2015届高考数学总复习矩阵与变换第1课时线性变换、二阶矩阵及其乘法教学案(新人教A版选修4-2)
2015届高考数学总复习(考点引领+技巧点拨)矩阵与变换第2课时逆变换与逆矩阵、矩阵的特征值教学案(
选修4-2矩阵与变换第2课时逆变换与逆矩阵、矩阵的特征值与特征向量(对应学生用书(理)189~191页)考情分析考点新知①掌握二阶矩阵存在逆矩阵的条件,并能进行矩阵的运算.②求二阶矩阵的特征值和特征向量,利用特征值和特征向量进行矩阵运算.①理解逆矩阵的意义,掌握二阶矩阵存在逆矩阵的条件,并能进行矩阵的运算.②会求二阶矩阵的特征值和特征向量,会利用矩阵求解方程组.会利用特征值和特征向量进行矩阵运算.1. 设M=⎣⎢⎡⎦⎥⎤0110,N=⎣⎢⎢⎡⎦⎥⎥⎤1012,求MN.解:MN=⎣⎢⎡⎦⎥⎤0110⎣⎢⎢⎡⎦⎥⎥⎤1012=⎣⎢⎢⎡⎦⎥⎥⎤1210.2. 矩阵M=⎣⎢⎡⎦⎥⎤a273,假设矩阵M的逆矩阵M-1=⎣⎢⎡⎦⎥⎤b-2-7a,求a、b的值.解:由题意,知MM-1=E,⎣⎢⎡⎦⎥⎤a273⎣⎢⎡⎦⎥⎤b-2-7a=⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎢⎡⎦⎥⎥⎤ab-1407b-213a-14=⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧ab-14=1,7b-21=0,3a-14=1,解得a=5,b=3.3. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4. 4. (选修42P 73习题第1题改编)求矩阵M =[16-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)·(λ+3)=0,令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. (选修42P 73习题第1题改编)求矩阵N =⎣⎢⎡⎦⎥⎤3652的特征值及相应的特征向量. 解:矩阵N 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3-6-5λ-2=(λ-8)·(λ+3)=0, 令f(λ)=0,得N 的特征值为λ1=-3,λ2=8,当λ1=-3时⎩⎪⎨⎪⎧-6x -6y =0,-5x -5y =0,一个解为⎩⎪⎨⎪⎧x =-1,y =1,故特征值λ1=-3的一个特征向量为⎣⎢⎡⎦⎥⎤-1 1; 当λ2=8时⎩⎪⎨⎪⎧5x -6y =0,-5x +6y =0,一个解为⎩⎪⎨⎪⎧x =6,y =5,故特征值λ2=8的一个特征向量为⎣⎢⎡⎦⎥⎤65.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,假设有AB =BA =E ,那么称A 是可逆的,B 称为A 的逆矩阵.(2) 假设二阶矩阵A 、B 均存在逆矩阵,那么AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组.2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.[备课札记]题型1 求逆矩阵与逆变换例1 用解方程组的方法求以下矩阵M 的逆矩阵.(1) M =⎣⎢⎡⎦⎥⎤1101;(2) M =⎣⎢⎡⎦⎥⎤1221. 解:(1) 设M -1=⎣⎢⎡⎦⎥⎤a b c d ,那么由定义知⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧a +c =1,b +d =0,c =0,d =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =0,d =1,故M-1=⎣⎢⎡⎦⎥⎤1-10 1. (2) 设M -1=⎣⎢⎡⎦⎥⎤a b c d ,那么由定义知⎣⎢⎡⎦⎥⎤1221⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,2a +c =0,2b +d =1,解得⎩⎪⎨⎪⎧a =-13,b =23,c =23,d =-13,故M -1=⎣⎢⎡⎦⎥⎤-132323-13.备选变式〔教师专享〕矩阵M =⎣⎢⎡⎦⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎢⎡⎦⎥⎥⎤2-31-1,得|M |=1,那么M -1=⎣⎢⎢⎡⎦⎥⎥⎤-13-12.从而由⎣⎢⎢⎡⎦⎥⎥⎤2-31-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135,得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-13-12⎣⎢⎡⎦⎥⎤135=⎣⎢⎢⎡⎦⎥⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤2-3,故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3). 题型2 求特征值与特征向量例2 矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a ∈R ,假设点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 某某数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0, 得2-2a =-4a =3.(2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,那么矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧〔λ-2〕x -3y =0,-2x +〔λ-1〕y =0x +y =0,∴矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧〔λ-2〕x -3y =0,-2x +〔λ-1〕y =02x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.变式训练M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3. 令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.令β=m α1+n α2,那么m =4,n =-3. M 5β=M 5(4α1-3α2) =4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.题型3 根据特征值或特征向量求矩阵 例3 矩阵M =⎣⎢⎡⎦⎥⎤1102有特征向量为e 1=⎣⎢⎡⎦⎥⎤11,e 2=⎣⎢⎡⎦⎥⎤10, (1) 求e 1和e 2对应的特征值;(2) 对向量α=⎣⎢⎡⎦⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α. 解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,那么⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤11=λ1⎣⎢⎡⎦⎥⎤11,⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤10=λ2⎣⎢⎡⎦⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e 2=⎣⎢⎡⎦⎥⎤1916, M 10α=M 10(e 1+3e 2)=M 10e 1+3M10e 2=λ101e 1+3λ102e 2=⎣⎢⎡⎦⎥⎤210+3210. 备选变式〔教师专享〕矩阵M =⎣⎢⎡⎦⎥⎤200-1有特征向量e 1→=⎣⎢⎡⎦⎥⎤10,e 2→=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α→=⎣⎢⎡⎦⎥⎤x y ,求M 100α→.解:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤200-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1→=λ1e 1→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2,同理Me2→=λ2e2→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤1=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1.(2) 因为α→=⎣⎢⎡⎦⎥⎤xy=xe1→+ye2→,所以M100α→=M100(xe1→+y·e2→)=xM100e1→+yM100e2→=xλ1001e1→+yλ2100e2→=⎣⎢⎡⎦⎥⎤2100xy.1. 求函数f(x)=⎪⎪⎪⎪⎪⎪2cosxsinx-1的值域.解:f(x)=-2-sinxcosx=-2-12sin2x∈⎣⎡⎦⎤-52,-32.2. 矩阵A的逆矩阵A-1=⎣⎢⎡⎦⎥⎤-143412-12,求矩阵A的特征值.解:∵A-1A=E,∴A=(A-1)-1.∵A-1=⎣⎢⎡⎦⎥⎤-143412-12,∴A=(A-1)-1=⎣⎢⎡⎦⎥⎤2321.∴矩阵A的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A的特征值λ1=-1,λ2=4.3. (2013·某某)矩阵A=⎣⎢⎡⎦⎥⎤-1002,B=⎣⎢⎡⎦⎥⎤1206,求矩阵A-1B.解:设矩阵A的逆矩阵为⎣⎢⎡⎦⎥⎤a bc d,那么⎣⎢⎡⎦⎥⎤-1002⎣⎢⎡⎦⎥⎤a bc d=⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤-a-b2c2d=⎣⎢⎡⎦⎥⎤1001,故a=-1,b=0,c=0,d=12.∴矩阵A的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤-1012,∴A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10012⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1-2 0 3. 4.设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 某某数a 、b 的值; (2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =[]ax bx +y ,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y. 因为P′(x′,y ′)在圆x 2+y 2=1上, 所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1, 依题意可得a 2+b 2=2,2b =2a =1,b =1或a =-1,b =1,而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1011⎣⎢⎡⎦⎥⎤1011=⎣⎢⎡⎦⎥⎤1021|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤ 10-21.1. 矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,假设点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 某某数a 的值;(2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-8,得a +1=-8,所以a =-9.(2) 由(1)知A =⎣⎢⎢⎡⎦⎥⎥⎤ 1 -1-9 1,那么矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. M =⎣⎢⎡⎦⎥⎤2-1-43,N =⎣⎢⎡⎦⎥⎤4-1-31,求二阶方阵X ,使MX =N .解:(解法1)设X =⎣⎢⎡⎦⎥⎤x y z w ,据题意有⎣⎢⎡⎦⎥⎤2-1-43⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤4-1-31,根据矩阵乘法法那么有⎩⎪⎨⎪⎧2x -z =4,2y -w =-1,-4x +3z =-3,-4y +3w =1.解得⎩⎪⎨⎪⎧x =92,y =-1,z =5,w =-1,所以X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. (解法2)因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤321221.所以X =M -1N =⎣⎢⎢⎡⎦⎥⎥⎤321221⎣⎢⎡⎦⎥⎤4-1-31=⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. 3. 矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a ∈R ,假设点P(1,-2)在矩阵M 的变换下得到点P′(-4,0),某某数a 的值;并求矩阵M 的特征值及其对应的特征向量.解:由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤1-2=⎣⎢⎡⎦⎥⎤-40,∴ 2-2a =-4a =3.∴M =⎣⎢⎡⎦⎥⎤2321,那么矩阵M 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4 令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧〔λ-2〕x -3y =0-2x +〔λ-1〕y =0x +y =0,∴矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧〔λ-2〕x -3y =0-2x +〔λ-1〕y =02x -3y =0,∴矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.4. 设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a>0,b>0).(1) 假设a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 假设曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:x24+y2=1,求a、b的值.解:(1) 设矩阵M的逆矩阵M-1=⎣⎢⎡⎦⎥⎤x1y1x2y2,那么MN-1=⎣⎢⎡⎦⎥⎤1001.又M=⎣⎢⎡⎦⎥⎤2003,所以⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x1y1x2y2=⎣⎢⎡⎦⎥⎤1001,所以2x1=1,2y1=0,3x2=0,3y2=1,即x1=12,y1=0,x2=0,y2=13,故所求的逆矩阵M-1=⎣⎢⎢⎡⎦⎥⎥⎤12013.(2) 设曲线C上任意一点P(x,y),它在矩阵M所对应的线性变换作用下得到P′(x′,y′),那么⎣⎢⎡⎦⎥⎤a00b⎣⎢⎡⎦⎥⎤xy=⎣⎢⎡⎦⎥⎤x′y′,即⎩⎪⎨⎪⎧ax=x′,by=y′.又点P′(x′,y′)在曲线C′上,所以x′24+y′2=1,那么a2x24+b2y2=1为曲线C的方程.又曲线C的方程为x2+y2=1,故⎩⎪⎨⎪⎧a2=4,b2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a=2,b=1.1. 矩阵的逆矩阵(1) A、B、C为二阶矩阵,且AB=AC,假设矩阵A存在逆矩阵,那么B=C.(2) 对于二阶可逆矩阵A=⎣⎢⎡⎦⎥⎤a bc d(ad-bc≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤dad-bc-bad-bc-cad-bcaad-bc.2. 二阶行列式与方程组的解对于关于x、y的二元一次方程组⎩⎪⎨⎪⎧ax+by=m,cx+dy=n,我们把⎪⎪⎪⎪⎪⎪a bc d称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A)=⎪⎪⎪⎪⎪⎪a bc d=ad-bc.假设将方程组中行列式⎪⎪⎪⎪⎪⎪a bc d记为D,⎪⎪⎪⎪⎪⎪m bn d记为D x,⎪⎪⎪⎪⎪⎪a mc n记为D y,那么当D≠0时,方程组的解为⎩⎨⎧x=D x D,y=D yD.请使用课时训练〔B〕第2课时〔见活页〕.[备课札记]。
高考数学总复习 第1节 矩阵变换及其性质、变换的复合与二阶矩阵的乘法课件 新人教A版选修42
压缩,或作沿 x 轴方向伸长或压缩的变换矩阵,通常称做沿
y 轴或 x 轴的 垂直伸压变换矩阵
,对应的变换称
为 垂直伸压变换
,简称 伸压变换 .
