启恩中学2013届高三数学(理)综合训练题(九)
2013届高三理科数学训练题(2)
2013届启恩中学高三理科数学考练试题(时间:60分钟;满分:84分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-2x +3,则f (-2)等于( ) A .3 B .-3 C .6 D .-62.若0<a <b ,且a +b =1,则在下列四个选项中,较大的是( ) A.12B .a 2+b 2C .2abD .b 3.设函数f (x ) (x ∈R )是以3为周期的奇函数,且f (1)>1,f (2)=a ,则( ) A .a >2 B .a <-2 C .a >1 D .a <-1 4.函数f (x )=x +3+log 2(6-x )的定义域是( ) A .{x |x >6} B .{x |-3<x <6} C .{x |x >-3} D .{x |-3≤x <6} 5.已知关于x 的方程x 2+(m -3)x +m =0的两根均为正数,则实数m 的取值范围是( ) A .0<m ≤3 B .m ≥9 C .m ≥9或m ≤1 D .0<m ≤1 6.已知函数f (x )=(m -2)x 2+(m 2-4)x +m 是偶函数,函数g (x )=-x 3+2x 2+mx +5 在(-∞,+∞)内单调递减,则实数m 等于( )A .2B .-2C .±2D .07.设f (x )的定义域为R ,且f (-x )=-f (x ),f (x +d )<f (x )(d >0),当不等式f (a )+f (a 2)<0成立时,a 的取值范围是( )A .(-∞,-1)∪(0,+∞)B .(-1,0)C .(-∞,0)∪(1,+∞)D .(-∞,1)∪(1,+∞)8.在下列四个函数中,满足性质:“对于区间(1,2)上的任意x 1,x 2(x 1≠x 2 ),| f (x 2)- |f (x 1)<||x 2-x 1恒成立”的只有( )A .f (x )=1x B .f (x )=||x C .f (x )=2x D .f (x )=x 2班级姓名座号总分二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上) 9.已知集合A ={x |x 2-4<0},B ={x |x =2n +1,n ∈Z },则集合A ∩B =________.10.若命题p 是“所有负数的平方都是正数”,则命题“非p ”是________.11. 如果点P 在平面区域22021020x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么|PQ |的最小值为_________________;12.已知命题p :不等式|x |+|x -1|>m 的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是____________.13.若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2),且在[x 2,+∞)上单调递增,则b 的取值范围是________.14.为了稳定市场,确保农民增收,某农产品的市场收购价格x 与其前三个月的市场收购价格有关,且使x 与其前三个月的市场收购价格之差的平方和最小.若下表列出的是该产品前6则7月份该产品的市场收购价格应为________元.三、解答题(本大题满分14分,解答应写出文字说明、证明过程或演算步骤)15.设函数f (x )=x 2+b ln(x +1),其中b ≠0. (1)若b =-12,求f (x )在[1,3]的最小值;(2)如果f (x )在定义域内既有极大值又有极小值,求实数b 的取值范围;(3)是否存在最小的正整数N ,使得当n ≥N 时,不等式ln n +1n >n -1n3恒成立.2013届启恩中学高三理科数学考练试题参考答案1.B 2. D 3. D 4.D 5.D 6.B 7. A 8.A9.{-1,1}10.有的负数的平方不是正数11.1 12.1≤m <2 13. (-∞,0) 14. 7115.解析:(1)由题意知,f (x )的定义域为(-1,+∞),b =-12时,由f ′(x )=2x -12x +1=2x 2+2x -12x +1=0,得x =2(x =-3舍去),当x ∈[1,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以当x ∈[1,2)时,f (x )单调递减;当x ∈(2,3]时,f (x )单调递增, 所以f (x )min =f (2)=4-12ln 3.(2)由题意f ′(x )=2x +bx +1=2x 2+2x +b x +1=0在(-1,+∞)有两个不等实根,即2x 2+2x +b =0在(-1,+∞)有两个不等实根,设g (x )=2x 2+2x +b ,则⎩⎨⎧Δ=4-8b >0g (-1)>0,解之得0<b <12;(3)当b =-1时,函数f ()x =x 2-ln(x +1), 令函数h ()x =x 3-f (x )=x 3-x 2+ln(x +1)则h ′()x =3x 2-2x +1x +1=3x 3+(x -1)2x +1,∴当x ∈[0,+∞)时,h ′()x >0.所以函数h ()x 在[0,+∞)上单调递增,又h (0)=0, ∴x ∈(0,+∞)时,恒有h ()x >h (0)=0,即x 2<x 3+ln(x +1)恒成立.取x =1n ∈(0,+∞),则有ln ⎝ ⎛⎭⎪⎫1n +1>1n 2-1n 3恒成立.显然,存在最小的正整数N =1,使得当n ≥N 时,不等式ln ⎝ ⎛⎭⎪⎫1n +1>1n 2-1n 3恒成立.。
2013年广东省陆丰市林启恩纪念中学高三理科数学综合试卷及答案
2013届高三理科数学综合试卷 2013.4一、选择题:本大题共8小题,每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i 1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)设a b ∈R ,,集合{}10ba b a b a⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( )A .1B .1-C .2D .2-(4)下面给出的四个点中,到直线10x y -+=,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11), B .(11)-, C .(11)--, D .(11)-, (5)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( ) A .15B .25C .35D .45(6)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2 C. D .4(7)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( ) A .3B .4C .5D .6AB1B1A1D1C CD(8).如图,三行三列的方阵中有9个数(123123)ij a i j ==,,;,,,从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .1314 B .47C .114D .37二、填空题:本大题共6小题,每小题5分共30分。
9.已知向量)3,(),2,4(x b a ==向量,且a ∥b ,则x = . 10.曲线sin y x =在点(3π)处的切线方程为 .11.已知等比数列{}n a 的前三项依次为1a -,1a +,4a +,则n a = .12.已知正方形ABCD ,则以A B ,为焦点,且过C D ,两点的椭圆的离心率为_________.从以下三题中选做两题,如有多选,按前两题记分.13.(坐标系与参数方程选做题)在极坐标系中,点()1,0到直线()cos sin 2ρθθ+=的距离为 .14.(不等式选讲选做题)不等式142x x -<-+的解集是 .15.(几何证明选讲选做题)如图所示,圆O的直径为6,C为圆周上 一点。
启恩中学2013届高三数学(理)综合训练题(四)
启恩中学2013届高三数学(理)综合训练题(四)一.选择题:(本大题共8小题,每小题5分,共40分) 1.若集合}1|{2xy y M ==,{|1}P y y x ==-, 那么=P M A .[0, )+∞ B . (0, )+∞ C .(1, )+∞ D .[1, )+∞ 2.在等比数列{}n a 中,已知 13118a a a =,那么28a a =A .4B .6C .12D .163.在△ABC 中,90, (, 1), (2, 3)C AB k AC ∠=︒==,则k 的值是A .23B .-5C .5D .23-4.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…;第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图. 设成绩小于17秒的学生人数占全班人数的百分比为 x ,成绩大于等于15秒且小于17秒的学生人数为 y ,则从频率分布直方图中可分析出 x 和y 分别为A .0.935,B .0.945,C .0.135,D .0.145,5.设βα,为互不重合的平面,n m ,为互不重合的直线,给出下列四个命题:① 若αα⊂⊥n m ,, 则n m ⊥;② 若, , //, //m n m n ααββ⊂⊂,则 βα//;③ 若, , , m n n m αβαβα⊥=⊂⊥ ,则β⊥n ;④ 若, , //m m n ααβ⊥⊥,则β//n . 其中所有正确命题的序号是 :A .①③B .②④C .①④D .③④ 6.已知α∈(2π,π),sin α=53, 则)42tan(πα+等于:A .71 B .3117- C . 724- D .3117 7.设抛物线 y x 122=的焦点为F , 经过点P (2, 1) 的直线 l 与抛物线相交于A 、B 两点且点P 恰为AB 的中点,则 |AF | + |BF | = A .10B .8C .6D .48.若直线1+=kx y 与圆 0422=-+++my kx y x 交于N M ,两点, 且N M ,关于直线0=-y x 对称,动点(), P a b 在不等式组2000-+≥⎧⎪-≤⎨⎪≥⎩kx y kx my y 表示的平面区域内部及边界上运动,则21b w a -=-的取值范围是:A .[2, )+∞B .(, 2]-∞-C .[2, 2]-D .(, 2][2, )-∞-+∞二.填空题: 本大题共7小题,考生作答6小题,每小题5分,满分30分. (一) 必做题(9~ 13题)9.定义运算a cad bc b d=-,复数z 满足11z i i i=+,则13z i +-=___________10.62()x x-展开式中,常数项是__________.11.=-⎰-dx x 0224 .12.F 为 椭 圆 22221(0)x y a b a b+=>>的一个焦点,若椭 圆上存在点A 使AOF ∆为正三角形,那么椭圆的离心率为__________. 13.已知函数4() 1 [, ] (, ||2f x a b a b x =-+的定义域是为整数),值域是[0,1],则满足条件的整数数对(, )a b 共有 个.(二) 选做题(14 ~ 15题,考生只能从中选做一题,若两题全做,按前一题得分计算)14.(极坐标与参数方程选做题) 极坐标方程为 2cos ρθ=的园与参数方程为 122{x ty t=-+=的直线位置关系是_____________。
2013届高三理科数学训练题(11)
