非平衡直流电桥的原理和应用
非平衡电桥
实验原理:直流电桥是一种精密的非电量测量仪器,他的基本原理是通过桥式电路来测量电阻。
按电桥的测量方式可分为平衡电桥和非平衡电桥两类,非平衡电桥的基本原理是通过桥式电路来测量电阻的,但测的是电桥输出的不平衡电压,经过运算处理才能得到的电阻值,从而可得到引起电阻变化的其他变化物理量,如温度,压力,形变等,因而可以测量连续变化的物理量,具有重要的应用价值。
FQJ-Ⅲ型教学用非平衡直流电桥包括单臂直流电桥,双臂直流电桥,非平衡直流电桥。
电桥分类:(1)等臂电桥:R1=R2=R3=R4(2)输出对称电桥,也称卧式电桥:R1=R4=R, R2=R3=R′。
且R≠R′。
(3)电源对称电桥,也称为立式电桥:R1=R2=R′,R3=R4=R,且R≠R′。
本实验中测R x采用电源对称电桥(立式电桥):即R1=R2 R3=R4摘要:本实验主要通过使用非平衡电桥来测量电阻,学会用非平衡直流电桥电压输出方法测量电阻变化量的基本原理和操作方法,学习与初步掌握非平衡电桥的设计方法。
通过实验得出铜电阻与温度的关系。
从该实验中学到会引起电阻变化的一些物理量,比如:温度,压力,形变等。
通过做该实验还能丰富物理实验的内容。
非平衡电桥往往和一些传感元件配合使用.某些传感元件受外界环境(压力、温度、光强等)变化引起其内阻的变化,通过非平衡电桥可将阻值转化为电流输出,从而达到观察、测量和控制环境变化的目的.本实验所用到的传感元件有:铜电阻、热敏电阻、Pt 电阻和光敏电阻等,它们的阻值会随着温度或光强的变化而变化.【实验目的】1 .学习非平衡电桥的工作原理;2 .学习和掌握非平衡电桥的应用;3 .学习一些传感器的工作原理和不同的测量电路.【【实验仪器】实验接线板,控温仪,稳压源,恒流源,数字万用表,Zx21 型旋转式电阻箱,传感元件(铂电阻,铜电阻,热敏电阻和光敏电阻),保温瓶,100 Ω /5 W 可变电阻器和精密电阻等.1 .控温仪:0 ~200 ± 1 ℃,测量精度0.1 ℃.2 .恒流源:当负载电阻在一定范围内变化时,输出电流保持不变,电流稳定度为1% .3 .稳压源:电压变化范围为0 ~15 V .4 .铂电阻:本实验选用Pt100 ,它被广泛用来测量-200 ~850 ℃范围的温度.它具有准确度高、灵敏度高、稳定性好等优点.在0 ~100 ℃范围内近似有R t = R 0 (1 + A t ) ,其中 A 为正温度系数,约为 3.85 × 10 -3 ℃-1 ,R 0 为0 ℃时铂电阻的阻值,允许通过的最大电流I m <2.5 mA .5 .铜电阻:-50 ~150 ℃的范围内有R t = R 0 (1 + A t + B t 2 + C t 3 ),R 0 为0 ℃时铜电阻的阻值,A = 4.28899 × 10 -3 ℃-1 ,B = -2.133 × 10 -7 ℃-2 ,C = 1.233 × 10 -9 ℃-3 .在0 ~100 ℃范围内近似有R t = R 0 (1 + A t ) ,允许通过的最大电流I m <4 mA .6 .热敏电阻:热敏电阻由半导体材料制成,用其可制成半导体温度计,主要用来测定- 100 ~300 ℃间的温度,有R T = R 0 exp[B (1/ T -1/ T 0 )] ,其中R T 和R 0 分别为温度T (K )和T 0 (K )时的电阻值,B 为热敏电阻的材料常数.本实验选用MF51 型热敏电阻,B = 2700 ~4100 K ,25 ℃时,R T ≈ 3.3 k Ω.允许通过的最大电流I m <0.4 mA .7 .光敏电阻:允许通过的最大电流I m <0.1 mA .【实验内容】在了解实验室所给条件的基础上,利用非平衡电桥实现以下设计:1 .设计制作一铂电阻(Pt100 )数字温度计,测温范围0 ~100 ℃,输出电压范围0 ~50 mV 要求最大误差小于0.5 ℃.2 .制作一铜电阻温度计,测温范围0 ~100 ℃,输出电压范围0 ~50 mV ,要求最大误差小于0.5 ℃.3 .