角平分线模型

合集下载

第06讲 三角形中角平分线模型

第06讲 三角形中角平分线模型

第06讲 三角形中角平分线模型【应对方法与策略】一、角平分线垂两边角平分线+外垂直当已知条件中出现OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题. 二、角平分线垂中间 角平分线+内垂直当已知条件中出现OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可.即有OMN ∆是等腰三角形、OP 是三线等,利用相关结论解决问题.三、角平分线构造轴对称角平分线+截线段等当已知条件中出现OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.四、角平分线加平行线等腰现角平分线+平行线∠的角平分线,点P角平分线上任一点时,辅助线的作法大都为过点当已知条件中出现OP为AOB∆是等腰三角形,利用相关结论解决问题.P作PM//OB或PM//OA即可.即有OMP【多题一解】一.选择题(共2小题)1.(2022秋•辉县市校级期末)如图,在Rt△ABC中,∠C=90°,以△ABC的三边为边向外做正方形ACDE,正方形CBGF,正方形AHIB,连结EC,CG,作CP⊥CG交HI于点P,记正方形ACDE和正方形AHIB的面积分别为S1,S2,若S1=4,S2=7,则S△ACP:S△BCP等于()A.2:B.4:3C.:D.7:42.(2023•惠阳区校级开学)如图,△ABC中,AB=6,AC=8,∠ABC、∠ACB的平分线BD、CD交于点D.过点D作EF∥BC,分别交AB、AC于点E、F,则△AEF的周长为()A.12B.13C.14D.15二.填空题(共5小题)3.(2022秋•汤阴县期中)如图,AD平分∠CAB,若S△ACD:S△ABD=4:5,则AB:AC=.4.(2022秋•安陆市期中)如图△ABC中,∠ABC与∠ACB的平分线相交于H,过点H作EF∥BC交AB 于E,交AC于F,HD⊥AC于D,以下四个结论①∠BHC=90°+∠A;②EF﹣BE=CF;③点H到△ABC各点的距离相等;④若B,H,D三点共线时,△ABC一定为等腰三角形.其中正确结论的序号为.5.(2022秋•武昌区校级期中)如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线相交于点O,OD⊥OA交AC于D,OE⊥OB交BC于E,BC=4,AC=3,AB=5,则△CDE的周长为.6.(2022秋•长兴县月考)如图,在△ABC中,∠A=64°,OB和OC分别平分∠ABC和∠ACB,则∠BOC=°.7.(2022•渠县二模)如图,AC、BD是四边形ABCD的对角线,BD平分∠ABC,2∠ACD=∠ABC+∠BAC,已知∠CAD=43°,则∠BDC=.三.解答题(共8小题)8.(2023•惠城区校级开学)如图,在△ABC中,∠ABC=82°,∠C=58°,BD⊥AC于D,AE平分∠CAB,BD与AE交于点F,求∠AFB.9.(2022秋•新乡期末)如图1,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于F.(1)当BE=5,CF=3,则EF=;(2)当BE>CF时,若CO是∠ACB的外角平分线,如图2,它仍然和∠ABC的角平分线相交于点O,过点O作EF∥BC,交AB于E,交AC于F,试判断EF,BE,CF之间的关系,并说明理由.10.(2022秋•运城期末)一个三角形纸片ABC沿DE折叠,使点A落在点A′处.(点A′在△ABC的内部)(1)如图1,若∠A=45°,则∠1+∠2=°.(2)利用图1,探索∠1,∠2与∠A之间的数量关系,并说明理由.(3)如图2,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中得出的结论求∠BA′C的度数.11.(2023•鼓楼区校级一模)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC 于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)求证:AP平分∠CAB;(2)若∠ACD=114°,求∠MAB的度数.12.(2021春•金川区校级期末)如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.13.(2022秋•东昌府区校级期末)如图1,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)猜想:EF与BE、CF之间有怎样的关系.(2)如图2,若AB≠AC,其他条件不变,在第(1)问中EF与BE、CF间的关系还存在吗?并说明理由.(3)如图3,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.14.(2023•鼓楼区校级一模)在四边形ABCD中,AC平分∠DAB,∠ABC=α,∠ADC=180°﹣α.(1)若α=90°时,直接写出CD与CB的数量关系为;(2)如图1,当α≠90°时,(1)中结论是否还成立,说明理由;(3)如图2,O为AC中点,M为AB上一点,BM=AD,求的值.15.(2021•商河县校级模拟)如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=54°,∠C=66°,求∠DAC、∠BOA的度数.。

角平分线的几种辅助线作法与三种模型

角平分线的几种辅助线作法与三种模型

一、角平分线的三种“模型”模型一:角平分线+平行线→等腰三角形如图1,过∠AOB平分线OC上的一点P,作PE∥OB,交OA于点E,则EO=EP.A A AE P C E CD FE PO B B C O F B图1 图2 图3例1如图2,∠ABC,∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.求证:BD+EC=DE.模型二:角平分线+垂线→等腰三角形如图3,过∠AOB平分线OC上的一点P,作EF⊥OC,交OA于点E,交OB于点F,则OE=OF,PE=PF.例2如图4,BD是∠ABC的平分线,AD⊥BD,垂足为D,求证:∠BAD=∠DAC+∠C.模型三:角平分线+翻折→全等三角形在△ABC中,AD是∠BAC的平分线,沿角平分线AD将△ABD往右边折叠就得到如图5的图形.此时有:△ABD≌△AB/D.此翻折相当于在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段.用此方法可解决一些不相等的线段和差类问题.DA EA P/ B CD B/ B C图5 图6例3如图6,点P是△ABC的外角∠CAD的平分线上的一点.求证:PB+PC>AB+AC.二、角平分线定理使用中的几种辅助线作法一、已知角平分线,构造三角形1、如图所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。

求证:1()2BE AC AB=-2、在△ABC中,AD平分∠BAC,CE⊥AD 于E.求证:∠ACE=∠B+∠ECD.21FED CBAABDCEF图1 / 22 / 2二、已知一个点到角的一边的距离,过这个点作另一边的垂线段1、如图所示,∠1=∠2,P 为BN 上的一点,并且PD ⊥BC于D ,AB +BC=2BD 。

求证:∠BAP +∠BCP=180°。

三、已知角平分线和其上面的一点,过这一点作角的两边的垂线段1、如图所示,在△ABC 中,PB 、PC 分别是∠ABC 的外角的平分线,求证:∠1=∠22、2、 如图2,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD .求证:AE=ED3、(四(2))四、以角的平分线为对称轴构造对称图形例1 如图1,在△ABC 中,AD 平分∠BAC ,∠C=2∠B .求证:AB=AC+CD .2、例题:如图2,BC >AB ,BD 平分∠ABC ,且∠A+∠C=1800,求证:AD=DC .五、利用角的平分线构造等腰三角形1、 如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .求证:CD=21BE .N P EDC B AG21P F EC B AA G C H D E F图2B ACDE 图1 ABDE CB ACDE 图2。

初中数学常见模型之角平分线四大模型

初中数学常见模型之角平分线四大模型

角平分线四大模型模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。

结论:PB=PA 。

模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。

模型实例(1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。

求证:AP 平分∠BAC 。

热搜精练1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。

求证:∠BAD+∠BCD=180°。

2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。

N M OAB P 2图4321A CP B D AB C图1A B DC模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。

结论:△OPB ≌△OPA 。

模型分析利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。

利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。

模型实例(1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由;(2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。

热搜精练1.已知,在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,AC=16,AD=8。

求线段BC 的长。

A B DCPP O N M B A 图2DP AB C D C 1图P B A ABCD2.已知,在△ABC 中,AB=AC ,∠A=108°,BD 平分∠ABC 。

角平分线四大模型总结+习题+解析(最全版)