启恩中学2013届高三理科数学考练试题(11)时间:60分一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选 项中,只有一项是符合题目要求的. 1.设i z -=1(为虚数单位),则=+zz 22 ( )A .i --1B .i +-1C i +1D . i -12 设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件是( )A m ∥β且l 1∥αB m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2 3 若关于x 的不等式2124x x a a+--<-有实数解,则实数a 的取值范围为( )A .(,1)(3,)-∞+∞UB .(1,3)C .(,3)(1,)-∞--+∞UD .(3,1)--4.已知函数()f x 满足:当x ≥1时,()f x =)1(-x f ;当x <1时,()f x =x 2,则)7(log2f =( ) A .167 B .87C .47D .275、在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若b 2+c 2-bc =a 2,且ab=3,则角C 的度数是( )A .45°B .60°C .90°D .120°6设()()()20f x x ax bx c a =++≠的两个极值点分别为1x =和1x =-,则下列点中一定在x 轴上的是( )A .(a ,c )B .(),c a b +C .(),2a b b c ++D .(),a b7 已知双曲线2213yx -=的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为( )A .164-B .116-C. 2- D .5-8.定义:()00>>=y ,xy)y ,x (F x,已知数列{}n a 满足()()n ,F ,n F a n 22=()n *∈N ,若对任意正整数n ,都有k n a a ≥()k *∈N 成立,则k a 的值为 ( )A 12B 2 C89D 98班级 姓名 坐号 总分二、填空题:本大共6小题,每小题5分,满分30分9.等比数列{}n a 中,372,8,a a == 则5a =10.10(x -的展开式中,的系数是___11.命题“x R ∃∈,230x x -≤”的否定是 .12.已知|a |=|b |=|b a -|=2,则|2a b -|的值为13.在实数的原有运算法则中,定义新运算3a b a b ⊗=-,则()()418x x xx ⊗-+-⊗>的解集为 14已知函数sin 1()1x x f x x -+=+()x ∈R 的最大值为M ,最小值为m ,则M m +的值为 三、解答题:本大题共1小题,满分14分,解答须写出文字说明、证明过程或演算步骤. 15已知数列{}n a 的前n 项和为n S ,且满足:1a a=(0)a ≠,1n n a rS +=(n ∈N*,,1)r R r ∈≠-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若存在k ∈N*,使得1k S +,k S ,2k S +成等差数列,是判断:对于任意的m ∈N*,且2m ≥,1m a +,m a ,2m a +是否成等差数列,并证明你的结论.启恩中学2013届高三理科数学考练试题(11)参考答案一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有本大题共6小题, 每小题5分,满分30分.9.4 10.1890 11.x R ∀∈,230x x -> 12. 13.115,88x x x ⎧⎫<->⎨⎬⎩⎭14 2 三、解答题:本大题共1小题,满分14分,解答须写出文字说明、证明过程或演算步骤.15解:(I )由已知1,n n a rS +=可得21n n a rS ++=,两式相减可得2111(),n n n n n a a r S S r a ++++-=-=即21(1),n n a r a ++=+又21,a ra ra ==所以r=0时,数列{}n a 为:a ,0,…,0,…;当0,1r r ≠≠-时,由已知0,0n a a ≠≠所以(*n N ∈),于是由21(1),n n a r a ++=+可得211()n n a r n N a *++=+∈,23,,,n a a a ∴+成等比数列,∴≥当n 2时,2(1).n na r r a -=+综上,数列{}n a 的通项公式为21,(1),2nn n a n a r r a n -=⎧=⎨+≥⎩(II )对于任意的*m N ∈,且122,,,m m m m a a a ++≥成等差数列,证明如下:当r=0时,由(I )知,,1,0,2m a n a n =⎧=⎨≥⎩ ∴对于任意的*m N ∈,且122,,,m m m m a a a ++≥成等差数列,当0r ≠,1r ≠-时,21211,.k k k k k k S S a a S a +++++=+++ 若存在*k N ∈,使得112,,k k S S S++成等差数列,则122k k kS S S +++=,1221222,2,k k k k k k S a a S a a ++++∴++==-即由(I )知,23,,,,m a a a的公比12r +=-,于是对于任意的*m N ∈,且122,2,4,m m m m m a a a a ++≥=-=从而12122,,,m m m m m ma a a a a a ++++∴+=即成等差数列,综上,对于任意的*m N ∈,且122,,,m m m m a a a ++≥成等差数列。
启恩中学2013届高三数学(理)综合训练题(三)
启恩中学2013届高三数学(理)综合训练题(三)说明:考试时间120分钟,满分150分一、选择题:(本大题共8小题,每小题5分,满分40分) 1.复数11z i=-的共轭复数....是( )A.1122i +B.1122i -C. 1i -D. 1i +2. 已知全集U R =,{|2}xS y y ==,{|ln(1)0}T x x =-<,则S T = ( ) A. φB. {|02}x x <<C. {|01}x x <<D. {|12}x x <<3. 为了得到函数2sin()36x y π=+,x R ∈的图像,只需把函数2sin y x =,x R ∈的图像上所有的点( ) A. 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)B. 向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)C. 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D. 向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)4. 给出下列四个命题:①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行 ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线 其中假.命题的个数是( ) A. 1B. 2C. 3D. 45. 已知,a b 均为单位向量,它们的夹角为60°,那么,|a +A.D. 46. 为了解某校高三学生的视力情况,随机地抽查了该校100 名高三学生的视力情况,得到频率分布直方图如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生人数为b ,则a 、b 的值分别为( ) A. 0.27,78B. 0.27,83C. 2.7,78D. 2.7,837. 某公司租地建仓库,已知仓库每月占用费1y 与仓库到车站的距离成反比,而每月车存货物的运费2y 与仓库到车站的距离成正比。
2013年高三理科数学综合测试题一
2013届高三第二学期理科数学训练题(一)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项. 1.已知集合2{|9},{|33}M x x N x z x ===∈-≤<,则M N = ( )A .∅B .{3}-C .{3,3}-D .{3,2,0,1,2}--2.已知命题p :21,04x R x x ∀∈-+≥,则命题p 的否定p ⌝是 ( ) A .21,04x R x x ∃∈-+< B .21,04x R x x ∀∈-+≤C .21,04x R x x ∀∈-+<D .21,04x R x x ∃∈-+≥3. 在复平面内,复数21i+对应的点与原点的距离是 ( )A.1B.2D.4.如图,是一个几何体的正视图(主视图)、侧视图(左视图)、俯视图,正视图(主视图)、侧视图(左视图)都是矩形,则该几何体的体积是 ( )A .24B .12C .8D .45.为了得到函数)322sin(π+=x y 的图像,只需把函数)62sin(π+=x y 的图像( ) A.向左平移2π个单位长度 B.向右平移2π个单位长度C.向左平移4π个单位长度D.向右平移4π个单位长度6.在△ABC 中,角A ,B ,C 所对的边长分别为,,a b c ,若∠C=120°,c ,则( ) A.a b > B.a b < C. a b = D.,a b 的大小关系不能确定7.若椭圆12222=+by a x (0)a b >>的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线bx y 22=的焦点分成5∶3的两段,则此椭圆的离心率为 ( )A .1617B C .45 D8.对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn .则在此定义下,集合{(,)M a b a =※12,,}b a b **=∈∈N N 中的元素个数是 ( )A .10个B .15个C .16个D .18个二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题:第9、10、11、12、13题是必做题,每道试题考生都必须做答.9.已知||1,||2,,60a b a b ==<>=,则|2|a b += .10.某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师 人.11.若关于x 的不等式()21m x x x ->-的解集为{}12x x <<,则实数m 的值为 .12.若0x >,0y >,123x y +=,则11x y+的最小值是 . 13. 在如下程序框图中,已知:0()x f x xe =,则输出的是_____ ___.(二)选做题:第14、15题是选做题,考生只能从中选做一题. 14.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫⎝⎛+πθρ被圆4=ρ截得的弦长为 . 15.(几何证明选讲选做题)如图,已知:ABC △内接于O ,点D 在OC 的延长线上,AD 是O 的切线,若30B ∠=︒,1AC =,则AD 的长为 .三.解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知向量(cos ,sin )a αα= ,(cos ,sin )b ββ= , 且||a b -= .(I )求cos()αβ-的值;(II )若202π<α<<β<π-,且5sin 13β=-,求sin α的值.17.(本小题满分12分)为深入贯彻素质教育,增强学生体质,某中学从高一、高二、高三三个年级中分别选了甲、乙、丙三支足球队举办一场足球赛。
启恩中学2013届高三数学(理)综合训练题(八)
启恩中学2013届高三数学(理)综合训练题(八)一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,2,3M =,{}2,3,4N =,则A .M N ⊆B .N M ⊆C .{}2,3M N =D .{}1,4M N = .2复数=-i i2 A .i 5251+- B . i 5251-- C .i 5251- D .i21+3.不可能为....①长方形; ②正方形; ③ 圆; ④ 椭圆. 其中正确的是( )A .①②B .②③ C.③④ D.①④4. 把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为 A .2π-=x B .4π-=x C .8π=x D .4π=x5.已知m 是两个正数8,2的等比中项,则圆锥曲线122=+my x 的离心率为 A .23或25 B .23 C .5 D .23或5 6.在12(2的展开式中不含..6x 项的系数的和为 A.-1 B.0 C.1 D.27.对任意非零实数a b 、,定义一种运算:a b ⊗, 其结果b a y ⊗=的值由右图确定,则()221log 82-⎛⎫⊗= ⎪⎝⎭( ) A .1 B .21C .43D .35第1个第2个第3个。
8.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y =f (x ),一种是平均价格曲线y =g (x )(如f (2)=3表示开始交易后第2小时的即时价格为3元;g (2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示y =f (x ),虚线表示y =g (x ),其中可能正确的是 ( )二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.某大型超市销售的乳类商品有四种:纯奶、酸奶、婴幼儿奶粉、成人奶粉,且纯奶、酸奶、婴幼儿奶粉、成人奶粉分别有30种、10种、35种、25种不同的品牌.现采用分层抽样的方法从中抽取一个容量为n 的样本进行三聚氰胺安全检测,若抽取的婴幼儿奶粉的品牌数是7,则=n .10.曲线233y x =-与轴所围成的封闭图形面积为 .11. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖的块数是 .12.设关于x 的不等式1x x a +-<(a ∈R ). 若2a =,则不等式的解集为 ;若不等式的解集为∅,则a 的取值范围是 . 13.对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn .则在此定义下,集合{(,)M a b a =※12,,}b a b **=∈∈N N 中的元素个数是 .(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)(坐标系与参数方程选做题)若直线340x y m ++=与曲线 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是____________.15. (几何证明选讲选做题)如图,⊙O 1与⊙O 2交于M 、N 两点,直线AE 与这两个圆及MN 依次交于A 、B 、C 、D 、E .且AD =19,BE =16,BC =4,则AE = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分12分)已知函数)(xf=A)(sin2ϕ+ωx (A>0,ω>0,0<ϕ<2π),且)(xfy=的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求ϕ;(2)计算)2011(...)2()1(fff+++.17.(本小题满分12分)亚运组委会计划对参加某项田径比赛的12名运动员的血样进行突击检验,检查是否含有兴奋剂HGH成分.采用如下检测方法:将所有待检运动员分成4个小组,每组3个人,再把每个人的血样分成两份,化验室将每个小组内的3个人的血样各一份混合在一起进行化验,若结果中不含HGH成分,那么该组的3个人只需化验这一次就算合格;如果结果中含HGH成分,那么需对该组进行再次检验,即需要把这3个人的另一份血样逐个进行化验,才能最终确定是否检验合格,这时,对这3个人一共进行了4次化验,假定对所有人来说,化验结果中含有HGH成分的概率均为110.(Ⅰ)设一个小组检验次数为随机变量ξ,求ξ的分布列及数学期望;(Ⅱ)求至少有两个小组只需经过一次检验就合格的概率.(精确到0.01,参考数据:30.2710.020≈,40.2710.005≈,20.7290.500≈)18.(本小题满分14分)已知正方形ABCD的边长为2,AC BD O=.将正方形ABCD沿对角线BD折起,使AC a=,得到三棱锥A BCD-,如图所示.(1)当2a=时,求证:AO BCD⊥平面;(2)当二面角A BD C--的大小为120 时,求二面角A BC D--的正切值.19.(本题满分14分)图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.设y BC x AB ==,2。