制作一热敏电阻温度计,测温范围0 ~100 ℃,输出电压范围0 ~100 mV .4 .利用光敏电阻制作一光强计,光强范围10 ~1500 lux ,输出电压范围0 ~100 mV .【注意事项】1 .每次实验接线后,要仔细检查线路.接线要牢固、整齐;2 .水烧开时应注意避免烫伤;3 .设计的参数应与所给元件的允许值相匹配.【思考题】1 .什么是平衡电桥?什么是非平衡电桥?2 .对于铂电阻、铜电阻,在设计电路时,实验中哪些因素会引起输出电压与温度变化的非线性误差?请事先计算出可能引起的测量误差.你准备采取什么措施?3 .请根据图1 和图2 从理论上分析,与二线制接线法相比,三线制接线法为何能减小测量误差?4 .万用表内阻是否需要考虑?为什么?5 .在设计电路时,你主要考虑的因素是什么,为什么?6 .从实验结果分析,你认为实验结果达到了你所设计的要求了吗?。
非平衡电桥的原理和应用
非平衡电桥的原理和应用电桥的的基本原理是通过桥式电路来测量电阻,从而得到引起电阻变化的其它物理量,如温度、压力、形变等,桥式电路在检测技术、传感器技术中的应用非常广泛。
根据电桥工作时是否平衡来区分,可将电桥分为平衡电桥与非平衡电桥两种。
平衡电桥一般用于测量具有相对稳定状态的物理量,非平衡电桥往往和一些传感器元件配合使用.某些传感器元件受外界环境(压力、温度、光强等)变化引起其内阻的变化,通过非平衡电桥可将阻值转化为电压输出,从而达到观察、测量和控制环境变化的目的。
非平衡电桥在传感技术中已得到广泛应用,非平衡电桥电路是传感技术中的重要组成部分。
【实验目的】1.了解与掌握非平衡电桥的工作原理,研究非平衡电桥的电压输出特性。
2.掌握与学习用非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法。
3.初步学习非平衡电桥的设计方法,根据不同被测对象灵活选择不同的桥路形式进行测量。
【实验仪器】FQJ型非平衡直流电桥、升温加热炉与温度控制器、待测电阻。
【实验原理】1.非平衡电桥的工作原理非平衡电桥的原理图如图5.7.1所示,当调节R1、R2和R3,使桥的B、D两端电势相等,这时电桥达到平衡。
如果将平衡电桥中的待测电阻换成电阻型传感器,当外界条件(如温度、压力、形变等)改变时,传感器阻值会有相应变化,B、这时电桥处于非平衡状态。
D两端电势不再相等,假设B、D之间有一负载电阻Rg,其输出电压SAg图5.7.1 非平衡电桥Ug。
如果使R1、R2和R3保持不变,那么Rx变化时Ug也会发生变化。
根据Rx与Ug的函数关系,通过检测桥路的非平衡电压Ug,能反映出桥臂电阻Rx的微小变化,测量外界物理量的变化,这就是非平衡电桥工作的基本原理。
当桥臂电阻取不同的值时,电桥可以分为三类:(1)等臂电桥:R1?R2?R3?Rx?R(2)输出对称电桥,也称卧式电桥:R1?Rx?R,R2?R3?R?,且R?R?。
(3)电源对称电桥,也称立式电桥:R3?Rx?R,R1?R2?R?,且R?R?。
非平衡电桥的研究与应用
非平衡电桥的研究与应用
非平衡电桥(Unbalanced Bridge)是一种电桥测量的方法,在电阻、电容、电感等参数测量中应用广泛。
其与平衡电桥的区别在于,非平衡电桥中使用的是非平衡电桥电路,即使用一个可变比例器(Variable Ratio Device,VRD)或非比例计(Non-Ratio Meter,NRM)来代替传统的比例计(Ratio Meter)。
非平衡电桥虽然测量精度略低于平衡电桥,但由于其设计较为简单,因此常用于对简单电路中的参数进行测量。
以下是非平衡电桥的应用情况:
1. 电阻测量:非平衡电桥可用于对不同电阻值的电阻进行测量,常见的应用场景包括电阻实验和电子元器件测试等。
2. 电容测量:非平衡电桥可用于对不同电容值的电容器进行测量,主要应用于电子设备的制造和维修等领域。
3. 电感测量:非平衡电桥可用于对不同电感值的电感元件进行测量,常见于电路中的感性元件的测量和验证。
总之,非平衡电桥作为一种简单实用的电桥测量方式,在电阻、电容、电感等领域具有广泛的应用。
