组成原理实验报告(运算器、通用寄存器、移位寄存器)

合集下载

计算机组成原理实验报告 通用寄存器单元实验

计算机组成原理实验报告  通用寄存器单元实验

西华大学数学与计算机学院实验报告课程名称:计算机组成原理年级:2011级实验成绩:指导教师:祝昌宇姓名:蒋俊实验名称:通用寄存器单元实验学号:312011*********实验日期:2013-12-15一、目的1.了解通用寄存器的组成和硬件电路2. 利用通用寄存器实现数据的置数、左移、右移等功能二、实验原理(1)寄存器实验构成1、通用寄存器由2片GAL构成8位字长的寄存器单元。

8芯插座RA-IN作为数据输入端,可通过端8芯扁平电缆,把数据数据输入端连接到数据总线上。

2、数据输出由一片74LS244(输出缓冲器)来控制。

用8芯插座RA-OUT作为数据输出端,可通过端8芯扁平电缆,把数据数据输出端连接到数据总线上。

3、判零和进位电路由1片GAL、1片7474和一些常规芯片组成,用2个LED(ZD、CY)发光管分别显示其状态。

(2)通用寄存器单元的工作原理通用寄存器的核心部件为2片GAL,它具有锁存、左移、右移、保存等功能。

各个功能都由X1、X2信号和工作脉冲RACK来决定。

当置ERA=0、X0=1、X1=1,RACK有上升沿时,把总线上的数据打入通用寄存器。

可通过设置X1、X0来指定通用寄存器工作方式,通用寄存器的输出端Q0~Q7接入判零电路。

LED(ZD)亮时,表示当前通用寄存器内数据为0。

输出缓冲器采用74LS244,当控制信号RA-O为低时,74LS244开通,把通用寄存器内容输出到总线;当控制信号RA-O为高时,74LS244的输出为高阻。

图1 通用寄存器原理图三、使用环境计算机组成原理实验箱四、实验步骤(一)数据输入通用寄存器1.把RA-IN(8芯的盒型插座)与CPT-B板上二进制开关单元中的J1插座相连(对应二进制开关H16~H23),把RA-OUT(8芯的盒型插座)与数据总线上的DJ6相连。

2.把RACK连到脉冲单元的PLS1,把ERA、X0、X1、RA-0、M接入二进制拨动开关。

请按下表接线。

计算机组成原理实验-运算器组成实验报告

计算机组成原理实验-运算器组成实验报告

计算机组成原理课程实验报告9.3 运算器组成实验*名:***学号:系别:计算机工程学院班级:网络工程1班指导老师:完成时间:评语:得分:9.3运算器组成实验一、实验目的1.熟悉双端口通用寄存器堆的读写操作。

2.熟悉简单运算器的数据传送通路。

3.验证运算器74LS181的算术逻辑功能。

4.按给定数据,完成指定的算术、逻辑运算。

二、实验电路S3S2S1S0M图3.1 运算器实验电路图3.1示出了本实验所用的运算器数据通路图。

参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF中。

RF(U30)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF中保存。

双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A端口(左端口)读出的通用寄存器。

而WR1、WR0用于选择写入的通用寄存器。

LDRi是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。

RF的A、B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS 上。

DR1和DR2各由1片74LS273构成,用于暂存参与运算的数据。

DR1接ALU的A输入端口,DR2接ALU的B输入端口。

ALU由两片74LS181构成,ALU的输出通过一个三态门(74LS244)发送到数据总线DBUS上。

实验台上的八个发光二极管DBUS7-DBUS0显示灯接在DBUS上,可以显示输入数据或运算结果。

另有一个指示灯C显示运算器进位标志信号状态。

图中尾巴上带粗短线标记的信号都是控制信号,其中S3、S2、S1、S0、M、Cn#、LDDR1、LDDR2、ALU_BUS#、SW_BUS#、LDRi、RS1、RS0、RD1、RD0、WR1、WR0都是电位信号,在本次实验中用拨动开关K0—K15来模拟;T2、T3为时序脉冲信号,印制板上已连接到实验台的时序电路。

计算机组成原理实验报告2

计算机组成原理实验报告2

计算机组成原理实验报告2上海大学计算机组成原理实验报告二姓名:学号:座位号:上课时间:教师:报告成绩:一、实验名称:运算器实验二、实验目的:1. 学习数据处理部件的工作方式控制。