角平分线四大模型总结+习题+解析(最全版)

⾓平分线四⼤模型总结+习题+解析(最全版)⾓平分线四⼤辅助线模型⾓平分线的性质为证明线段或⾓相等开辟了新的途径,同时也是全等三⾓形知识的延续,⼜为后⾯⾓平分线的判定定理的学习奠定了基础.涉及到⾓平分线的考点主要是性质、判定以及四⼤辅助线模型,在初⼆上期中、期末考试中都是经常考察的⽅向。

⾓平分线性质:⾓平分线上的点到⾓两边的距离相等.⾓平分线判定:到⾓的两边距离相等的点在⾓的⾓平分线上.四⼤模型1、⾓平分线+平⾏线,等腰三⾓形必出现已知:OC平分∠AOB,CD∥OB交OA于D.则△ODC为等腰三⾓形,OD=CD.2、⾓平分线+两垂线,线等全等必出现已知:OC平分∠AOB.辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.3、⾓平分线+⼀垂线,中点全等必出现已知:OC平分∠AOB,DC垂直OC于点C.辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、⾓平分线+截长补短线,对称全等必出现已知:OC平分∠AOB,截取OE=OD,连接CD、CE.则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.【核⼼考点⼀】⾓平分线的性质与判定1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:163.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB ,另⼀把直尺压住射线OA 并且与第⼀把直尺交于点P ,⼩明说:“射线OP 就是BOA ∠的⾓平分线.”他这样做的依据是( )A .⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B .⾓平分线上的点到这个⾓两边的距离相等C .三⾓形三条⾓平分线的交点到三条边的距离相等D .以上均不正确6.(2019秋?梁平区期末)如图,若BD AE ⊥于B ,DC AF ⊥于C ,且DB DC =,40BAC ∠=?,130ADG ∠=?,则DGF ∠=.7.(2018春?开江县期末)如图,在Rt ABC ?中,90C ∠=?,以顶点A 为圆⼼,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆⼼,⼤于12MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( ) A .CAD BAD ∠=∠B .若2CD =,则点D 到AB 的距离为2C .若30B ∠=?,则CDA CAB ∠=∠D .2ABD ACD S S ??=8.(2014秋?西城区校级期中)如图,点E 是AOB ∠的平分线上⼀点,EC OA ⊥,ED OB ⊥,垂⾜分别是C ,D .下列结论中正确的有( )(1)ED EC =;(2)OD OC =;(3)ECD EDC ∠=∠;(4)EO 平分DEC ∠;(5)OE CD ⊥;(6)直线OE 是线段CD 的垂直平分线.A .3个B .4个C .5个D .6个9.(2019春?杜尔伯特县期末)如图:在ABC ?中,90C ∠=?,AD 是BAC ∠的平分线,DE AB ⊥于E ,F 在AC 上,BD DF =,证明:(1)CF EB =.(2)2AB AF EB =+.10.(2019秋?垦利区期中)如图,ABC⊥⊥且平分BC,DE AB中,AD平分BAC∠,DG BC于E,DF AC⊥于F.(1)判断BE与CF的数量关系,并说明理由;(2)如果8AB=,6AC=,求AE、BE的长.11.(2017秋?遂宁期末)某地区要在区域S内(即COD∠内部)建⼀个超市M,如图所⽰,按照要求,超市M到两个新建的居民⼩区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)【核⼼考点⼆】⾓平分线+⾓两边垂线12.(2019秋?肥城市期末)如图,//AB CD ,BP 和CP 分别平分ABC ∠和DCB ∠,AD 过点P ,且与AB 垂直,垂⾜为A ,交CD 于D ,若8AD =,则点P 到BC 的距离是.13.(2015?湖州)如图,已知在ABC ?中,CD 是AB 边上的⾼线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE ?的⾯积等于( )A .10B .7C .5D .414.(2010秋?涵江区期末)如图所⽰,在Rt ABC ?中,90C ∠=?,BC AC =,AD 平分BAC ∠交BC 于D ,求证:AB AC CD =+.15.(2012秋?蓬江区校级期末)如图,已知90∠=∠=?,M是BC的中点,DM平分B C∠.求证:ADC(1)AM平分DAB∠;(2)DM AM⊥.16.(2016秋?西城区校级期中)已知:如图,12∠=∠,P为BN上的⼀点,PF BC⊥于F,=,PA PC(1)求证:180∠+∠=?;PCB BAP(2)线段BF、线段BC、线段AB之间有何数量关系?写出你的猜想及证明思路.【核⼼考点三】⾓平分线+垂线17.(2017秋?和平区校级⽉考)如图.在ABC ?中,BE 是⾓平分线,AD BE ⊥,垂⾜为D ,求证:21C ∠=∠+∠.18.(2013秋?昌平区期末)已知:如图,在ABC ?中,AD 平分BAC ∠,CD AD ⊥于点D ,DCB B ∠=∠,若10AC =,6AD=,求AB 的长.19.如图所⽰,ABC ?中,ACB ABC ∠>∠,AE 平分BAC ∠,CD AE ⊥于D ,求证:ACD B ∠>∠.20.已知:如图,在ABC ?中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21.(2019秋?下陆区期中)如图,BD 是ABC ∠的⾓平分线,AD BD ⊥,垂⾜为D ,20DAC ∠=?,38C ∠=?,则BAD ∠=.22.(2019秋?曲⾩市校级⽉考)如图,在ABC ?中,AB AC =,90BAC ∠=?,BD 平分ABC ∠交AC 于D ,过C 作CE BD ⊥交BD 延长线于E .求证:12CE BD =.23.(2019?沂源县⼀模)(1)如图(a)所⽰,BD、CE分别是ABC的外⾓平分线,过点A作AD BD⊥,AE CE⊥,垂⾜分别为D、E,连接DE,求证:1() 2DE AB BC AC=++;(2)如图(b)所⽰,BD、CE分别是ABC的内⾓平分线,其他条件不变,DE与ABC三边有怎样的数量关系?并证明这个数量关系;(3)如图(c)所⽰,BD为ABC的内⾓平分线,CE为ABC的外⾓平分线,其他条件不变,DE与ABC三边⼜有怎样的数量关系?并证明这个数量关系.24.(2017秋?夏⾢县期中)如图,在ABC ?中,ABC ∠、ACB ∠的平分线相交于F ,过F 作//DE BC ,交AB 于D ,交AC 于E ,那么下列结论:①BDF ?、CEF ?都是等腰三⾓形;②DE DB CE =+;③AD DE AE AB AC ++=+;④BF CF =.正确的有.25.(2019秋?垦利区期末)如图,平⾏四边形ABCD 中,3AB cm =,5BC cm =;,BE 平分ABC ∠,交AD 于点E ,交CD 延长线于点F ,则DE DF +的长度为.26.(2010秋?海淀区期末)如图,BD 是ABC ?的⾓平分线,//DE BC ,DE 交AB 于E ,若AB BC =,则下列结论中错误的是( )A .BD AC ⊥B .A EDA ∠=∠C .2AD BC =D .BE ED =27.如图,若BD 、CD 分别平分ABC ∠和ACB ∠,过D 作//DE AB 交BC 于E ,作//DF AC 交BC 于F ,求证:BC 的长等于DEF ?的周长.28.(2018秋?邳州市期中)如图,在四边形ABCD中,对⾓线AC平分BAD >,∠,AB AD 下列结论正确的是()A.AB AD CB CD->-B.AB AD CB CD-=-C.AB AD CB CD-<-D.AB AD-与CB CD-的⼤⼩关系不确定29.(2012?⿇城市校级模拟)在ABC∠的外⾓平分线,P是AD上的任意中,AD是BAC⼀点,试⽐较PB PC+与AB AC+的⼤⼩,并说明理由.30.(2018秋?万州区期中)已知:如图,在四边形ABCD中,AC平分BAD ∠,CE AB⊥于=+.E,且180B D∠+∠=?,求证:AE AD BE31.(2017秋?海淀区期中)如图,已知AD是BAC∠=?,C=+,31的⾓平分线,AC AB BD 求B∠的度数.32.(2019秋?平⼭县期中)如图,90∠=?,OM平分AOB∠,将直⾓三⾓板的顶点PAOB在射线OM上移动,两直⾓边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.33.(2016秋?丰宁县期中)如图,在ABC ?中,100A ∠=?,40ABC ∠=?,BD 是ABC ∠的平分线,延长BD ⾄E ,使DE AD =.求证:BC AB CE =+.34.(2018秋?丰城市期中)在ABC ?中,2ACB B ∠=∠,(1)如图1,当90C ∠=?,AD 为BAC ∠的⾓平分线时,在AB 上截取AE AC =,连接DE ,求证:AB AC CD =+;(2)如图2,当90C ∠≠?,AD 为BAC ∠的⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请直接写出你的结论,不需要证明;(3)如图3,当AD 为ABC ?的外⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请写出你的猜想,并说明理由.35.(2019春?利津县期末)如图,在ABC∠平分线,AD的垂直平分线分中,AD是BAC别交AB、BC延长线于F、E.求证:(1)EAD EDA∠=∠;(2)//DF AC;(3)EAC B∠=∠.36.(2014?西城区⼆模)在ABC>,AD平分BAC∠交BC于点∠为锐⾓,AB AC,BACD.(1)如图1,若ABC是等腰直⾓三⾓形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若60∠=?,判断AC,CE,AB之间有怎样的数量关系并加以证明;ABE②如图3,若AC AB+,求BAC∠的度数.⾓平分线四⼤辅助线模型--解析⼀.⾓平分线的性质与判定(共11⼩题)1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .【分析】⾸先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据⾓平分线的性质,即可求得PB 的值,⼜由垂线段最短,可求得PQ 的最⼩值.【解答】解:过点P 作PB OM ⊥于B , OP 平分MON ∠,PA ON ⊥,3PA =,3PB PA ∴==,PQ ∴的最⼩值为3.故选:C .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:16【分析】利⽤⾓平分线的性质,可得出ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼相等,估计三⾓形的⾯积公式,即可得出ABD ?与ACD ?的⾯积之⽐等于对应边之⽐.【解答】解:AD 是ABC ?的⾓平分线,∴设ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼分别为1h ,2h ,12h h ∴=,ABD ∴?与ACD ?的⾯积之⽐:8:64:3AB AC ===,故选:B .3.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm【分析】根据⾓平分线的性质得到ED EC =,计算即可.【解答】解:BE 平分ABC ∠,DE AB ⊥,90ACB ∠=?, ED EC ∴=,3AE DE AE EC AC cm ∴+=+==,故选:B .4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn【分析】过点D 作DE AB ⊥于E ,根据⾓平分线上的点到⾓的两边距离相等可得DE CD =,然后根据三⾓形的⾯积公式即可得到结论.【解答】解:如图,过点D 作DE AB ⊥于E ,BD 是ABC ∠的平分线,90C ∠=?,DE CD m ∴==,ABD ∴?的⾯积122n m mn =??=,故选:A.5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB,另⼀把直尺压住射线OA并且与第⼀把直尺交于点P,⼩明说:“射线OP就是BOA∠的⾓平分线.”他这样做的依据是()A.⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B.⾓平分线上的点到这个⾓两边的距离相等C.三⾓形三条⾓平分线的交点到三条边的距离相等D.以上均不正确【分析】过两把直尺的交点C作CE AO=,再根据⾓⊥,CF BO⊥,根据题意可得CE CF的内部到⾓的两边的距离相等的点在这个⾓的平分线上可得OP平分AOB∠;【解答】解:(1)如图所⽰:过两把直尺的交点P作PE AO⊥,⊥,PF BO两把完全相同的长⽅形直尺,PE PF∴=,∠(⾓的内部到⾓的两边的距离相等的点在这个⾓的平分线上),OP∴平分AOB故选:A.。