在实际应用时,需要根据实际需要进行选择,并结合具体测量场合和特点,合理应用非平衡电桥的优势,从而获得更加准确可靠的测量结果。
直流非平衡电桥
设备无法启动
检查电源是否正常,检查设备 内部是否有短路或开路现象,
修复或更换损坏的部件。
THANKS
感谢观看
可调元件
除了可调电阻外,还可以采用其他可调元件,如可变电容、电感等,用于实现 电桥平衡。这些元件的调节范围应满足测量需求,并具有较高的稳定性和精度。
指示器及保护装置
指示器
用于显示电桥是否处于平衡状态。常用的指示器有检流计、 光电指示器等。当电桥平衡时,指示器应无偏转或发出信号 。
保护装置
为防止电桥过载或短路而损坏,应设置相应的保护装置。例 如,在电源回路中串联保险丝或自动开关,以便在电流过大 时自动切断电源。此外,还可以在桥臂上并联限流电阻或采 用其他限流措施,以保护电桥免受损坏。
调节电桥平衡
通过调节电阻箱中的电阻值, 使得电流表的示数为零,此时 电桥达到平衡状态。
改变条件重复实验
改变电源电压或电阻箱的阻值, 重复以上步骤进行多次实验。
数据记录表格设计
| 序号 | 电源电压(V) | 电阻箱阻值(Ω) | 电 压表示数(V) | 电流表示数(A) |
01
|1|||||
03
02
03
直流非平衡电桥测量原理 及方法
测量原理分析
直流非平衡电桥的基本原理
01
利用电桥平衡条件进行测量,当电桥平衡时,对角线上的两个
电阻的电压相等。
电阻变化对电桥平衡的影响
02
当待测电阻发生变化时,会打破电桥的平衡状态,从而产生输
出电压。
灵敏度与测量精度的关系
03
电桥的灵敏度决定了测量精度,灵敏度越高,测量精度也越高。
惠斯通电桥
一种常用的电桥类型,由四个电 阻组成,通过调节可变电阻使电 桥平衡,从而测量未知电阻。
非平衡直流电桥的原理和应用
非平衡直流电桥的原理和应用
非平衡直流电桥的原理是基于基尔霍夫第二定律,即在一个闭合回路内,电流的代数和为零。
电桥由四个电阻和一个未知元件构成,其中两个
电阻称为已知电阻,另两个电阻称为未知电阻。
电桥中通入一个已知电流,通过调节未知电阻或改变已知电阻的值,使电流从未知电阻的两个端点中
分流,使得电桥中的电流为零。
根据基尔霍夫第二定律,在电桥中的电流
为零时,可以通过测量电桥两侧的电压差来计算未知元件的参数。
1.电阻测量:通过非平衡电桥可以测量未知电阻的值。
在电桥平衡时,可以通过已知电阻与未知电阻的比例关系计算出未知电阻的值。
2.电容测量:非平衡电桥可以用于测量未知电容的值。
在电桥平衡时,通过改变电容器电极间的距离或改变电容量,可以测量未知电容的值。
3.电感测量:非平衡电桥可以用于测量未知电感的值。
在电桥平衡时,通过改变电感器中的铁心长度或改变电感器中的线圈匝数,可以测量未知
电感的值。
4.温度测量:非平衡电桥可以用于测量温度。
通过将温度传感器作为
未知元件接入电桥中,当电桥平衡时,可以测得温度的值。
5.湿度测量:非平衡电桥可以用于测量湿度。
通过将湿度传感器作为
未知元件接入电桥中,当电桥平衡时,可以测得湿度的值。
6.线性变换器:非平衡电桥还可以用于进行线性变换。
通过在电桥中
引入变压器并调节其参数,可以实现信号的线性放大或压缩。
总之,非平衡直流电桥是一种常用的测量电阻、电容、电感等参数的仪器。
它具有精度高、灵敏度好、稳定性强等优点,适用于各种工程领域的测量和控制应用。
非平衡电桥
1000 …… 1160 1180 1200
ΔR=R4−R0 (Ω)
……
0
……
δ=ΔR/R0
……
0
……
Ug (mV)
……
0
……
(4) 根据公式(3)过原点作一条直线(斜线),并与实际测量的 Ug ∼ δ曲线比较,得
出 Ug ∼ δ的线性范围。
即:测算
R4
的取值范围,使有
实验目的 (1) 了解非平衡电桥的组成和工作原理,以及在实际中的应用。 (2) 学会用外接电阻箱法研究非平衡电桥的输出电压与电阻应变量之间的关系,通 过作图研究其线性规律。 (3) 了解桥臂电阻大小对非平衡电桥的灵敏度和线性范围的影响,学会根据不同的 测量需求来选择合适的桥臂电阻。 (4) 学会利用非平衡电桥测量 Cu 丝的电阻温度系数。