2. 学习机器语言程序的运行过程。

三、实验原理:CP226实验仪的运算器由一片CPLD实现,包括8种运算功能。

运算时先将数据写到寄存器A和寄存器W中,根据选择的运算方式系统产生运算结果送到直通门D。

实验箱上可以向DBUS送数据的寄存器有:直通门D、左移门L、右移门R、程序计数器PC、中断向量寄存器IA、外部输入寄存器IN 和堆栈寄存器ST。

它们由138译码器的四、实验内容:1. 计算37H+56H后左移一位的值送OUT输出。

2. 把36H取反同54H相与的值送人R1寄存器。

五、实验步骤:实验内容(一):1. 关闭电源。

用8位扁平线把J2和J1连接。

2. 用不同颜色的导线分别把K0和AEN、K1和WEN、K2和S0、K3和S1、K4和S2、K6和X0、K7和X1、K8和X2、K9和OUT连接。

3. K15~K0全部放在1位,K23 ~K16放0位。

4. 注视仪器,打开电源,手不要远离电源开关,随时准备关闭电源,注意各数码管、发光管的稳定性,静待10秒,确信仪器稳定、无焦糊味。

5. 设置实验箱进入手动模式。

6. 设置K0=0,K8K7K6=000,K23 ~K16=0011 0111。

7. 按下STEP键,在A寄存器中存入37。

8. 设置K0=1,K1=0,K23 ~K16=0101 0110。

9. 按下STEP键,在W寄存器中存入56。

10. 设置K0=1,K1=1,K8K7K6=110,K4K3K2=000。

11. 按下STEP键,L寄存器显示1A。

12. 设置K9=0,其他保持不变。

13. 按下STEP键,OUT寄存器显示1A。

14. 关闭实验箱电源。

实验内容(二):1. 基本与实验内容(一)的前5个步骤相同(去掉连接OUT寄存器的导线)。

《计算机组成原理》学生实验报告

《计算机组成原理》学生实验报告

《计算机组成原理》学生实验报告(2011~2012学年第二学期)专业:信息管理与信息系统班级: A0922学号:10914030230姓名:李斌目录实验准备------------------------------------------------------------------------3 实验一运算器实验-----------------------------------------------------------7 实验二数据通路实验-------------------------------------------------------13 实验三微控制器实验--------------------------------------------------------18 实验四基本模型机的设计与实现------------------------------------------22实验准备一、DVCC实验机系统硬件设备1、运算器模块运算器由两片74LS181构成8位字长的ALU。

它是运算器的核心。

可以实现两个8位的二进制数进行多种算术或逻辑运算,具体由74181的功能控制条件M、CN、S3、S2、S1、S0来决定,见下表。

两个参与运算的数分别来自于暂存器U29和U30(采用8位锁存器),运算结果直接输出到输出缓冲器U33(采用74LS245,由ALUB信号控制,ALUB=0,表示U33开通,ALUB=1,表示U33不通,其输出呈高阻),由输出缓冲器发送到系统的数据总线上,以便进行移位操作或参加下一次运算。

进位输入信号来自于两个方面:其一对运算器74LS181的进位输出/CN+4进位倒相所得CN4;其二由移位寄存器74LS299的选择参数S0、S1、AQ0、AQ7决定所得。

触发器的输出QCY就是ALU结果的进位标志位。

QCY为“0”,表示ALU结果没有进位,相应的指示灯CY灭;QCY为“1”,表示ALU结果有进位,相应的指示灯CY点亮。

《计算机组成原理》运算器实验报告(总结报告范文模板)

《计算机组成原理》运算器实验报告(总结报告范文模板)

《计算机组成原理》运算器实验报告实验目录:一、实验1 Quartus Ⅱ的使用(一)实验目的(二)实验任务(三)实验要求(四)实验步骤(五)74138、74244、74273的原理图与仿真图二、实验2 运算器组成实验(一)实验目的(二)实验任务(三)实验要求(四)实验原理图与仿真图三、实验3 半导体存储器原理实验(一)实验目的(二)实验要求(三)实验原理图与仿真图四、实验4 数据通路的组成与故障分析实验(一)实验目的(二)实验电路(三)实验原理图与仿真图五、本次实验总结及体会:一、实验 1 Quartus Ⅱ的使用(一)实验目的1.掌握Quartus Ⅱ的基本使用方法。

2.了解74138(3:8)译码器、74244、74273的功能。

3.利用Quartus Ⅱ验证74138(3:8)译码器、74244、74273的功能。

(二)实验任务1、熟悉Quartus Ⅱ中的管理项目、输入原理图以及仿真的设计方法与流程。

2、新建项目,利用原理编辑方式输入74138、74244、74273的功能特性,依照其功能表分别进行仿真,验证这三种期间的功能。

(三)实验要求1.做好实验预习,掌握74138、74244、74273的功能特性。

2.写出实验报告,内容如下:(1)实验目的;(2)写出完整的实验步骤;(3)画出74138、74244和74273的仿真波形,有关输入输出信号要标注清楚。

(四)实验步骤1.新建项目:首先一个项目管理索要新建的各种文件,在Quartus Ⅱ环境下,打开File,选择New Project Wizard后,打开New Project Wizard:Introduction窗口,按照提示创建新项目,点击“Next”按钮,再打开的窗口中输入有关的路径名和项目名称后,按“Finish”按钮,完成新建项目工作。

2.原理图设计与编译:原理图的设计与编译在Compile Mode(编译模式)下进行。

2.1.新建原理图文件打开File菜单,选择New,打开“新建”窗口。

寄存器实验报告

寄存器实验报告

一、实验目的1. 理解寄存器在计算机系统中的作用和重要性。

2. 掌握通用寄存器组的设计方法和应用。

3. 通过实验,加深对寄存器读写操作的理解。

二、实验原理寄存器是计算机中用于临时存储数据和指令的存储单元,它具有数据存取速度快、容量小、易于控制等特点。

在计算机系统中,寄存器用于存放指令、数据、地址等,是CPU执行指令的重要基础。

三、实验内容1. 通用寄存器组实验(1)实验目的:了解通用寄存器组的用途、结构和工作原理。

(2)实验内容:- 观察通用寄存器组(如AX、BX、CX、DX等)的内部结构;- 学习寄存器读写操作的基本指令(如MOV、ADD、SUB等);- 通过编程,实现寄存器之间的数据交换和运算。

(3)实验步骤:- 使用C语言编写程序,实现寄存器之间的数据交换和运算;- 在计算机上编译并运行程序,观察实验结果。

2. 移位寄存器实验(1)实验目的:了解移位寄存器的结构、工作原理和应用。

(2)实验内容:- 观察移位寄存器(如74LS194)的内部结构;- 学习移位操作指令(如SHL、SHR等);- 通过编程,实现数据的串行/并行转换和构成环形计数器。