3.反射变换
像10 -01,
-1 0 0
1,- 0 1-01这样将一个平面
图形 F 变为关于定直线或定点对称的平面图形的变换矩阵, 我们称之为 反射变换矩阵 ,对应的变换叫做反射变换.相
答案:A
2.A=10 02,B=1-2 43,则 AB=(
)
A.- -12
8 6
C.1-4
4 6
答案:C
B.12
4 3
D.02
1 0
3.如果矩阵01 -10把点 A 变成 A′(3,1),则 A 点的坐 标为( )
.
1.设矩阵 A 为二阶矩阵,且规定其元素 aij=i·j,i=1,2; j=1,2,则 A=( )
A.12
2 4
C.24
1 2
B.12
4 4
D.42
2 4
解析:由已知a11=1×1=1,a12=1×2=2,a21=2×1=2,a22 =2×2=4.
来表示矩阵,其中 i,j 分别表示元素 aij 所在的行与列.同一 横排中按原来次序排列的一行数(或字母)叫做矩阵的 行 ,同
一竖排中按原来次序排列的一列数(或字母)叫做矩阵的列 ,
而组成矩阵的每一个数(或字母)称为矩阵的 元素 .
2.零矩阵
所有元素都为0的矩阵叫做
零,矩记阵为
.0
3.矩阵相等
对于两个矩阵A,B,只有当A,B的行数与列数分别相等,并
3.二阶矩阵的乘法
(1)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法
高考数学总复习 第1节 线性变换与二阶矩阵课件 苏教版选修4-2
1 矩阵称为切变变换矩阵.以 0
k 把平面上的点(x, 1
y)沿 x 轴方向平移|ky|个单位, 当 ky>0 时沿 x 轴正方向移动, 当 ky<0 时沿 x 轴负方向移动,当 ky=0 时原地不动.
【基础自测】
1 -1 对应的变换作用下得到的点的坐 1. 点 A(3, -6)在矩阵 1 0 2
a11 a21
a12 b11 b12 a22b21 b22 a11×b12+a12×b22 . a21×b12+a22×b22
a11×b11+a12×b21 = a ×b +a ×b 21 11 22 21
(4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律 即(AB)C=A(BC), AB≠BA, 由 AB=AC 不一定能推出 B=C. 一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数 相等时才能进行乘法运算.
a11 (2)二阶矩阵 a21 a11×x0+a12×y0 a ×x +a ×y . 21 0 22 0
x0 a11 a12 x0 a12 与列向量 和乘法规则: = a22 y0 a21 a22y0
(3)两个二阶矩阵相乘的结果仍然是一个矩阵, 其乘法法则如下:
1 M1= 0 1 0 ,M2= 0 1 0 0 ,M3= 0 0
0 确定的投影变换.需要注意 1
的是投影变换是映射,但不是一一映射. (6)由矩阵
1 M= 0
k 1 或 1 k
0 确定的变换称为切变变换,对应的 1
1 k 为例,矩阵 1 0
第 1节
线性变换与二阶矩阵
【知识梳理】 1.矩阵的相关概念 (1)由 4 个数
a a,b,c,d 排成的正方形数表 c
高中数学第1课时二阶矩阵二阶矩阵与平面向量的乘法二阶矩阵与线性变换教案新人教A版选修4 (18)
1.2.6 简单的计数问题一、教学目标(1)掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题;(2)提高合理选用知识解决问题的能力.二、教学重点,难点排列、组合综合问题.三、教学过程典例分析例1.2名女生, 4名男生排成一排.(1)2名女生相邻的不同排法共有多少种?(2)2名女生不相邻的不同排法共有多少种?(3)女生甲必须排在女生乙的左边(不一定相邻)的不同排法共有多少种? 解:(1)“捆绑法”:将2名女生看成一个元素,与4名男生共5个元素排成一排,共有55A 种排法,又因为2名相邻女生有22A 种排法,因此不同的排法种数是5252240A A =. (2)方法一:(插空法)分两步完成:第一步,将4名男生排成一排,有44A 种排法;第二步,排2名女生.由于2名女生不相邻,故可在4名男生之间及两端的5个位置中选出2个排2名女生,有25A 种排法.根据分步计数原理,不同的排法种数是4245480A A =种.(3)方法一:(特殊元素优先考虑)分2步完成:第一步,排2名女生.由于女生顺序已定,故可从6个位置中选出2个位置,即26C ;第二步,排4名男生.将4名男生排在剩下的4个位置上,有44A 种方法. 根据分步计数原理,不同的排法种数是2464360C A =.方法二:(除法)如果将6名学生全排列,共有66A 种排法.其中,在男生位置确定之后,女生的排法数有22A 种,因为女生的顺序已定,所以在这22A 中排法中,只有一种符合要求,故符合要求的排法数为6622360AA种.例2.高二(1)班有30名男生,20名女生,从50名学生中 3名男生,2名女生分别担任班长、副班长、学习委员、文娱委员、体育委员,共有多少种不同的选法?说明:排列、组合综合问题通常遵循“先组合后排列”的原则.例3.某考生打算从7所重点大学中选3所填在第一档次的3个志愿栏内,其中A校定为第一志愿;再从5所一般大学中选3所填在第二档次的三个志愿栏内,其中B、C两校必选,且B在C前.问:此考生共有多少种不同的填表方法?例4.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到4只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?四、课堂小结1、解决有关计数的应用题时,要仔细分析事件的发生、发展过程,弄清问题究竟是排列问题还是组合问题,还是应直接利用分类计数原理或分步计数原理解决.一个较复杂的问题往往是分类与分步交织在一起,要准确分清,容易产生的错误是遗漏和重复计数;2、解决计数问题的常用策略有:(1)特殊元素优先安排;(2)排列组合混合题要先选(组合)后排;(3)相邻问题捆绑处理(先整体后局部);(4)不相邻问题插空处理;(5)顺序一定问题除法处理;(6)正难则反,合理转化.五、课堂练习1.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?2.有3张都标着字母A,6张分别标着数字1,2,3,4,5,6的卡片,若任取其中5张卡片组成牌号,求可以组成的不同牌号的总数.精美句子1、善思则能“从无字句处读书”。
2015高考数学一轮配套课件:15-2矩阵与变换
【训练 3】已知 a∈R,矩阵 A=1a 12对应的线性变换把点 P(1,1) 变成点 P′(3,3),求矩阵 A 的特征值以及每个特征值的一个 特征向量. 解 由题意1a 1211=a+3 1=33, 得 a+1=3,即 a=2,矩阵 A 的特征多项式为 f(λ)=λ--21 λ--21=(λ-1)2-4=(λ+1)(λ-3), 令 f(λ)=0,所以矩阵 A 的特征值为 λ1=-1,λ2=3.
诊断·基础知识
突破·高频考第五点页,编辑于星培期五养:十·解三点题五能十九力分。
(3)逆矩阵与二元一次方程组:如果关于变量 x,y 的二元一次方
程组acxx++dbyy==nm, 的系数矩阵 A=ac db可逆,那么该方程组
有唯一解xy=ac db-1mn ,
d
-b
其中 A-1=ad--bcc
ad-bc a
.
ad-bc ad-bc
诊断·基础知识
突破·高频考第六点页,编辑于星培期五养:十·解三点题五能十九力分。
• 3.二阶矩阵的特征值和特征向量
• (1)特征值与特征向量的概念
• 设A是一个二阶矩λ阵,如果对于实数λα,存
在(2)一特征个多非项零式与向特量征α方,程使得Aα=λα,那么 称为A 的 的设一一λ 是个个二特特阶矩征征阵值向A,量=而.ac db的称一为个特A的征值一,个属于特征值λ
用下变换为曲线 C2,求 C2 的方程. 解 设 P(x,y)为曲线 C2 上任意一点,P′(x′,y′)为曲线 x2+2y2=1 上与 P 对应的点, 则10 21xy′ ′=xy,即xy==xy′′+2y′, ⇒xy′ ′= =xy- . 2y, 因为 P′是曲线 C1 上的点, 所以 C2 的方程为(x-2y)2+y2=1.
