程为ρ=2asinθ.( × )
2.教材衍化 (1)(选修A4-4P15T4)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y=1- x(0≤x≤1)的极坐标方程为( ) A.ρ=cosθ+1 sinθ,0≤θ≤π2 B.ρ=cosθ+1 sinθ,0≤θ≤π4 C.ρ=cosθ+sinθ,0≤θ≤π2 D.ρ=cosθ+sinθ,0≤θ≤π4
高考数学一轮复习 第12章 选修4系列 第1讲 坐标系创新教学案(含解析)新人教版-新人教版高三选修
第十二章 选修4系列第1讲 坐标系[考纲解读] 1.了解坐标系的作用,掌握平面直角坐标系中的伸缩变换. 2.了解极坐标的基本概念,能在极坐标系中用极坐标表示点的位置,能进行极坐标和直角坐标的互化.(重点)3.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心为极点的圆)的方程.(难点)[考向预测] 从近三年高考情况来看,本讲是高考中的必考内容.预测2021年将会考查:极坐标与直角坐标的转化,极坐标方程化为直角坐标方程,要特别注意图象的伸缩变换.题型为解答题,属中、低档题型.1.伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:□01⎩⎨⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),那么它们之间的关系为:⎩⎨⎧x =□01ρcos θ,y =□02ρsin θ;⎩⎪⎨⎪⎧ρ2=□03x 2+y 2,tan θ=□04yx (x ≠0).1.概念辨析(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)点P 的直角坐标为(-2,2),那么它的极坐标可表示为⎝ ⎛⎭⎪⎫2,3π4.( )(3)过极点作倾斜角为α的直线的极坐标方程可表示为θ=α或θ=π+α.( ) (4)圆心在极轴上的点(a,0)处,且过极点O 的圆的极坐标方程为ρ=2a sin θ.( )答案 (1)× (2)√ (3)√ (4)×2.小题热身(1)设平面内伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,那么在这一坐标变换下正弦曲线y =sin x 的方程变为( )A .y =13sin2x B.y =3sin 12x C .y =13sin x2 D.y =3sin2x答案 D解析由得⎩⎨⎧x =2x ′,y =13y ′代入y =sin x ,得13y ′=sin2x ′,即y ′=3sin2x ′,所以y =sin x 的方程变为y =3sin2x .(2)在极坐标系中A ⎝ ⎛⎭⎪⎫2,-π3,B ⎝ ⎛⎭⎪⎫4,2π3两点间的距离为________.答案 6解析 解法一:(数形结合)在极坐标系中,A ,B 两点如下图,|AB |=|OA |+|OB |=6.解法二:∵A ⎝ ⎛⎭⎪⎫2,-π3,B ⎝ ⎛⎭⎪⎫4,2π3的直角坐标为A (1,-3),B (-2,23),∴|AB |=(-2-1)2+(23+3)2=6.(3)曲线C 1:θ=π6与曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ+π6=32的交点坐标为________.答案 ⎝ ⎛⎭⎪⎫1,π6解析 将θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,得ρsin π3=32,所以ρ=1,所以曲线C 1与曲线C 2的交点坐标为⎝ ⎛⎭⎪⎫1,π6.(4)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为____________________.答案 θ=π2(ρ∈R )和ρcos θ=2解析 圆ρ=2cos θ与极轴的交点的极坐标为(0,0)和(2,0).过这两个点垂直于极轴的两条直线即为所求,它们的方程分别为θ=π2(ρ∈R )和ρcos θ=2.题型 一 平面直角坐标系中的伸缩变换在同一平面直角坐标系中,求一个伸缩变换,使得圆x 2+y 2=1变换为椭圆x 29+y 24=1.解 设伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),由题知λ2x 29+μ2y 24=1,即⎝ ⎛⎭⎪⎫λ32x 2+⎝ ⎛⎭⎪⎫μ22y 2=1.与x 2+y 2=1比较系数,得⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫λ32=1,⎝ ⎛⎭⎪⎫μ22=1,故⎩⎪⎨⎪⎧λ=3,μ=2,所以伸缩变换为⎩⎪⎨⎪⎧x ′=3x ,y ′=2y ,即先使圆x 2+y 2=1上的点的纵坐标不变,将圆上的点的横坐标伸长到原来的3倍,得到椭圆x 29+y 2=1,再将该椭圆上点的横坐标不变,纵坐标伸长到原来的2倍,得到椭圆x 29+y 24=1.伸缩变换后方程的求法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.见举例说明.提醒:应用伸缩变换时,要分清变换前的点的坐标(x ,y )与变换后的坐标(x ′,y ′).假设函数y =f (x )的图象在伸缩变换φ:⎩⎨⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝ ⎛⎭⎪⎫x ′+π6,求函数y =f (x )的最小正周期.解 由题意,把变换公式代入曲线y ′=3sin ⎝ ⎛⎭⎪⎫x ′+π6得3y =3sin ⎝ ⎛⎭⎪⎫2x +π6,整理得y =sin ⎝ ⎛⎭⎪⎫2x +π6,故f (x )=sin ⎝⎛⎭⎪⎫2x +π6.所以y =f (x )的最小正周期为2π2=π. 题型 二 极坐标与直角坐标的互化以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=21-sin θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线C 于点P ,Q ,假设|OP |=3|OQ |,求直线l 的极坐标方程.解 (1)∵ρ=x 2+y 2,ρsin θ=y ,ρ=21-sin θ可化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4. (2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,∴直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).1.求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式.(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程. 2.极坐标方程与直角坐标方程的互化(1)直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.(2)极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.3.极角的确定由tan θ确定角θ时,应根据点P 所在象限取最小正角. (1)当x ≠0时,θ角才能由tan θ=yx 按上述方法确定.(2)当x =0时,tan θ没有意义,这时可分三种情况处理:当x =0,y =0时,θ可取任何值;当x =0,y >0时,可取θ=π2;当x =0,y <0时,可取θ=3π2.(2019·某某模拟)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1:ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,C 2:ρ2=13-4sin 2θ.(1)求曲线C 1,C 2的直角坐标方程;(2)曲线C 1和C 2的交点为M ,N ,求以MN 为直径的圆与y 轴的交点坐标.解 (1)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,得 ρ⎝ ⎛⎭⎪⎫sin θcos π4+cos θ·sin π4=22. 将ρsin θ=y ,ρcos θ=x 代入上式,得x +y =1. 故C 1的直角坐标方程为x +y =1. 同理由ρ2=13-4sin 2θ,可得3x 2-y 2=1. 故C 2的直角坐标方程为3x 2-y 2=1.