(3)实验步骤:- 使用C语言编写程序,实现数据的串行/并行转换和构成环形计数器;- 在计算机上编译并运行程序,观察实验结果。

3. 寄存器仿真实验(1)实验目的:通过仿真软件,加深对寄存器读写操作的理解。

(2)实验内容:- 使用Proteus仿真软件,搭建寄存器实验电路;- 观察寄存器读写操作时,内部信号的变化;- 分析实验结果,验证寄存器读写操作的正确性。

(3)实验步骤:- 在Proteus软件中搭建寄存器实验电路;- 编写测试程序,观察寄存器读写操作时,内部信号的变化;- 分析实验结果,验证寄存器读写操作的正确性。

四、实验结果与分析1. 通用寄存器组实验通过实验,我们了解了通用寄存器组的结构和工作原理,掌握了寄存器读写操作的基本指令。

实验结果表明,寄存器读写操作可以有效地提高程序执行速度。

西工大-组成原理实验报告

西工大-组成原理实验报告

西工大-组成原理实验报告评语: 课中检查完成的题号及题数:课后完成的题号与题数:成绩: 自评成绩: 95实验报告实验名称:基于Verilog语言的运算器和存储器设计与实现日期:2015.11.4班级:10011303 学号:201302536 姓名:张林江一、实验目的:1. 了解运算器的组成结构。

2. 掌握运算器的工作原理。

3. 掌握静态随机存储器RAM 工作特性及数据的读写方法。

二、实验内容:1. 运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A 和暂存器B,三个部件同时接受来自A 和B 的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3…S0来决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU 的输出。

如果是算术运算,还将置进位标志FC,在运算结果输出前,置ALU 零标志。

ALU 中所有模块集成在一片CPLD(MAXII EPM240)中。

2. 存储器(Memory)是现代信息技术中用于保存信息的记忆设备。

其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。

计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。

它根据控制器指定的位置存入和取出信息。

有了存储器,计算机才有记忆功能,才能保证正常工作。

计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。

外存通常是磁性介质或光盘等,能长期保存信息。

内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。

计算机组成原理实验二

计算机组成原理实验二

Vcc
右移门
4.ALU左移输出原理图
数据输出选择器输出信号L_OE
左移门
当CN=1 Cy 移入DBUS0 当CN=0 0 移入DBUS0
二. 实验任务
1. 计算37H+56H后左移一位的值送OUT 输出。 2. 把36H取反后同54H相与的值送入R1 寄存器。
三. 实验过程举例(1)
例:实验任务:输出ACH-BDH的值(用外部输入门IN进行数据输入) 1. 实验箱没有一条微命令能完成这个操作任务。所以要考虑一个微命令序 列——微程序来完成任务。故先把任务分解成有微命令对应的基本操作,并有序 排列这些基本操作。 2. 选择基本操作:由背景知识1,可以选用“A-W”微命令;这要求先把值 ACH送入寄存器A,值BDH送入寄存器W;题意没有要求对运算结果做进一步处 理,所以直通门D中保存的值是计算结果;把D的值送OUT寄存器输出。
控制电键
k9
k8
k7Leabharlann k6k4k3k2
k1
k0
被控对象
OUTEN
X2 X1 X0
S2
S1
S0
WEN
AEN
三. 实验过程举例(2)
第三步、实验:
① 注视仪器,打开电源,手不要远离电源开关,随时准备关闭电源, 注意各数码管、发光管的稳定性,静待10秒,确信仪器稳定、无焦糊味。
② 设置实验箱进入手动模式。 ③ ACH送入寄存器A。X2x1x0(k8k7k6)=000,AEN(k0)=0, k23-k16=10101100 按下STEP键数值打入A寄存器。 ④ BDH送入寄存器W。方法同上。 ⑤ 计算A-W:按“运算器选择表”置:k4k3k2=001;
计算机组成原理实验课程
实验二 运算器实验

计算机组成原理运算器实验报告

计算机组成原理运算器实验报告

计算机组成原理运算器实验报告本次实验的主题为计算机组成原理运算器实验。

在本次实验中,我们通过对运算器的实验进行研究和探究,了解了计算机组成原理方面的相关知识,更加深入地认识了计算机的运作原理。

一、实验目的本次实验的目的是使学生掌握运算器的组成和运算过程,并且了解运算器在计算机中的位置和给计算机的工作。

二、实验原理1、硬件部分运算器是一种计算机硬件,可以进行算术和逻辑运算。

运算器包含一个算术逻辑单元(ALU),一个累加器和一些寄存器。

运算器可以在CPU 中实现简单的算术操作。

运算器由三部分组成:算术逻辑单元(ALU)、寄存器和累加器。

ALU 是计算机CPU中负责完成算术和逻辑运算的部分;寄存器是计算机中用来暂时存放数据的小型存储器,它是CPU中数据存储的主要形式;累加器是CPU中的一种特殊寄存器,在运算过程中用于存储运算结果。