启东中学2013届高三数学综合训练 含答案
启东中学2013届高三数学(综合)训练三一、填空题(本题共14题,每题5分,计70分,请把答案填写在答题..纸.相应位置上.....) 1.已知R 为实数集,2{|20},{|1}M x x x N x x =-<=≥,则=)(N C M R . 2.命题:“(0,)x ∀∈+∞,210x x ++>”的否定是 . 3.已知()()i 1i z a =-+(a ∈R ,i 为虚数单位),若复数z 在复平面内对应的点在实轴上,则a = . 4.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是____ ____.5.阅读右图所示的程序框图,运行相应的程序,输出的s 值 等于______.6.椭圆()222210x y a b a b=>>+的右焦点为1F ,右准线为1l ,若过点1F 且垂直于x 轴的弦的弦长等于点1F 到1l 的距离,则椭圆的离心率是 .7.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DC DE ⋅的最大值为______. 8.设,,a b R ∈且2,a ≠若定义在区间(),b b -内的函数()1lg 12axf x x+=+是奇函数,则a b +的取值范围是 .9.巳知函数))2,0((cos )(π∈=x x x f 有两个不同的零点21,x x ,且方程m x f =)(有两个不同的实根43,x x .若把这四个数按从小到大排列构成等差数列,则实数m 的值为____ ______.10.关于x 的不等式2x +25+|3x -52x |≥ax 在[1,12]上恒成立,则实数a 的取值范围是 .11.已知正数x ,y 满足(1+x )(1+2y )=2,则4xy +1xy 的最小值是____ 。
12.已知函数()4322f x x ax x b =+++,其中,a b ∈R .若函数()f x 仅在0x =处有极值,则a 的取值范围是 .13.已知)(,,c b a c b a <<成等差数列,将其中的两个数交换,得到的三个数依次成等比数列,则2222a c b +的值为 .14.如图,用一块形状为半椭圆1422=+y x )0(≥y 的铁皮截取一个以短轴BC 为底的等腰梯形ABCD ,记所得等腰梯形ABCD 的面积为S ,则1S的最小值是 .二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)在△ABC 中,,,A B C 为三个内角,,a b c 为三条边,23ππ<<C ,且.2sin sin 2sin CA Cb a b -=- (I )判断△ABC 的形状;(II )若||2BA BC +=,求BA BC ⋅的取值范围.16.(本小题满分14分)如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC. (1) 求证:平面AEC ⊥平面ABE ; (2) 点F 在BE 上,若DE ∥平面ACF ,求BEBF的值.ABCDxyo17.(本小题满分15分)已知椭圆C :x 2 a 2 +y 2 b 2 =1(a >b >0)的离心率为1 2 ,且经过点P (1,3 2).(I )求椭圆C 的方程;(II )设F 是椭圆C 的右焦点,M 为椭圆上一点,以M 为圆心,MF 为半径作圆M .问点M 满足什么条件时,圆M 与y 轴有两个交点?(Ⅲ)设圆M 与y 轴交于D 、E 两点,求点D 、E 距离的最大值.18. (本小题满分15分)如图,AB 是沿太湖南北方向道路,P 为太湖中观光岛屿, Q 为停车场, 5.2PQ =km .某旅游团游览完岛屿后,乘游船回停车场Q ,已知游船以13km/h 的速度沿方位角θ的方向行驶,135sin =θ.游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点Q 与旅游团会合,立即决定租用小船先到达湖滨大道M 处,然后乘出租汽车到点Q (设游客甲到达湖滨大道后能立即乘到出租车).假设游客甲乘小船行驶的方位角是α,出租汽车的速度为66km/h .(Ⅰ)设54sin =α,问小船的速度为多少km/h 时,游客甲才能和游船同时到达点Q ; (Ⅱ)设小船速度为10km/h ,请你替该游客设计小船行驶的方位角α,当角α余弦值的大小是多少时,游客甲能按计划以最短时间到达Q .19.(本小题满分16分)已知各项均为正数的等差数列{}n a 的公差d 不等于0,设13,,k a a a 是公比为q 的等比数列{}n b 的前三项,(I )若k=7,12a =(i )求数列{}n n a b 的前n 项和T n ;(ii )将数列{}n a 和{}n b 的相同的项去掉,剩下的项依次构成新的数列{}n c ,设其前n 项和为S n ,求211*21232(2,)n n n n S n n N -----+⋅≥∈的值;(II )若存在m>k,*m N ∈使得13,,,k m a a a a 成等比数列,求证k 为奇数.20.(本小题满分16分)已知函数x a x g b x x x f ln )(,)(23=++-=. (I )若)(x f 在⎪⎭⎫⎢⎣⎡-∈1,21x 上的最大值为83,求实数b 的值;(II )若对任意[]e x ,1∈,都有x a x x g )2()(2++-≥恒成立,求实数a 的取值范围; (Ⅲ)在(1)的条件下,设()()⎩⎨⎧≥<=1,1,)(x x g x x f x F ,对任意给定的正实数a ,曲线)(x F y =上是否存在两点Q P ,,使得POQ ∆是以O 为直角顶点的直角三角形(O 为坐标原点),且此三角形斜边中点在y 轴上?请说明理由.参考答案一、填空题1. {|01}x x <<2.01),,0(2≤+++∞∈∃x x x 3.14. 44π-5. 3-6. 217. 1 8.]23,2(--10.]10,(-∞ 11. 12 12.88,33⎡⎤-⎢⎥⎣⎦13.10二、解答题15. (Ⅰ)解:由CA Cb a b 2sin sin 2sin -=-及正弦定理有:C B 2sin sin = ∴2B C =或π=+C B 2若2B C=,且32C ππ<<,∴23B ππ<<,)(舍π>+C B ;∴2B C π+=,则A C =,∴ABC ∆为等腰三角形.………………7分(Ⅱ)∵ ||2BA BC +=,∴222cos 4a c ac B ++⋅=,∴222cos ()a B a c a-==,而C B 2cos cos -=,∴1cos 12B <<,∴2413a <<,∴2(,1)3BA BC ⋅∈. (14)分16.解:(1)证明:因为ABCD 为矩形,所以AB ⊥BC ;又因为平面ABCD ⊥平面BCE ,且平面ABCD ∩平面BCE =BC ,AB ⊂面ABCD , 所以AB ⊥平面BCE , ……………………3分 因为CE ⊂平面BCE ,所以CE ⊥AB ………………3分 又因为CE ⊥BE ,AB ⊂面ABE ,BE ⊂面ABE ,AB ∩BE =B , 所以CE ⊥面ABE ………………6分 又CE ⊂平面AEC ,所以平面AEC ⊥平面ABE ;…………………8分 (2)连结BD 交AC 于点O ,连结OF ,因为DE ∥平面ACF ,DE ⊂平面BDE ,平面ACF ∩平面BDF =OF ,所以DE ∥OF , ………………12分 又因为矩形ABCD 中,O 为BD 中点,所以F 为BE 的中点,从而BF :BE =1:2. ………………………14分 17.解:(Ⅰ)∵椭圆x 2 a 2 +y 2 b 2 =1(a >b >0)的离心率为1 2 ,且经过点P (1,32),∴⎩⎨⎧a 2-b 2 a =121 a2 +9 4b 2=1,即 ⎩⎪⎨⎪⎧3a 2-4b 2=01 a 2 +9 4b 2 =1,解得 ⎩⎨⎧a 2=4b 2=3,∴椭圆C 的方程为x 2 4 +y 23=1。
2013年高考理综拿高分专项训练9.pdf
B.琴弦振动时,线圈中产生的感应电流大小变化,方向不变
C.琴弦振动时,线圈中产生的感应电流大小不变。方向变化
D.琴弦振动时,线圈中产生的感应电流大小和方向都会发生变化
20.一物理实验爱好者利用如图所示的装置研究气体压强、体积、温度三量间的变化关系.导热良好的汽缸开口向
下,内有理想气体,汽缸固定不动,缸内活塞可自由滑动且不漏气.一温度计通过缸底小孔插入缸内,插口处密封良好
面镜反射后,从水面射出并分别投射到屏MN上两点,则有( )
A.从水面射出的两束光彼此平行,红光投射点靠近M端
B.从水面射出的两束光彼此平行,蓝光投射点靠近M端
C.从水面射出的两束光彼此不平行,红光投射点靠近M端
D.从水面射出的两束光彼此不平行,蓝光投射点靠近M端
19.吉他以其独特的魅力吸引了众多音乐爱好者,电吉他与普通吉他不同的地方是它的每一根琴弦下面安装了一种
平方向作加速运动。关于A对B的作用力,下列说法正确的是( )
A.若水平面光滑,物块A对B的作用力大小为F
B.若水平面光滑,物块A对B的作用力大小为
C.若物块A与地面无摩擦,B与地面的动摩擦因数为,则物块A对B的作用力大小为
D.若物块A与地面无摩擦,B与地面的动摩擦因数为,则物块A对B的作用力大小为
在屏幕上看到的图形是( )
2013年高考理综拿高分专项训练9
答案
一.选择题:
题号12345678910111213答案CCDABDBACACBD二.选择题:
14.C 15.BD 16.C 17.BD 18.B 19.D 20.BC 21.A
种群数量增长率
t0 t1 t2 t3
莽草酸是禽流感唯一特效药“达菲”生产过
程中的关键原材料,莽草酸的结构简式如右图所示。下列关于
2013届高三理科数学综合训练题四