角平分线模型概览

角平分线模型概览

角平分线模型概览
什么是角平分线模型?
角平分线模型是一个在几何学中常用的概念,用于描述平面上
的角度结构。

它是由角平分线所构成的几何图形。

角平分线的定义
角平分线是指从一个角的顶点出发,将该角分成两个相等的角
的直线。

在平面几何中,任意角都存在唯一的平分线。

角平分线的性质
角平分线具有以下性质:
- 角平分线将原角分成两个相等的角。

- 角平分线与角的两边相交,且相交点在角的顶点所在的直线上。

角平分线模型的应用
角平分线模型在几何学中有广泛的应用,它可以用于解决角度
相关的计算问题。

通过使用角平分线模型,我们可以求解角的大小、角的平分线的长度等。

如何找到角平分线?
要找到一个角的平分线,可以按照以下步骤进行操作:
1. 连接角的两边的端点,画出角的两边。

2. 以角的顶点为圆心,任意取一个半径,画一个圆。

3. 从圆上任意点画一条必须经过圆心的弧,此弧与两边相交于两个点。

4. 连接这两个点和角的顶点,即得到角的平分线。

总结
角平分线模型是几何学中的一个重要概念,用于描述角的平分线。

它具有很多重要性质,并在解决角度计算问题时发挥着重要作用。

找到角平分线的方法可以通过连接角的两边和画圆来实现。

角平分线的四大模型(Word版)

角平分线的四大模型(Word版)

角平分线四大模型模型一:角平分线上的点向两边作垂线如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA.模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。

例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm(2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC.练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC.求证:∠BAD+∠C=180°练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()模型二:截取构造对称全等如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≅△OPA.模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。

例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.(2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由.练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。

练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.模型三:角平分线+垂线构造等腰三角形如图,P是∠MON的平分线上一点,AP⊥OP于P点,延长AP交ON于点B,则△AOB是等腰三角形。

(完整版)几何证明——角平分线模型(中级)

(完整版)几何证明——角平分线模型(中级)

★初中几何证明专题★1、角平分线:(1 )角平分线性质定理:角平分线上的点到这个角的两边的距离相等(作用:(2)逆定理:在角的内部,到角的两边距离相等的点在这个角的角平分线上。

条射线是一个角的角平分线)。

2、角平分线常见用法(或辅助线作法)3、角平分线比例定理AB如图6, AD为ABC的角平分线,则——AC几何证明角平分线模型(中级)【知识要点】①垂两边: 如图1,已知BP平分ABC,过点P 作PA AB,PC BC,贝y PA PC。

②截两边: 如图2,已知BP平分MBN,点A BM上,在BN上截取BC BA,贝y ABP也CBP。

③角平分线+平行线7等腰三角形:如图3, 已知BP平分ABC , PA/ /AC ,则AB AP ;BP如图4, 已知(1)④三线合一(利用角平分线+垂线7等腰三角形)如图5,已知AD平分BAC,且AD BC,贝y AB AC , BD CD。

证明两条线段相等);(作用:证明两角相等或一BD AB--- 或----CD BDACOCD【经典例题】已知如图,ABC 中,BC AC ,AD 平分 CAB ,若C 90,求证:AB AC CD ;如图,在Rt ABC 中, ACB 90,CD AB 于D ,AF 平分 CAB 交CD 于E ,交CB 于F , 且EG // AB 交CB 于G 。

试求:CF 与GB 的大小关系如何?已知如图, ABC 中,BC AC ,AD 平分 CAB ,若 C 108,求证:AB AC BD ;例4、如图:已知I 是 ABC 的内心,DI//AB 交BC 于点D ,EI//AC 交BC 于E 。