2、软件部分计算机编程中常常涉及到算术和逻辑运算,进行这些运算的方法是在程序中调用运算器中的算术逻辑单元(ALU)。

ALU是计算机CPU中负责完成算术和逻辑运算的部分,用于进行各种算术和逻辑运算,如加、减、乘、除、与、或、非、移位等。

三、实验过程— 1 —本次实验的实验步骤如下:1、打开实验设备,将电源线插进插座,将设备的开关打开,在设备前方的显示器上能够看见下划线。

2、按下NORM键,增益调整。

将x的值设置为“0011”,将y的值设置为“1101”。

3、操作者可以选择不同的操作符。

例如选择ADD操作,将其输入。

4、按下RUN键,运算器开始计算。

5、运算结束后,在屏幕上将显示运算结果。

本例中,结果为“1000”。

四、实验结果与分析在本次实验中,我们利用运算器实现了不同运算的计算过程,并且也成功地输出了运算结果。

这一过程与计算机组成原理中的运算器的定义、作用及组成都有密切的关系。

在本次实验中,我们也进一步加深了对计算机组成原理中该重要部分的理解。

五、实验总结通过本次实验,我们深入了解了运算器在计算机中的作用及其实现方法。

计算机组成原理移位寄存实验报告

计算机组成原理移位寄存实验报告

计算机组成原理实验二移位寄存实验一、实验目的:1、了解移位寄存器的硬件电路,验证移位控制与寄存的组合功能。

2、利用寄存器进行数据传输。

二、实验要求:实现寄存器移位操作,了解通用寄存器的运用。

三、实验原理:移位运算实验原理图移位运算实验原理如图所示,使用了一片74LS299作为移位发生器,其八输入/输出端以排针方式和总线单元连接。

299—B信号控制其使能端,T4时序为其时钟脉冲,实验时将“W/R UNIT”中的T4接至“STATE UNIT”中的KK2单脉冲发生器,由S0、S1、M控制信号控制其功能状态,其列表如下:299—B S 1 S 0 M 功能0 0 0 任意保持0 1 0 0 循环右移0 1 0 1 带进位循环右移0 0 1 0 循环左移0 0 1 1 带进位循环左移任意 1 1 任意装数四、实验连接:1.运算器控制信号连接:S0,S1,M,LDCZY,LDR0,/SW-B,/SR-B,/R0-B2.完成连接并检查无误后接通电源。

五、实验仪器状态设定:在闪动的“P.”状态下按动“增址”命令键,使LED显示器自左向右第一位显示提示符“H”,表示本装置已进入手动单元实验状态。

五、实验项目:(一)移位寄存器置数首先置CBA=000,然后按下面流程操作:数据开关(01101011)三态门置数(01101011)三态门[CBA=001] [S0=1,S1=1] [CBA=111][ “按STEP” ](二)寄存器移位置CBA=001并输入数据,然后置CBA=111,参照实验原理中的移位寄存器控制特性表改变S0、S1、M,按动“单步”命令键,实验发现数据移位正确。

(三)移位结果寄存我们选取R0,把移位寄存器移位后的内容寄存到通用寄存器。

在移位操作后保持CBA=111,S0=0,S1=0,然后令LDR0=1,再按动“单步”命令键,完成移位结果保存。

(四)移位结果读出置CBA=100,总线指示灯显示R0内容,与上步中存的数一致。

移位寄存器实验报告doc

移位寄存器实验报告doc

移位寄存器实验报告篇一:移位寄存器实验报告移位寄存器实验报告(一)实验原理移位寄存器是用来寄存二进制数字信息并且能进行信息移位的时序逻辑电路。

根据移位寄存器存取信息的方式可分为串入串出、串入并出、并入串出、并入并出4种形式。

74194是一种典型的中规模集成移位寄存器,由4个RS触发器和一些门电路构成的4位双向移位寄存器。

该移位寄存器有左移,右移、并行输入数据,保持及异步清零等5种功能。

有如下功能表(三)实验内容1. 按如下电路图连接电路十个输入端,四个输出端,主体为74194. 2. 波形图参数设置:End time:2usGrid size:100ns 波形说明:clk:时钟信号;clrn:置0 s1s0:模式控制端 sl_r:串行输入端 abcd:并行输入 qabcd:并行输出结论:clrn优先级最高,且低有效高无效;s1s0模式控制,01右移,10左移,00保持,11置数重载;sl_r控制左移之后空位补0或补1。

3. 数码管显示移位(1)电路图(2)下载验证管脚分配:a,b,c,d:86,87,88,89 bsg[3..0]:99,100,101,102 clk:122 clk0:125 clrn:95 q[6..0]:51,49,48,47,46,44,43 s0,s1:73,72 sl_r:82,83 结论:下载结果与仿真结果一致,下载正确。

一、实验日志1.移位寄存器的实验真的挺纠结的,本来想用7449的,但是下载结果出现了错误,想到它在这个电路图中的功能比较单一,就自己写了一个my7449,终于对了。

五、思考题(1)简单说明移位寄存器的概念及应用情况?概念:移位寄存器是用来寄存二进制数字信息且能进行信息移动的时序逻辑电路。

根据移位寄存器存取信息的方式不同可以分为串入串出,串入并出,并入串出,并入并处4种形式。

应用:移位寄存器可以构成计数器,顺序脉冲发生器,串行累加器,串并转换,并串转换等。

计算机组成原理实验报告说明

计算机组成原理实验报告说明

实验一运算器组成实验一、实验目的1、掌握运算器的组成及工作原理;2、了解4位函数运算器74LS181的组合功能,熟悉运算器执行算术和逻辑操作的具体实现过程;3、验证带进位控制的运算器功能。

二、实验设备1、EL-JY系列计算机组成及系统结构实验系统一套2、排线若干。

三、工作原理:算术逻辑单元ALU是运算器的核心。

集成电路74LS181是4位运算器,四片74LS181以并/串形式构成16位运算器。

它可以对两个16位二进制数进行多种算术或逻辑运算,74LS181 有高电平和低电平两种工作方式,高电平方式采用原码输入输出,低电平方式采用反码输入输出,这里采用高电平方式。