(2)解法一:设以MN 为直径的圆与y 轴的交点为P ,那么PM ⊥PN . 设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧3x 2-y 2=1,x +y =1,得3x 2-(1-x )2=1, 即x 2+x -1=0.∴x 1+x 2=-1,x 1x 2=-1,那么线段MN 的中点坐标为⎝ ⎛⎭⎪⎫-12,32.∴|MN |=1+(-1)2|x 1-x 2|=2×1-4×(-1)=10.∴以MN 为直径的圆的方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322=⎝⎛⎭⎪⎫1022. 令x =0,得14+⎝ ⎛⎭⎪⎫y -322=104,即⎝ ⎛⎭⎪⎫y -322=94,∴y =0或y =3,∴所求点P 的坐标为(0,0)或(0,3).解法二:设以MN 为直径的圆与y 轴的交点为P ,那么PM ⊥PN . 设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧3x 2-y 2=1,x +y =1,得3x 2-(1-x )2=1, 即x 2+x -1=0.∴x 1+x 2=-1,x 1x 2=-1. 设A (x ,y )是圆上任意一点,那么 MA →·NA →=(x -x 1,y -y 1)·(x -x 2,y -y 2) =x 2-(x 1+x 2)x +x 1x 2+y 2-(y 1+y 2)y +y 1y 2=x 2-(x 1+x 2)x +x 1x 2+y 2-(-x 1-x 2+2)y +x 1x 2-(x 1+x 2)+1 =x 2+y 2+x -3y =0,∴以MN 为直径的圆的方程为x 2+y 2+x -3y =0. 令x =0,得y 2-3y =0,∴y =0或y =3, ∴所求点P 的坐标为(0,0)或(0,3).题型 三 极坐标方程的应用角度1 极径几何意义的应用1.在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =4cos α+2,y =4sin α(α为参数),以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为θ=π6(ρ∈R ).(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|AB |的值.解 (1)将方程⎩⎪⎨⎪⎧x =4cos α+2,y =4sin α,消去参数α得x 2+y 2-4x -12=0,∴曲线C 的普通方程为x 2+y 2-4x -12=0,将x 2+y 2=ρ2,x =ρcos θ代入上式可得ρ2-4ρcos θ=12,∴曲线C 的极坐标方程为ρ2-4ρcos θ=12.(2)设A ,B 两点的极坐标方程分别为⎝ ⎛⎭⎪⎫ρ1,π6,⎝ ⎛⎭⎪⎫ρ2,π6,由⎩⎨⎧ρ2-4ρcos θ=12,θ=π6,消去θ得ρ2-23ρ-12=0,根据题意可得ρ1,ρ2是方程ρ2-23ρ-12=0的两根,∴ρ1+ρ2=23,ρ1ρ2=-12,∴|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=215.角度2 用极坐标解最值和取值X 围问题2.圆C 的方程为(x +1)2+(y -1)2=4.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)假设直线l :θ=α(α∈[0,π),ρ∈R )与圆C 相交于A ,B 两点,设线段AB 的中点为M ,求|OM |的最大值.解 (1)由圆C :(x +1)2+(y -1)2=4.及x =ρcos θ,y =ρsin θ,得ρ2+2ρ(cos θ-sin θ)-2=0.(2)由⎩⎪⎨⎪⎧θ=α,ρ2+2ρ(cos θ-sin θ)-2=0,得ρ2+2ρ(cos α-sin α)-2=0.设点A (ρ1,α),B (ρ2,α),那么ρ1+ρ2=2(sin α-cos α)=22sin ⎝ ⎛⎭⎪⎫α-π4.由|OM |=ρ1+ρ22,得|OM |=2sin ⎝ ⎛⎭⎪⎫α-π4≤ 2.因为α∈[0,π),所以当α=3π4时,|OM |取得最大值,最大值为 2.极坐标方程及其应用的类型及解题策略(1)求极坐标方程.可在平面直角坐标系中,求出曲线的方程,然后再转化为极坐标方程.(2)求点到直线的距离.先将极坐标系下点的坐标、直线方程转化为平面直角坐标系下点的坐标、直线方程,然后利用直角坐标系中点到直线的距离公式求解.(3)求线段的长度.先将极坐标系下的点的坐标、曲线方程转化为平面直角坐标系下的点的坐标、曲线方程,然后再求线段的长度.1.曲线C 的极坐标方程为ρ=23cos θ+2sin θ,直线l 1:θ=π6(ρ∈R ),直线l 2:θ=π3(ρ∈R ).以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系.(1)求直线l 1,l 2的直角坐标方程以及曲线C 的参数方程;(2)假设直线l 1与曲线C 交于O ,A 两点,直线l 2与曲线C 交于O ,B 两点,求△AOB 的面积.解 (1)依题意,直线l 1的直角坐标方程为y =33x ,直线l 2的直角坐标方程为y =3x .由ρ=23cos θ+2sin θ,得ρ2=23ρcos θ+2ρsin θ. 由x =ρcos θ,y =ρsin θ,代入上式 得(x -3)2+(y -1)2=4.所以曲线C 的参数方程为⎩⎪⎨⎪⎧x =3+2cos α,y =1+2sin α(α为参数).(2)由⎩⎨⎧θ=π6,ρ=23cos θ+2sin θ,得|OA |=4.同理,|OB |=2 3. 又∠AOB =π6,所以S △AOB =12|OA ||OB |sin ∠AOB =23, 即△AOB 的面积为2 3.2.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+cos α,y =2+sin α(α为参数),直线C 2的直角坐标方程为y =3x ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1和直线C 2的极坐标方程;(2)假设直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |.解 (1)由曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =2+sin α(α为参数),得曲线C 1的普通方程为(x -2)2+(y -2)2=1,那么C 1的极坐标方程为ρ2-4ρcos θ-4ρsin θ+7=0,由于直线C 2过原点,且倾斜角为π3, 故其极坐标方程为θ=π3(ρ∈R ).(2)由⎩⎨⎧ρ2-4ρcos θ-4ρsin θ+7=0,θ=π3,得ρ2-(23+2)ρ+7=0,设A ,B 对应的极径分别为ρ1,ρ2, 那么ρ1+ρ2=23+2,ρ1ρ2=7,∴1|OA |+1|OB |=|OA |+|OB ||OA |·|OB |=ρ1+ρ2ρ1ρ2=23+27.组 基础关1.在极坐标系中,圆C 经过点P ⎝ ⎛⎭⎪⎫2,π3,圆心C 为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-3与极轴的交点,求圆C 的极坐标方程.解 在直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-3中,令θ=0得ρ=2.所以圆C 的圆心坐标为C (2,0). 因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π3,所以圆C 的半径|PC |=22+22-2×2×2×cos π3=2,所以圆C 的极坐标方程为ρ=4cos θ.2.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝ ⎛⎭⎪⎫θ+π4=22上的动点,求M ,N 的最小距离.解 因为M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝ ⎛⎭⎪⎫θ+π4=22上的动点,即M ,N 分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.3.(2019·某某省会宁二中模拟)在平面直角坐标系中,直线l 的参数方程是⎩⎨⎧x =t ,y =3t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+ρ2sin 2θ-2ρsin θ-3=0.