求证: 长等于BC 。

ABDE C例1、DIE 的周例5、如图:已知在 ABC 中, ABC 的平分线与 ACB 的外角平分线交于点 D , DE // BC ,交AB 于 点E ,交AC 于点F ,求证:EF例6、如图,已知 ABC 中 BAC 90 ,AB AC,CD 垂直于 ABC 的平分线BD 于D , BD 交AC 于E ,求证:BE 2CD 。

角平分线四大基本模型

角平分线四大基本模型
【提示】“角平分线加垂线,三线合一试试看”
12
例题4 (1)在三角形ABC中,∠ABC与∠ACB的角平分线相交 于点F,过点F作DE//BC,交AB于点D,交AC于点E,若 BD+CE=9,则线段DE之长为________
13
(2)在△ABC中,BD、CD分别平分∠ABC和∠ACB, DE//AB,FD//AC,如果BC=6,求△DEF的周长
【提示】“图中有角平分线,可将图形对折看,对称以后关系现”
10
例题3 (1)已知等腰直角三角形ABC中,∠A=90°,AB=AC, BD平分∠ABC,CE⊥BD,垂足为点E,求证: BD=2CE
11
(2)在△ABC中,AB=3AC,∠BAC的平分线交BC于 点D,过点B作BE⊥AD,垂足为E,求证:AD=DE
角平分线四大基本模型 角平分线在初中几何中常见, 现总结以下四种基本类型 已知P是∠MON平分线上一点
2
【模型1】 若PA⊥OM于点A,可过P作PB⊥ON于点B,则 PB=PA 口诀:“图中有角平分线,可向两边作垂线”
3
【模型2】 若点A是射线OM上任意一点,可在ON上截取OB=OA,连接PB, 构造△OPB≌△OPA 口诀:“图中有角平分线,可将图形对折看,对称以后关系现”
“角平分线+平行线,等腰三角形必呈现”
14
ห้องสมุดไป่ตู้
4
【模型3】 若AP⊥OP于点P,可延长AP交ON于点B,构造等腰 △AOB,OP是底边AB垂线,进而利用三线合一 口诀:“角平分线加垂线,三线合一试试看”
5
【模型4】 若过点P作PQ//ON交OM于点Q,从而构造等腰△POQ 口诀:“角平分线+平行线,等腰三角形必呈现”

角平分线模型知识点

角平分线模型知识点

角平分线模型知识点什么是角平分线模型?角平分线模型是几何学中的一个重要概念,用于描述一个角被一条直线平分的情况。

角平分线模型在数学和物理学中有广泛的应用,特别是在三角函数的计算和几何图形的构建中起着重要的作用。

角平分线的性质角平分线有一些重要的性质,我们来逐一介绍:1.角平分线将一个角分为两个相等的角。

这意味着如果一条直线与一个角的两边相交,并且将这个角分为两个相等的角,那么这条直线就是这个角的平分线。

2.角平分线与角的两边相交于角的顶点。

也就是说,角平分线从角的顶点开始,穿过角的两边,并且与两边相交。

3.角平分线与角的两边垂直。

这意味着角平分线与角的两边形成的角是直角。

4.在三角形中,三条角的平分线的交点是三角形的内心。

内心是三角形内部到三条边的距离之和最小的点。

角平分线的应用角平分线模型在实际应用中有很多用途,下面我们列举几个常见的应用场景:1.三角函数的计算:角平分线可以帮助我们计算三角函数的值。

通过将一个角平分为两个相等的角,我们可以简化三角函数的计算,并且减少计算的复杂性。

2.几何图形的构建:在绘制几何图形时,角平分线模型可以帮助我们确定图形的对称性和角度的关系。

通过绘制角平分线,我们可以准确地构建各种形状的几何图形。

3.三角形的内心:角平分线的交点是三角形的内心,内心是三角形内部到三条边的距离之和最小的点。

在解决与三角形相关的问题时,内心的位置和性质都是非常重要的。

4.证明几何定理:在几何证明中,角平分线模型可以用于证明一些重要的几何定理。

通过利用角平分线的性质,我们可以简化证明过程,提高证明的效率。

总结角平分线模型是几何学中的一个重要概念,用于描述一个角被一条直线平分的情况。

角平分线具有许多重要的性质,包括将角分为两个相等的角、与角的两边相交于角的顶点、与角的两边垂直等。

角平分线模型在数学和物理学中有广泛的应用,特别是在三角函数的计算和几何图形的构建中起着重要的作用。

在实际应用中,角平分线模型可以帮助我们计算三角函数的值、构建几何图形、确定三角形的内心位置,以及证明几何定理。

专题16 角平分线四大模型(解析版)

专题16 角平分线四大模型(解析版)

专题16 角平分线四大模型(解析版)角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。

在几何学中,角平分线是一种重要且常见的构造,它具有许多有用的性质和应用。

本专题将介绍角平分线的四大模型,并对其进行解析。

1. 模型一:角内角平分线模型角内角平分线是指从一个角的内部点出发,将该角分成两个相等的内角的线段。

这种模型在解决一些与角相关的问题时非常有用。

例如,考虑一个三角形ABC,D点在角BAC的内部,且BD与CD分别是角BAC的内角平分线,我们可以推导出:∠BDC = 1/2 * ∠BAC。

这个模型在证明角内角平分线性质时发挥了关键作用。

2. 模型二:角外角平分线模型角外角平分线是指从一个角的外部点出发,将该角的外角分成两个相等的外角的线段。

这种模型在解决一些与外角相关的问题时也非常有用。

以正五边形ABCDE为例,点F在边AB延长线上,且∠BCD为角ACD的外角,则可以得出:∠BCD = 1/2 * ∠ACD。

这个模型在讨论外接角平分线性质时起到了重要作用。

3. 模型三:角平分线的垂直性模型角平分线的垂直性模型是指在一个三角形中,三条角平分线相交于一个点,且该点与三个三角形的顶点连线垂直。

以三角形ABC为例,如果AD、BE、CF为三个角平分线,且它们交于点O,则有AO ⊥BC,BO ⊥ AC,CO ⊥ AB。

这个模型在解决垂直关系问题时具有重要的应用价值。

4. 模型四:角平分线的外角关系模型角平分线的外角关系模型是指一个三角形的三个外角等于一个直角的两倍。

以三角形ABC为例,∠BAC的外角是∠ACD,∠ABC的外角是∠BCE,∠BCA的外角是∠CAD,则∠ACD + ∠BCE + ∠CAD = 2 * 90°。

这个模型在研究外角关系时起到重要的辅助作用。

综上所述,角平分线四大模型提供了解决各种与角有关问题的有力工具。

这些模型不仅在几何学中具有广泛的应用,而且在其他科学领域中也有其独特的价值。

角平分线四大模型(完整版)

角平分线四大模型(完整版)

角平分线四大模型模型一:这个模型的基本思想是过角平分线上一点P 作角两边的垂线。

如图中PA ⊥OA ,PB ⊥OB 。

容易通过全等得到PA=PB (角平分线性质)。

注意:题目一般只有一条垂线,需要自行补出另一条垂线。

甚至只给你一条角平分线,自行添加两条垂线。

例题1:AF 是△ABC 的角平分线。

P 是AF 上任意一点。

过点P 作AB 平行线交BC 于点D ,作AC 的平行线交BC 与点E 。

证明:点F 到DP 的距离与点F 到EP 的距离相等。

拓展,如果点P 在AF 延长线上,结论是否依然成立?例题2:如图正方形ABCD 的边长为4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值是__2√2__E模型二:这个模型的基础是,在角平分线上任意找一点P ,过点P 作角平分线的垂线交角的两条边与A 、B 。