2013届高三第一学期理科数学综合训练题四一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -1 2.已知向量(1,1),2(4,2)=+=a a b ,则向量,a b 的夹角的余弦值为( )B. -2D. 2-3.若110lg lg lg lg 1092=++++x x x x ,则x x x x 1092lg lg lg lg ++++ 的值是( ) A .1022 B .1024C .2046D .20484.圆C 关于直线:210l x y -+=对称且圆心在x 轴上,圆C 与y 轴相切,则圆C 的方程为( ) A .1)1(22=+-y x B .1)1(22=++y xC .41)21(22=-+y x D .41)21(22=++y x5.若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线; ③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .46.已知函数2221,0()21,0x x x f x x x x ⎧+-≥=⎨--<⎩,则对任意12,x x R ∈,若120x x <<,下列不等式成立的是( )A. 12()()0f x f x +<B. 12()()0f x f x +>C. 12()()0f x f x ->D. 12()()0f x f x -<7.学校准备从5位报名同学中挑选3人,分别担任2011年世界大学生运动会田径、游泳和球类3个不同项目比赛的志愿者,已知其中同学甲不能担任游泳比赛的志愿者,则不同的安排方法共有( )A .24种B .36种C .48种D .60种8.设},,20,20|),{(R ∈<<<<=c a c a c a A ,则任取A c a ∈),(,关于x 的方程022=++c x ax 有实根的概率为( )A .22ln 1+ B .22ln 1- C .42ln 21+ D .42ln 23-二、填空题:本大题共6小题,每小题5分,满分30分.9.已知命题“,|||1|2x R x a x ∃∈-++≤”是假命题,则实数a 的取值范围是____ ____. 10.在等比数列{}n a 中,首项=1a 32,()44112a x dx =+⎰,则公比q 为 .11.如图1,已知一个锥体的正视图(也称主视图),左视图(也称侧视图)和俯视图均为直角三角形, 且面积分别为3,4,6,则该锥体的体积是 .12.在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中, x 的一次项系数是10-,则实数a 的值为 .13.定义在R 上的奇函数()f x 满足(3)(f x f x -=+,且(1)f =,则(2011)(f f -= . 14. 给出如图所示的程序框图,那么输出的数是________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)某种项目的射击比赛,开始时在距目标100m 处射击,如果命中记6分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已经在150m 处,这时命中记3分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已经在200m 处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,且不再继续射击.已知射手甲在100m 处击中目标的概率为12,他的命中率与其距目标距离的平方成反比,且各次射击是否击中目标是相互独立的.(1)分别求这名射手在150m 处、200m 处的命中率;(2)设这名射手在比赛中得分数为ξ,求随机变量ξ的分布列和数学期望.正视图 左视图图116.(本题满分12分)已知函数()sin()f x A x ωϕ=+(0,0,,)2A x ωϕπ>><∈R 的图象的一部分如下图所示.(1)求函数()f x 的解析式;(2)当2[6,]3x ∈--时,求函数()(2)y f x f x =++的最大值与最小值及相应的x 的值.17.(本题满分14分)已知椭圆C :)0( 12222>>=+b a by ax的离心率为23,过坐标原点O 且斜率为21的直线l 与C 相交于A 、B ,102||=AB .(1)求a 、b 的值;(2)若动圆1)(22=+-y m x 与椭圆C 和直线 l 都没有公共点,试求m 的取值范围.18、(本小题满分14分)如图,AC 是圆O 的直径,点B 在圆O 上,︒=∠30BAC ,AC BM ⊥交AC 于点M ,⊥EA 平面ABC ,EA FC //,134===FC EA AC ,,. (1)证明:BF EM ⊥;(2)求平面BEF 与平面ABC 所成的锐二面角的余弦值.E19.(本小题满分14分)平面直角坐标系中,已知直线l :4=x ,定点)0,1(F ,动点),(y x P 到直线l 的距离是到定点F 的距离的2倍.(1)求动点P 的轨迹C 的方程;(2)若M 为轨迹C 上的点,以M 为圆心,MF 长为半径作圆M ,若过点)0,1(-E 可作圆M 的两条切线EA ,EB (A ,B 为切点),求四边形EAMB 面积的最大值.20.(本题满分14分)已知三次函数()()32,,f x ax bx cx a b c R =++∈.(1)若函数()f x 过点(1,2)-且在点()()1,1f 处的切线方程为20y +=,求函数()f x 的解析式;(2)在(Ⅰ)的条件下,若对于区间[]3,2-上任意两个自变量的值12,x x 都有12()()f x f x t -≤,求实数t 的最小值;(3)当11x -≤≤时,1)(≤'x f ,试求a 的最大值,并求a 取得最大值时()f x 的表达式.班级:__________ 座号:__________ 姓名:__________2013届高三第一学期理科数学训练题四答题卷一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.9.______________;10.______________;11.______________;12.______________;13.______________;14.______________.三、解答题:本大题共6小题,共80分.15.(本小题满分12分)16.(本小题满分12分)17.(本小题满分14分)18.(本小题满分14分)19.(本小题满分14分)ABC EFMO20.(本小题满分14分)。
江苏省启东中学2013届高三高考考前辅导数学试题(含答案)
江苏启东中学2013届高三高考考前辅导数学试题填空题《统计问题》1.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a= ,b= 。
2.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为____.《概率问题》1.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,, 则方程22221x y ab+=表示焦点在x 轴上且离心率的椭圆的概率为 .2.在圆错误!未找到引用源。
=4所围成的区域内随机取一个整点P(x,y)(横,纵坐标都是整数点),则满足错误!未找到引用源。
的整点的概率为 .《三角问题》1.在错误!未找到引用源。
中,D 为BC 的中点,∠BAD=错误!未找到引用源。
,∠CAD=错误!未找到引用源。
AB=错误!未找到引用源。
,则AD= .2.已知sin(错误!未找到引用源。
=错误!未找到引用源。
(错误!未找到引用源。
则cos 错误!未找到引用源。
. 3.若错误!未找到引用源。
.4.在ABC ∆中,若tan A tan B =tan A tan C +tanctan B ,则 222cb a += .5.若角 C 是一三角形内角,关于x 的不等式错误!未找到引用源。
的解集为错误!未找到引用源。
,则角C 的最大角为 .6.已知ABC ∆的内角C B A ,,的对边c b a ,,成等比数列,则ABsin sin 的取值范围为 。
《立几问题》1.已知四棱锥S-ABCD 的底面ABCD 是边长为2的正方形,侧面SAB 是等边三角形,侧面SCD 是以CD 为斜边的直角三角形,E 为CD 的中点,则三棱锥S-AED 的体积 .2.设,αβ为两个不重合的平面,,m n 为两条不重合的直线,给出下列的四个命题:(1)若,m n m α⊥⊥,则//n α;(2)若α与β相交且不垂直,则n 与m 不垂直 (3)若,,,,m n n m αβαβα⊥⋂=⊂⊥则n β⊥(4)若//,,//,m n n ααβ⊥则m β⊥其中,所有真命题的序号是 .《切线问题》1.已知f(x)=错误!未找到引用源。
广东省汕尾市陆丰市启恩中学高三数学全真模拟试题 理(含解析)新人教A版
广东省汕尾市陆丰市启恩中学2013年高考数学全真模拟试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2011•惠州模拟)已知集合A={(x,y)|x+y=0,x,y∈R};B=[(x,y)|x﹣y=0,解:联立两集合中的方程得:,2.(5分)的值是()解:因为===3.(5分)(2011•惠州模拟)已知向量,,若向量,⇔,,4.(5分)已知a>0,且a≠1,()=5.(5分)(2011•惠州模拟)已知直线l、m,平面α、β,则下列命题中:①若α∥β,l⊂α,则l∥β ②若α∥β,l⊥α,则l⊥β③若l∥α,m⊂α,则l∥m ④若α⊥β,α∩β=l,m⊥l,则m⊥β其中,真命题6.(5分)(2013•河东区二模)给出计算的值的一个程序框图如图,其中判断框内应填入的条件是()时,总共经过了28.(5分)(2011•惠州模拟)规定记号“⊗”表示一种运算,即a⊗b=ab+a+b2(a,b为正实数),二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)(二)选做题(14~15题,考生只能从中选做一题)9.(5分)在约束条件下,函数S=2x+y的最大值为 2 .有约束条件(10.(5分)如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的体积为π.故答案为:11.(5分)(2012•普陀区一模)的展开式中的常数项是﹣20 .(用数字作答)12.(5分)(2011•惠州模拟)一个容量为20的样本,数据的分组及各组的频数如下表:(其*则样本在区间[10,50 )上的频率0.7 .=13.(5分)已知数列{a n}满足a1=2,a n+1=2a n+1(n∈N*),则a4= 23 ,该数列的通项公式a n= 3•2n﹣1.14.(5分)(2012•汕头二模)(几何证明选讲选做题)四边形ABCD内接于⊙O,BC是直径,MN切⊙O于A,∠MAB=25•,则∠D=115°.所对的弧是15.(坐标系与参数方程选做题)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是ρ=2cos(θ﹣1).三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)在△ABC中,角A、B、C所对边分别为a,b,c,已知,且最长边的边长为l,求:(1)角C的大小;(2)△ABC最短边的长.;,解得.17.(12分)已知函数f(x)=x3+ax2+bx+5,在函数f(x)图象上一点P(1,f(1))处切线的斜率为3.(1)若函数y=f(x)在x=﹣2时有极值,求f(x)的解析式;(2)若函数y=f(x)在区间[﹣2,1]上单调递增,求b的取值范围.时,18.(14分)一个暗箱里放着6个黑球、4个白球.(1)依次取出3个球,不放回,若第1次取出的是白球,求第3次取到黑球的概率;(2)有放回地依次取出3个球,若第1次取出的是白球,求第3次取到黑球的概率;(3)有放回地依次取出3个球,求取到白球个数ξ的分布列和期望.根据独立重复事件的定义知:=3×=).,=3×19.(14分)(2012•孝感一模)如图所示,四棱锥P﹣ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.(1)求证:PA⊥EF;(2)求二面角D﹣FG﹣E的余弦值.=,得=∴,得=<,20.(14分)(2008•广州一模)已知函数f(x)=e x﹣x(e为自然对数的底数).(1)求函数f(x)的最小值;(2)若n∈N*,证明:.令则∴.令.∵,21.(14分)(2012•湖南模拟)已知抛物线L:x2=2py(p>0)和点M(2,2),若抛物线L 上存在不同的两点A、B满足.(1)求实数p的取值范围;(2)当p=2时,抛物线L上是否存在异于A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线?若存在,求出点C的坐标;若不存在,请说明理由.先利用上存在点,∴解得..。
启恩中学2013届高三数学(理)综合训练题(一)
启恩中学2013届高三数学(理)综合训练题(一)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知R 为实数集,2{|20},{|1}M x x x N x x =-<=≥,则=)(N C M R ( ) A .{|01}x x << B .{|02}x x << C .{|1}x x < D .∅ 2.若(12)1ai i bi +=-,其中a 、b ∈R ,i 是虚数单位,则||a bi += ( )A .12i + BC. D .543.下列函数中,既是偶函数又在()0,+∞上单调递增的是( )A. 3y x = B. ln y x = C. 21y x =D. cos y x = 4.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( ) A .23-B .13-C .13D .235.函数2()ln(1)f x x x=+-的零点所在的大致区间是( ) A .(0,1) B .(1,2) C . )3,2( D .(3,4)6.已知双曲线)0,0(,12222>>=-b a by a x 的一条渐近线方程为x y 34=,则双曲线的离心率为( ) A .34 B .23 C .45 D .357.若一个正三棱柱的三视图如图所示,则 这个正三棱柱的表面积为( ) A .318 B .315C .3824+D .31624+8.已知平面区域1(,)01y x x y y x ⎧⎫+⎧⎪⎪⎪Ω=⎨⎨⎬⎪⎪⎪⎩⎩⎭≤≥≤,||1(,)0y x M x y y ⎧⎫-+⎧⎪⎪=⎨⎨⎬⎩⎪⎪⎩⎭≤≥,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为( ) A .12 B .13C .14D .23二、填空题:(本大题共7小题,其中9-13题为必做题. 14、15题为选做题,任选一题完成。
启恩中学数学必修①综合测试卷