(1)求直线l 的极坐标方程;(2)假设直线l 与曲线C 相交于A ,B 两点,求AB 的长. 解 (1)由⎩⎪⎨⎪⎧x =t ,y =3t ,得y =3x ,∴在平面直角坐标系中,直线l 经过坐标原点,倾斜角是π3, 因此,直线l 的极坐标方程是θ=π3(ρ∈R ). (2)把θ=π3代入曲线C 的极坐标方程ρ2cos 2θ+ρ2sin 2θ-2ρsin θ-3=0,得ρ2-3ρ-3=0,由一元二次方程根与系数的关系,得ρ1+ρ2=3,ρ1ρ2=-3, ∴|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=(3)2-4×(-3)=15.4.在平面直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =m -m cos α,y =m sin α(m >0,α为参数),直线C 2:y =33x ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)写出曲线C 1,直线C 2的极坐标方程;(2)直线C 3:θ=5π6(ρ∈R ),设曲线C 1与直线C 2交于点O ,A ,曲线C 1与直线C 3交于点O ,B ,△OAB 的面积为63,某某数m 的值.解 (1)由题意消去曲线C 1的参数α,得曲线C 1的普通方程为(x -m )2+y 2=m 2.∵x =ρcos θ,y =ρsin θ,∴曲线C 1的极坐标方程为ρ=2m cos θ. 直线C 2的极坐标方程为θ=π6(ρ∈R ).(2)由⎩⎨⎧θ=π6,ρ=2m cos θ,得⎩⎨⎧ ρA =3m ,θ=π6,∴A ⎝ ⎛⎭⎪⎫3m ,π6. 由⎩⎨⎧θ=5π6,ρ=2m cos θ,得⎩⎨⎧ρB =-3m ,θ=-π6,∴B ⎝ ⎛⎭⎪⎫-3m ,-π6. ∴S △OAB =12ρA ·|ρB |·sin ∠AOB =63, 即12·3m ·3m ·sin π3=63,解得m 2=8.又m >0,∴m =2 2.组 能力关1.(2020·某某适应性测试)在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 1的极坐标方程为ρ=4cos θ,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求曲线C 2的直角坐标方程;(2)过原点且倾斜角为α⎝ ⎛⎭⎪⎫π6<α≤π4的射线l 与曲线C 1,C 2分别相交于A ,B 两点(A ,B 异于原点),求|OA |·|OB |的取值X 围.解 (1)由曲线C 2的极坐标方程为ρcos 2θ=sin θ, 两边同乘以ρ,得ρ2cos 2θ=ρsin θ, 故曲线C 2的直角坐标方程为x 2=y . (2)射线l 的极坐标方程为θ=α,π6<α≤π4, 把射线l 的极坐标方程代入曲线C 1的极坐标方程得 |OA |=ρ=4cos α,把射线l 的极坐标方程代入曲线C 2的极坐标方程得 |OB |=ρ=sin αcos 2α,∴|OA |·|OB |=4cos α·sin αcos 2α=4tan α. ∵π6<α≤π4,∴|OA |·|OB |的取值X 围是433,4.,2.(2019·全国卷Ⅱ)在极坐标系中,O 为极点,点M (ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A (4,0)且与OM 垂直,垂足为P .,(1)当θ0=π3时,求ρ0及l 的极坐标方程;,(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.解 (1)因为M (ρ0,θ0)在曲线C 上,,所以当θ0=π3时,ρ0=4sin π3=2 3.,由得|OP |=|OA |cos π3=2.,设Q (ρ,θ)为l 上除P 外的任意一点.,在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP |=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上,所以,l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=2.(2)设P (ρ,θ),在Rt △OAP 中,|OP |=|OA |cos θ=4cos θ, 即ρ=4cos θ.因为P 在线段OM 上,且AP ⊥OM , 所以θ的取值X 围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.3.在平面直角坐标系xOy 中,直线C 1:x +y -1=0,曲线C 2:⎩⎨⎧x =a cos φ,y =1+a sin φ(φ为参数,a >0),以坐标原点O 为极点,以x 轴的非负半轴为极轴,建立极坐标系.(1)说明C 2是哪一种曲线,并将C 2的方程化为极坐标方程;(2)曲线C 3的极坐标方程为θ=α0(ρ>0),其中tan α0=2,α0∈⎝ ⎛⎭⎪⎫0,π2,且曲线C 3分别交C 1,C 2于A ,B 两点.假设|OB |=3|OA |+5,求a 的值.解 (1)由⎩⎪⎨⎪⎧x =a cos φ,y =1+a sin φ消去参数φ,得C 2的普通方程为x 2+(y -1)2=a 2.∴C 2是以(0,1)为圆心,a 为半径的圆. ∵x =ρcos θ,y =ρsin θ,∴C 2的极坐标方程为(ρcos θ)2+(ρsin θ-1)2=a 2, 即C 2的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 3的极坐标方程为θ=α0(ρ>0),tan α0=2,α0∈⎝ ⎛⎭⎪⎫0,π2,∴曲线C 3的直角坐标方程为y =2x (x >0),sin α0=255. 由⎩⎪⎨⎪⎧x +y -1=0,y =2x ,解得⎩⎪⎨⎪⎧x =13,y =23,∴A ⎝ ⎛⎭⎪⎫13,23. ∴|OA |=53.∵|OB |=3|OA |+5,∴|OB |=2 5. 故点B 的极坐标为(25,α0), 代入ρ2-2ρsin θ+1-a 2=0,得a =13.4.(2019·全国卷Ⅲ)如图,在极坐标系Ox 中,A (2,0),B ⎝ ⎛⎭⎪⎫2,π4,C ⎝ ⎛⎭⎪⎫2,3π4,D (2,π),弧AB ︵ ,BC ︵ ,CD ︵ 所在圆的圆心分别是(1,0),⎝ ⎛⎭⎪⎫1,π2,(1,π),曲线M 1是弧AB ︵ ,曲线M 2是弧BC ︵ ,曲线M 3是弧CD ︵.(1)分别写出M 1,M 2,M 3的极坐标方程;(2)曲线M 由M 1,M 2,M 3构成,假设点P 在M 上,且|OP |=3,求P 的极坐标.解 (1)由题设可得,弧AB ︵ ,BC ︵ ,CD ︵所在圆的极坐标方程分别为ρ=2cos θ,ρ=2sin θ,ρ=-2cos θ,所以M 1的极坐标方程为ρ=2cos θ⎝ ⎛⎭⎪⎫0≤θ≤π4,M 2的极坐标方程为ρ=2sin θ⎝ ⎛⎭⎪⎫π4≤θ≤3π4,M 3的极坐标方程为ρ=-2cos θ⎝ ⎛⎭⎪⎫3π4≤θ≤π.(2)设P (ρ,θ),由题设及(1)知假设0≤θ≤π4,那么2cos θ=3,解得θ=π6; 假设π4≤θ≤3π4,那么2sin θ=3,解得θ=π3或θ=2π3; 假设3π4≤θ≤π,那么-2cos θ=3,解得θ=5π6. 综上,P 的极坐标为⎝ ⎛⎭⎪⎫3,π6或⎝ ⎛⎭⎪⎫3,π3或⎝ ⎛⎭⎪⎫3,2π3或⎝ ⎛⎭⎪⎫3,5π6.。
高考数学一轮复习教案(含答案):选修4-4第1节坐标系
逆时针方向 ),这样就建立了一个极坐标系.
(2)极坐标 ①极径:设 M 是平面内一点, 极点 O 与点 M 的距离 |OM|叫做点 M 的极径, 记为 ρ. ②极角:以极轴 Ox 为始边,射线 OM 为终边的角 xOM 叫做点 M 的极角, 记为 θ. ③极坐标:有序数对 (ρ,θ)叫做点 M 的极坐标,记为 M(ρ, θ).一般不作特 殊说明时,我们认为 ρ≥0,θ可取任意实数.
第 1页 共 9页
3.极坐标与直角坐标的互化
设 M 是平面内任意一点,它的直角坐标是 (x,y),极坐标是 (ρ,θ),则它们
x=ρcos θ, 之间的关系为:
y=ρsin θ;
ρ2= x2+y2, y
tan θ=x x≠0 .
4.简单曲线的极坐标方程
曲线
极坐标方程
圆心为极点,半径为 r 的圆
ρ= r(0≤θ<2π)
(3)在极坐标系中,曲线的极坐标方程不是唯一的.
()
(4)极坐标方程 θ=πρ(≥0)表示的曲线是一条直线.