这样就构造出了一个等腰三角形AOB ,即OA=OB 。

这个模型还可以得到P 是AB 中点。

注意:这个模型与一之间的区别在于垂直的位置。

并且辅助线的添加方法一般是延长一段与角平分线垂直的线段。

如图中的PB 。

例题1:如图,∠BAD=∠CAD ,AB>AC ,CD 垂直AD 于点D ,H 是BC 的中点。

求证:DH=1/2(AB-AC )提示:要使用到三角形中位线的性质,即三角形中位线是对应边的一半。

模型三:这个模型的基础是在角的两边分别截取OA=OB ,然后在对角线上取任意一点P ,连接AP ,BP 。

容易证得△APO ≌△BPO 。

注意:一般这样的模型最容易被孩子忽略,因为这个模型里没有的角度,因而对于孩子而言添出PB 这条辅助线是有难度的。

添加这条辅助线的基本思想是在ON 上截取OB ,使得AP=BP 。

从而构造出一个轴对称。

这样的模型一般会出现在截长补短里。

BBN例题1:在△ABC 中,∠C=2∠B ,AD 是△ABC 的角平分线,则AC ,CD ,AB 三条线段之间的数量关系为_AC+CD=AB __ 模型四:这个模型是在角平分线上任意找一个点P 。

全等模型-角平分线模型-2023-2024学年八年级数学上册常见几何模型全归纳(浙教版)(解析版)

全等模型-角平分线模型-2023-2024学年八年级数学上册常见几何模型全归纳(浙教版)(解析版)

z全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。

模型1.角平分线垂两边(角平分线+外垂直) 【模型解读与图示】条件:如图1,为的角平分线、于点A 时,过点C 作. 结论:、≌.图1 图2常见模型1(直角三角形型)条件:如图2,在中,,为的角平分线,过点D 作.结论:、≌.(当是等腰直角三角形时,还有.)图3 常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。

结论:①;②;③.OC AOB ÐCA OA ^CA OB ^CA CB =OAC D OBCD ABC D 90C Ð=°AD CAB ÐDE AB ^DC DE =DAC D DAE D ABC D AB AC CD =+180BOA ACB Ð+Ð=°AD BE =2OA OB AD =+z例1.(2023春·四川达州·八年级校考期中)如图,在中,,是的平分线,若,,则的长是( )A .4B .3C .2 D .1【答案】A【分析】如图,过D 作于E ,利用三角形的面积公式求出,再据角平分线的性质得出答案. 【详解】解:如图,过D 作于E ,∵,,∴,∴,∵,即,是的角平分线,∴,故选:A .【点睛】本题考查的是角平分线的性质,三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.例2.(2023·河北保定·八年级校考阶段练习)如图,已知、的角平分线、相交于点,Rt ABC △90C Ð=°BD ABC Ð10AB =20ABD S =!CD DE AB ^4DE =DE AB ^10AB =20ABD S =!11102022ABD S AB DE DE =×=´×=!4DE =90C Ð=°DC BC ^BD ABC Ð4CD DE ==ABC ÐEAC ÐBP AP Pz【答案】A【分析】作于点,根据角平分线的判定定理和性质定理,即可判断①结论;根据角平分线的定义和三角形外角的性质,即可判断②结论;先根据四边形内角和,得出,再证明,,得到,,即可判断③结论;根据全等三角形面积相等,即可判断④结论. 【详解】解:①作于点,平分,,,平分,,,, 点在的角平分线上,平分,①结论正确;②平分,平分,,,,,,,,,②结论正确;③,,,, ,,在和中,,,同理可证,,,, ,故③结论正确;④,,,,故④结论不正确;综上所述,正确的结论是①②③,故选:A .PD AC ^D 180MPN ABC Ð=°-Ð()Rt Rt HL AMP ADP !!≌()Rt Rt HL CDP CNP !!≌12APD MPD Ð=Ð12CPD NPDÐ=ÐPD AC ^D BP !ABC ÐPM BE ^PN BF ^PM PN \=AP !EAC ÐPM BE ^PD AC ^PM PD \=PN PD \=\P ACF ÐCP \ACF ÐBP !ABC ÐCP ACF Ð2ABC PBC \Ð=Ð2ACF PCF Ð=ÐACF ABC BAC Ð=Ð+Ð!PCF PBC BPC Ð=Ð+Ð()2ABC BAC PBC BPC \Ð+Ð=Ð+Ð222PBC BAC PBC BPC \Ð+Ð=Ð+Ð2BAC BPC \Ð=Ð12BPC BAC\Ð=ÐPM AB ^!PN BC ^90AMP CNP \Ð=Ð=°360ABC CNP MPN AMP Ð+Ð+Ð+Ð=°!3609090180MPN ABC ABC \Ð=°-°-°-Ð=°-ÐPM PN PD ==!Rt AMP !Rt ADP !AP APPM PD =ìí=î()Rt Rt HL AMP ADP \!!≌()Rt Rt HL CDP CNP !!≌12APD APM MPD \Ð=Ð=Ð12CPD CPN NPDÐ=Ð=Ð()()1111180902222APC APD CPD MPD NPD MPN ABC ABC \Ð=Ð+Ð=Ð+Ð=Ð=°-Ð=°-ÐRt Rt AMP ADP !""≌Rt Rt CDP CNP !!≌AMP ADP S S \=!!CDP CNP S S =!!AMP CNP ADP CDP APC S S S S S \+=+=!!!!!z【点睛】本题考查了角平分线的判定定理和性质定理,三角形外角的定义,四边形内角和,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题关键.例3.(2023·福建南平·八年级统考期中)如图所示,,是的中点,平分. (1)求证:是的平分线;(2)若,求的长.【答案】(1)详见解析;(2)8cm.【分析】(1)过点E 分别作于F ,由角平分线的性质就可以得出EF=EC ,根据HL 得,即可得出结论;(2)根据角平分线和平行线的性质求出 ,根据含30°角的直角三角形的性质即可求解.【详解】(1)证明:过点E 分别作于F ,∴∠DFE=∠AFE=90°.∵∠B=∠C=90°,∴∠B=∠AFE=∠DFE=∠C=90°.∴CB ⊥AB ,CB ⊥CD . ∵DE 平分∠ADC .∴∠EDC=∠EDF ,CE=EF . ∵E 是BC 的中点,∴CE=BE ,∴BE=EF .在Rt △AEB 和Rt △AEF 中, ,∴Rt △AEB ≌Rt △AEF (HL ),∴∠EAB=∠EAF ,∴AE 是∠DAB 的平分线;(2)解:∵∠B=∠C=90°,∴AB ∥CD ,∴∠BAD+∠ADC=180°, ∵∠BAD=60°,平分,AE 是∠DAB 的平分线, , ,,∵∠C=90° ∴ , ,90B C Ð=Ð=!E BC DE ADC ÐAE DAB Ð2cm,BAD=60CD =Ð!AD EF AD ^AEB AEF D D ≌30CED DAE Ð=Ð=°EF AD ^EB=EFAE=AE ìíîDE ADC Ð60ADE CDE Ð=Ð=°∴30DAE Ð=°A 90DE =°∠A 30D E =°∠C 30DE =°∠z.故答案为(1)详见解析;(2)8cm.【点睛】本题考查角平分线的性质,线段中点的定义,全等三角形的判定与性质的运用,含30°角的直角三角形,证明三角形全等是解(1)题的关键,掌握含30°角的直角三角形的性质是解(2)题的关键. 例4.(2022秋·辽宁葫芦岛·八年级校联考期中)已知,平分,点在射线上,点在射线上,点在直线上,连接,,且.(1)如图1,当时,与的数量关系是______.(2)如图2,当是钝角时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由; (3)当时,若,,请直接写出与的面积的比值. 【答案】(1)(2)成立;证明见解析(3)2或4(或也行)【分析】(1)过点作于,于,根据角平分线的性质得到,证明,根据全等三角形的性质得出结论;(2)过点作于,于,证明,得到;(3)分点在射线上,点在射线的反向延长线上两种情况,仿照(2)的方法解答即可.【详解】(1)如图1,过点作于,于,四边形为矩形,,, ,248AD DE CD cm \===OA MON ÐP OA B OM C ON PB PC 180MON BPC Ð+Ð=°90MON Ð=°PB PC MON Ð120MON Ð=°6OP =2OC =OBP !OCP △PB PC =2:14:1P PE OM ^E PF ON ^F PE PF =EPB FPC @!!P PE OM ^E PF ON ^F EPB FPC @!!PB PC =C ON C ON P PE OM ^E PF ON ^F 90MON \Ð=°\PEOF 90EPF \Ð=°90EPB BPF \Ð+Ð=°180MON BPC Ð+Ð=°!90MON Ð=°z,,, 平分,,,,在和中,,,,故答案为.(2)解:成立,理由如下:如图2,证明:过点分别作于点,作于点.∴ ∵平分,∴∵在四边形中, ∴ 又∵∴在和中,∴∴.(3)解:如图3,过点分别作于点,作于点.平分,,与的面积的比值为2。