启恩中学数学必修①综合测试卷一、选择题(10×5分)1、已知偶函数()f x 在区间[0,]π上单调递增,那么下列关系成立的是( ) A 、()(2)()2f f f ππ->>B 、()()(2)2f f f ππ->->-C 、(2)()()2f f f ππ->->-D 、()(2)()2f f f ππ->->2、已知集合{}1,1-=M ,⎭⎬⎫⎩⎨⎧<<∈=+42211x Z x N ,则=N M ( )A 、{}1,1-B 、{}1-C 、{}0D 、{}0,1-3、若方程0xa x a --=有两个解,则a 的取值范围是( ) A 、(1,)+∞B 、(0,1)C 、(0,)+∞D 、∅4、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( )AB 、2C 、D 、45、客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达内地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( )A 、B 、C 、D 、6、已知函数()f x 的图像连续不断,有如下的,()x f x 对应值表:函数()f x 在区间[1,6]上的零点个数是( ) A 、2个B 、3个C 、4个D 、5个7、如图所示是指数函数(1)x y a =,(2)xy b =和对数函数(3)log c y x =,(4)log d y x =的图像,则,,,a b c d 的大小关系是( )A 、b a c d <<<B 、a b c d <<<C 、b a d c <<<D 、d c a b <<<8、若01,1a b <<>,则三个数,log ,bab M a N a P b ===的大小关系是( ) A 、N M P << B 、M N P << C 、P N M <<D 、M P N <<9、若lg lg 0a b +=(其中1,1a b ≠≠),则函数()xf x a =与()xg x b =的图像( ) A 、关于直线y=x 对称 B 、关于y 轴对称C 、关于x 轴对称D 、关于原点对称10、已知(1),0()(1),0x x x f x x x x -<⎧=⎨+>⎩,则()f x 是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既是奇函数又是偶函数二、填空题(4×5分)11、已知集合A={22,a a a +},则a 的取值范围是 。
2013届高三理科数学综合训练题二
2013届高三理科数学综合训练题(二)(本试卷共4页,21小题,满分150分。
考试用时120分钟)参考公式:如果在事件A 发生的条件下,事件B 发生的条件概率记为(|)P B A ,那么()()(|)P AB P A P B A =.一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1. 已知集合,集合,则A B = ( ) A. B. C. D. 2.若p 是真命题,q 是假命题,则( )A .p q ∧是真命题B .p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题 3.4)2(x x +的展开式中3x 的系数是( )A .6B .12C .24D .484.在A B C ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形5.已知实数4,,9m 构成一个等比数列,则圆锥曲线221xy m+=的离心率为( )630.A 7.B 7630.或C 765.或D6.阅读右图所示的程序框图,运行相应的程序,输出的结果是( ).A .3B .11C .38D .123 7.已知x 、y 的取值如下表所示:若y 与x 线性相关, 且ˆ0.95y x a =+,则a =( ) x 0 1 3 4 y2.24.34.86.7开始 1a =10?a <输出 结束22a a =+ 是否A 、2.2B 、2.9C 、2.8D 、2.68.对实数a 和b ,定义运算“⊗”:,1,,1.a ab a b b a b -≤⎧⊗=⎨->⎩.设函数()()()221f x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(]()1,12,-+∞B .(](]2,11,2--C .()(],21,2-∞-D .[]2,1-- 二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.复数Z=2(1)1i i+-(i 是虚数单位)则复数Z的虚部等于 .10.若向量()1,1a =,()1,2b =- ,则a 与b 夹角余弦值等于_____________.11.已知函数,0,()ln ,0,x e x f x x x ⎧<=⎨>⎩则1[()]f f e = .12.计算:1211xd x --=⎰.13.18世纪的时候,欧拉通过研究,发现凸多面体的面数F 、顶点数V 和棱数E 满足一个等式关系. 请你研究你熟悉的一些几何体(如三棱锥、三棱柱、正方体……),归纳出F 、V 、E 之间的关系等式: .(二)选做题:第14、15题为选做题,考生只能选做其中一题,两题全答的,只计前一题的得分。
启恩中学2013届理科数学全真模拟卷
启恩中学2013届理科数学全真模拟卷参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合(){},|0,,A x y x y x y R =+=∈,(){},|0,,B x y x y x y R =-=∈,则集合A B =A.)0,0(B. {}{}00=⋃=y xC. {}0D. {})0,0(2.201111i i -⎛⎫ ⎪+⎝⎭的值是A .1B .1-C .iD .i -3.已知向量(12)a = ,,(4)b x = ,,若向量a b ⊥,则x =A .2B .2- C . 8 D .8-4.已知0a >,且1a ≠,11(),()12xf x f x a =--则是 A .奇函数 B .偶函数 C .非奇非偶函数 D .奇偶性与a 有关5.已知直线l 、m ,平面βα、,则下列命题中: ①.若βα//,α⊂l ,则β//l ②.若βα//,α⊥l ,则β⊥l ③.若α//l ,α⊂m ,则m l // ④.若βα⊥,l =⋂βα, l m ⊥,则β⊥m 其中,真命题有A .0个B .1个C .2个D .3个 6.给出计算201614121++++ 的值的一个 程序框图如右图,其中判断框内应填入的条件是.A .10>iB .10<iC .20>iD .20<i 7.lg ,lg ,lg x y z 成等差数列是2y xz =成立的A .充分非必要条件能B .必要非充分条件C .充要条件D .既不充分也不必要条件8.规定记号“⊗”表示一种运算,即),(2为正实数b a b a ab b a ++=⊗,若31=⊗k ,则k =A .2-B .1C .2- 或1D .2二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)第6ADC OMN B9.在约束条件⎪⎩⎪⎨⎧≤+-≤>012210y x y x 下,目标函数S =2x y +的最大值为 .10.如右图,一个空间几何体的主视图和左视图都是 边长为1的正三角形,俯视图是一个圆,那么这个几 何体的体积为 . 11.6)1(xx -的展开式中的常数项是 .(用数字作答) 12.一个容量为20的样本,数据的分组及各组的频数如下表:(其中x ,y ∈N *) 分/组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频 数2x3y24则样本在区间 [10,50 ) 上的频率 .13.已知数列{}n a 满足12a =,*121()n n a a n N +=+∈,则4a = , 该数列的通项公式n a = .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如右图,四边形ABCD 内接 于⊙O ,BC 是直径,MN 切⊙O 于A ,∙=∠25MAB ,则=∠D .15.(坐标系与参数方程选做题)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长边的边长为l ., 求:(1)角C 的大小;(2)△ABC 最短边的长. 17.(本小题满分12分)已知函数5)(23+++=bx ax x x f ,在函数)(x f 图像上一点))1(,1(f P 处切线的斜率为3. (1)若函数)(x f y =在2-=x 时有极值,求)(x f 的解析式; (2)若函数)(x f y =在区间]1,2[-上单调递增,求b 的取值范围.18.(本小题满分14分)一个暗箱里放着6个黑球、4个白球.(1)依次取出3个球,不放回,若第1次取出的是白球,求第3次取到黑球的概率; (2)有放回地依次取出3个球,若第1次取出的是白球,求第3次取到黑球的概率; (3)有放回地依次取出3个球,求取到白球个数ξ的分布列和期望. 19.(本小题满分14分)如右图所示,四棱锥P ABCD -中,底面ABCD 为正方形, PD ⊥平面ABCD ,2PD AB ==,E ,F ,G 分别为 PC 、PD 、BC 的中点.(1)求证:PA EF ⊥; (2)求二面角D -FG -E 的余弦值. 20.(本小题满分14分)已知函数()xf x e x =-(e 为自然对数的底数). (1)求函数()f x 的最小值;(2)若*n ∈N ,证明:1211n n n nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.21.(本小题满分14分)已知抛物线L :22x py =和点()2,2M ,若抛物线L 上存在不同两点A 、B 满足AM BM +=0. (1)求实数p 的取值范围;(2)当2p =时,抛物线L 上是否存在异于A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线,若存在,求出点C 的坐标,若不存在,请说明理由.参考答案一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分题号 1 2 3 4 5 6 7 8 答案DCDABAAB1.选D 提示:求2条直线的交点.2.选C.提示:先将括号里面的式子化简.3.选D.提示:02121=+=⋅y y x x b a .4.选A.提示:)()(x f x f -=-.5.选B 提示:(2)(3)(4)为假命题6.选A.提示:11201614121=++++=i S 时,当 . 7.选A.提示:当x,z 都取负数时. 8.选B.提示:根据运算有1,,311*2=∴∈=++⋅k R k k k.二.填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.2 10.324π 11.20- 12.0.7 13.23 ;1321n -⋅- 14.115︒15.()2cos 1ρθ=- 9.2.提示:)处取得最大值,在点(121. 10.324π.提示:12此几何体为圆锥,底面圆的半径为, 32圆锥高为. 11.-20.提示:20)1(C 3336-=-xx 常数项为:.12.0.7.提示:7.02014205,9==++∴=+y x y x . 13.23 ;1321n -⋅-.提示:11231),1(21-+⋅=+∴+=+n n n n a a a .14.115︒.提示:,,,由已知得:连接090BAC 25BCA AC =∠=∠00115ADC 65ABC =∠=∠,.15.()2cos 1ρθ=-.提示:转化为直角坐标系求解.三.解答题:本大题共6小题,满分80分.解答须写出文字说明.证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数基本公式和正弦定理等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)tanC =tan[π-(A +B )]=-tan (A +B )………………… 2分tan tan 1tan tan A BA B+=--112311123+=--⨯ 1=- ………………… 4分 ∵0C π<<, ∴34C π=………………… 6分(2)∵0<tanB<tanA ,∴A.B 均为锐角, 则B<A ,又C 为钝角,∴最短边为b ,最长边长为c, ………………… 8分 由1tan 3B =,解得10sin 10B =………………… 10分由sin sin b cB C =, ∴101sin 510sin 522c Bb C⨯⋅===.…………………12分17.(本小题满分12分)(本小题主要考查函数与导数等知识,考查分类讨论,化归与转化的数学思想方法,以及推理论证能力和运算求解能力)解:由5)(23+++=bx ax x x f 求导数得b ax x x f ++='23)(2,由在函数)(x f 图像上一点))1(,1(f P 处切线的斜率为3, 知3)1(='f ,即323=++b a ,化简得02=+b a …… ① …………………2分(1) 因为)(x f y =在2-=x 时有极值,所以0)2(=-'f , 即0412=+-b a …… ② 由①②联立解得4,2-==b a ,∴ 542)(23+-+=x x x x f .…………………6分 (2)b ax x x f ++='23)(2,由①知02=+b a , ∴ b bx x x f +-='23)(.)