矩阵的概念与运算教学设计
矩阵的概念与运算教学设计导言:矩阵是线性代数中重要的概念之一,它在各个领域都有着广泛的应用。
在数学教学中,如何深入浅出地教授学生矩阵的概念与运算是一项关键任务。
本文针对矩阵的概念与运算的教学设计,结合丰富的实例和活动,旨在帮助学生充分理解与掌握矩阵的基本概念与运算规则。
一、基本概念的引入与讲解1. 引入:老师可以通过举一个简单生活中的实例,如矩阵在图像处理中的应用,或者在交通规划中的应用等,来引起学生的兴趣,并说明矩阵的重要性和实用性。
2. 概念讲解:- 矩阵的定义:介绍矩阵的基本概念,即由m行n列元素排列成的矩形阵列。
- 矩阵的分量:解释矩阵中元素的命名规则,如第i行第j列的元素用a_ij表示。
- 矩阵的阶数:定义矩阵的阶数为m行n列的形式。
- 特殊矩阵:介绍特殊矩阵的概念,如零矩阵、单位矩阵和对角矩阵等。
二、矩阵的运算规则与性质1. 矩阵的加法:- 定义矩阵的加法:讲解矩阵的加法规则,即对应元素相加。
- 加法的基本性质:说明矩阵加法满足交换律和结合律。
2. 矩阵的数乘:- 定义矩阵的数乘:说明矩阵的数乘规则,即将每个元素乘以同一个数。
- 数乘的基本性质:说明数乘满足分配律和结合律。
3. 矩阵的乘法:- 引入矩阵乘法:解释矩阵乘法的概念,即行乘列相加的运算规则。
- 矩阵乘法的条件:介绍矩阵乘法存在的条件。
- 乘法的基本性质:说明矩阵乘法满足结合律,但不满足交换律。
三、运算实例与应用1. 矩阵加法与数乘的实例:- 实例一:给出两个矩阵,让学生进行矩阵的加法运算。
- 实例二:给出一个矩阵和一个数,让学生进行矩阵的数乘运算。
2. 矩阵乘法的实例:- 实例一:给出两个矩阵,让学生进行矩阵的乘法运算。
- 实例二:引导学生分析实际应用中的矩阵乘法,如图像变换中的应用。
四、矩阵运算的性质与证明1. 加法和数乘的性质证明:- 性质一:零矩阵的性质证明。
- 性质二:相反矩阵的性质证明。
- 性质三:数乘与矩阵乘法的分配律证明。
高中数学教案学习矩阵运算
高中数学教案学习矩阵运算矩阵运算作为高中数学重要的内容之一,是线性代数的基础知识。
通过矩阵运算,我们可以解决具有多个未知数和多个方程的线性方程组,同时也可以用于线性变换和向量的计算。
本文将全面介绍高中数学教案中矩阵运算的学习内容。
1. 矩阵的定义与性质在开始学习矩阵运算之前,我们首先需要了解矩阵的基本定义和性质。
矩阵是由一组数按照一定规律排列而成的矩形阵列。
通常用方括号或圆括号表示。
在教学中,可以通过展示具体的矩阵示例,让学生理解矩阵的概念。
此外,还可以介绍矩阵的行数和列数,矩阵的行列式和逆矩阵等性质。
2. 矩阵的运算法则了解了矩阵的定义后,我们需要介绍矩阵的基本运算法则。
主要包括矩阵的加法、减法、数乘和乘法等四则运算。
在教学过程中,可以通过具体的例题演示,让学生理解并掌握各种矩阵运算法则的操作步骤和计算方法。
此外,还可以结合实际问题,让学生体会矩阵运算在解决实际问题中的应用。
3. 矩阵的转置和转化了解了矩阵的基本运算法则后,我们需要介绍矩阵的转置和转化。
矩阵的转置就是行和列互换,可以通过实例演示让学生理解转置的基本操作步骤。
在实际教学中,还可以结合矩阵的转置与矩阵的乘法,引导学生理解矩阵运算的性质和规律。
此外,还可以介绍矩阵的转化,即将一个矩阵经过初等变换等操作转化为行简化阶梯行阵列,利于解决线性方程组和求矩阵的秩等问题。
4. 矩阵运算在线性方程组中的应用在高中数学中,线性方程组是一个非常重要的内容。
通过矩阵运算方法可以更加简洁地解决线性方程组的问题。
在教学中,可以通过具体的例题,引导学生将线性方程组转化为矩阵的形式,并通过矩阵运算求解出方程组的解。
此外,还可以探讨线性方程组的解的唯一性与存在性,引导学生理解线性方程组与矩阵运算的关系。
5. 矩阵运算在线性变换和向量中的应用矩阵运算除了在解决线性方程组中的应用外,还广泛应用于线性变换和向量的计算中。
在教学中,可以通过矩阵乘法和变换矩阵的概念,引导学生理解线性变换和向量的相互转化。
2015届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时线性变换、二阶矩阵及其乘法教学案(含
选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法(对应学生用书(理)186~188页)考情分析考点新知掌握恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等常见的线性变换的几何表示及其几何意义.掌握恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等常见的线性变换的几何表示及其几何意义,并能应用这几种常见的线性变换进行解题.1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵⎣⎢⎡⎦⎥⎤1 00-2对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎢⎡⎦⎥⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4.3. 变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),那么有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2,∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程. 解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),那么⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011对应的变换作用下得到的图形.解:设点(x ,y)是直线x +y =5上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0011的作用下点变换成(x′,y ′),那么⎣⎢⎡⎦⎥⎤0011⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=0y′=x +y.因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),假设按照对应法那么T ,总能对应唯一的一个平面点(向量)(x′,y ′),那么称T 为一个变换,简记为T :(x ,y)→(x′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′. 一般地,对于平面向量的变换T ,如果变换规那么为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规那么,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y (a 、b 、c 、d ∈R )的矩阵形式,反之亦然.2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,那么对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k (k>0)确定的变换T M 称为(垂直)伸压变换.(3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律. [备课札记]题型1 求变换前后的曲线方程例1 设椭圆F :x 22+y 24=1在(x ,y)→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.解:变换矩阵为⎣⎢⎡⎦⎥⎤1201,任取椭圆上一点(x 0,y 0),那么⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0+2y 0y 0,令⎩⎪⎨⎪⎧x′=x 0+2y 0,y ′=y 0, 那么⎩⎪⎨⎪⎧x 0=x′-2y′,y 0=y′.又点(x 0,y 0)在椭圆F 上, 故〔x′-2y′〕22+y′24=1,所以2x′2-8x′y′+9y′2-4=0, 即F′的解析式为2x 2-8xy +9y 2-4=0. 变式训练设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sinx 在矩阵MN 变换下的曲线方程. 解:MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y ′).那么⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sinx 得12y ′=sin2x ′,即y′=2sin2x ′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x. 备选变式〔教师专享〕矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤1200 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解:MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,那么有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6).(1) 求矩阵M ;(2) 假设直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,那么由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6, 所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎢⎡⎦⎥⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),那么⎣⎢⎢⎡⎦⎥⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1a b 4对应的变换作用下得到直线m :x -y -4=0,某某数a 、b 的值.解:(解法1)在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A 、B 在矩阵M对应的变换作用下分别对应于点A′、B′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎢⎡⎦⎥⎥⎤-2-2b ,所以A′的坐标为(-2,-2b); ⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎢⎡⎦⎥⎥⎤-2a -8,所以B′的坐标为(-2a ,-8).由题意A′、B′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧〔-2〕-〔-2b 〕-4=0,〔-2a 〕-〔-8〕-4=0,解得a =2,b =3.(解法2)设直线l :x +y +2=0上任意一点(x ,y)在矩阵M 对应的变换作用下对应于点(x′,y ′).因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以x′=x +ay ,y ′=bx +4y.因为(x′,y ′)在直线m 上,所以(x +ay)-(bx +4y)-4=0,即(1-b)x +(a -4)y -4=0.又点(x ,y)在直线x +y +2=0上,所以1-b 1=a -41=-42,解得a =2,b =3.题型3 平面变换的综合应用例3M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34.(1) 验证:(MN )α=M (Nα);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎡⎦⎥⎤112012,所以(MN )α=⎣⎢⎡⎦⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为Nα=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (Nα)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (Nα). (2) 因为MN =⎣⎢⎡⎦⎥⎤11212,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012, 所以这两个矩阵不满足MN =NM .备选变式〔教师专享〕在直角坐标系中,△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC 在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积. 解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎢⎡⎦⎥⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0, 所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤100-1,N =⎣⎢⎡⎦⎥⎤12222.解:由题设得MN =⎣⎢⎡⎦⎥⎤1220-22, ∴⎣⎢⎡⎦⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎡⎦⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20, ⎣⎢⎡⎦⎥⎤1 22-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),那么有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0. 所以曲线F 的方程为2x +y +1=0.3. (2013·某某)直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l′:x +by =1.(1) 某某数a 、b 的值;(2) 假设点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标. 解:(1) 设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y , 得⎩⎪⎨⎪⎧x′=x +2y ,y ′=y. 又点M′(x′,y ′)在l′上, 所以x′+by′=1,即x +(b +2)y =1.依题意⎩⎪⎨⎪⎧a =1.b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1.(2) 由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0. 又点P(x 0,y 0)在直线l 上,所以x 0=1, 故点P 的坐标为(1,0).4. 在线性变换⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x′=x +y ,y ′=2x +2y ,而x +y =k ,所以⎩⎪⎨⎪⎧x′=k ,y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).1. 如下图,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→M C ′,那么⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531. 2. 矩阵M =⎣⎢⎡⎦⎥⎤-1-2-34,向量α=⎣⎢⎡⎦⎥⎤57,β=⎣⎢⎡⎦⎥⎤68. (1) 求向量3α+12β在T M 作用下的象;(2) 求向量4Mα-5Mβ.解:(1) 因为3α+12β=3⎣⎢⎡⎦⎥⎤57+12⎣⎢⎡⎦⎥⎤68=⎣⎢⎡⎦⎥⎤1521+⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1825,所以M ⎝⎛⎭⎫3α+12β=⎣⎢⎢⎡⎦⎥⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤1825=⎣⎢⎡⎦⎥⎤-6846.(2) 4Mα-5Mβ=M (4α-5β)=⎣⎢⎢⎡⎦⎥⎥⎤-1-2-34⎣⎢⎢⎡⎦⎥⎥⎤-10-12=⎣⎢⎡⎦⎥⎤34-18. 3. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,那么有⎣⎢⎡⎦⎥⎤a b c d⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,∴⎩⎪⎨⎪⎧a -b =-1c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2和⎩⎪⎨⎪⎧c =3d =4,∴ M =⎣⎢⎡⎦⎥⎤1234,∵⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y ,且m :2x′-y′=4, ∴ 2(x +2y)-(3x +4y)=4,即x +4 =0,∴ 直线l 的方程为x +4 =0.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,那么有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换:反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y)→(x ,-y),变换前后关于x 轴对称;M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y)→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y)→(-x ,-y),变换前后关于原点对称;M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y)→(y ,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y)→(x ,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y)→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y)→(x ,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y)→(y ,y);M =⎣⎢⎡⎦⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y)→⎝⎛⎭⎫x +y 2,x +y 2.请使用课时训练〔A 〕第1课时〔见活页〕.。
线性变换、二阶矩阵及其乘法
202X
个人报告总结模板
知识点
考纲下载
考情上线
线性变换、二阶矩阵及其乘法
1.了解二阶矩阵的概念. 2.二阶矩阵与平面向量的乘法、平面图形 的变换. (1)了解矩阵与向量的乘法的意义,会用映射与 变换的观点看待二阶矩阵与平面向量的乘法. (2)理解矩阵变换把平面上的直线变成直线(或点), 即A(λ1α+λ2β)=λ1Aα+λ2Aβ. (3)了解几种常见的平面变换:恒等变换、伸缩变 换、反射变换、旋转变换、投影变换、切变变 换. 3.变换的复合——二阶矩阵的乘法 (1)了解矩阵与矩阵的乘法的意义. (2)理解矩阵乘法不满足交换律. (3)会验证二阶矩阵乘法满足结合律. (4)理解矩阵 乘法不满足消去律.