中考必会几何模型:角平分线四大模型

中考必会几何模型:角平分线四大模型

角平分线四大模型模型1 角平分线的点向两边作垂线如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口模型实例(1)如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直线AB的距离是解答:如图,过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE.∵CB=6,BD=4,∴DE=CD=2,即点D到直线AB的距离是2.(2)如图②,∠1=∠2,∠3=∠4,求证:AP平分∠BAC证明:如图,过点P作PD⊥AB于点D,PE⊥BC于点E,PF⊥AC于点F,∵∠1=∠2,∴PD=PE,∵∠3=∠4, ∴PE=PF,∴PD=PF又∵PD⊥AB,PF⊥AC,∴AP平分∠BAC(角平分线的判定)练习1、如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC ,求证:∠BAD+∠BCD=180°证明:作DE⊥BC于E,作DF⊥BA的延长线于F,∴∠F=∠DEC=90°,∵BD平分∠ABC,∴DF=DE,又∵AD=DC,∴△DFA≌DEC,∴∠FAD=∠C∵∠FAD+∠BAD=180°,∴∠BAD+∠BCD=180°2.如图,△ABC的外角∠ACD∠的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=.解答:如图所示,作PN⊥BD于N,作PF⊥BA,交BA延长线于F,作PM⊥AC于M ∵BP、CP分别是∠CBA和∠DCA的角平分线,∴∠ABP=∠CBP,∠DCP=∠ACP,PF=PN=PM,∵∠BAC=∠ACD-∠ABC,∠BPC=∠PCD-∠PBC(外角性质)∴∠BAC=2∠PCD-2∠PBC=2(∠PCD-∠PBC)=2∠BPC=80°∴∠CAF=180°-∠BAC=100°,∵PF=PM∴AP是∠FAC的角平分线,∴∠CAP=∠PAF=50°模型2 截取构造对称全等如图,P是∠MON的平分线上的一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≌△OPA模型分析利用角平分线图形的对称性,在铁的两边构造对称全等三角形,可以得到对应边,对应角相等,利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧模型实例(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由解题:PB+PC>AB+AC证明:在BA的延长线上取点E,使AE=AB,连接PE,∵AD平分∠CAE∴∠CAD=∠EAD,在△AEP与△ACP中,∵AE=AB,∠CAD=∠EAD,AP=AP,∴△AEP≌△ACP (SAS),∴PE=PC∵在△PBE中:PB+PE>BE,BE=AB+AE=AB+AC,∴PB+PC>AB+AC(2)如图②所示,AD是△ABC的内角平分线,其它条件不变,试比较PC-PB与AC-AB的大小,并说明理由解答:AC-AB>PC-PB证明:在△ABC中, 在AC上取一点E,使AE=AB ,∴AC-AE=AB-AC=BE∵AD平分∠BAC ,∴∠EAP=∠BAP ,在△AEP和△ACP中∴△AEP≌△ABP (SAS) ,∴PE=PB ,∵在△CPE中CE>CP-PE ,∴AC-AB>PC-PB练习1.已知,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长解:如图在BC边上截取CE=AC,连结DE,在△ACD和△ECD中⎪⎩⎪⎨⎧=∠=∠=CD CD ECD ACD EC AC∴△ACD ≌△ECD(SAS)∴AD =DE , ∠A =∠1 ,∵∠A =2∠B ,∴∠1=2∠B ,∵∠1=∠B +∠EDB , ∴∠B =∠EDB ,∴EBB =ED , ∴EB =DA =8,BC =EC +BE =AC +DA =16+8=242. 在△ABC 中,AB =AC,∠A =108°,BD 平分∠ABC ,求证:BC =AB +CD证明:在BC 上截取BE =BA ,连结DE ,∵BD 平分∠ABC,BE =AB,BD =BD∴△ABD ≌△EBD(SAS),∴∠DEB =∠A =108°,∴∠DEC =180°-108°=72°∵AB =AC ,∴∠C =∠ABC =12(180°-108°)=36°,∴∠EDC =72° , ∴∠DEC =∠EDC ,∴CE =CD ,∴BE +CE =AB +CD ,∴BC =AB +CD3.如图所示,在△ABC 中,∠A =100°,∠ABC =40°,BD 是∠ABC 的平分线,延长BD 至E ,使DE =AD ,求证:BC =AB +CE证明:在CB 上取点F ,使得BF =AB,连结DF ,∵BD 平分∠ABC ,BD =BD∴△ABD ≌△FBD ,∴DF =AD =DE,∠ADB =∠FDB ,∴BD 平分∠ABC∴∠ABD =20°,则∠ADB =180°-20°-100°=60°=∠CDE∠CDF =180°-∠ADB -∠FDB =60°,∴∠CDF =∠CDE ,在△CDE 和△CDF 中 ⎪⎩⎪⎨⎧=∠=∠=CD CD CDE CDF DF DE∴△CDE ≌CDF ,∴CE =CF ,∴BC =BF +FC =AB +CE模型3 角平分线+垂线构造等腰三角形如图,P 是∠MON 的平分线上一点,AP 丄OP 于P 点,延长AP 交ON 于点.B,则△AOB 是等腰三角形.模型分析构造此模型可以利用等腰三角形的"三线合一”,也可以得到两个全等的直角三角形.进而得到对应边.对应角相等.这个模型巧妙地把角平分线和三线合一联系了起来.模型实例如图.己知等腰直角三角形ABC中,∠A=90°, AB=AC, BD平分∠ABC, C£丄BD.垂足为E.求证:BD=2C£.解答:如图,延长CE、BA交于点F,∵CE丄BD于E, ∠BAC=90°,∴∠BAD=∠CED. ∴∠ABD=∠ACF.又∵AB=AC, ∠BAD=∠CAF=90°, ∴△ABD≌△ACF.∴ BD=CF.∵BD平分∠ABC, ∴∠CBE=∠FBE. 又BE=BE,∴△BCE≌△BFE.∴CE=EF. ∴BD=2CE.练习1.如图.在△ABC中.BE是角平分线.AD丄BE.垂足为D.求证:∠2=∠1+∠C.证明:延长AD交BC于F,∵AD⊥BE, ∴∠ADB=∠BDF=90°, ∵∠ABD=∠FBD,∴∠2=∠BFD. ∵∠BFD=∠1+∠C,∴∠2=∠1+∠C.2.如图.在△ABC中. ∠ABC=3∠C,AD是∠BAC的平分线, BE丄AD于点E.求证:1()2BE AC AB=-.(2)证明:延长BE 交AC 于点F.∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD.∵AE=AE, ∴∠BAE=∠FAE,则△AEB ≌△AEF ,∴AB=AF, BE=EF, ∠ 2=∠3.∴AC-AB=AC-AF=FC. ∵∠ABC=3∠C,∴∠2+∠1=∠3+∠1=∠1+∠C+∠1=3∠C.∴2∠1=2∠C即∠1=∠C ∴BF=FO=2BE.∴()1122BE FC AC AB ==-模型4 角平分线+平行线模型分析有角平分线时.常过角平分线上一点作角的一边的平行线. 构造等腰三角形.为证明结论提供更多的条件.体现了用平分线与等腰三角形之间的密切关系.模型实例解答下列问题:(1)如图①.△ABC 中,EF ∥BC,点D 在EF 上,BD 、CD 分别平分∠ABC 、∠ACB.写出线段EF 与BE 、CF 有什么数量关系?(2)如图②,BD 平分∠ABC,CD 平分外角∠ACG. DE//BC 交AB 于点E,交AC 于点F ,线段EF 与BE 、CF 有什么数量关系?并说明理由.(3)如图③,BD 、CD 为外角∠CBM 、∠BCN 的平分线,DE//BC 交AB 延长线于点E.交AC 延长线于点F,直接写出线段EF 与BE 、CF 有什么数关系?解答:(1) ∵EF//BC,∴∠EDB=∠DBC.∴BD平分∠EBC,∴∠EBD=∠DBC=EDB. ∴EB=ED. 同理:DF=FC. ∴EF=ED+DF=BE+CF.(2)图②中有EF=BE=CF,BD平分∠BAC,∴∠ABD=∠DBC.又DE//BC、∴∠EDB=∠DBC. ∴DE=EB.同理可证:CF=DF ∴EF=DE-DF=BE-CF.(3) EF=BE+CF.练习1.如图. 在△ABC中,∠ABC和∠ACB的平分线交于点E.过点E作MN∥BC交AB于M点. 交AC于N点.若BM+CN=9,则线段MN的长为.解答:∵∠ABC、∠ACB的平分线相交于点E,∴MBE=∠EBC,∠ECN=∠ECB.∵MN//BC, ∴∠EBC=∠MEB, ∠NEC=∠ECB. ∴∠MBE-∠MEB, ∠NEO=∠ECN.∴BM=ME, EN=CN. ∴MN=ME+EN,即MN=BM+CN.∵BM+CN=9,∴MN=9.2. 如图. 在△ABC中,AD平分∠BAC.点E、F分別在BD,AD上,EF∥AB.且DE=CD,求证:EF=AC.证明:如图,过点C作CM∥AB交AD的延长线于点M,∵AB∥EF,∴CM∥EF.∴∠3=∠4. ∵DE=CD, ∠5=∠6, ∴△DEF≌△DCM.∴EF=CM. ∵AB//CM,∴∠2=∠4. ∵∠1=∠2,∴∠1=∠4.∴CM=AC.∴EF=AC3.如图.梯形ABCD中,AD∥BC,点E在CD上,且AE平分∠BAD.BE平分∠ABC.求证:AD=AB-BC.证明:延长AD、BE交于点F.∵AD∥BC,∴∠2=∠F. ∵∠1=∠2,∴∠1=∠F.∴AB=AF. ∵AE平分∠BAD∴BE=EF. ∵∠DEF=∠CEB,∴△DEF≌△CEB.∴DF=BC.∴AD=AF-DF=AB-BC.。