(x f y =在区间]1,2[-上单调递增,依题意)(x f '在]1,2[-上恒有0)(≥'x f ,………8分 即032≥+-b bx x 在]1,2[-上恒成立, 下面讨论函数()y f x '=的对称轴:① 在16≥=bx 时, 03)1()(min >+-='='b b f x f ,∴ 6≥b .…………………9分 ② 在26-≤=bx 时, 0212)2()(min ≥++=-'='b b f x f ,无实数解.…………………10分 ③ 在162<<-b时, 01212)(2min≥-='b b x f ,∴ 60<≤b .…………………11分 综合上述讨论可知,b 的取值范围是{}0≥b b .…………………12分18.(本小题满分14分)(本小题主要考查条件概率.二项分布等知识,考查或然与必然的数学思想方法,以及数据处理能力.运算求解能力和应用意识)解:设事件A 为“第1次取到白球”,B 为“第2次取到白球”,C 为“第3次取到白球”,则 (1)()()111114653612492|3C C C C C P C A C A +==. …………………4分 (2)因为每次取出之前暗箱的情况没有变化,所以每次取球互不影响,所以()63105P C ==.…………………8分 (3)设事件D 为“取一次球,取到白球”,则()25P D =, ()35P D =,…………………10分 这3次取出球互不影响, 则23,5B ξ⎛⎫⎪⎝⎭,…………………12分 ()332355kkk P k C ξ-⎛⎫⎛⎫∴== ⎪ ⎪⎝⎭⎝⎭,()0,1,2,3k =.…………14分19.(本小题满分14分)(本小题主要考查空间线线关系.面面关系.空间向量及坐标运算等知识,考查数形结合.化归与转化的数学思想方法,以及空间想象能力.推理论证能力和运算求解能力) (1)证法1:∵PD ⊥平面ABCD ,CD ⊂平面ABCD ,∴CD PD ⊥.又ABCD 为正方形, ∴CD AD ⊥. ∵PD AD D = ,∴CD ⊥平面PAD .…………………4分∵PA ⊂平面PAD , ∴CD PA ⊥. ∵EF CD ,∴PA EF ⊥.…………………6分证法2:以D 为原点,建立如图所示的空间直角坐标系D xyz -,则(0,0,1)F ,(0,1,1)E ,(0,0,2)P ,(2,0,0)A ,(2,0,2)PA =- ,(0,1,0)EF =-.…………………4分∵()()2,0,20,1,00PA EF =--=,∴PA EF ⊥.…………………6分(2)解法1:以D 为原点,建立如图所示的空间直角坐标系D xyz -, 则(0,0,0)D ,(0,0,1)F ,(1,2,0)G ,(0,1,1)E ,(0,0,1)DF = ,(0,1,0)EF =-, (1,2,1)FG =-.…………………8分设平面DFG 的法向量为111(,,)x y z =m ,∵0,0.DF FG ⎧⋅=⎪⎨⋅=⎪⎩ m m 11110,20.z x y z =⎧∴⎨+-=⎩ 令11y =,得()2,1,0=-m 是平面DFG 的一个法向量.…………10分 设平面EFG 的法向量为222(,,)x y z =n ,∵0,0.EF FG ⎧⋅=⎪⎨⋅=⎪⎩n n 22220,20.y x y z -=⎧∴⎨+-=⎩ 令21z =,得()1,0,1=n 是平面EFG 的一个法向量.……………12分 ∵cos ,||||⋅<>=⋅m n m n m n 252-=⋅210-=105=-. 设二面角D FG E --的平面角为θ,则,θ=<>m n .所以二面角D FG E --的余弦值为105-.…………………14分 解法2:以D 为原点,建立如图所示的空间直角坐标系D xyz -,则(0,0,0)D ,(0,0,1)F ,(1,2,0)G ,(0,1,1)E ,(0,0,1)DF =, (1,2,0)DG = ,(0,1,0)EF =-,(1,1,1)EG =- ,(1,2,1)FG =-.…………………8分过D 作FG 的垂线,垂足为M ,∵,,F G M 三点共线,∴()1DM DF DG λλ=+- , ∵0DM FG =,∴()10DF FG DG FG λλ+-=,即()()1150λλ⨯-+-⨯=,解得56λ=.…………………10分 ∴51115,,66636DM DF DG ⎛⎫=+= ⎪⎝⎭. 再过E 作FG 的垂线,垂足为N ,∵,,F G N 三点共线,∴()1EN EF EG μμ=+-, ∵0EN FG = , ∴()10EF FG EG FG μμ+-=,即()()2140μμ⨯-+-⨯=,解得23μ=.∴21111,,33333EN EF EG ⎛⎫=+=-- ⎪⎝⎭.∴10cos ,5DM EN DM EN DM EN ==-⋅.…………………12分 ∵DM 与EN所成的角就是二面角D FG E --的平面角,所以二面角D FG E --的余弦值为105-.…………………14分 20.(本小题满分14分)(本小题主要考查函数的导数.最值.等比数列等基础知识,考查分析问题和解决问题的能力.以及创新意识)(1)解:∵()xf x e x =-,∴()1xf x e '=-.令()0f x '=,得0x =.∴当0x >时,()0f x '>,当0x <时,()0f x '<.……………4分 ∴函数()x f x e x =-在区间(),0-∞上单调递减,在区间()0,+∞上单调递增.∴当0x =时,()f x 有最小值1.…………………6分(2)证明:由(1)知,对任意实数x 均有1xe x -≥,即1xx e +≤.令k x n =-(*,1,2,,1n k n ∈=-N ),则01k n k e n-<-≤,∴1(1,2,,1)nnkkn k e e k n n --⎛⎫⎛⎫-≤==- ⎪ ⎪⎝⎭⎝⎭.…………………9分 即(1,2,,1)n k n k e k n n --⎛⎫≤=- ⎪⎝⎭ . ∵1,nn n ⎛⎫= ⎪⎝⎭∴(1)(2)211211n n n nn n n n e e e e n n n n -------⎛⎫⎛⎫⎛⎫⎛⎫++++≤+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.…12分 ∵(1)(2)2111111111n n n e eeee e e e e ----------+++++=<=--- , ∴ 1211n n n nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.……………14分21.(本小题满分14分)(本小题主要考查直线与圆锥曲线等基础知识,考查数形结合的数学思想方法,以及推理论证能力.运算求解能力)解法1:(1)不妨设A 211,2x x p ⎛⎫ ⎪⎝⎭,B 222,2x x p ⎛⎫ ⎪⎝⎭,且12x x <,∵AM BM +=0 ,∴2212122,22,222x x x x p p ⎛⎫⎛⎫--+--= ⎪ ⎪⎝⎭⎝⎭0.∴124x x +=,22128x x p +=.…………………4分∵()21222122x x x x ++>(12x x ≠),即88p >,∴1p >,即p 的取值范围为()1,+∞.…………………6分 (2)当2p =时,由(1)求得A .B 的坐标分别为()0,0.()4,4.假设抛物线L 上存在点2,4t C t ⎛⎫⎪⎝⎭(0t ≠且4t ≠),…………8分使得经过A .B .C 三点的圆和抛物线L 在点C 处有相同的切线.设经过A .B .C 三点的圆的方程为220x y Dx Ey F ++++=,则2420,4432,1641616.F D E F tD t E F t t ⎧=⎪++=-⎨⎪++=--⎩整理得 ()()3441680t E t E ++-+=. ①…………9分 ∵函数24x y =的导数为2x y '=, ∴抛物线L 在点2,4t C t ⎛⎫ ⎪⎝⎭处的切线的斜率为2t , ∴经过A .B .C 三点的圆N 在点2,4t C t ⎛⎫ ⎪⎝⎭处的切线 斜率为2t .………10分 ∵0t ≠,∴直线NC 的斜率存在.∵圆心N 的坐标为,22D E ⎛⎫-- ⎪⎝⎭, ∴242122t E t D t +⨯=-+, 即()()324480t E t E ++-+=. ②…………………12分∵0t ≠,由①.②消去E ,得326320t t -+=.即()()2420t t -+=.∵4t ≠,∴2t =-.故满足题设的点C 存在,其坐标为()2,1-.…………………14分解法2:(1)设A ,B 两点的坐标为1122()()A x y B x y ,,,,且12x x <。
2013届高三理科数学训练题(1)
2013届启恩中学高三理科数学考练试题(时间:60分钟 满分:82分)一.选择题(本大题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知函数()x f 的定义域为[0,1],值域为[1,2],则函数()2+x f 的定义域和值域分别是( ) A. [0,1] ,[1,2] B. [2,3] ,[3,4] C. [-2,-1] ,[1,2] D. [-1,2] ,[3,4]2. 已知0<a <1,b <-1,则函数b a y x +=的图象必定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3.将函数()x x f 2=的图象向左平移一个单位得到图象1C ,再将1C 向上平移一个单位得图象2C ,作出2C 关于直线x y =对称的图象3C ,则3C 对应的函数的解析式为( ) A. ()11log 2+-=x y B. ()11log 2--=x y C. ()11log2++=x y D.()11log2-+=x y4. 已知函数()()x x f a-=2log1在其定义域上单调递减,则函数()()21logx x g a-=的单调减区间是( )A. (]0,∞-B. ()0,1-C. [)+∞,0D. [)1,0 5. 方程2log2=+x x 和2log3=+x x 的根分别是α、β,则有( )A. α<βB. α>βC. α=βD. 无法确定α与β的大小 6. 若ax y =与xb y -=在()+∞,0上都是减函数,对函数bx ax y +=3的单调性描述正确的是( )A. 在()+∞∞-,上是增函数B. 在),0(+∞上是增函数C. 在()+∞∞-,上是减函数D. 在)0,(-∞上是增函数,在()+∞,0上是减函数7. 已知奇函数()x f 在()0,∞-上单调递减,且()02=f ,则不等式()()11--x f x >0的解集是( )A. ()1,3--B. ()()3,11,1 -C. ()()+∞-,30,3D. ()()+∞-,21,3 8. 方程0122=++x ax 至少有一个负的实根的充要条件是( )A. 0<a ≤1B. a <1C.a ≤1D. 0<a ≤1或a < 0班级___________ 姓名___________ 座号___________ 总分___________一.选择题(本大题共8小题.每小题5分,共40分)二.填空题(本大题共6题,每小题5分,满分30分。
(完整word)2013年高考新课标1理科数学试题及答案,推荐文档
2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)理 科 数 学第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}55,022<<-=>-=x x B x x x A ,则( ) A .φ=B A I B .R B A =Y C .A B ⊆ D .B A ⊆ 2.若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( ).A .4-B .54-C .4D .54 3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.已知双曲线C :2222=1x y a b-()0,0>>b a 的离心率为2,则C 的渐近线方程为( )A .x y 41±= B .x y 31±= C .x y 21±= D .x y ±=5.执行下面的程序框图,如果输入的[]3,1-∈t ,则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .33500cm π B .33866cm π C .331372cm π D .332048cm π7.设等差数列{}n a 的前n 项和为n S ,若3,0,211==-=+-m m m S S S ,则=m ( ) A .3 B .4 C .5 D .68.某几何体的三视图如图所示,则该几何体的体积为( )A .π816+B .π88+C .π1616+D .π168+9.设m 为正整数,()my x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b .若b a 713=,则=m ( )A .5B .6C .7D .810.已知椭圆E :2222=1x y a b+()0,0>>b a 的右焦点为()0,3F ,过点F 的直线交E 于A ,B 两点.若AB的中点坐标为()1,1-,则E 的方程为( )A .1364522=+y x B .1273622=+y x C .1182722=+y x D .191822=+y x 11.