三态门74LS244作为输出缓冲器由ALU-G信号控制,ALU-G 为“0”时,三态门开通,此时其输出等于其输入;ALU-G 为“1”时,三态门关闭,此时其输出呈高阻。

四片74LS273作为两个16数据暂存器,其控制信号分别为LDR1和LDR2,当LDR1和LDR2 为高电平有效时,在T4脉冲的前沿,总线上的数据被送入暂存器保存。

四、实验内容:验证74LS181运算器的逻辑运算功能和算术运算功能。

五、实验步骤1、按照实验指导说明书连接硬件系统;2、启动实验软件,打开实验课题菜单,选中实验课题打开实验课题参数对话窗口:1)、在数据总线上输入有效数据,按"Ldr1",数据送入暂存器1;2)、在数据总线上输入有效数据,按"Ldr2",数据送入暂存器2;3)、在S3...Ar上输入有效数据组合,按"ALU功能选择端",运算器按规定进行运算,运算结果送入数据缓冲器;4)、按"ALU_G",运算结果送入数据总线。

5)、执行完后,按"回放",可对已执行的过程回看。

6)、回放结束后,按"继续"(继续按钮在点击回放后出现),进行下次数据输入。

东北大学组成原理实验报告-组成原理第二次实验报告

东北大学组成原理实验报告-组成原理第二次实验报告
ALU原理图
移位器由3个8位寄存器组成,能实现直通、左移、右移。直通门D将运算器的结果不移位送总线,右移门R将运算器的结果右移一位送总线,左移门L将运算器的结果左移一位送总线。用控制信号CN决定运算器是否带进位移位。
三、实验内容
1、运算器实验
按照下表连线
连接
信号孔
接入
连接
信号孔
接入
1
J1座
J3座
5
AEN
K4(S1)
K5(S0)
0
1
1
1
注:S21S1S0=111时,运算器输出为寄存器A的内容。
(2)将A中数据进行三种方式操作,并写出结果
CN
CyIN
L
D
R
0
X
54
AA
55
1
0
54
AA
55
1
1
55
AA
D5
实验四存储器实验
一、实验目的
1、掌握静态随机存储器的工作原理;
2、通过对6116SRAM芯片的实验体会存储芯片读写信号的作用;
6116是2K*8bit的SRAM,A0—A10是存储器的地址线,本实验电路中,只使用8条地址线A0—A7,而A8—A10接地。D0—D7是存储器的数据线。E是存储器的片选信号,当E为低电平时,存储器被选中,可以进行读写操作;当E为高电平时,存储器未被选中;本实验中E始终接地。W为写命令,W为低电平时,是写操作;G为读命令,G为低电平时,是读操作。
CyIN的使能控制信号,控制是否带进位。
4、移位与输出门是否打开无关,无论运算器结果如何,移位门都会给出移位结果。但究竟把哪一个结果送数据总线由哪些控制信号决定?
由直通门D,左移门L,右移门R来决定。

组成原理实验报告

组成原理实验报告

计算机组成原理实验报告实验一 运算器实验一.实验目的1、掌握简单运算器的数据传输方式;2、验证运算功能发生器(74LS181)及进位控制的组合功能; 二.实验要求完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术运算单元的运用。

三.实验设备计算机组成原理实验箱 四.实验步骤 1.算术运算实验打开实验仪电源,按增址键,调到“L ”工作状态下。

SW_B=0,CE=0,LDDR1=0,LDDR2=0,CBA=010,置M 、S0、S1、S2、S3为11111,在按单步键,数据总线单元显示DR1的内容即:65;若把M 、S0、S1、S2、S3置为10101,在按单步键,数据总线显示DR2的内容,即:A7; 进行算术运算:置CBA=010,CN 、M 、S0、S1、S2、S3状态为101001,按单步键,此时数据单元显示:0CH ,CY 不亮,进位舍弃。

和预测相同,为不进位算术运算。

2.进位控制实验实验“L ”状态下即手动单元实验状态,按复位键,然后进如下操作:数据开关 01100101 三态门 CBA=000 CE=0 SW_B=1 寄存器DR1 01100101 LDDR1=1 LDDR2=0 按单步键 数据开关10100111 寄存器DR210100111LDDR1=0 LDDR2=1 按单步键数据开关01010101三态门 CBA=000 寄存器DR1 01010101 LDDR1=1 数据开关10101010 寄存器DR210101010LDDR1=0 LDDR2=1然后置SW_B=0,CE=0,CBA=010,AR=1,CN 、M 、S0、S1、S2、S3的关态为101001,按单步键,肯数数据总线显示的数据为DR1加DR2,即:FF ,且CY 不‘亮’,表示无进位,和预测结果相同。