因为矩阵M表示反射变换,矩阵N表示旋转变换,所以变换后所得图形与原图形全等.
解:在矩阵N= 的作用下,一个图形变换为其绕原点逆时针旋转90°得到的图形,在矩阵M= 的作用下,一个图形变换为与之关于直线y=x对称的图形.因此△ABC在矩阵MN作用下变换所得到的图形与△ABC全等,从而其面积等于△ABC的面积,即为1.
几种特殊线性变换
旋转变换 直线坐标系xOy内的每个点绕原点O按逆时针方向旋 转α角的旋转变换的坐标变换公式是 对应的二阶矩阵为 .
平面上任意一点P对应到它关于直线l的对称点P′的线 性变换叫做关于直线l的反射.
在直角坐标系xOy内将每个点的横坐标变为原来的k1 倍,纵坐标变为原来的k2倍,其中k1,k2为非零常数, 这样的几何变换为伸缩变换.
03
点A′(4,5),点B(3,-1)变成了点B′(5,1). 求矩阵M; 若在矩阵M的变换作用下,点C(x,0)变成了点C′(4,
高考数学总复习 第1节 线性变换与二阶矩阵课件 苏教版
在伸压变换之下,直线仍然变为直线,线段仍然变为线段.
(3)反射变换是轴对称变换、中心对称变换的总称.由矩阵
M1
基 础
知
= 01
0 -1
确
定的
变
换
是关于
x
轴的轴反射变换,由矩阵
M2 =
识 梳 理
聚
焦
-1 0
10确定的变换是关于 y 轴的轴反射变换,由矩阵 M3=-01
∴变换作用下得到的点的坐标是(9,-3).
答案:(+9,-3)
基
础
知
2.设04 -32yx=-10,则它表示的方程组为________.
k0(k>0)确定的变换 TM称为(垂直)
课 时 规 范
训
伸压变换,这时称矩阵 M=k0
0或 1
M=10
0伸压变换矩阵. k
练
当 M=k0
0时确定的变换将平面图形作沿 1
x
轴方向伸长或压
基
缩,当 k>1 时伸长,当 0<k<1 时压缩.变换 TM 确定的变换不是简单
范 训 练
定点作中心反射变换.
(5)将一个平面图投影到某条直线(或某个点)的变换称为投影变
换,变换对应的矩阵称为投影变换矩阵,本节中主要研究的是由矩
基
础
阵 M1=10
00,M2=11
00,M3=00
0确定的投影变换.需要注意 1
知 识 梳 理
聚
的是投影变换是映射,但不是一一映射.
础 知 识
梳
地把平面上的点(向量)沿 x 轴方向“向下压”或“向外伸”,它是 x 理
聚
轴方向伸长或压缩,对于 x 轴下方的点向上压缩,对于 x 轴上的点
高中数学第1课时二阶矩阵二阶矩阵与平面向量的乘法二阶矩阵与线性变换教案新人教A版选修4 (2)
第二讲 线性变换的性质·复合变换与二阶矩阵的乘法一、数乘平面向量与平面向量的加法运算1.数乘平面向量:设x y α→⎡⎤=⎢⎥⎣⎦,λ是任意一个实数,则x y λλαλ→⎡⎤=⎢⎥⎣⎦2.平面向量的加法:设11x y α→⎡⎤=⎢⎥⎣⎦,22x y β→⎡⎤=⎢⎥⎣⎦,则1212x x y y αβ→→+⎡⎤+=⎢⎥+⎣⎦性质1:设A 是一个二阶矩阵,,αβ→→是平面上的任意两个向量,λ是任意一个实数,则①数乘结合律:()A A λαλα→→=;②分配律:()A A A αβαβ→→→→+=+ 【探究1】对以上的性质进行证明,并且说明其几何意义。
二、直线在线性变换下的图形研究y kx b =+分别在以下变换下的像所形成的图形。
①伸缩变换:1002⎡⎤⎢⎥⎣⎦②旋转变换:1212⎤-⎥⎢⎢⎢⎣③切变变换:1201⎡⎤⎢⎥⎣⎦④特别地:直线x=a 关于x 轴的投影变换?性质2:二阶矩阵对应的变换(线性变换)把平面上的直线变成 . (证明见课本P 19)三、平面图形在线性变换下的像所形成的图形分别研究单位正方形区域在线性变换下的像所形成的图形。
①恒等变换:10 01⎡⎤⎢⎥⎣⎦②旋转变换:cos sin sin cosαααα-⎡⎤⎢⎥⎣⎦③切变变换:101k ⎡⎤⎢⎥⎣⎦④反射变换:10 01⎡⎤⎢⎥-⎣⎦⑤投影变换:10 00⎡⎤⎢⎥⎣⎦【练习:P27】【应用】试研究函数1yx=在旋转变换22-⎢⎥⎥⎥⎦作用下得到的新曲线的方程。
四、复合变换与二阶矩阵的乘法1.研究任意向量x y α→⎡⎤=⎢⎥⎣⎦先在旋转变换30o R:1212⎤-⎥⎢⎢⎢⎣作用,再经过切变变换ρ:1201⎡⎤⎢⎥⎣⎦作用的向量''x y ⎡⎤⎢⎥⎣⎦2.二阶矩阵的乘积 定义:设矩阵A =1111a b c d ⎡⎤⎢⎥⎣⎦,B =2222a b c d ⎡⎤⎢⎥⎣⎦,则A 与B 的乘积AB =1111a b c d ⎡⎤⎢⎥⎣⎦2222a b c d ⎡⎤⎢⎥⎣⎦=【应用】 1.计算⎢⎣⎡21⎥⎦⎤11-⎢⎣⎡21 ⎥⎦⎤10=2.A =cos sin αα⎡⎢⎣ -sin cos αα⎤⎥⎦,B =cos sin ββ⎡⎢⎣ -sin cos ββ⎤⎥⎦,求AB3.求13α→⎡⎤=⎢⎥⎣⎦在经过切变变换σ:A=1021⎡⎤⎢⎥-⎣⎦,及切变变换ρ:B=1201⎡⎤⎢⎥⎣⎦两次变换后的像β→。
(教师用书)高考数学一轮总复习 矩阵与变换课时训练 理(选修4-2)-人教版高三选修4-2数学试题
选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法(理科专用)1. 求点B(0,1)在矩阵⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤0110表示将图形变换为与之关于直线y =x 对称的反射变换,故点B(0,1)变换得到点坐标B′(1,0).2. 设圆F :x 2+y 2=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一图形F′,试求变换矩阵M 及图形F′的方程.解:因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤x +2y y =⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y ,所以M =⎣⎢⎡⎦⎥⎤1201.因为圆上任意一点(x ,y)变换为(x′,y ′)=(x +2y ,y),即⎩⎪⎨⎪⎧x′=x +2y ,y ′=y ,所以⎩⎪⎨⎪⎧x =x′-2y′,y =y′. 因为x 2+y 2=1,所以(x′-2y′)2+y′2=1,即图形F′的方程为(x -2y)2+y 2=1.3. (2014·苏锡常镇二模)已知点M(3,-1)绕原点逆时针旋转90°后,且在矩阵⎣⎢⎡⎦⎥⎤a 02b 对应的变换作用下,得到点N(3,5),求a 、b 的值.解:绕原点逆时针旋转90°对应的变换矩阵为⎣⎢⎡⎦⎥⎤0 -11 0.∴⎣⎢⎡⎦⎥⎤a 02 b ⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤0 -a b -2. 则由⎣⎢⎡⎦⎥⎤0 -a b -2⎣⎢⎡⎦⎥⎤ 3-1=⎣⎢⎡⎦⎥⎤35,得⎩⎪⎨⎪⎧a =3,3b +2=5, ∴ a =3,b =1.4. 若矩阵M =⎣⎢⎡⎦⎥⎤1101,求直线x +y +2=0在M 对应的变换作用下所得到的曲线方程. 解:设点(x ,y)是直线x +y +2=0上任意一点,在矩阵M 的作用下变换成点(x′,y ′),则⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=x +y ,y ′=y.因为点(x ,y)在直线x +y =-2上,所以x′=x +y =-2,故得到的直线方程为x +2=0.5. (2014·某某二模)若矩阵M =⎣⎢⎡⎦⎥⎤a 0-1 2把直线l :x +y -2=0变换为另一条直线l′:x +y -4=0,试某某数a 的值.解:设直线l 上任意一点P(x ,y)在矩阵M 作用下的点P′的坐标为(x ′,y′),则⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ a 0-1 2⎣⎢⎡⎦⎥⎤x y ,所以⎩⎪⎨⎪⎧x′=ax ,y ′=-x +2y. 将点P ′(x′,y ′)代入直线l′:x +y -4=0,得(a -1)x +2y -4=0.即直线l 的方程为a -12x +y -2=0.所以a =3.6. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0.在平面直角坐标系中,设直线2x +3y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =[0110][0-11 0]=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x +3y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x +3y +1=0上,从而2x ′+3(-y′)+1=0,即2x′-3y′+1=0.所以曲线F 的方程为2x -3y +1=0.7. (2014·某某)已知矩阵A =⎣⎢⎡⎦⎥⎤-12 1x ,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,x 、y 为实数.若Aα=Bα,求x +y 的值.解:由已知,得Aα=⎣⎢⎡⎦⎥⎤-1 2 1 x ⎣⎢⎡⎦⎥⎤2y =⎣⎢⎡⎦⎥⎤-2+2y 2+xy ,B α=⎣⎢⎡⎦⎥⎤1 12 -1⎣⎢⎡⎦⎥⎤2y =⎣⎢⎡⎦⎥⎤2+y 4-y .因为Aα=Bα,所以⎣⎢⎡⎦⎥⎤-2+2y 2+xy =⎣⎢⎡⎦⎥⎤2+y 4-y .故⎩⎪⎨⎪⎧-2+2y =2+y ,2+xy =4-y 解得⎩⎪⎨⎪⎧x =-12,y =4.所以x +y =72.8. 变换T 1是逆时针旋转π2的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=⎣⎢⎡⎦⎥⎤1101.求:(1) 点P(2,1)在T 1作用下的点P′的坐标;(2) 函数y =x 2的图象依次在T 1、T 2变换作用下所得的曲线的方程.解:(1) M 1=⎣⎢⎡⎦⎥⎤0-110,M 1⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤0-110⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-12,所以点(2,1)在T 1作用下的点P′的坐标是(-1,2).(2) M =M 2M 1=⎣⎢⎡⎦⎥⎤1-110,设⎣⎢⎡⎦⎥⎤x y 是变换后图象上任意一点,与之对应的变换前的点是⎣⎢⎡⎦⎥⎤x 0y 0,则M ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,也就是⎩⎪⎨⎪⎧x 0-y 0=x ,x 0=y ,则⎩⎪⎨⎪⎧x 0=y ,y 0=y -x , 所以所求曲线的方程是y -x =y 2.9. 已知直角坐标平面xOy 上的一个变换是先绕原点逆时针旋转45°,再作关于x 轴反射变换,求这个变换的逆变换的矩阵.解:这个变换的逆变换是先作关于x 轴反射变换,再作绕原点顺时针旋转45°变换,其矩阵是⎣⎢⎡⎦⎥⎤cos (-45°) -sin (-45°)sin (-45°) cos (-45°)⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎢⎡⎦⎥⎥⎤ 22-22-22 -22. 10. 已知a 、b∈R ,若M =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T M 把直线L :2x -y =3变换为自身,某某数a 、b.