已知函数()=x f 220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若()ax x f ≥,则a 的取值范围是( )A .(]0,∞-B .(]1,∞-C .[]1,2-D .[]0,2-12.设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为.,3,2,1,⋅⋅⋅=n S n 若111112,a c b c b =+>,2,2,111nnn n n n n n a b c a c b a a +=+==+++,则( ) A .{}n S 为递减数列 B .{}n S 为递增数列C .{}12-n S 为递增数列,{}n S 2为递减数列D .{}12-n S 为递减数列,{}n S 2为递增数列第Ⅱ卷本卷包括必考题和选考题两部分. 第13题~第21题为必考题,每个试题考生必须做答. 第22题~第24题为选考题,考生根据要求做答.二、填空题:(本大题共4小题,每小题5分,共20分.)13. 已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______. 14.若数列{}n a 的前n 项和3132+=n n a S ,则{}n a 的通项公式是=n a _______. 15.设当θ=x 时,函数()x x x f cos 2sin -=取得最大值,则=θcos __________. 16.若函数()()()b ax xxx f ++-=221的图像关于直线2-=x 对称,则()x f 的最大值为__________.三、解答题:(解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)如图,在ABC ∆中,︒=∠90ABC ,1,3==BC AB ,p 为ABC ∆内一点,︒=∠90BPC .(1)若21=PB ,求PA ;(2)若︒=∠150APB ,求PBA ∠tan .18.(本小题满分12分)如图,三棱柱111C B A ABC -中,︒=∠==60,,11BAA AA AB CB CA . (1)证明:C A AB 1⊥;(2)若平面ABC ⊥平面B B AA 11,CB AB =,求直线C A 1与平面C C BB 11所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为21,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.20.(本小题满分12分)已知圆()11:22=++y x M ,圆()91:22=+-y x N ,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于B A ,两点,当圆P 的半径最长时,求AB .21.(本小题满分12分)设函数()()()d cx e x g b ax x x f x+=++=,2.若曲线()x f y =和曲线()x g y =都过点()2,0P ,且在点P 处有相同的切线24+=x y . (1)求d c b a ,,,的值;(2)若2-≥x 时,()()x kg x f ≤,求k 的取值范围.请考生在第22、23题中任选择一题作答,如果多做,则按所做的第一部分,做答时请写清题号. 22.(本小题10分)【选修4-4;坐标系与参数方程】已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρsin 2=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标()πθρ20,0<≤≥.23.(本小题10分)【选修4-5;不等式选讲】 已知函数()()3,212+=++-=x x g a x x x f . (1)当2-=a 时,求不等式()()x g x f <的解集; (2)设1->a ,且当⎪⎭⎫⎢⎣⎡-∈21,2a x 时,()()x g x f ≤,求a 的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B . 2. 答案:D解析:∵(3-4i )z =|4+3i |,∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D .3.答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样. 4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±.∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3). 若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4]. 综上可知,输出的s ∈[-3,4].故选A . 6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R , 由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A . 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=.∴m =5.故选C . 8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A . 9.答案:B解析:由题意可知,a =2C mm ,b =21C mm +, 又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B . 10. 答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D . 11. 答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C . ②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x . 故由|f (x )|≥ax 得x 2-2x ≥ax . 当x =0时,不等式为0≥0成立. 当x <0时,不等式等价于x -2≤a . ∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0]. 12. 答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分. 13.答案:2解析:∵c =ta +(1-t )b , ∴b ·c =ta ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c , ∴0=t |a ||b |cos 60°+(1-t ), 0=12t +1-t . ∴t =2.14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.②①-②,得12233n n n a a a -=-,即1n n aa -=-2. ∵a 1=S 1=12133a +,∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案: 解析:f (x )=sin x -2cos xx x ⎫⎪⎭,令cos αsin α=则f (x )(α+x ),当x =2k π+π2-α(k ∈Z )时,sin (α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称, ∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2,x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2+15]=(-8-8-=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15] =-3(4-16+15) =-9.f (-2=[1-(-22][(-22+8(-2)+15]=(-8+8+=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA =2. (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α,即tan ∠PBA . 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C . (2)解:由(1)知OC ⊥AB ,OA 1⊥AB . 又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA u u u r 的方向为x 轴的正方向,|OA u u u r|为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(00),C (0,0,B (-1,0,0). 则BC uuu r =(1,0,1BB u u u r =1AA r =(-1,0),1AC u u u r=(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n即0,0.x x ⎧=⎪⎨-+=⎪⎩可取n =1,-1). 故cos 〈n ,1AC u u u r 〉=11A CA C⋅u u u r n n=5-. 所以A 1C 与平面BB 1C 1C所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以 P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P (x ,y),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4). 由l 与圆M =1,解得k =4±.当k =4时,将4y x =+22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2=47-±.所以|AB |2118||7x x -=.当4k =-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.21.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1). 设函数F (x )=kg (x )-f (x )=2ke x (x +1)-x 2-4x -2, 则F ′(x )=2ke x (x +2)-2x -4=2(x +2)(ke x -1). 由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1). 而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增. 而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k >e 2,则F (-2)=-2ke -2+2=-2e -2(k -e 2)<0. 从而当x ≥-2时,f (x )≤kg (x )不可能恒成立. 综上,k 的取值范围是[1,e 2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE .而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE .又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°, 由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG =2. 设DE 的中点为O ,连结BO ,则∠BOG =60°.从而∠ABE =∠BCE =∠CBE =30°, 所以CF ⊥BF ,故Rt △BCF23. 解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0. 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a-≥a -2,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013届高三理科数学训练题(16)
2
参考答案
1.D 2.D 3.B 4.A 5.B 6.A 7.A 8.D 12.60°
9.8 或-18 13. x+3y=0
10.5x-4y+2=0
11.(2,2)
2 12 14.- 5 ,-5∪(0,2)
15.解析:(1)设所求直线方程为 y=-2x+b,即 2x+y-b=0, |-b| ∵直线与圆相切,∴ 2 2=3,得 b=± 3 5, 2 +1 ∴所求直线方程为 y=-2x± 3 5. (2)假设存在这样的点 B(t,0), |PB| |t+3| 当 P 为圆 C 与 x 轴左交点(-3,0)时, |PA| = 2 ; |PB| |t-3| 当 P 为圆 C 与 x 轴右交点(3,0)时, |PA| = 8 , |t+3| |t-3| 9 依题意, 2 = 8 ,解得,t=-5(舍去),或 t=-5.
9 |PB| 下面证明点 B-5,0对于圆 C 上任一点 P,都有 |PA| 为一常数.