置CBA=0102.逻辑运算实验置CBA=010,M 、S0、S1、S2、S3状态为11000,按单步键,此时LED 显示:18H.与预测值相同。

计算机组成原理 实验报告

计算机组成原理 实验报告
1算术逻辑运算单元ALU(Arithmetic and Logic Unit)
ALU主要完成对二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)以及移位操作。在某些CPU中还有专门用于处理移位操作的移位器。
通常ALU由两个输入端和一个输出端。整数单元有时也称为IEU(Integer Execution Unit)。我们通常所说的“CPU是XX位的”就是指ALU所能处理的数据的位数。
置S3、S2、S1、S0和Cn的数值,并观察数据总线LED显示灯显示的结果。如置S3、S2、S1、
S0为0010加法运算。
如果实验箱和PC联机操作,则可通过软件中的数据通路图来观测实验结果(软件使用说明
请看附录一),方法是:打开软件,选择联机软件的“【实验】—【运算器实验】”,打开运算器
实验的数据通路图,如图1-1-6所示。进行上面的手动操作,每按动一次ST按钮,数据通路图
会有数据的流动,反映当前运算器所做的操作,或在软件中选择“【调试】—【单节拍】”,其作
用相当于将时序单元的状态开关KK2置为‘单拍’档后按动了一次ST按钮,数据通路图也会反
映当前运算器所做的操作。
重复上述操作,并完成表1-1-2。然后改变A、B的值,验证FC、FZ的锁存功能。
计算机组成原理实验报告
实验一 基本运算器实验
一、
1.了解运算器的组成结构
2.掌握运算器的工作原理
3.深刻理解运算器的控制信号
二、
PC机一台、TD-CMA实验系统一套
三、实验原理
1.(思考题)运算器的组成包括算数逻辑运算单元ALU(Arithmetic and Logic Unit)、浮点运算单元FPU(Floating Point Unit)、通用寄存器组、专用寄存器组。

计算机组成原理实验报告

计算机组成原理实验报告

实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。

2.了解通用寄存器的构成和运用。

二、实验要求掌握通用寄存器R3~R0的读写操作。

三、实验原理实验中所用的通用寄存器数据通路如下图所示。

由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。

图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。

RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。

DRCK信号为寄存器组打入脉冲,上升沿有效。

准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。

图2-3-3 通用寄存器数据通路四、实验内容1.实验连线2.寄存器的读写操作①目的通路当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表。

通用寄存器“手动/搭接”目的编码②通用寄存器的写入通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:③源通路当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表。

通用寄存器“手动/搭接”源编码④通用寄存器的读出五、实验心得通过这个实验让我清晰的了解了通用寄存器的构成以及通用寄存器是如何运用的,并且熟悉了通用寄存器的数据通路,而且还深刻的掌握了通用寄存器R3~R0的读写操作。

实验2 运算器实验一、实验目的掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能。

二、实验要求完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。

三、实验原理实验中所用的运算器数据通路如图2-3-1所示。

ALU运算器由CPLD描述。

运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。

计算机组成原理实验-运算器实验报告

计算机组成原理实验-运算器实验报告
F=00110100
当A=10000000,B=00110010时
F=01111111
(5)S3S2S1S0=1101时,F=A加1。例如:
当A=00110101,B=00110101时,F=00 Nhomakorabea10110
当A=11100011,B=00100010时
F=11100100
F=00100000,FC灯亮,表示有进位
(3)S3S2S1S0=1011时,F=A减B。例如:
当A=00110101,B=00110101时,
F=00000000
当A=01011011,B=00111010时
F=00100001
(4)S3S2S1S0=1100时,F=A减1。例如:
当A=00110101,B=00110101时,
计算机组成原理实验运算器实验报告基本运算器实验报告运算器的组成部分运算器实验报告运算器及移位实验计算机组成原理实验运算器运算器的主要功能是运算器的主要功能运算器的功能
1.逻辑运算
(1)S3S2S1S0=0000时,F=A,例如:
当A=00010101,B=01101001时
F=00010101;
当A=01011000时,B=01011110时
当A=11000011,B=00111100时
F=00000000
(4)S3S2S1S0=0011时,F=A+B。例如:
当A=00110101,B=11001010时,
F=11111111
当A=01011011,B=11000101时
F=11011111
(5)S3S2S1S0=0100时,F=/A。例如:
F=00011101
当A=01000111,B=00000101时

计算机组成与系统结构实验报告2

计算机组成与系统结构实验报告2

评语: 课中检查完成的题号及题数: 课后完成的题号与题数:成绩:自评成绩:95一、实验目的:(1) 掌握一个简单CPU 的组成原理。

(2) 在掌握部件单元电路的基础上,进一步将其构造一台基本模型计算机。

(3) 为其定义五条机器指令,编写相应的微程序,并上机调试掌握整机概念。

二、实验内容:1、实验原理:本实验要实现一个简单的CPU ,并且在此CPU 的基础上,继续构建一个简单的模型计算机。

CPU 由运算器(ALU )、微程序控制器(MC )、通用寄存器(R0),指令寄存器(IR )、程序计数器(PC )和地址寄存器(AR )组成,如图2-1-1 所示。

这个CPU 在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU 必须和主存挂接后,才有实际的意义,所以还需要在该CPU 的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。

图1-4-1 基本CPU 构成原理图实验报告实验名称: 1.4 CPU 与简单模型机设计实验 日期: 2015.11.16 班级:10011303 学号: 2013302534 姓名:杨添文除了程序计数器(PC),其余部件在前面的实验中都已用到,在此不再讨论。

系统的程序计数器(PC)由两片74LS161 和一片74LS245 构成,其原理如图1-4-2 所示。

PC_B 为三态门的输出使能端,CLR 连接至CON 单元的总清端CLR,按下CLR 按钮,将使PC 清零,LDPC 和T2 相与后作为计数器的计数时钟,当LOAD 为低时,计数时钟到来后将CPU 内总线上的数据打入PC。