解:(解法1:特殊点法)在直线2x -y =3上任取两点(2,1)和(3,3),则⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-2+a 2b +3,即得点(a-2,2b +3) ;⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤33=⎣⎢⎡⎦⎥⎤-3+3a 3b +9,即得点(3a -3,3b +9).将()a -2,2b +3和()3a -3,3b +9分别代入2x -y =3得⎩⎪⎨⎪⎧2(-2+a )-(2b +3)=3,2(-3+3a )-(3b +9)=3,解得⎩⎪⎨⎪⎧a =1,b =-4.(解法2:通法)设P(x ,y)为直线2x -y =3上任意一点,其在M 的作用下变为(x′,y ′),则⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-x +ay bx +3y =⎣⎢⎡⎦⎥⎤x′y′⎩⎪⎨⎪⎧x′=-x +ay ,y ′=bx +3y ,代入2x -y =3,得-(b +2)x +(2a -3)y =3,由题意得⎩⎪⎨⎪⎧-b -2=2,2a -3=-1,解得⎩⎪⎨⎪⎧a =1,b =-4. 11. (2014·某某二模)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2 301对应的变换作用下变为直线l′:x +by =1.(1) 某某数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l 上一点(x ,y)在矩阵A 对应的变换下得点(x′,y ′),则⎣⎢⎡⎦⎥⎤2 30 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′, ∴⎩⎪⎨⎪⎧x′=2x +3y ,y ′=y ,代入直线l′,得2x +(b +3)y =1, ∴ a =2,b =-2.(2) ∵ 点P(x 0,y 0)在直线l 上, ∴ 2x 0+y 0=1.由⎣⎢⎡⎦⎥⎤2 30 1⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=2x 0+3y 0,y 0=y 0, ∴⎩⎪⎨⎪⎧x 0=35,y 0=-15,∴ P ⎝ ⎛⎭⎪⎫35,-15.第2课时 逆变换与逆矩阵、矩阵的特征值与特征向量(理科专用)1. 已知α=⎣⎢⎡⎦⎥⎤21为矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 4属于λ的一个特征向量,某某数a 、λ的值及A 2.解:由条件可知⎣⎢⎡⎦⎥⎤ 1 a -1 4⎣⎢⎡⎦⎥⎤21=λ⎣⎢⎡⎦⎥⎤21,所以⎩⎪⎨⎪⎧2+a =2λ,-2+4=λ,解得a =λ=2.因此A =⎣⎢⎡⎦⎥⎤1 2-1 4,所以A 2=⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤ 1 2-1 4=⎣⎢⎡⎦⎥⎤-1 10-5 14.2. (2014·某某二模)已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c 、d 为实数).若矩阵A 属于特征值2、3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.解:由题意知,⎣⎢⎡⎦⎥⎤1 2c d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤42c +d =2⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤1 2c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤3c +d =3⎣⎢⎡⎦⎥⎤11,所以⎩⎪⎨⎪⎧2c +d =2,c +d =3,解得⎩⎪⎨⎪⎧c =-1,d =4. 所以A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤23 -1316 16. 3. (2014·某某一模)已知二阶矩阵M 有特征值λ=1及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤1-1,且M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,求矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤1-1,得⎩⎪⎨⎪⎧a -b =1,c -d =-1. 再由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,得⎩⎪⎨⎪⎧a +b =3,c +d =1. 联立以上方程组解得a =2,b =1,c =0,d =1,故M =⎣⎢⎡⎦⎥⎤2 10 1.4. (2014·某某期末)已知二阶矩阵M 有特征值λ=5,属于特征值λ=5的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换为(-2,4),求矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,依题意⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤55,且⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,所以⎩⎪⎨⎪⎧a +b =5,c +d =5,-a +2b =-2,-c +2d =4,解得⎩⎪⎨⎪⎧a =4,b =1,c =2,d =3,所以M =⎣⎢⎡⎦⎥⎤4 12 3. 5. 已知二阶矩阵A 有两个特征值1、2,求矩阵A 的特征多项式.解:由特征多项式的定义知,特征多项式是一个首项系数为1的二次三项式.因此不妨设f(λ)=λ2+bλ+c.因为1,2是A 的特征值,所以f(1)=f(2)=0,即1,2是λ2+bλ+c =0的根.由根与系数的关系知:b =-3,c =2,所以f(λ)=λ2-3λ+2.6. 矩阵M =⎣⎢⎡⎦⎥⎤3652有属于特征值λ1=8的一个特征向量e 1=⎣⎢⎡⎦⎥⎤65,及属于特征值λ2=-3的一个特征向量e 2=⎣⎢⎡⎦⎥⎤ 1-1.对向量α=⎣⎢⎡⎦⎥⎤38,计算M 3α.解:令α=m e 1+n e 2,将具体数据代入,有m =1,n =-3,所以a =e 1-3e 2.M 3α=M 3(e 1-3e 2)=M 3e 1-3(M 3e 2)=λ31e 1-3(λ32e 2)=83⎣⎢⎡⎦⎥⎤65-3×(-3)3⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤3 1532 479, 即M 3α=⎣⎢⎡⎦⎥⎤3 1532 479.7. (2014·某某期末)已知矩阵A =⎣⎢⎡⎦⎥⎤2n m1的一个特征根为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值;(2) 求A -1.解:(1) 由题意得:Aα=λα⎣⎢⎡⎦⎥⎤2 n m 1⎣⎢⎡⎦⎥⎤12=λ⎣⎢⎡⎦⎥⎤12=2⎣⎢⎡⎦⎥⎤12⎩⎪⎨⎪⎧2+2n =2,m +2=4,解得⎩⎪⎨⎪⎧n =0,m =2. (2) 设A -1=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤2 02 1⎣⎢⎡⎦⎥⎤a b c d =E =⎣⎢⎡⎦⎥⎤1 00 1,∴⎩⎪⎨⎪⎧2a =1,2b =0,2a +c =0,2b +d =1,解得⎩⎪⎨⎪⎧a =12,b =0,c =-1,d =1,∴A-1=⎣⎢⎢⎡⎦⎥⎥⎤120-11. 8. 利用逆矩阵的知识解方程MX =N ,其中M =⎣⎢⎡⎦⎥⎤5241,N =⎣⎢⎡⎦⎥⎤5-8.解:设M -1=⎣⎢⎡⎦⎥⎤x y z w ,⎣⎢⎡⎦⎥⎤5241⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤5x +2z 5y +2w 4x +z 4y +w =⎣⎢⎡⎦⎥⎤1001,⎩⎪⎨⎪⎧5x +2z =1,5y +2w =0,4x +z =0,4y +w =1,解得⎩⎪⎪⎨⎪⎪⎧x =-13,y =23,z =43,w =-53,所以M-1=⎣⎢⎢⎡⎦⎥⎥⎤-132343-53. 可得X =M-1N =⎣⎢⎢⎡⎦⎥⎥⎤-132343-53⎣⎢⎡⎦⎥⎤ 5-8=⎣⎢⎡⎦⎥⎤-720. 所以原方程的解为⎣⎢⎡⎦⎥⎤-720.9. (2014·某某二模)已知矩阵A =⎣⎢⎡⎦⎥⎤ak 01(k≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).某某数a 、k 的值.解:设特征向量为α=⎣⎢⎡⎦⎥⎤k -1,对应的特征值为λ,则⎣⎢⎡⎦⎥⎤a k 0 1⎣⎢⎡⎦⎥⎤ k -1=λ⎣⎢⎡⎦⎥⎤k -1,即⎩⎪⎨⎪⎧ak -k =λk,λ=1. 因为k≠0,所以a =2.因为A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤11,所以A ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31, 即⎣⎢⎡⎦⎥⎤2 k 0 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,所以2+k =3,解得k =1. 综上,a =2,k =1.10. 设M 是把坐标平面上点的横坐标不变、纵坐标沿y 方向伸长为原来5倍的伸压变换.求:(1) 直线4x -10y =1在M 作用下的方程; (2) M 的特征值与特征向量.解:(1) M =⎣⎢⎡⎦⎥⎤1005.设(x′,y ′)是所求曲线上的任意一点,⎣⎢⎡⎦⎥⎤1005⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以{x′=x ,y ′=5y ,得⎩⎪⎨⎪⎧x =x′,y =15y′,代入4x -10y =1,得4x′-2y′=1, 所以所求曲线的方程为4x -2y =1. (2) 矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-100λ-5=(λ-1)(λ-5).令f(λ)=0,解得λ1=1,λ2=5.当λ1=1时,由Mα1=λ1α1,得特征向量α1=⎣⎢⎡⎦⎥⎤10;当λ2=5时,由Mα2=λ2α2,得特征向量α2=⎣⎢⎡⎦⎥⎤01.11. (2014·苏锡常镇一模)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β. 解:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤1-1.令β=m α1+n α2,得m =4,n =-3.M 6β=M 6(4α1-3α2)=4(M 6α1)-3(M 6α2)=4×36⎣⎢⎡⎦⎥⎤11-3(-1)6⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤2 9132 919.。
高中数学 第一讲 线性变换与二阶矩阵 1.2 二阶矩阵与平面向量的乘法课件 新人教A版选修42
=
5 14
,
3
������2 + 1
5
答案:2
1234 5
-2 3
4
1.矩阵 A=
与向量������ =
的乘积为( )
2 -4
-1
-10
14
A.