设 P(x,y),则 y2=9-x2, PB ∴ PA2 = = x+52+y2 x2+10x+25+9-x2 18 255x+17 9 |PB| 3 = =25,从而 中学高三理科数学考练试题(十六)
(时间:60 分钟;满分:84 分) 一、选择题(本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取值范围是( ) π 3 π π π A.[0,π) B. C. D. 0,4∪4π,π 0,4 0,4∪2,π 2.若直线 ax+2y+1=0 与直线 x+y-2=0 互相垂直,那么 a 的值等于( ) 1 2 A.1 B.- C.- D.-2 3 3 2 2 3.过点(1,1)的直线与圆(x-2) +(y-3) =9 相交于 A、B 两点,则|AB|的最小值为( ) A.2 3 B.4 C.2 5 D.5 4.一束光线从点 A(-1,1)出发,经 x 轴反射到圆 C:(x-2)2+(y-3)2=1 上的最短路径是 ( ) A.4 B.5 C.3 2-1 D.2 6 2 2 5.已知圆的方程为 x +y -6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为 AC 和 BD,则四边形 ABCD 的面积为( ) A.10 6 B.20 6 C.30 6 D.40 6 6.若直线 l:y=k(x-2)-1 被圆 C:x2+y2-2x-24=0 截得的弦 AB 最短,则直线 AB 的 方程是( ) A.x-y-3=0 B.2x+y-3=0 C.x+y-1=0 D.2x-y-5=0 5 3 2 2 7.在圆 x +y =5x 内,过点2,2有 n 条弦的长度成等差数列,最小弦长为数列的首项 1 1 a1,最大弦长为 an,若公差 d∈ ) 6,3,那么 n 的取值集合为( A.{4,5,6,7} B.{4,5,6} C.{3,4,5,6} D.{3,4,5} 1 2 8.若直线 ax+2by-2=0(a,b>0)始终平分圆 x2+y2-4x-2y-8=0 的周长,则 + 的最 a b 小值为( ) A.1 B.5 C.4 2 D.3+2 2 二、填空题(本大题共 6 小题,每小题 5 分,共 30 分,把答案填在题中横线上) 9.已知直线 5x+12y+a=0 与圆 x2-2x+y2=0 相切,则 a 的值为________. 10.已知光线通过点 A(2,3),经直线 x+y+1=0 反射,其反射光线通过点 B(1,1),入 射光线所在直线的方程为________. 11.已知点 A(1,-1),点 B(3,5),点 P 是直线 y=x 上动点,当|PA|+|PB|的值最小时, 点 P 的坐标是__________. 12. 圆 x2+y2=4 被直线 3x+y-2 3=0 截得的劣弧所对的圆心角的大小为_________. 13.已知两圆 x2+y2=10 和(x-1)2+(y-3)2=20 相交于 A,B 两点,则直线 AB 的方程 是________. 14.若圆 C1:x2+y2-2mx+m2-4=0 与圆 C2:x2+y2+2x-4my+4m2-8=0 相交,则 m 的取值范围是________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启恩中学2013届高三数学(理)综合训练题(九)一、选择题:本大题共8小题,每小题5分,满分40分.1、函数lg(1)y x =-的定义域为A ,函数1()3x y =的值域为B ,则A B ⋂= ( )A . (0,1) B. 1(,1)3C. φD. R2、 复数31i i+的模等于( )A . 12B. 2C.D. 13.若 函 数()y f x =的图象和sin()4y x π=+的图 象关于点P(,0)4π对称则()f x 的 表 达式 是( ) A .)4cos(π+x B .)4cos(π--x C .)4cos(π+-x D .)4cos(π-x4、在实数数列{}n a 中,已知01=a ,|1|||12-=a a ,|1|||23-=a a ,…,|1|||1-=-n n a a ,则4321a a a a +++的最大值为( )A .0B .1C .2D .4 5.设随机变量2(2,8),X N 且(24)0.3,P X <<=则(0)P X <=( ).A .0.8B .0.2C .0.5D .0.46.已知关于x 的不等式|2|3x x m -+-<的解集为非空集合,则实数m 的取值范围是( )A. 1m <B.1m ≤C.1m >D.1m ≥7.已知1F 、2F 是椭圆:C 12222=+by a x 的左右焦点,P 是C 上一点,2214||||3b PF PF =⋅→→,则C的离心率的取值范围是( )A .]21,0( B .]23,0( C .)1,23[ D . )1,21[8.以下三个命题:①关于x 的不等式11≥x的解为]1,(-∞②曲线2sin 2y x =与直线0x =,34x π=及x 轴围成的图形面积为1s ,曲线y =0x =,2x =及x 轴围成的图形面积为2s ,则122s s += ③直线03=-y x 总在函数x y ln =图像的上方其中真命题的个数是( )A .0B .1C .2D .3二、填空题: 本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9、某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本,已知女生比男生少抽了10人,则该校的女生人数应是 人.10.已知向量(2,3),(,6)a b x ==-共线,则x = .11、把函数sin y x =(x R ∈)的图象上所有点向左平行移动12π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数是 . 12. 将直线1=+y x 绕点(1,0)顺时针旋转90°,再向上平移1个单位后,与圆222)1(r y x =-+相切,则半径r 的值是 . 13、已知函数6(3) 3 (6)() (x>6)x a x x f x a---≤⎧=⎨⎩(),n a f n n N *=∈,{}n a 是递增数列,则实数a 的取值范围是 .(二)选做题(14~15题,考生只能从中选做一题)14.(《几何证明选讲》选做题) 如图,⊙O 和⊙'O 都经过点A 和点B ,PQ 切⊙O 于点P ,交⊙'O 于Q 、M ,交AB 的延长线于N ,1NM =,3MQ =,则PN = 15.(《坐标系与参数方程》选做题)极坐标系下,圆2cos()2πρθ=+上的点与直线sin()4πρθ+= 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量(cos ,sin )a αα= ,(cos ,sin )b ββ= , 且||a b -= (I )求cos()αβ-的值;(II )若202π<α<<β<π-,且5sin 13β=-,求sin α的值.17.(本小题满分12分)现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物,等可能地向左,右两边落下。
游戏规则为:若小球最终落入A 槽,得10张奖票;若落入B 槽,得5张奖票;若落入C 槽,得重投一次的机会,但投球的总次数不超过3次。
(1)求投球一次,小球落入B 槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量ξ ,求ξ的分布列及数学期望。
A B C18.(本小题满分14分)如图所示,在矩形ABCD 中,4,2,AB AD E CD ==是的中点,O 为AE 的中点,以AE 为折痕将△ADE 向上折起,使D 到P 点位置,且PC PB =.(Ⅰ)求证:;PO ABCE ⊥面 (Ⅱ)求二面角E-AP-B 的余弦值.19.(本小题满分14分)某旅游用品商店经销某种深圳大运会记念品,每件产品的成本为3元,并且每件产品需向税务部门上交a 元(36a ≤≤)的税收,预计当每件产品的售价为x 元(1116x ≤≤)时,一年的销售量为2(18)x -万件.(Ⅰ)求该商店一年的利润L(万元)与每件产品的售价x 的函数关系式;(Ⅱ)当每件产品的售价为多少元时,该商店一年的利润L 最大,并求出L 的最大值)(a Q .20.(本小题满分14分)如图,弧ADB 为半圆,AB 为半圆直径,O 为半圆圆心,且OD AB ⊥,Q 为线段OD 的中点,已知|AB|=4,曲线C 过Q 点,动点P 在曲线C 上运动且保持|PA|+|PB|的值不变。
(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程;(Ⅱ)过点B 的直线l 与曲线C 交于M 、N 两点,与OD 所在直线交于E 点,若1212,,:EM MB EN NB λλλλ==+求证为定值。
21.在数列{}n a ,{}n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N )(Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4; (Ⅱ)求{}n a ,{}n b 的通项公式; (Ⅲ)证明:1122111512n n a b a b a b +++<+++….参考答案1.A2. B3. B4. C 5、B 6.C 7. D 8. A9. 760; 10. -4; 11. 1sin()212y x π=+; 12. 22; 13. 15(,3)7;14. 2 ; 15. 12+16.解:(I )∵||a b -= ∴22425a a b b -+=,又(cos ,sin )a αα= ,(cos ,sin )b ββ= , ∴221a b == , …3分∴412(cos cos sin sin )15αβαβ-++=∴222cos()5αβ--= ∴3c o s ()5αβ-= …6分(II )∵022ππβα-<<<<,∴0αβπ<-<,又由(1)得3cos()5αβ-=,∴4sin()5αβ-= 又5s i n 13β=-,02πβ-<< ∴12c o s 13β= …9分∴sin sin[()]sin()cos cos()sin ααββαββαββ=-+=-+-45=123533()1351365⨯+⨯-= …12分17. 解:(1)由题意可知投一次小球,落入B 槽的概率为22111()()222+=………3分 (2)落入A 槽的概率为211()24=,落入B 槽的概率为12,落入C 槽的概率为211()24=…4分ξ可取0,5,10……………5分311(0)464p ξ⎛⎫=== ⎪⎝⎭,……6分 21111121(5)2242432p ξ⎛⎫==+⋅+⋅= ⎪⎝⎭,…8分 21111121(10)4444464p ξ⎛⎫==+⋅+⋅= ⎪⎝⎭……10分121051064326416E ξ=⨯+⨯+⨯=……12分18. 解:(1),PA PE OA OE PO AE ==∴⊥……1分取BC 的中点F ,连OF ,PF ,∴OF ∥AB ,∴OF ⊥BC 因为PB=PC∴BC ⊥PF ,所以BC ⊥面POF …3分 从而BC ⊥PO …………5分,又BC 与PO 相交,可得PO ⊥面ABCE………7分(2)作OG ∥BC 交AB 于G ,∴OG ⊥OF 如图,建立直角坐标系[;,,],O OG OF OPA (1,-1,0),B (1,3,0),C (-1,3,0),P (0,0(2,4,0),((0,4,0)AC AP AB =-=-=…9分设平面PAB 的法向量为1(,,),n x y z =40n AP x y n AB y ⎧⋅=-++=⎪⎨⋅==⎪⎩1n ⇒= 同理平面PAE 的法向量为2(1,1,0),n =……………………12分1212cos ||||n n E AP B n n ⋅--==⋅ E-AP-B…………………14分 19. 解:(Ⅰ)商店一年的利润L(万元)与售价x 的函数关系式为:2(3)(18)L x a x =---,[11, 16]x ∈.(无定义域扣1分) ………4分(Ⅱ)2(3)(18)L x a x =---=22(18)(3)(18)x x a x --+-2()(18)2(18)2(3)(18)L x x x x a x '=---++-=(18)(2423)x a x -+-.令0='L 得283x a =+或18x =(不合题意,舍去). ………6分∵36a ≤≤,∴2108123a ≤+≤.在283x a =+两侧)(x L '的值由正变负.所以(1)当2108113a ≤+<,即293<≤a 时,max (11)49(8)49(8)L L a a ==-=-.(2)当2118123a ≤+≤即962a ≤≤时,23max 2221(8)(83)[18(8)]4(5)3333L L a a a a a =+=+---+=-,所以=)(a Q 3949(8),32194(5),632a a a a ⎧-≤≤⎪⎪⎨⎪-≤≤⎪⎩. ……13分答:若293<≤a ,则当每件售价为11元时,商店一年的利润L 最大,最大值()49(8)Q a a =-(万元);若962a ≤≤,则当每件售价为2(8)3a +元时,商店一年的利润L 最大,最大值31()4(5)3Q a a =-(万元). ……14分20. 解:(Ⅰ)以AB 、OD 所在直线分别为x 轴、y 轴, O 为原点,建立平面直角坐标系, ∵动点P 在曲线C 上运动且保持|PA |+|PB |的值不变.且点Q 在曲线C 上, ∴|PA |+|PB |=|QA |+|QB |=2521222=+>|AB |=4. …………………3分 ∴曲线C 是为以原点为中心,A 、B 为焦点的椭圆[来源:] 设其长半轴为a , 短半轴为b , 半焦距为c , 则2a =25, ∴a =5, c =2, b =1.∴曲线C 的方程为52x +y 2=1 ……………………………………6分证明:(Ⅱ)设,,M N E 点的坐标分别为11220(,),(,),(0,)M x y N x y E y ,又易知B 点的坐标为(2,0).且点B 在椭圆C 内, 故过点B 的直线l 必与椭圆C 相交.∵1E M M B λ= , ∴110111(,)(2,)x y y x y λ-=--.∴ 11112λλ+=x ,1011λ+=y y . ……………………………………8分将M 点坐标代入到椭圆方程中得:1)1()12(51210211=+++λλλy ,去分母整理,得0551020121=-++y λλ. …………………………………10分同理,由2EN NB λ= 可得:0551020222=-++y λλ. …………………12分∴ 1λ,2λ是方程05510202=-++y x x 的两个根, ∴ 1021-=+λλ.…14分 21.解:(Ⅰ)由条件得21112n n n n n n b a a a b b +++=+=,由此可得2233446912162025a b a b a b ======,,,,,.……… 4分 猜测2(1)(1)n n a n n b n =+=+,. ……… 5分 用数学归纳法证明:①当n =1时,由上可得结论成立.②假设当n =k 时,结论成立,即 2(1)(1)k k a k k b k =+=+,,那么当n =k +1时,22221122(1)(1)(1)(2)(2)k k k k k ka ab a k k k k k b k b +++=-=+-+=++==+,.所以当n =k +1时,结论也成立.由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立.…………9分 (Ⅱ)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+.…………11分 故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭…… 111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭ (111111562216412)n ⎛⎫=+-<+= ⎪+⎝⎭…………………………………………………14分。