图1-4-2 程序计数器(PC)原理图本模型机和前面微程序控制器实验相比,新增加一条跳转指令JMP,共有五条指令:IN (输入)、ADD(二进制加法)、OUT(输出)、JMP(无条件转移),HLT(停机),其指令格式如下(高4位为操作码):助记符机器指令码说明IN 0010 0000 IN→R0ADD 0000 0000 R0 + R0→R0OUT 0011 0000 R0→OUTJMP addr 1100 0000 ******** addr→ PCHLT 0101 0000 停机其中JMP 为双字节指令,其余均为单字节指令,********为addr 对应的二进制地址码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安财经学院信息学院《计算机组成原理》 实验报告实验名称 运算器实验、通用寄存器实验、移位寄存器实验 实验室 实验楼418 实验日期 2011/11/29、2011/12/2、2011/12/6实验一 运算器实验一、实验目的1.掌握简单运算器的数据传输方式。

2.验证运算功能发生器(74LS181)及进位控制的组合功能。

二、实验要求完成不带进位和带进位算术运算实验、逻辑运算实验,了解算术逻辑单元的运用。

三、实验原理实验中所用的运算器数据通路如下图所示,其中运算器由两片74LS181以并/串 形式构成8位字长的ALU 。

运算器的输出经过一个三态门(73LS245)以8芯扁平线方式和数据总线相连,运算器的2个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入亦以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT )已和数据总线相连,用来显示数据总线内容。

姓名 学号 1005170419 班级 计本1004班 年级 10级 指导教师 魏晋雁图1-1-1 运算器原理图图中T2、T4为时序电路产生的节拍脉冲信号,通过连接时序启停单元时钟信号“”来获得,剩余均为电平控制信号。

进行实验时,首先按动位于本实验装置右中侧的复位按钮使系统进入初始待令状态,在LED显示器闪动位出现“P·”状态下,按动【增址】命令键使LED显示器自左向右第4位切换到提示符“L”,表示本装置已进入手动单元实验状态,在该状下按动【单步】命令键,即可获得实验所需的单脉冲信号,而LDDR1、LDDR2、ALU-B、SW-B、S3、S2、S1、S0、CN、M各电平控制信号用位于LED显示器上方的26进位二进制开关来模拟,均为高电平有效。

四、实验连线图1-1-2 实验连线示意图按上图所示,连接实验电路:①总线接口连接:用8芯片平线连接图中所有标明“”或“”图案的总线接口。

②按制线与时钟信号“”连接:用双头实验导线连接图中所有标明“”或“”图案的插孔。

五、实验内容及结果分析实验内容:(一)算术运算实验⑴写操作(置数操作)拨动二进制数据开关向DR1和DR2寄存器置数,具体操作步骤如下:注:【单步】键的功能是启动时序电路产生T1~T4四拍单周期脉冲⑵读操作(运算寄存器内容送总线)首先关闭数据输入三态控制端(SW-B=0),存储器控制端CE保持为0,令LDDR1=0、LDDR2=0,然后打开ALU输出三态门(CBA=010),置M、S0、S1、S2、S3为11111,再按【单步】键,数据总线单元显示DR1的内容,若把M、S0、S1、S2、S3置为10101,再按【单步】键,数据总线单元显示DR2的内容。

⑶算术运算(不带进位加)置CBA=010,CN、M、S0、S1、S2、S3状态为101001,按【单步】键,此时数据总线单元应显示00001100(0CH)。

(二)进位控制实验进位控制运算器的实验原理如实验四图2-4-1所示,其中181的进位位进入74LS74锁存器D端,该端的状态锁存受AR和T4信号控制,其中AR为进位位允许信号,高电平有效;T4为时序脉冲信号,当AR=1时在T4节拍将本次运算的进位结果锁存到进位锁存器中,实现带进位控制实验。

(1) 进位位清零操作在“L”状态下,按动【复位】按钮,进位标志灯CY“灭”,实现对进位位的清零操作。

(当进位标志灯“亮”时,表示CY=1)。

(2)用二进制数据开关向DR1和DR2寄存器置数首先关闭ALU输出三态门(CBA=000)、CE=0,开启输入三态门(SW-B=1),设置数据开关,向DR1存入01010101(55H),向DR2存入10101010(AAH)。

操作步骤如下:注:【单步】键的功能是启动时序电路产生T1~T4四拍单周期脉冲⑶验证带进位运算的进位锁存功能关闭数据输入三态门(SW-B=0)、CE=0,使CBA=010,AR=1,置CN、M、S0、S1、S2、S3的状态为101001,按【单步】键,此时数据总线单元显示的数据为DR1加DR2,若进位标志灯CY“亮”,表示有进位;反之无进位。

(三)逻辑运算实验⑴写操作(置数操作)拨动二进制数据开关向DR1和DR2寄存器置数,具体操作步骤如下:注:【单步】键的功能是启动时序电路产生T1~T4四拍单周期脉冲⑵读操作(运算寄存器内容送总线)首先关闭数据输入三态控制端(SW-B=0),存储器控制端CE保持为0,令LDDR1=0、LDDR2=0,然后打开ALU输出三态门(CBA=010),置M、S0、S1、S2、S3为11111,再按【单步】键,数据总线单元显示DR1的内容,若把M、S0、S1、S2、S3置为10101,再按【单步】键,数据总线单元显示DR2的内容。

(1)逻辑或非运算逻辑或非运算的方法是置CBA=010,M、S0、S1、S2、S3状态为11000,按【单步】键,此时数据总线单元应显示00011000(18H)。