B.
16
-18
-11
12
4 5
ab 解析:矩阵与向量的乘积法则为
-2 3 所以Aα=
cd
4
-11
=
.
2 -4 -1
12
答案:C
x
y
y
123
名师点拨二阶矩阵与平面向量的乘法实现了用二阶矩阵和平面 向量的乘积表示线性变换的目的,可以用二阶矩阵求出平面内的任 意一点在线性变换作用下的像的坐标.
123
【做一做 3】
线性变换
������' = ������ + 2������, ������' = 3������ + 4������
ax + by
=
,
y
cx + dy
1234 5
10
2.曲线 y= ������(������≥0)在矩阵
0 -1 对应的变换作用下所得的曲线方程为( ) A.y= ������(������≥0) B.y=− ������(������≥0) C.y=x2(x≥0) D.y=-x2(x≥0)
1234 5
-1 × 3 + 4 × 2
5
Bα=
=
=
.
35 2
3×3+5×2
19
10
反思与单位矩阵
相乘,向量 α 保持不变.
高三数学一轮复习精品教案1:矩阵及其变换教学设计
第一节矩阵及其变换1.乘法规则(1)行矩阵『a 11 a 12』与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法法则:『a 11 a 12』⎣⎢⎡⎦⎥⎤b 11b 21=『a 11b 11+a 12b 21』. (2)二阶矩阵⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22与列向量⎣⎢⎡⎦⎥⎤x 0y 0的乘法规则:⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11x 0+a 12y 0a 21x 0+a 22y 0.(3)两个二阶矩阵相乘的结果仍然是一个二阶矩阵,其乘法法则如下:⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22=⎣⎢⎡⎦⎥⎤a 11b 11+a 12b 21 a 11b 12+a 12b 22a 21b 11+a 22b 21 a 21b 12+a 22b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律,即(AB )C =A (BC ). (5)A k A l =A k +l ,(A k )l =A kl (其中k ,l ∈N *). 2.常见的平面变换 (1)恒等变换:因为⎣⎢⎡⎦⎥⎤1 00 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x y ,该变换把点(x ,y )变成(x ,y ),故矩阵⎣⎢⎡⎦⎥⎤1 00 1表示恒等变换.(2)反射变换:因为⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-x y ,该变换把点(x ,y )变成(-x ,y ),故矩阵⎣⎢⎡⎦⎥⎤-1 0 0 1表示关于y 轴的反射变换;类似地,⎣⎢⎡⎦⎥⎤1 00 -1,⎣⎢⎡⎦⎥⎤0, 11 0,⎣⎢⎡⎦⎥⎤0, -1-1 0分别表示关于x 轴、直线y =x 和直线y =-x 的反射变换.(3)伸缩变换:因为⎣⎢⎡⎦⎥⎤1 00 k ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ky ,该变换把点(x ,y )变成点(x ,ky ),在此变换中,点的横坐标不变,纵坐标变成原来的k 倍,故矩阵⎣⎢⎡⎦⎥⎤1, 00 k 表示y 轴方向上的伸缩变换;类似地,矩阵⎣⎢⎡⎦⎥⎤s 001可以用来表示水平伸缩变换.(4)旋转变换:把点A (x ,y )绕着坐标原点逆时针旋转α角的变换,对应的矩阵是⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α. (5)切变变换:⎣⎢⎡⎦⎥⎤1 s 0 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +sy y 表示的是沿x 轴的切变变换.沿y 轴的切变变换对应的矩阵是⎣⎢⎡⎦⎥⎤1 0t 1. (6)投影变换:⎣⎢⎡⎦⎥⎤1 00 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 0,该变换把所有横坐标为x 的点都映射到了点(x,0)上,因此矩阵⎣⎢⎡⎦⎥⎤1 000表示的是x 轴上的投影变换.类似地,⎣⎢⎡⎦⎥⎤000 1表示的是y 轴上的投影变换.1.二阶矩阵的乘法运算律中,易忽视AB ≠BA ,AB =AC ⇒/ B =C ,但满足(AB )C =A (BC ). 2.易混淆绕原点逆时针旋转90°的变换与绕原点顺时针旋转90°的变换. 『试一试』1.已知A =⎣⎢⎡⎦⎥⎤ 2 -3-4 6,B =⎣⎢⎡⎦⎥⎤8 45 5,C =⎣⎢⎡⎦⎥⎤5 -23 1.求AB 和AC . 『解』AB =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤845 5=⎣⎢⎡⎦⎥⎤ 1 -7-2 14, AC =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤5 -23 1=⎣⎢⎡⎦⎥⎤ 1 -7-2 14.2.(2014·福建龙岩模拟)已知点A 在变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x +2y y 作用后,再绕原点逆时针旋转90°,得到点B ,若点B 的坐标为(-3,4),求点A 的坐标.『解』⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤120 1=⎣⎢⎡⎦⎥⎤0 -11 2. 设A (a ,b ),则由⎣⎢⎡⎦⎥⎤0 -11 2⎣⎢⎡⎦⎥⎤a b =⎣⎢⎡⎦⎥⎤-34,得⎩⎪⎨⎪⎧-b =-3,a +2b =4. 所以⎩⎪⎨⎪⎧a =-2b =3,即A (-2,3).待定系数法在平面变换中的应用通过二阶矩阵与平面向量的乘法求出变换前与变换后坐标之间的变换公式,进而得到所求曲线(或点),求解时应注意待定系数法的应用.『练一练』1.(2014·扬州模拟)已知矩阵A =⎣⎢⎡⎦⎥⎤1002,B =⎣⎢⎢⎡⎦⎥⎥⎤1 1201,若矩阵AB 对应的变换把直线l :x +y -2=0变为直线l ′,求直线l ′的方程.『解』易得AB =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤1 120 1=⎣⎢⎢⎡⎦⎥⎥⎤1 1202,在直线l 上任取一点P (x ′,y ′),经矩阵AB 变换为点Q (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤1120 2⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤x ′+12y ′ 2y ′, ∴⎩⎪⎨⎪⎧x =x ′+12y ′,y =2y ′,即⎩⎨⎧x ′=x -14y ,y ′=y2,代入x ′+y ′-2=0中得x -14y +y2-2=0,∴直线l ′的方程为4x +y -8=0.考点一二阶矩阵的性质与运算『典例』 求使等式⎣⎢⎡⎦⎥⎤2 43 5=⎣⎢⎡⎦⎥⎤2 001M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M . 『解』 设M =⎣⎢⎡⎦⎥⎤m n p q ,则⎣⎢⎡⎦⎥⎤2 435=⎣⎢⎡⎦⎥⎤2 001M ⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎡⎦⎥⎤2m -2n p -q , 则⎩⎪⎨⎪⎧ 2m =2,-2n =4,p =3,-q =5,⇒⎩⎪⎨⎪⎧m =1,n =-2,p =3,q =-5,即M =⎣⎢⎡⎦⎥⎤1 -23 -5.『备课札记』 『类题通法』1.矩阵相等实质上是矩阵对应元素相等,体现了方程思想,要注意矩阵对应元素相等.2.矩阵的乘法只满足结合律,不满足交换律和消去律. 『针对训练』 已知矩阵A =⎣⎢⎡⎦⎥⎤1 12 1,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β.『解』A 2=⎣⎢⎡⎦⎥⎤112 1⎣⎢⎡⎦⎥⎤1 12 1=⎣⎢⎡⎦⎥⎤3 243.设α=⎣⎢⎡⎦⎥⎤x y .由A 2α=β, 得⎣⎢⎡⎦⎥⎤3 24 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤12, 从而⎩⎪⎨⎪⎧3x +2y =1,4x +3y =2.解得x =-1,y =2,所以α=⎣⎢⎡⎦⎥⎤-1 2.考点二平面图形的变换『典例』 在直角坐标系中,已知△ABC 的顶点坐标为A (0,0),B (2,0),C (2,1),求△ABC 在矩阵MN 作用下变换所得到的图形△A ′B ′C ′的面积,其中M =⎣⎢⎡⎦⎥⎤2 002,N =⎣⎢⎡⎦⎥⎤0 -11 0. 『解』因为△ABC 在MN 作用下变换为 △A ′B ′C ′, 且MN =⎣⎢⎡⎦⎥⎤200 2⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤0 -22 0, 所以⎣⎢⎡⎦⎥⎤0 -22 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0 -22 0⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤04, ⎣⎢⎡⎦⎥⎤0 -22 0⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-24. 即A ′(0,0),B ′(0,4),C ′(-2,4). 可得S △A ′B ′C ′=4.所以△ABC 在矩阵MN 作用下变换所得的图形的面积为4.『备课札记』 『类题通法』1.