()
[答案 ] (1)× (2)√ (3)√ (4)×
2.(教材改编 )在极坐标系中,圆 ρ=- 2sin θ的圆心的极坐标是 ( )
π A. 1, 2
π B. 1,- 2
C.(1,0)
D.(1, π)
则曲线 C1 和 C2 的交点的直角坐标为 ________.
(1,1) [由 ρsin2θ=cos θ? ρ2sin2θ=ρcos θ? y2=x,又由 ρsin θ= 1? y=1,联
y2= x,
x=1,
立
?
故曲线 C1 和 C2 交点的直角坐标为 (1,1).]
y=1
y=1.
π 5.在极坐标系中,圆 ρ= 8sin θ上的点到直线 θ=3(ρ∈R)距离的最大值是
配套K122019版高考数学一轮复习 第一部分 基础与考点过关 坐标系与参数方程学案 选修4-4
选修44 坐标系与参数方程1. (选修44P 11例5改编)在直角坐标系中,点P 的坐标为(-2,-6),求点P 的极坐标.解:ρ=(-2)2+(-6)2=22,tan θ=-6-2=3,又点P 在第三象限,得θ=43π,即P (22,4π3).2. (选修44P 17习题9改编)在极坐标系中,已知A ,B 两点的极坐标分别为⎝⎛⎭⎪⎫3,π3,⎝ ⎛⎭⎪⎫4,π6,求△AOB(其中O 为极点)的面积. 解:由题意A ,B 两点的极坐标分别为⎝⎛⎭⎪⎫3,π3,⎝ ⎛⎭⎪⎫4,π6,得△AOB 的面积S △AOB =12OA ·OB ·sin ∠AOB =12×3×4×sin π6=3.3. 在极坐标系中,求圆ρ=2cos θ的圆心到直线2ρsin ⎝ ⎛⎭⎪⎫θ+π3=1的距离. 解:圆的普通方程为(x -1)2+y 2=1,直线的普通方程为3x +y -1=0,∴ 圆心到直线的距离为d =3-12.4. (选修44P 19例1改编)在极坐标系中,求过圆ρ=-2sin θ的圆心,且与极轴平行的直线的极坐标方程.解:由题意,圆ρ=-2sin θ,可化为ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,即x 2+(y +1)2=1,圆心是(0,-1),所求直角坐标方程为y =-1,所以其极坐标方程为ρsin θ=-1.5. 在极坐标系中,求圆ρ=4上的点到直线ρ(cos θ+3sin θ)=8的距离的最大值.解:把ρ=4化为直角坐标方程为x 2+y 2=16,把ρ(cos θ+3sin θ)=8化为直角坐标方程为x +3y -8=0,∴ 圆心(0,0)到直线的距离为d =82=4,∴ 直线和圆相切,∴ 圆上的点到直线的最大距离是8.1. 极坐标系是由距离(极径)与方向(极角)确定点的位置的一种方法,由于终边相同的角有无数个且极径可以为负数,故在极坐标系下,有序实数对(ρ,θ)与点不一一对应.这点应与直角坐标系区别开来.2. 在极坐标系中,同一个点M 的坐标形式不尽相同,M (ρ,θ)可表示为(ρ,θ+2n π)(n∈Z ).3. 在极坐标系中,极径ρ可以为负数,故M (ρ,θ)可表示为(-ρ,θ+(2n +1)π)(n∈Z ).4. 特别地,若ρ=0,则极角θ可取任意角.5. 建立曲线的极坐标方程,其基本思路与在直角坐标系中大致相同,即设曲线上任一点M (ρ,θ),建立等式,化简即得.6. 常见曲线的极坐标方程(1) 过极点,倾斜角为α的直线的极坐标方程为θ=α(ρ∈R )或θ=π+α(ρ∈R );(2) 过点(a ,0)(a >0),与极轴垂直的直线的极坐标方程为ρcos θ=a ;(3) 过点⎝⎛⎭⎪⎫a ,π2,与极轴平行的直线的极坐标方程为ρsin θ=a ;(4) 圆心在极点,半径为r 的圆的极坐标方程为ρ=r ; (5) 圆心为(a ,0),半径为a 的圆的极坐标方程为ρ=2acos θ;(6) 圆心为⎝⎛⎭⎪⎫a ,π2,半径为a 的圆的极坐标方程为ρ=2asin θ.7. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,平面内任一点P 的直角坐标(x ,y )与极坐标(ρ,θ)可以互换,公式是⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ 和⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x ., 1 求极坐标或极坐标方程), 1) 在极坐标系中,已知点A ⎝⎛⎭⎪⎫2,π4,圆C 的方程为ρ=42sin θ(圆心为点C ),求直线AC 的极坐标方程.解:(解法1)以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系xOy.圆C 的平面直角坐标方程为x 2+y 2=42y ,即x 2+(y -22)2=8,圆心C (0,22). 点A 的直角坐标为(2,2).直线AC 的斜率k AC =22-20-2=-1.所以直线AC 的直角坐标方程为y =-x +22, 极坐标方程为ρ(cos θ+sin θ)=22,即ρsin ⎝⎛⎭⎪⎫θ+π4=2. (解法2)在直线AC 上任取一点M (ρ,θ),不妨设点M 在线段AC 上.由于圆心为C ⎝⎛⎭⎪⎫22,π2,S △OAC =S △OAM +S △OCM , 所以12×22×2sin π4=12×2×ρsin ⎝ ⎛⎭⎪⎫θ-π4+12×ρ×22sin ⎝ ⎛⎭⎪⎫π2-θ,即ρ(cos θ+sin θ)=22,化简,得直线AC 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2. 备选变式(教师专享)在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.解:(解法1)以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,则曲线ρ=2cos θ的直角坐标方程为(x -1)2+y 2=1,且圆心C 的坐标为(1,0),直线θ=π4的直角坐标方程为y =x.因为圆心C (1,0)关于y =x 的对称点为(0,1),所以圆C 关于y =x 的对称曲线为x 2+(y -1)2=1,所以曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程为ρ=2sin θ.(解法2)设曲线ρ=2cos θ上任意一点为(ρ′,θ′),其关于直线θ=π4的对称点为(ρ,θ),则⎩⎪⎨⎪⎧ρ′=ρ,θ′=2k π+π2-θ. 将(ρ′,θ′)代入ρ=2cos θ,得ρ=2cos ⎝ ⎛⎭⎪⎫π2-θ,即ρ=2sin θ,所以曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程为ρ=2sinθ., 2 极坐标方程与直角坐标方程的互化), 2) (2017·苏州期中)已知在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =rcos θ+2,y =rsin θ+2(θ为参数,r >0).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ+π4+1=0. (1) 求圆C 的圆心的极坐标;(2) 当圆C 与直线l 有公共点时,求r 的取值范围.解:(1) 由C :⎩⎪⎨⎪⎧x =rcos θ+2,y =rsin θ+2得(x -2)2+(y -2)2=r 2,∴ 曲线C 是以(2,2)为圆心,r 为半径的圆,∴ 圆心的极坐标为⎝⎛⎭⎪⎫22,π4. (2) 由直线l :2ρsin ⎝⎛⎭⎪⎫θ+π4+1=0,得直线l 的直角坐标方程为x +y +1=0, 从而圆心(2,2)到直线l 的距离d =|2+2+1|2=52 2.∵ 圆C 与直线l 有公共点,∴ d ≤r ,即r≥522.变式训练(2017·苏州期初)自极点O 任意作一条射线与直线ρcos θ=3相交于点M ,在射线OM 上取点P ,使得OM·OP=12,求动点P 的轨迹的极坐标方程,并把它化为直角坐标方程.解:设P (ρ,θ),M (ρ′,θ), ∵ OM ·OP =12,∴ ρρ′=12.∵ ρ′cos θ=3,∴ 12ρ·cos θ=3.则动点P 的轨迹的极坐标方程为ρ=4cos θ. ∵ 极点在此曲线上,∴ 方程两边可同时乘ρ,得ρ2=4ρcos θ.∴ x 2+y 2-4x =0., 3 曲线的极坐标方程的应用), 3) 在极坐标系中,曲线C :ρ=2acos θ(a>0),直线l :ρcos ⎝⎛⎭⎪⎫θ-π3=32,C 与l 有且仅有一个公共点. (1) 求a ;(2) O 为极点,A ,B 为C 上的两点,且∠AOB=π3,求OA +OB 的最大值.解:(1) 曲线C 是以(a ,0)为圆心,以a 为半径的圆; 直线l 的直角坐标方程为x +3y -3=0.由直线l 与圆C 相切可得|a -3|2=a ,解得a =1.