结果分析:1.算数运算试验中,进行写操作后,DR1、DR2分别显示数字65和A7。

读操作时,CBA是选择部件编码,当置于010时代表选择运算器,并将其数据送往总线。

之后的操作分别将DR1与DR2的内容送到总线上。

算数运算时,当CN、M、S0、S1、S2、S3分别置于101001时进行算数的A加B运算,并将结果显示到和数据总线上,内容是00001100(0C)。

2.进位控制实验中,在“L”状态下按动【复位】按钮,进位标志灯CY灭。

同样的方法对DR1和DR2置数,分别是01010101(55H)与10101010(AAH)。

相加后,数据总线显示11111111(FFH),CY灯不亮,无进位。

AR经过一个或门后与T4与,所以当AR=1时才能带进位。

3.逻辑运算实验中,给DR1与DR2分别置数01100101、10100111。

或非运算时,01100101+10100111=11100111,11100111的非为00011000(18H)。

六、实验思考验证74LS181的算术逻辑运算。

在给定DR1=65、DR2=A7的情况下,改变运算器的功能设置,按【单步】键,观察运算器的输出,填入表格中,并和理论分析进行比较、验证。

DR1 DR2S3 S2 S1 S0 M=0(算术运算)M=1(逻辑运算)CN=1无进位CN=0有进位65A70 0 0 0F=(65)F=(66)F=(9A)65A70 0 0 1F=(E7)F=(E8)F=(18)65A70 0 1 0F=(7D)F=(7E)F=(82)0 0 1 1 F=(FF)F=(00)F=(00)0 1 0 0F=(A5)F=(A6)F=(dA)0 1 0 1F=(27)F=(28)F=(58)0 1 1 0F=(bd)F=(bE)F=(C2)0 1 1 1F=(3F)F=(40)F=(40)1 0 0 0F=(8A)F=(8D)F=(BF)1 0 0 1F=(OC)F=(Od)F=(3b)1 0 1 0F=(A2)F=(A3)F=(A7)1 0 1 1F=(24)F=(25)F=(25)1 1 0 0F=(CA)F=(cb)F=(FF)1 1 0 1F=(4C)F=(4d)F=(7d)1 1 1 0F=(E2)F=(E3)F=(E7)1 1 1 1F=(64)F=(65)F=(65)附:74LS181逻辑方式M=1(逻辑运算)M=0(算术运算)S3 S2 S1 S0CN=1(无进位)CN=0(有进位)0 0 0 0F=/A F=A F=A加10 0 0 1F=/(A+B)F=A+B F=(A+B)加10 0 1 0F=/AB F=A+/B F=(A+/B)加10 0 1 1 F=0F=减1(2的补)F=00 1 0 0F=/(AB)F=A加A/B F=A加A/B加10 1 0 1F=/B F=(A+B)加A/B F=(A+B)加A/B加10 1 1 0F=/(A⊕B)F=A减B减1F=A减B0 1 1 1F= A/B F= A/B减1F= A/B1 0 0 0F=/A+B F=A加AB F=A加AB加11 0 0 1F=A⊕B F=A加B F=A加B加11 0 1 0F=B F=(A+B)加AB F=(A+/B)加AB加11 0 1 1F=AB F=AB减1 F=AB1 1 0 0F=1F=A加A F=A加A加11 1 0 1F=A+/B F=(A+B)加A F=(A+B)加A加11 1 1 0F=A+B F=(A+/B)加A F=(A+/B)加A加11 1 1 1F=A F=A减1 F=A注:①表中“+”表示逻辑或,“⊕”表示逻辑异或,“/”表示逻辑非,“AB”表示逻辑与。

②加法运算时,CY=1表示运算结果有进位, CY=0表示运算结果无进位。

七、实验总结实验一主要验证ALU的算数与逻辑功能,通过本次实验基本掌握了组成原理实验的一般步骤与主要细节,了解了ALU的使用方法,74LS181的组成原理,还有三态门的作用,以及数据总线与一般部件的传输方式。

实验二通用寄存器实验一、实验目的1.熟悉通用寄存器概念。

2.熟悉通用寄存器的组成和硬件电路。

二、实验要求完成3个通用寄存器的数据写入和读出。

三、实验原理试验中所用的通用寄存器数据通路如图1-2-1所示。

由三片8位字长74LS374组成R0、R1、R2寄存器组成。

三个寄存器的输入接口用一8芯扁平线连至总线接口,而三个寄存器的输出接口用一8芯扁平线连至BUS总线接口。

图R0-B、R1-B、R2-B经CBA 二进制控制开关译码产生数据输出选通信号,LDR0、LDR1、LDR2为数据写入允许信号,由二进制控制开关模拟,均为高电平有效;T4信号为寄存器数据写入脉冲,上升沿有效。

在手动实验状态(即“L”状态)每按动一次【单步】命令键,产生一次T4信号。

图1-2-1 通用寄存器单元电路表1-2-1 通用寄存器单元选通真值表四、实验连线C B A 选择10 0 R0-B 10 1 R1-B 1 1 0 R2-B图1-2-2 实验连线示意图按图1-2-2所示,连接实验电路:①总线接口连接:用8芯片平线连接图1-2-2中所有标明“”或“”图案的总线接口。

②按制线与时钟信号“”连接:用双头实验导线连接图1-2-2中所有标明“”或“”图案的插孔。

(注:Dais-CMH的时钟信号一座内部连接)。

五、实验内容及结果分析实验内容:(一)通用寄存器的写入拨动二进制开关向R0和R1寄存器置数,具体操作如下:注:【单步】键的功能是启动时序电路产生T1~T4四拍单周期脉冲(二)通用寄存器的读出关闭数据输入三态门(SW-B),寄存器控制端CE=0,令LDR0=0、LDR1=0、LDR2=0,分别打开通用寄存器R0、R1、R2输出控制位,置CBA=100时,按【单步】键,数据总线单元显示r0中的数据01H;置CBA=101时,按【单步】键。

相关文档
最新文档