对于平面图形的变换要分清是伸缩、反射、还是切变变换.2.伸缩、反射、切变变换这三种几何变换称为初等变换,对应的变换矩阵为初等变换矩阵,由矩阵的乘法可以看出,矩阵的乘法对应于变换的复合,一一对应的平面变换都可以看作这三种初等变换的一次或多次的复合. 『针对训练』在直角坐标系中,已知椭圆x 2+4y 2=1,矩阵M =⎣⎢⎡⎦⎥⎤0 110,N =⎣⎢⎡⎦⎥⎤0 21 0,求椭圆x 2+4y 2=1,在矩阵MN 作用下变换所得到的图形的面积. 『解』MN =⎣⎢⎡⎦⎥⎤0 110⎣⎢⎡⎦⎥⎤0 21 0=⎣⎢⎡⎦⎥⎤1 002.设(x 0,y 0)为椭圆x 2+4y 2=1上任一点,它在MN 的作用下所对应的点为(x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤1 002⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 02y 0, ∴⎩⎪⎨⎪⎧x =x 0,y =2y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=y 2.代入x 20+4y 20=1,得x 2+y 2=1,∴在矩阵MN 作用下变换所得到的图形的面积为π.考点三矩阵变换的应用『典例』 (2013·福建高考)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l ′:x +by =1. (1)求实数a ,b 的值;(2)若点P (x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标. 『解』 (1)设直线l :ax +y =1上任意点M (x ,y )在矩阵A 对应的变换作用下的像是M ′(x ′,y ′).由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y ,得⎩⎪⎨⎪⎧x ′=x +2y ,y ′=y . 又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1, 即x +(b +2)y =1,依题意得⎩⎪⎨⎪⎧a =1,b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1.(2)由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0.又点P(x0,y0)在直线l上,所以x0=1.故点P的坐标为(1,0).『备课札记』『类题通法』1.在解决通过矩阵进行平面曲线的变换时,变换矩阵可以通过待定系数法解决,在变换时一定要把变换前后的变量区别清楚,防止混淆.2.曲线(或点)经过二阶矩阵变换后的曲线(或点)的求法,类似于平面解析几何中的代入法求轨迹,此类问题的关键是求对坐标之间的变换公式.『针对训练』(2014·江苏横山桥中学模拟)已知M=⎣⎢⎡⎦⎥⎤1002,N=⎣⎢⎢⎡⎦⎥⎥⎤1200 1,设曲线y=sin x在矩阵MN对应的变换作用下得到曲线F,求F的方程.『解』由题设得MN=⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤1200 1=⎣⎢⎢⎡⎦⎥⎥⎤1200 2设所求曲线F上任意一点的坐标为(x,y),y=sin x上任意一点的坐标为(x′,y′),则MN⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎢⎡⎦⎥⎥⎤1200 2⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤xy,解得⎩⎪⎨⎪⎧x′=2x,y′=12y.把⎩⎪⎨⎪⎧x′=2xy′=12y代入y′=sin x′,化简得y=2sin 2x.所以,曲线F的方程为y=2sin 2x.『课堂练通考点』1.(2014·福州模拟)将曲线xy=1绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.『解』由题意,得旋转变换矩阵M=⎣⎢⎡⎦⎥⎤cos 45°-sin 45°sin 45° cos 45°=⎣⎢⎡⎦⎥⎤22-222222,设xy =1上的任意点P ′(x ′,y ′)在变换矩阵M 作用下为P (x ,y ),⎣⎢⎡⎦⎥⎤22 -2222 22 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y , ∴⎩⎨⎧x =22x ′-22y ′,y =22x ′+22y ′.得y 22-x 22=1. 故将曲线xy =1绕坐标原点按逆时针方向旋转45°,所得曲线的方程为y 22-x 22=1.2.已知a ,b 为实数,如果A =⎣⎢⎡⎦⎥⎤a 10 b 所对应的变换T 把直线x -y =1变换为自身,试求a ,b 的值.『解』设点(x ,y )是直线x -y =1上任意一点.在变换T 作用下的对应点为(x ′,y ′),则⎣⎢⎡⎦⎥⎤a 10b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,∴⎩⎪⎨⎪⎧x ′=ax +y ,y ′=by . 由题意x ′-y ′=1,∴ax +y -by =1,即ax +(1-b )y =1,∴⎩⎪⎨⎪⎧a =1,1-b =-1, ∴⎩⎪⎨⎪⎧a =1,b =2. 3.已知△ABC 的三个顶点A (0,0),B (4,0),C (0,3),△ABC 在矩阵M =⎣⎢⎡⎦⎥⎤1 00 2对应的变换作用下变为△A ′B ′C ′,求△A ′B ′C ′的面积. 『解』由题意⎣⎢⎡⎦⎥⎤1 002⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤40=⎣⎢⎡⎦⎥⎤40, ⎣⎢⎡⎦⎥⎤1 002⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤06, ∴A ′(0,0),B ′(4,0),C ′(0,6), ∴S △A ′B ′C ′=12×4×6=12.。
高中数学第1课时二阶矩阵二阶矩阵与平面向量的乘法二阶矩阵与线性变换教案新人教A版选修4 (6)
第二课时 椭圆的简单几何性质教学目标1、进一步掌握椭圆的几何性质2、理解椭圆的第二定义,掌握椭圆的准线方程及准线的几何意义,进一步理解离心率的几何意义。
3、掌握用坐标法求曲线方程及由方程研究图形性质的方法。
4、培养分析问题和解决问题的能力教学过程1、复习回顾前一节学习了椭圆的几何性质,大家回忆一下:⑴椭圆的几何性质的内容是什么?椭圆16x 2+9y 2=144中x 、y 的范围,长轴长,短轴长,离心率,顶点及焦点坐标。
-3≤x ≤3,-4≤y ≤4,长轴长2a =8,短轴长2b =6,离心率47=e , 顶点坐标(0,-4),(0,4),(-3,0),(3,0),焦点坐标)7,0(),7,0(-注意:椭圆的焦点一定在椭圆的长轴上。
⑵什么叫做椭圆的离心率?e =c/a离心率的几何意义是什么呢?我们先来看一个问题:点M(x,y)与定点F(c,0)的距离和它到定直线l :x =a 2/c 的距离的比是常数e=c/a(a >c>0),求点M 的轨迹。
2、探索研究(按求轨迹方程的步骤,学生回答,教师书写)解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合},|||{a c d MF M P == 由此得ac x c a y c x =-+-||)(222 将上式两边平方,并化简,得(a 2-c 2)x 2+a 2y 2=a 2(a 2-c 2)设a 2-c 2=b 2,就可化成x 2/a 2+y 2/b 2=1,这是椭圆方程,所以点M 的轨迹是长轴长为2a ,长轴长为2b ,焦点在x 轴上的椭圆。
小结:⑴椭圆的第二定义:当点M 与定点F 的距离和它到定直线l 的距离的比是常数e=c/a(0<e <1)时,这个点的轨迹是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率。
⑵对于椭圆x 2/a 2+y 2/b 2=1,相应于焦点F 2(c,0)的准线方程是l :x =a 2/c ,根据椭圆对称性,相应于焦点F 1(-c,0)的准线方程是l :x =-a 2/c ;对于椭圆x 2/ b 2+y 2/ a2=1,相应于焦点F 2(0,c)的准线方程是l :y =a 2/c ,根据椭圆对称性,相应于焦点F 1(0,-c)的准线方程是l :y =-a 2/c 。
1.1线性变换与二阶矩阵课件人教新课标2
o
p' x
例3 如图,在直角坐标系xoy内,过任意一点P作x轴的垂线,垂足为点P',
我们称点P'为点P在x轴上的(正)投影.如果一个变换把直角坐标系内的每
一点变成它在x轴上的(正)投影,那么称这个变换为关于x轴的(正)
投影变换.
设在关于 x轴的(正)投影变换的 作用下,点 P(x, y)变成点P(' x', y'),
例2 在直角坐标系xoy内,将每一点的纵坐标变为
原来的2倍,横坐标保持不变. (1)试确定该伸缩变换的坐标变换公式及其对应的二阶矩阵; (2)求点A(1,1)在该伸缩变换作用下的像A'.
解:(1)设在这个伸缩变换作用下,直角坐标系xoy内的
任意一点P(x, y)变成点P' (x', y' ),则x' x, y' 2 y.
因此,所求的坐标变换公式为xy''
x, 2 y.
从而,对应的二阶矩阵为10 02;
(2)将点A(1,1)的坐标代入坐标变换公 式,得
x' 1,
y
'
2 (1)
2.
从而A'的坐标为 (1,2).
一般地,在直角坐标系xoy内,将每个点的纵坐标变为原来 的k倍(k是非零常数),横坐标保持不变的线性变换,其变换公式是
0 -1
1 0
.
因此,这两个旋转变换的坐标变换公式及对应的二阶
矩阵是分别相同的.这时我们称这两个旋转变换相等.
一般地,设,是同一个直角坐标平面内的两个线性变换.如果 对平面内的任意一点P,都有 (P) (P),则称这两个线性变换 相等,简记为 .