(2) 不妨设A 的极角为θ,B 的极角为θ+π3,则OA +OB =2cos θ+2cos ⎝⎛⎭⎪⎫θ+π3 =3cos θ-3sin θ=23cos ⎝⎛⎭⎪⎫θ+π6, 当θ=-π6时,OA +OB 取得最大值2 3.变式训练在直角坐标系xOy 中,圆C 的方程为(x -3)2+(y +1)2=9,以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1) 求圆C 的极坐标方程;(2) 直线OP :θ=π6(ρ∈R )与圆C 交于点M ,N ,求线段MN 的长.解:(1) (x -3)2+(y +1)2=9可化为x 2+y 2-23x +2y -5=0,故其极坐标方程为ρ2-23ρcos θ+2ρsin θ-5=0.(2) 将θ=π6代入ρ2-23ρcos θ+2ρsin θ-5=0,得ρ2-2ρ-5=0,∴ ρ1+ρ2=2,ρ1ρ2=-5,|MN|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=2 6.1. (2017·苏北四市期中)已知曲线C 的极坐标方程为ρsin (θ+π3)=3,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,求曲线C 的直角坐标方程.解:由ρsin ⎝⎛⎭⎪⎫θ+π3=3,得12ρsin θ+32ρcos θ=3. 又ρcos θ=x ,ρsin θ=y ,所以曲线C 的直角坐标方程为3x +y -6=0.2. (2017·苏锡常镇一模)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2. (1) 把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2) 求经过两圆交点的直线的极坐标方程.解:(1) 由ρ=2⇒ρ2=4,所以x 2+y 2=4.因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0.(2) 将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22. 3. (2017·苏北三市模拟)在极坐标系中,已知点A ⎝⎛⎭⎪⎫2,π2,点B 在直线l :ρcos θ+ρsin θ=0(0≤θ<2π)上.当线段AB 最短时,求点B 的极坐标.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,则点A ⎝⎛⎭⎪⎫2,π2的直角坐标为(0,2),直线l 的直角坐标方程为x +y =0.AB 最短时,点B 为直线x -y +2=0与直线l 的交点, 由⎩⎪⎨⎪⎧x -y +2=0,x +y =0,解得⎩⎪⎨⎪⎧x =-1,y =1. 所以点B 的直角坐标为(-1,1).所以点B 的极坐标为⎝⎛⎭⎪⎫2,3π4. 4. (2017·常州期末)在平面直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.已知圆ρ=4sin (θ+π6)(ρ≥0)被射线θ=θ0(θ0为常数,且θ0∈⎝ ⎛⎭⎪⎫0,π2)所截得的弦长为23,求θ0的值. 解:圆ρ=4sin ⎝⎛⎭⎪⎫θ+π6的直角坐标方程为(x -1)2+(y -3)2=4,射线θ=θ0的直角坐标方程可以设为y =kx (x≥0,k >0),圆心(1,3)到直线y =kx 的距离d =|k -3|1+k2. 根据题意,得24-(k -3)21+k 2=23,解得k =33, 即tan θ0=33.又θ0∈⎝⎛⎭⎪⎫0,π2,所以θ0=π6.1. (2017·南通、扬州、泰州模拟)在极坐标系中,圆C 的圆心在极轴上,且过极点和点⎝⎛⎭⎪⎫32,π4,求圆C 的极坐标方程. 解:(解法1)因为圆C 的圆心在极轴上且过极点, 所以可设圆C 的极坐标方程为ρ=acos θ.又点⎝⎛⎭⎪⎫32,π4在圆C 上,所以32=acos π4,解得a =6. 所以圆C 的极坐标方程为ρ=6cos θ.(解法2)点⎝⎛⎭⎪⎫32,π4的直角坐标为(3,3). 因为圆C 过点(0,0),(3,3), 所以圆心在直线x +y -3=0上. 又圆心C 在极轴上,所以圆C 的直角坐标方程为(x -3)2+y 2=9. 所以圆C 的极坐标方程为ρ=6cos θ.2. 已知在极坐标系下,圆C :ρ=2cos ⎝ ⎛⎭⎪⎫θ+π2与直线l :ρsin ⎝⎛⎭⎪⎫θ+π4=2,点M 为圆C 上的动点.求点M 到直线l 距离的最大值.解:圆C :ρ=2cos ⎝ ⎛⎭⎪⎫θ+π2,即 x 2+y 2+2y =0,x 2+(y +1)2=1,表示圆心为(0,-1),半径等于1的圆.直线l :ρsin ⎝⎛⎭⎪⎫θ+π4=2,即ρcos θ+ρsin θ-2=0,即 x +y -2=0, 圆心到直线l 的距离为|0-1-2|2=322,故圆上的动点M 到直线l 的距离的最大值等于322+1.3. 在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4cos θ.(1) 求出圆C 的直角坐标方程;(2) 已知圆C 与x 轴相交于A ,B 两点,若直线l :y =2x +2m 上存在点P 使得∠APB =90°,求实数m 的最大值.解:(1) 由ρ=4cos θ得ρ2=4ρcos θ,即x 2+y 2-4x =0,即圆C 的标准方程为(x -2)2+y 2=4.(2) l 的方程为y =2x +2m ,而AB 为圆C 的直径,故直线l 上存在点P 使得∠APB=90°的充要条件是直线l 与圆C 有公共点, 故|4+2m|5≤2,于是实数m 的最大值为5-2.4. 在极坐标系中,已知直线2ρcos θ+ρsin θ+a =0(a>0)被圆ρ=4sin θ截得的弦长为2,求a 的值.解:以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,直线的极坐标方程化为直角坐标方程为2x +y +a =0,圆的极坐标方程化为直角坐标方程为x 2+y 2=4y ,即x 2+(y -2)2=4.因为直线被圆截得的弦长为2,所以圆心(0,2)到直线的距离为4-1=3, 即|2+a|5=3,因为a>0,所以a =15-2.1. 极坐标方程与直角坐标方程的互化 (1) 将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式x =ρcos θ,y =ρsin θ即可.常用方法有代入法、平方法,还经常用到同乘(或除以)ρ等技巧.(2) 将直角坐标或直角坐标方程转化为极坐标或极坐标方程,要灵活运用x =ρcosθ,y =ρsin θ以及ρ=x 2+y 2,tan θ=y x(x≠0),同时要掌握必要的技巧,通常情况下,由tan θ确定角θ时,应根据点P 所在象限取最小正角.在这里要注意:当x≠0时,θ角才能由tan θ=yx按上述方法确定.当x =0时,tan θ没有意义,这时又分三种情况:当x =0,y =0时,θ可取任何值;当x =0,y>0时,可取θ=π2;当x =0,y<0时,可取θ=3π2.2. 求简单曲线的极坐标方程的方法(1) 设点M (ρ,θ)为曲线上任意一点,由已知条件,构造出三角形,利用正弦定理求解OM 与θ的关系;(2) 先求出曲线的直角坐标方程,再利用极坐标与直角坐标的变换公式,把直角坐标方程化为极坐标方程.[备课札记]第2课时 参 数 方 程(对应学生用书(理)202~205页)1. (选修44P 45例1改编)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t 2,y =2+32t(t 为参数),求此直线的倾斜角以及在y 轴上的截距.解:∵ ⎩⎪⎨⎪⎧x -1=t 2,y -2=32t ,∴ y -2=3(x -1).∴ 此直线的斜率为3,∴ 它的倾斜角为60°.令x =0,得它在y 轴上的截距为2- 3.2. (选修44P 45例2改编)已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t(t 为参数)上,求PF 的值.解:将抛物线的参数方程化为普通方程为y 2=4x ,则焦点F (1,0),准线方程为x =-1,又P (3,m )在抛物线上,由抛物线的定义知PF =3-(-1)=4.3. (选修44P 57习题3(4))选择适当的参数,将普通方程4x 2+y 2-16x +12=0化为参数方程.解:由4x 2+y 2-16x +12=0,得4(x -2)2+y 2=4,选择参数θ,令y =2sin θ,则x =2+cos θ,故所求曲线的参数方程是⎩⎪⎨⎪⎧x =2+cos θ,y =2sin θ.(答案不惟一)4. 在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos α+3,y =2sin α(α为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π6.