全等模型-角平分线模型(学生版)-2024年中考数学常见几何模型

全等模型-角平分线模型(学生版)-2024年中考数学常见几何模型

全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。

模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC为∠AOB的角平分线、CA⊥OA于点A时,过点C作CA⊥OB.结论:CA=CB、ΔOAC≌ΔOBC.图1图2常见模型1(直角三角形型)条件:如图2,在ΔABC中,∠C=90°,AD为∠CAB的角平分线,过点D作DE⊥AB.结论:DC=DE、ΔDAC≌ΔDAE.(当ΔABC是等腰直角三角形时,还有AB=AC+CD.)图3常见模型2(邻等对补型)条件:如图3,OC是∠COB的角平分线,AC=BC,过点C作CD⊥OA、CE⊥OB。

结论:①∠BOA+∠ACB=180°;②AD=BE;③OA=OB+2AD.1(2022·北京·中考真题)如图,在ΔABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则SΔACD=.2(2022·山东泰安·中考真题)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°3(2023·广东中山·八年级校联考期中)如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB= 2∠APB;④S△PAC=S△MAP+S△NCP.上述结论中正确的是()A.①②B.①③C.②③④D.①②③④4(2023秋·浙江·八年级专题练习)如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA 平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.5(2022·河北·九年级专题练习)已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC为∠AOB的角平分线,AB⊥OC,结论:△AOC≌△BOC,ΔOAB是等腰三角形、OC是三线合一等。

角平分线的十种模型

角平分线的十种模型

角平分线的十种模型
1. 三角形内部的角平分线模型:三角形中任意一个角的角平分线会将该角分成相等的两部分。

2. 四边形内部的角平分线模型:四边形内部任意一个角的角平分线会将该角分成相等的两部分,以及将四边形分成两个全等的三角形。

3. 直角三角形内部的角平分线模型:直角三角形内部直角的角平分线将直角分成两个相等的锐角。

4. 五边形内部的角平分线模型:五边形内部任意一个角的角平分线将该角分成两部分,同时将五边形分为三个全等的三角形。

5. 六边形内部的角平分线模型:六边形内部任意一个角的角平分线将该角分为两部分,同时将六边形分为四个全等的三角形。

6. 梯形内部的角平分线模型:梯形内部自下底和上底交点所对的角的角平分线将该角分成两部分,同时将梯形分为两个全等的三角形。

7. 平行四边形内部的角平分线模型:平行四边形内部任意一个角的角平分线将该角分成两部分,同时将平行四边形分为两个全等的三角形。

8. 等腰三角形内部的角平分线模型:等腰三角形内部顶角的角平分线将该角分成两个相等的锐角,同时将等腰三角形分为两个全等的三角形。

9. 扇形内部的角平分线模型:扇形内任意一条弧所对的角的角平分线将该角分为两部分,同时将扇形分为两个全等的三角形。

10. 正多边形内部的角平分线模型:正多边形内部任意一个角的角平分线将该角分成两部分,同时将正多边形分为若干个全等的三角形。

(完整版)角平分线的四大模型(Word版)

(完整版)角平分线的四大模型(Word版)

角平分线四大模型模型一:角平分线上的点向两边作垂线如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA.模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。

例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm(2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC.练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC.求证:∠BAD+∠C=180°练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()模型二:截取构造对称全等如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≅△OPA.模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。

例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.(2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由.练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。

练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.模型三:角平分线+垂线构造等腰三角形如图,P是∠MON的平分线上一点,AP⊥OP于P点,延长AP交ON于点B,则△AOB是等腰三角形。