设,所对应的二阶矩阵分别为A
高中数学第1课时二阶矩阵二阶矩阵与平面向量的乘法二阶矩阵与线性变换教案新人教A版选修4 (14)
1.2.2 排列的应用教学目标:掌握解排列问题的常用方法教学重点:掌握解排列问题的常用方法教学过程一、复习引入:1.排列的概念:说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同2.排列数的定义:注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示具体的排列3.排列数公式及其推导:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤)全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘) 二、方法探究:例2 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?技能小结:解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法课堂小节:本节课学习了排列、排列数的概念,排列数公式的推导课堂练习:1、六人按下列要求站一排,分别有多少种不同的站法?(1)甲不站两端; (2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间恰间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.精美句子1、善思则能“从无字句处读书”。
高考数学矩阵与变换第1课时线性变换、二阶矩阵及其乘法
《最高考系列高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时线性变换、二阶矩阵及其乘法考情分析考点新知掌握恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等常见的线性变换的几何表示及其几何意义.掌握恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等常见的线性变换的几何表示及其几何意义,并能应用这几种常见的线性变换进行解题.1. (选修42P34习题第1题改编)求点A(2,0)在矩阵⎣⎢⎡⎦⎥⎤1 00-2对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤1 00-2表示横坐标保持不变,纵坐标沿y轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m001之下的对应点的坐标为(-2,-4),求m、k的值.解:⎣⎢⎡⎦⎥⎤m001⎣⎢⎡⎦⎥⎤-1k=⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m=-2,k=-4.解得⎩⎪⎨⎪⎧m=2,k=-4.3. 已知变换T是将平面内图形投影到直线y=2x上的变换,求它所对应的矩阵.解:将平面内图形投影到直线y=2x上,即是将图形上任意一点(x,y)通过矩阵M作用变换为(x,2x),则有⎣⎢⎡⎦⎥⎤a0b0⎣⎢⎡⎦⎥⎤xy=⎣⎢⎡⎦⎥⎤x2x,解得⎩⎪⎨⎪⎧a=1,b=2,∴ T=⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011 对应的变换作用下得到的图形.解:设点(x ,y)是直线x +y =5上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0011的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0011⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y )→(x′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′. 一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y (a 、b 、c 、d∈R )的矩阵形式,反之亦然.2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k(k>0)确定的变换T M 称为(垂直)伸压变换. (3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律. [备课札记]题型1 求变换前后的曲线方程例1 设椭圆F :x 22+y24=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.解:变换矩阵为⎣⎢⎡⎦⎥⎤1201,任取椭圆上一点(x 0,y 0),则⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0+2y 0y 0,令⎩⎪⎨⎪⎧x′=x 0+2y 0,y ′=y 0, 则⎩⎪⎨⎪⎧x 0=x′-2y′,y 0=y ′. 又点(x 0,y 0)在椭圆F 上, 故(x′-2y′)22+y′24=1,所以2x′2-8x′y′+9y′2-4=0,即F′的解析式为2x 2-8xy +9y 2-4=0. 变式训练设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sinx 在矩阵MN 变换下的曲线方程. 解:MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y ′). 则⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sinx 得12y ′=sin2x ′,即y′=2sin2x ′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1a b 4对应的变换作用下得到直线m :x -y -4=0,求实数a 、b 的值.解:(解法1)在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A 、B 在矩阵M 对应的变换作用下分别对应于点A′、B′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b ,所以A′的坐标为(-2,-2b);⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B′的坐标为(-2a ,-8).由题意A′、B′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0,(-2a )-(-8)-4=0,解得a =2,b =3.(解法2)设直线l :x +y +2=0上任意一点(x ,y)在矩阵M 对应的变换作用下对应于点(x′,y ′).因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以x′=x +ay ,y ′=bx +4y.因为(x′,y ′)在直线m 上,所以(x +ay)-(bx +4y)-4=0,即(1-b)x +(a -4)y -4=0. 又点(x ,y)在直线x +y +2=0上, 所以1-b 1=a -41=-42,解得a =2,b =3.题型3 平面变换的综合应用例3 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34.(1) 验证:(MN )α=M (Nα);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012,所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤11212⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为Nα=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (Nα)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (Nα).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012, 所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC 在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤100-1,N =⎣⎢⎢⎡⎦⎥⎥⎤12222.解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1220-22, ∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2013·福建)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y , 得⎩⎪⎨⎪⎧x′=x +2y ,y ′=y.又点M′(x′,y ′)在l′上,所以x′+by′=1,即x +(b +2)y =1.依题意⎩⎪⎨⎪⎧a =1.b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1. (2) 由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0. 又点P(x 0,y 0)在直线l 上,所以x 0=1,故点P 的坐标为(1,0).4. 在线性变换⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x′=x +y ,y ′=2x +2y ,而x +y =k ,所以⎩⎪⎨⎪⎧x′=k ,y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→M C ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531. 2. 已知矩阵M =⎣⎢⎡⎦⎥⎤-1-2-34,向量α=⎣⎢⎡⎦⎥⎤57,β=⎣⎢⎡⎦⎥⎤68. (1) 求向量3α+12β在T M 作用下的象; (2) 求向量4Mα-5Mβ.解:(1) 因为3α+12β=3⎣⎢⎡⎦⎥⎤57+12⎣⎢⎡⎦⎥⎤68=⎣⎢⎡⎦⎥⎤1521+⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1825,所以M ⎝ ⎛⎭⎪⎫3α+12β=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤1825=⎣⎢⎡⎦⎥⎤-6846.(2) 4Mα-5M β=M (4α-5β)=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤-10-12=⎣⎢⎡⎦⎥⎤34-18. 3. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,∴ ⎩⎪⎨⎪⎧a -b =-1c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2和⎩⎪⎨⎪⎧c =3d =4 ,∴ M =⎣⎢⎡⎦⎥⎤1234, ∵ ⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,且m :2x′-y′=4, ∴ 2(x +2y)-(3x +4y)=4,即x +4 =0,∴ 直线l 的方程为x +4 =0.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换:反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称; M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称; M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0);M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y)→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝ ⎛⎭⎪⎫x +y 2,x +y 2. 请使用课时训练(A )第1课时(见活页).(注:本资料素材和资料部分来自网络,仅供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法(对应学生用书(理)186~188页)1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵⎣⎢⎡⎦⎥⎤1 00-2对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4.解得⎩⎪⎨⎪⎧m =2,k =-4.3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2, ∴ T =⎣⎢⎡⎦⎥⎤1020. 4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程. 解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011 对应的变换作用下得到的图形.解:设点(x ,y)是直线x +y =5上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0011的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0011⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y)→(x′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′.一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y (a 、b 、c 、d ∈R )的矩阵形式,反之亦然.2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换. (2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k (k>0)确定的变换T M 称为(垂直)伸压变换. (3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θcos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律.[备课札记]题型1 求变换前后的曲线方程例1 设椭圆F :x 22+y 24=1在(x ,y)→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.解:变换矩阵为⎣⎢⎡⎦⎥⎤1201,任取椭圆上一点(x 0,y 0),则⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0+2y 0y 0,令⎩⎪⎨⎪⎧x′=x 0+2y 0,y ′=y 0, 则⎩⎪⎨⎪⎧x 0=x′-2y′,y 0=y′. 又点(x 0,y 0)在椭圆F 上, 故(x′-2y′)22+y′24=1,所以2x′2-8x′y′+9y′2-4=0,即F′的解析式为2x 2-8xy +9y 2-4=0. 变式训练设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sinx 在矩阵MN 变换下的曲线方程. 解:MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y ′).则⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sinx 得12y ′=sin2x ′,即y′=2sin2x ′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x.备选变式(教师专享) 已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 001,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6, 所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1a b 4对应的变换作用下得到直线m :x -y -4=0,求实数a 、b 的值.解:(解法1)在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A 、B 在矩阵M对应的变换作用下分别对应于点A′、B′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b ,所以A′的坐标为(-2,-2b);⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B′的坐标为(-2a ,-8).由题意A′、B′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0,(-2a )-(-8)-4=0,解得a =2,b =3.(解法2)设直线l :x +y +2=0上任意一点(x ,y)在矩阵M 对应的变换作用下对应于点(x′,y ′).因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以x′=x +ay ,y ′=bx +4y.因为(x′,y ′)在直线m 上,所以(x +ay)-(bx +4y)-4=0,即(1-b)x +(a -4)y -4=0.又点(x ,y)在直线x +y +2=0上,所以1-b 1=a -41=-42,解得a =2,b =3.题型3 平面变换的综合应用例3 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34.(1) 验证:(MN )α=M (Nα);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎡⎦⎥⎤112012,所以(MN )α=⎣⎢⎡⎦⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为Nα=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (Nα)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (Nα). (2) 因为MN =⎣⎢⎡⎦⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012, 所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC 在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0, 所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤100-1,N =⎣⎢⎡⎦⎥⎤12222. 解:由题设得MN =⎣⎢⎡⎦⎥⎤1220-22, ∴ ⎣⎢⎡⎦⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎡⎦⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20, ⎣⎢⎡⎦⎥⎤1 22-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡ ⎦⎥⎤x′y′,即⎣⎢⎡ ⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0. 所以曲线F 的方程为2x +y +1=0.3. (2013·福建)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标. 解:(1) 设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y , 得⎩⎪⎨⎪⎧x′=x +2y ,y ′=y. 又点M′(x′,y ′)在l′上, 所以x′+by′=1,即x +(b +2)y =1.依题意⎩⎪⎨⎪⎧a =1.b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1.(2) 由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0. 又点P(x 0,y 0)在直线l 上,所以x 0=1,故点P 的坐标为(1,0).4. 在线性变换⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x′=x +y ,y ′=2x +2y ,而x +y =k ,所以⎩⎪⎨⎪⎧x′=k ,y ′=2k(k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→M C ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤-1-2-34,向量α=⎣⎢⎡⎦⎥⎤57,β=⎣⎢⎡⎦⎥⎤68.(1) 求向量3α+12β在T M 作用下的象;(2) 求向量4Mα-5Mβ.解:(1) 因为3α+12β=3⎣⎢⎡⎦⎥⎤57+12⎣⎢⎡⎦⎥⎤68=⎣⎢⎡⎦⎥⎤1521+⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1825,所以M ⎝⎛⎭⎫3α+12β=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤1825=⎣⎢⎡⎦⎥⎤-6846.(2) 4Mα-5Mβ=M (4α-5β)=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤-10-12=⎣⎢⎡⎦⎥⎤34-18.3. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a bc d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,∴ ⎩⎪⎨⎪⎧a -b =-1c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2和⎩⎪⎨⎪⎧c =3d =4 ,∴ M =⎣⎢⎡⎦⎥⎤1234, ∵ ⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,且m :2x′-y′=4, ∴ 2(x +2y)-(3x +4y)=4,即x +4 =0,∴ 直线l 的方程为x +4 =0.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换:反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y)→(x ,-y),变换前后关于x 轴对称;M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y)→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y)→(-x ,-y),变换前后关于原点对称;M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y)→(y ,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y)→(x ,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y)→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y)→(x ,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y)→(y ,y);M =⎣⎢⎡⎦⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y)→⎝⎛⎭⎫x +y 2,x +y 2.请使用课时训练(A )第1课时(见活页).。