若直线l 与曲线C 交于A ,B 两点,求线段AB 的长.解:曲线C 的普通方程为(x -3)2+y 2=4,表示以(3,0)为圆心,2为半径的圆.直线l 的直角坐标方程为y =33x.所以圆心到直线的距离为32, 所以线段AB 的长为24-⎝ ⎛⎭⎪⎫322=13. 5. 已知直线l 的极坐标方程为ρsin (θ-π3)=3,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),设P 点是曲线C 上的任意一点,求P 到直线l 的距离的最大值.解:由ρsin ⎝⎛⎭⎪⎫θ-π3=3,可得ρ(12sin θ-32cos θ)=3, ∴ y -3x =6,即3x -y +6=0.由⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,得x 2+y 2=4,圆的半径为r =2, ∴ 圆心到直线l 的距离d =62=3.∴ P 到直线l 的距离的最大值为d +r =5.1. 参数方程是用第三个变量(即参数)分别表示曲线上任一点M 的坐标x ,y 的另一种曲线方程的形式,它体现了x ,y 的一种间接关系.2. 参数方程是根据其固有的意义(物理、几何)得到的,要注意参数的取值范围.3. 一些常见曲线的参数方程(1) 过点P 0(x 0,y 0),且倾斜角是α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+lcos α,y =y 0+lsin α(l 为参数). l 是有向线段P 0P 的数量.(2) 圆方程(x -a )2+(y -b )2=r 2的参数方程是⎩⎪⎨⎪⎧x =a +rcos θ,y =b +rsin θ(θ为参数).(3) 椭圆方程x 2a 2+y2b 2=1(a>b>0)的参数方程是⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数).(4) 双曲线方程x 2a 2-y2b 2=1(a>0,b>0)的参数方程是⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数).(5) 抛物线方程y 2=2px (p>0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).4. 在参数方程与普通方程的互化中要注意变量的取值范围.1 参数方程与普通方程的互化1(2017·南京、盐城期末)在平面直角坐标系xOy 中,已知直线l :⎩⎪⎨⎪⎧x =35t ,y =45t (t为参数).现以坐标原点O 为极点,以x 轴正半轴为极轴建立极坐标系.设圆C 的极坐标方程为ρ=2cos θ,直线l 与圆C 交于A ,B 两点,求弦AB 的长.解:直线l :⎩⎪⎨⎪⎧x =35t ,y =45t (t 为参数)化成普通方程为4x -3y =0,圆C 的极坐标方程ρ=2cos θ化成直角坐标方程为(x -1)2+y 2=1,则圆C 的圆心到直线l 的距离d =|4|42+(-3)2=45, 所以AB =21-d 2=65.变式训练在平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-1+55t ,y =-1+255t (t 为参数)与曲线⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ(θ为参数)相交于A ,B 两点,求线段AB 的长.解:将直线的参数方程化为普通方程,得y =2x +1 ①. 将曲线的参数方程化为普通方程,得y =1-2x 2(-1≤x≤1) ②.由①②,得⎩⎪⎨⎪⎧x =-1,y =-1或⎩⎪⎨⎪⎧x =0,y =1,所以A (-1,-1),B (0,1)或A (0,1),B (-1,-1),从而AB =(-1-0)2+(-1-1)2= 5. 备选变式(教师专享)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+22t ,y =22t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ-2cos θ.若直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:由ρ=2sin θ-2cos θ,可得ρ2=2ρsin θ-2ρcos θ,所以曲线C 的直角坐标方程为x 2+y 2=2y -2x ,标准方程为(x +1)2+(y -1)2=2.直线l 的方程化成普通方程为x -y +1=0.圆心到直线l 的距离为d =|-1-1+1|2=22,所求弦长AB =22-⎝ ⎛⎭⎪⎫222= 6. , 2 求曲线参数方程), 2) 如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:设P (x ,y ),则随着θ取值变化,P 可以表示圆上任意一点,由所给的曲线方程x 2+y 2-x =0,即⎝ ⎛⎭⎪⎫x -122+y 2=14,表示以⎝ ⎛⎭⎪⎫12,0为圆心,12为半径的圆,可得弦OP =1×cosθ,所以⎩⎪⎨⎪⎧x =OP·cos θ,y =OP·sin θ,从而⎩⎪⎨⎪⎧x =cos 2θ,y =cos θ·sin θ,故已知圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =cos θ·sin θ(θ为参数).备选变式(教师专享)已知直线C 1:⎩⎪⎨⎪⎧x =1+tcos α,y =tsin α(t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数). (1) 当α=π3时,求C 1与C 2的交点坐标;(2) 过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.解:(1) 当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1,联立构成方程组⎩⎨⎧y =3x -3,x 2+y 2=1,解得C 1与C 2的交点坐标分别为(1,0),⎝ ⎛⎭⎪⎫12,-32. (2) 依题意,C 1的普通方程为xsin α-ycos α-sin α=0,则A 点的坐标为(sin 2α,-sin αcos α),故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α(α为参数),所以点P 轨迹的普通方程为⎝ ⎛⎭⎪⎫x -142+y 2=116.故点P 的轨迹是圆心为⎝ ⎛⎭⎪⎫14,0,半径为14的圆. , 3 参数方程的应用), 3) (2017·南通、泰州模拟)在平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-32+22l ,y =22l (l 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t (t 为参数)相交于A ,B 两点,求线段AB的长.解:(解法1)将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化成普通方程为y 2=8x ,将直线⎩⎪⎨⎪⎧x =-32+22l ,y =22l (l 为参数)代入y 2=8x ,整理得l 2-82l +24=0,解得l 1=22,l 2=6 2.则|l 1-l 2|=42,所以线段AB 的长为4 2.(解法2)将曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)化成普通方程为y 2=8x ,将直线⎩⎪⎨⎪⎧x =-32+22l ,y =22l (l 为参数)化成普通方程为x -y +32=0,由⎩⎪⎨⎪⎧y 2=8x ,x -y +32=0得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.所以AB 的长为⎝ ⎛⎭⎪⎫92-122+(6-2)2=4 2.备选变式(教师专享)已知直线l :⎩⎪⎨⎪⎧x =tcos α+m ,y =tsin α(t 为参数)恒经过椭圆C :⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点F.(1) 求m 的值;(2) 设直线l 与椭圆C 交于A ,B 两点,求FA·FB 的最大值与最小值.解:(1) 椭圆的参数方程化为普通方程,得x 225+y29=1.因为a =5,b =3,所以c =4,所以点F 的坐标为(4,0). 因为直线l 经过点(m ,0),所以m =4.(2) 将直线l 的参数方程代入椭圆C 的普通方程,并整理得(9cos 2α+25sin 2α)t 2+72tcos α-81=0.