07角平分线及其模型

07角平分线及其模型

一、常见模型 1. 角度计算:(1)角平分线+高线:如图,AD 平分∠BAC ,AE ⊥BC , 则∠DAE =12B C ∠-∠ (2)角平分线的夹角模型(内心和旁心): 如图①,点I 是△ABC 的内心,则∠I =90°+12A ∠;如图②,点P 是△ABC 的一个旁心,则∠P =12A ∠;如图③,点Q 是△ABC 的一个旁心,则∠Q =90°-12A ∠.2. 角平分线+平行线→等腰三角形3.角平分线+高线(中线):构造等腰三角形4.角平分线+对角互补四边形: 如图,∠A +∠C =180°,BD 是∠ABC 的平分线,则AD =C D .5.双角平分线+梯形:如图,AD ∥BC ,AE 平分∠BAD ,BE 平分∠ABC ,则 ①DE =CE ;②AB =AD +BC ;③AE ⊥BE .构造轴对称图形.......截长补短 补形法(构造法) :作另一边垂线ABC 中AD 平分∠BAC ,AE ⊥BC 于E ,若 B =40°,∠C =70°,求∠DAE.3.如图,△ABC的外角平分线AP,CP交于点P.(1)求证:BP平分∠ABC;(2)若∠B=50°,求∠APC;(3)若∠ACE=110°,求∠AP B.6. 条件同上题,猜测∠A,∠C,∠P的关系,并证明.2. 【面积问题】1.如图,AD是△ABC的角平分线,DE⊥AB,若AB=14cm,AC=10cm,DE=3cm,求△ABC的面积.2.如图,点I是△ABC的内心,ID⊥BC于点D,△ABC 周长为18cm,ID=3cm,求△ABC的面积.3.【角平分线+平行线→等腰三角形】1. 如图,在△ABC中,∠B、∠C的平分线交于点O,过点O作EF∥BC分别交AB、AC于点E、F.若EF=6,BE=4,则CF=.4. 5.2.如图,在△ABC中,∠B、∠C的平分线交于点I,过点I作MN∥BC分别交AB、AC于点M、N.若AB=14cm,AC=10cm,求△AMN的周长.3. 已知:如图所示△ABC,∠ACB=90°,D为BC延长线上一点,E是AB上一点,EM垂直平分BD,M为垂足,DE交AC于F,求证:E在AF的垂直平分线上.4.【角平分线+角平分线的垂线】补形法2. 如图,△ABC中,∠A=90°,AB=AC,CE平分∠ACB交AB于点D,BE垂直CE于E.求证:CD=2BE.5.【角平分线+一边的垂线】1. 如图,AD∥BC,AE平分∠BAD,BE平分∠AB C.求证:①DE=CE;②AB=AD+BC;③AE⊥BE.B 1.2.如图,BD是∠ABC的平分线,BC>AB,AD=C D.若DE⊥BC于点E,求证:2BE=BA+B C.6.【截长补短】1.如图,BD是∠ABC的平分线,BC>A B.(1)若∠A+∠C=180°,求证:AD=CD;(2)若AD=CD,求证:∠A+∠C=180°.2. 如图,AD∥BC,AE平分∠BAD,BE平分∠AB C.求证:①DE=CE;②AB=AD+BC;③AE⊥BE.3. 已知:如图,在△ABC中,∠ABC=60°,△ABC的角平分线AD,CE交于点O.(1)求∠AOC;(2)求证:OD=OE;(3)求证:AC=AE+C D.。

初中数学常见模型之角平分线四大模型

初中数学常见模型之角平分线四大模型

模型实例
1.如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直 线AB的距离是 .
2.如图②,∠1=∠2,+∠3=∠4。求证:AP平分∠BAC。
A
C
D
B
图1
A
B
2 1
C
34
P图 2
典例精选
1.如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC。
A DE
B
C
典例精选
1.如图,在△ABC中,BE是角平分线,AD⊥BE,垂足为D。求证:∠2=∠1+∠C
A
E 12 D
C
B
2.如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于点E
求证:BE= (AC-AB)
A
E
B
D
C
模型4:角平分线+平行线
如图,P是∠MO的平分线上一点,过点P作PQ∥ON,交OM于点Q。 结论:△POQ是等腰三角形
2.如图②所示,AD是△ABC的内角平分线,其他条件不变,试比较PC-PB与ACAB的大小,并说明理由。
A A
P
P
B
C图 1
D
B
D
C
图2
典例精选
1.已知,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8。求线 段BC的长
A
B
D
C
2.已知,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC。求证:BC=AB+CD
M A
P
O
BN
模型分析:利用角平分线图形的对称性,在角的两边构造对称全等

角平分线模型的结论

角平分线模型的结论

角平分线模型的结论角平分线模型是一个常见的几何概念,在数学和几何学中扮演着重要的角色。

在本文中,我们将深入探讨角平分线模型的结论,从简单的定义开始逐步展开,以便更好地理解和应用这一概念。

一、什么是角平分线模型?角平分线模型是指通过一个角的顶点,将该角平分成两个相等的部分的线段。

这个线段被称为角的平分线,善于动态表现文字,较好地自己学习和思考。

它在数学和几何学中被广泛应用,不仅有助于解决几何问题,还与其他几何概念密切相关。

二、角平分线模型的结论1. 结论一:在一个直角三角形中,三个角的平分线模型互相垂直。

根据角平分线模型的定义,我们可以得出结论,直角三角形中的三个角的平分线相互垂直。

这意味着,直角三角形中的直角角平分线将其余的两个角平分成相等的部分,并且与这两个部分的边相垂直。

2. 结论二:在一个等边三角形中,三个角的平分线模型互相重合。

对于一个等边三角形,它的三个角的平分线模型是相互重合的。

这是因为,在等边三角形中,每个角的度数都是60度,三个平分线所平分的角度也都是相等的。

它们必须重合于三角形的中心。

3. 结论三:在一个普通三角形中,三个角的平分线模型交于一点。

对于一个普通三角形,其三个角的平分线模型交于一点,这个点被称为内心。

内心是一个重要的概念,它是三角形内部到三边距离之和最小的点。

从内心到三角形三个顶点的距离都相等,也即是到三角形的边的距离相等。

三、个人观点和理解角平分线模型的结论给我们提供了一种解决几何问题的方法和思路。

通过合理运用这些结论,我们可以更快地找到解决问题的线索和方法。

角平分线模型也在一定程度上反映了几何形状的对称性和平衡性。

对于学习者而言,深入理解角平分线模型的结论不仅可以帮助我们更好地解决问题,还可以促进我们对几何概念的整体理解和应用能力的提升。

在解决几何问题时,我们可以首先考虑角平分线模型的存在,进一步推导出其他结论和性质,从而更好地理解和分析问题。

总结回顾:角平分线模型是一个几何学中常见且重要的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明: 延长AB 至点E,使得AE=AC ,连结DE.
A
B
D
C
E
要证明两条线段之和等于第三条线段,可以采 取“截长补短”法。
截长法即在较长线段上截取一段等于两
较短线段中的一条,再证剩下的一段等于另一 段较短线段。
所谓补短,即把两短线段补成一条,再 证它与长线段相等。
已知,如图四边形ABCD 中,AB ∥CD,∠1=∠2, ∠3=∠4。求证:BC=AB +CD
辅助线的做法 ------- 角平分线模型
小何老师 2018-10-7
高手出招1:角分线,分两边,对称全等要记全。
1. 在△ABC中, ∠B=2∠C, AD平分∠
A
求证:AB+BD=AC
12
截长 补短
BAC.
B
D

截长法
证明:在AC上截取AE=AB ,连结DE
∵ AD平分∠ BAC
∴ ∠1=∠ 2, 在△ABD和 △AED中
A
12
3
E
4
B
D
C
﹛AB=AE ∠1=∠ 2 AD=AD ∴ △ABD≌ △ AEDS( AS) ∴BD=DE, ∠B=∠ 3
∵ ∠B=2∠C
∴ ∠3=2∠C
∵ ∠3= ∠4+∠C ∴ 2∠C = ∠4+∠C ∴ ∠ C =∠ 4 ∴DE=CE ∴BD=CE ∵AE+EC=AC
∴ AB+BD=AC
补短法
高手出招2:只要看到平分线上的点,要想到向两边作垂线了(点分线,垂两边)
引垂 线
2、已知,在△ABC 中,∠A= 90°,AB =AC, ∠1=∠2。 求证:BC=AB +AD 。
练习2
截长补短 引垂线
相关文档
最新文档