设点A ,B 在直线参数方程中对应的参数分别为t 1,t 2,则FA ·FB =|t 1t 2|=819cos 2α+25sin 2α=819+16sin 2α. 当sin α=0时,FA ·FB 取最大值9;当sin α=±1时,FA ·FB 取最小值8125., 4 极坐标、参数方程的综合应用), 4) (2017·苏锡常镇二模)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,取相同的单位长度,建立极坐标系.已知曲线C 1的参数方程为⎩⎨⎧x =3+2cos α,y =3+2sin α(α∈[0,2π],α为参数),曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π3=a (a∈R ),若曲线C 1与曲线C 2有且仅有一个公共点,求实数a 的值.解:曲线C 1的方程为(x -3)2+(y -3)2=4,圆心坐标为(3,3),半径为2.∵ 曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π3=a (a∈R ), ∴ 曲线C 2的直角坐标方程为3x +y -2a =0.∵ 曲线C 1与曲线C 2有且仅有一个公共点, ∴ |3+3-2a|2=2,解得a =1或a =5.备选变式(教师专享)在平面直角坐标系xOy 中,曲线C :⎩⎨⎧x =6cos α,y =2sin α(α为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ(cos θ+3sin θ)+4=0.求曲线C 上的点到直线l 的最大距离.解:将l 转化为直角坐标方程为x +3y +4=0. 在C 上任取一点A (6cos α,2sin α),α∈[0,2π),则点A 到直线l 的距离为d =|6cos α+6sin α+4|2=|23sin ⎝ ⎛⎭⎪⎫α+π4+4|2=3sin ⎝⎛⎭⎪⎫α+π4+2.当α=π4时,d 取得最大值,最大值为2+3,此时A 点为(3,1).1. 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22a ,曲线C 2的参数方程为⎩⎪⎨⎪⎧x =-1+cos t ,y =-1+sin t (t 为参数,0≤t ≤π).当C 1与C 2有公共点时,求实数a 的取值范围.解:曲线C 1的直角坐标方程为x +y =a.若C 1与C 2有公共点,则a =x +y =sin t +cos t-2在t∈[0,π]上有解,又sin t +cos t -2=2sin ⎝⎛⎭⎪⎫t +π4-2,因为t∈[0,π],所以t +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,sin ⎝ ⎛⎭⎪⎫t +π4∈⎣⎢⎡⎦⎥⎤-22,1,所以a 的取值范围为[-3,2-2].2. (2017·苏北四市期末)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l :2sin ⎝ ⎛⎭⎪⎫θ-π4=m (m∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t 为参数).当圆心C 到直线l 的距离为2时,求m 的值.解:直线l 的直角坐标方程为x -y +m =0,圆C 的普通方程为(x -1)2+(y +2)2=9,圆心C 到直线l 的距离为|1-(-2)+m|2=2,解得m =-1或m =-5.3. (2016·江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解:椭圆C 的普通方程为x 2+y 24=1,将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t代入x 2+y 24=1,得⎝ ⎛⎭⎪⎫1+12t 2+⎝ ⎛⎭⎪⎫32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以AB =|t 1-t 2|=167.4. (2017·扬州期末)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =cos α ,y =1+sin 2α(α为参数),以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4,试求直线l 与曲线C 的交点的直角坐标.解:将直线l 的极坐标方程化成直角坐标方程为y =x ,将曲线C 的参数方程化成普通方程为y =2-x 2(-1≤x≤1). 由⎩⎪⎨⎪⎧y =x ,y =2-x2得x 2+x -2=0,解得x =1或x =-2. 又-1≤x≤1,所以x =1,所以直线l 与曲线C 的交点的直角坐标为(1,1).1. 在极坐标系中,直线l 的极坐标方程为θ=π3(ρ∈R ),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数),求直线l 与曲线C 的交点P 的直角坐标.解:因为直线l 的极坐标方程为θ=π3(ρ∈R ),所以直线l 的普通方程为y =3x.①又曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =1+cos 2α(α为参数),所以曲线C 的直角坐标方程为y =12x 2(x∈[-2,2]), ②联立①②解方程组得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =23,y =6(舍去).故P 点的直角坐标为(0,0).2. (2017·苏州期末)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.解:因为曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,所以ρ2sin 2θ=4ρcos θ,即曲线C 的直角坐标方程为y 2=4x.将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,即t 2+82t =0,解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.3. 在平面直角坐标系xOy 中,已知曲线C :⎩⎪⎨⎪⎧x =s ,y =s 2(s 为参数),直线l :⎩⎪⎨⎪⎧x =2+110t ,y =4+310t (t 为参数).设曲线C 与直线l 交于A ,B 两点,求线段AB 的长度.解:由⎩⎪⎨⎪⎧x =s ,y =s 2消去s 得曲线C 的普通方程为y =x 2;由⎩⎪⎨⎪⎧x =2+110t ,y =4+310t消去t 得直线l 的普通方程为y =3x -2.联立直线l 的方程与曲线C 的方程,即⎩⎪⎨⎪⎧y =x 2,y =3x -2,解得交点的坐标分别为(1,1),(2,4).所以线段AB 的长度为(2-1)2+(4-1)2=10.4. (2017·南京、盐城模拟)在平面直角坐标系xOy 中,直线l :⎩⎪⎨⎪⎧x =1+35t ,y =45t(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =4k 2,y =4k(k 为参数)交于A ,B 两点,求线段AB 的长.解:(解法1)直线l 的参数方程化为普通方程得4x -3y =4,将曲线C 的参数方程化为普通方程得y 2=4x.联立方程组⎩⎪⎨⎪⎧4x -3y =4,y 2=4x ,解得⎩⎪⎨⎪⎧x =4,y =4或⎩⎪⎨⎪⎧x =14,y =-1,所以A (4,4),B ⎝ ⎛⎭⎪⎫14,-1或A ⎝ ⎛⎭⎪⎫14,-1,B (4,4). 所以AB =⎝ ⎛⎭⎪⎫4-142+(4+1)2=254. (解法2)将曲线C 的参数方程化为普通方程得y 2=4x.将直线l 的参数方程代入抛物线C 的方程得⎝ ⎛⎭⎪⎫45t 2=4⎝ ⎛⎭⎪⎫1+35t ,即4t 2-15t -25=0,所以 t 1+t 2=154,t 1t 2=-254.所以AB =|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫1542+25=254.1. 在直线的参数方程⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数)中t 的几何意义是表示在直线上过定点P 0(x 0,y 0)与直线上的任一点P (x ,y )构成的有向线段P 0P 的长度,且在直线上任意两点P 1,P 2的距离为P 1P 2=|t 1-t 2|=(t 1+t 2)2-4t 1t 2.2. 参数方程化为普通方程的关键是消参数:一要熟练掌握常用技巧(如整体代换);二要注意变量取值范围的一致性,这一点最易忽视.[备课札记]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-4 第1讲 坐标系1.(2018·山西省高三考前质量检测)已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φy =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.解:(1)C 1:ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)因为M (3,0),N (0,1),所以P ⎝ ⎛⎭⎪⎫32,12, 所以OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6. 所以|PQ |=|ρ2-ρ1|=1,即P ,Q 两间点的距离为1.2.在直角坐标系xOy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,设⊙C 的极坐标方程为ρ=2sin θ,点P 为⊙C 上一动点,点M 的极坐标为⎝⎛⎭⎪⎫4,π2,点Q 为线段PM的中点.(1)求点Q 的轨迹C 1的方程;(2)试判定轨迹C 1和⊙C 的位置关系,并说明理由.解:(1)由⊙C 的极坐标方程为ρ=2sin θ得ρ2=2ρsin θ, 所以⊙C 的直角坐标方程为x 2+y 2-2y =0,又点M 的极坐标为⎝⎛⎭⎪⎫4,π2,所以点M 的直角坐标为(0,4). 设点P (x 0,y 0),点Q (x ,y ), 则有x 20+(y 0-1)2=1.(*) 因为点Q 为线段PM 的中点,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=2y -4,代入(*)得轨迹C 1的方程为x 2+⎝ ⎛⎭⎪⎫y -522=14.(2)因为⊙C 的直角坐标方程为x 2+(y -1)2=1,圆心为(0,1),半径为1, 而轨迹C 1是圆心为⎝ ⎛⎭⎪⎫0,52,半径为12的圆, 所以两圆的圆心距为32,等于两圆半径和,所以两圆外切.3.在极坐标系中,圆C 是以点C ⎝ ⎛⎭⎪⎫2,-π6为圆心,2为半径的圆. (1)求圆C 的极坐标方程; (2)求圆C 被直线l :θ=-5π12(ρ∈R )所截得的弦长. 解:法一:(1)设所求圆上任意一点M (ρ,θ),如图, 在Rt △OAM 中,∠OMA =90°,∠AOM =2π-θ-π6,|OA |=4.因为cos ∠AOM =|OM ||OA |,所以|OM |=|OA |·cos ∠AOM ,即ρ=4cos ⎝ ⎛⎭⎪⎫2π-θ-π6=4cos ⎝⎛⎭⎪⎫θ+π6, 验证可知,极点O 与A ⎝ ⎛⎭⎪⎫4,-π6的极坐标也满足方程,故ρ=4cos ⎝⎛⎭⎪⎫θ+π6为所求.(2)设l :θ=-5π12(ρ∈R )交圆C 于点P ,在Rt △OAP 中,∠OPA =90°, 易得∠AOP =π4,所以|OP |=|OA |cos ∠AOP =22.法二:(1)圆C 是将圆ρ=4cos θ绕极点按顺时针方向旋转π6而得到的圆,所以圆C的极坐标方程是ρ=4cos ⎝⎛⎭⎪⎫θ+π6. (2)将θ=-5π12代入圆C 的极坐标方程ρ=4cos ⎝ ⎛⎭⎪⎫θ+π6,得ρ=22,所以圆C 被直线l :θ=-5π12(ρ∈R )所截得的弦长为22.4.在极坐标系中,曲线C 1,C 2的极坐标方程分别为ρ=-2cos θ,ρcos ⎝ ⎛⎭⎪⎫θ+π3=1. (1)求曲线C 1和C 2的公共点的个数;(2)过极点作动直线与曲线C 2相交于点Q ,在OQ 上取一点P ,使|OP |·|OQ |=2,求点P 的轨迹,并指出轨迹是什么图形.解:(1)C 1的直角坐标方程为(x +1)2+y 2=1,它表示圆心为(-1,0),半径为1的圆.C 2的直角坐标方程为x -3y -2=0,所以曲线C 2为直线,由于圆心到直线的距离为d =|-1-2|2=32>1,所以直线与圆相离,即曲线C 1和C 2没有公共点.(2)设Q (ρ0,θ0),P (ρ,θ),则⎩⎪⎨⎪⎧ρρ0=2,θ=θ0,即⎩⎪⎨⎪⎧ρ0=2ρ,θ0=θ.① 因为点Q (ρ0,θ0)在曲线C 2上, 所以ρ0cos ⎝ ⎛⎭⎪⎫θ0+π3=1.②将①代入②,得2ρcos ⎝⎛⎭⎪⎫θ+π3=1,即ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3为点P 的轨迹方程,化为直角坐标方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +322=1,因此点P 的轨迹是以⎝ ⎛⎭⎪⎫12,-32为圆心,1为半径的圆.5.已知曲线C 1的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎪⎫θ-π4.以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系.(1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)依题意得ρ=22cos ⎝⎛⎭⎪⎫θ-π4=2()cos θ+sin θ,即ρ2=2()ρcos θ+ρsin θ,可得x 2+y 2-2x -2y =0,故C 2的直角坐标方程为()x -12+(y -1)2=2. (2)曲线C 1的极坐标方程为 ρcos ⎝⎛⎭⎪⎫θ-π3=-1, 即ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=-1,化为直角坐标方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32>r =2, 于是直线与圆相离,所以动点M 到曲线C 1的距离的最大值为3+3+222.6.在直角坐标系xOy 中,半圆C 的直角坐标方程为(x -1)2+y 2=1(0≤y ≤1).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=53,射线OM :θ=π3与半圆C的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)由x =ρcos θ,y =ρsin θ,所以半圆C 的极坐标方程是ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(2)设(ρ1,θ1)为点P 的极坐标,则有⎩⎪⎨⎪⎧ρ1=2cos θ1,θ1=π3, 解得⎩⎪⎨⎪⎧ρ1=1,θ1=π3,设(ρ2,θ2)为点Q 的极坐标,则有⎩⎪⎨⎪⎧ρ2(sin θ2+3cos θ2)=53,θ2=π3,解得⎩⎪⎨⎪⎧ρ2=5,θ2=π3,由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=4, 所以线段PQ 的长为4.1.在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的方程为y =(tan α)x ,其中α为直线l 的倾斜角,l 与C 交于A ,B 两点,|AB |=10,求tan α的值.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得 ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153.2.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎪⎫2,π3.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝ ⎛⎭⎪⎫ρ2,θ0+π2,若A 、B 都在曲线C 1上,求1ρ1+1ρ22的值. 解:(1)因为C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,所以C 1的普通方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a ·cos θ(a 为半径),将D ⎝⎛⎭⎪⎫2,π3代入,得2=2a ×12,所以a =2,所以圆C 2的圆心的直角坐标为(2,0),半径为2, 所以C 2的直角坐标方程为(x -2)2+y 2=4.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即ρ2=44sin 2θ+cos 2θ. 所以ρ21=44sin 2θ0+cos 2θ0, ρ22=44sin 2⎝ ⎛⎭⎪⎫θ0+π2+cos 2⎝ ⎛⎭⎪⎫θ0+π2=4sin 2θ0+4cos 2θ0. 所以1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54.。