理论线性范围的计算可以通过公式(2)和(3)来得到。给定某一ΔR 由公式(2)可
以计算得到一个 Ug,由公式(3)可以得到 Ug’,比较 Ug 与 Ug’可知道它们差别是否超过自身
大小的 5%,来计算出δ值范围(即: − 10 ≤ δ ≤ 10 )。
105
95
4/4
2. 直流非平衡电桥的线性范围
公式(3)是δ比较小的时候的一个近似公式,当δ比较大的时候该公式不成立。当ΔR
在 0 值附近一个近似对称的正负小区间内,根据公式(2)和(3)分别计算所得的 Ug 和 Ug’,
它们之间的差值与自身的值比较时,≤ 5%,可以认为在此区间内满足线性要求。这样根据实
测 Ug 值可以使用近似公式(3)直接来计算ΔR。
3/4
思考题
1. 简述直流非平衡电桥与直流平衡电桥的关系。 2. 为什么在实验内容 1 中,ΔR 的绝对值相同时,Rx 小于 1000Ω 时的 Ug 比大于 1000Ω
非平衡电桥的原理与应用
非平衡电桥的原理与应用1. 引言电桥是一种常见的测量电路,用于测量电阻、电容、电感等电物理量。
平衡电桥是最为常见的一种电桥,其原理简单,测量精度高。
然而,在某些特定情况下,平衡电桥并不能满足需求,此时就需要使用非平衡电桥进行测量。
本文将介绍非平衡电桥的原理和应用。
2. 非平衡电桥的原理非平衡电桥采用的原理与平衡电桥有所不同,它通过测量电桥中出现的非平衡态来得到所需测量值。
非平衡电桥通常由一个电源、四个电阻组成,通过改变其中一个电阻的值来实现非平衡态。
当电桥达到非平衡态时,电流开始流过“非平衡分支”,通过测量这个分支上的电流或电压,可以计算出所需测量的电物理量。
3. 非平衡电桥的应用非平衡电桥的应用非常广泛,以下列举几个常见的应用场景:3.1 温度测量非平衡电桥常用于测量温度。
例如,我们可以将一个热敏电阻(如热电偶)放入电桥中,通过改变电桥中的其他电阻的值来实现非平衡态。
根据非平衡态下测量到的电流或电压,可以得到与温度相关的物理量,从而实现温度测量。
3.2 气体浓度测量非平衡电桥还可以用于测量气体的浓度。
例如,我们可以将一个气体传感器(如氧气传感器)放入电桥中,通过改变电桥中的其他电阻的值来实现非平衡态。
根据非平衡态下测量到的电流或电压,可以得到与气体浓度相关的物理量,从而实现气体浓度测量。
3.3 液位测量非平衡电桥还可以用于测量液体的液位。
例如,我们可以将一个液位传感器放入电桥中,通过改变电桥中的其他电阻的值来实现非平衡态。
根据非平衡态下测量到的电流或电压,可以得到与液体液位相关的物理量,从而实现液位测量。
3.4 压力测量非平衡电桥还可以用于测量压力。
例如,我们可以将一个应变片放入电桥中,通过改变电桥中的其他电阻的值来实现非平衡态。
根据非平衡态下测量到的电流或电压,可以得到与压力相关的物理量,从而实现压力测量。
4. 总结非平衡电桥是一种常用的测量电路,通过测量电桥中的非平衡态来得到所需测量值。
非平衡电桥具有广泛的应用,包括温度测量、气体浓度测量、液位测量、压力测量等。
直流非平衡电桥
实验名称:直流非平衡电桥的应用
——数字温度计的设计Array姓名学号班级
桌号同组人
本实验指导教师实验地点:基础教学1106室
实验日期20 年月日时段
一、实验目的:
1. 掌握直流非平衡电桥的工作原理及与直流平衡电桥的异同;
2. 学习直流非平衡电桥的使用方法;
3. 学习传感器非线性特性的线性化设计
4.用直流非平衡电桥设计一款数字温度计。
二、实验仪器与器件:
1、DHQJ-1型非平衡电桥、导线若干;
2、DHW-1型温度传感实验装置(铜电阻、热敏电阻);
三、实验原理:
1.直流平衡电桥、直流非平衡电桥
直流电桥可分为平衡电桥和非平衡电桥(非平衡电桥也称不平衡电桥或微差电桥)。
平衡电桥需要工作在平衡态下,可以准确测量未知电阻(如单臂电桥),测量精度很高。
但平衡的调节要求严格,需要耗费一定的时间。
非平衡电桥工作在非平衡态下,可测量任一桥臂上的物理量变化。
实际生产技术中,往往有些待测量准确度要求不是很高,但需要连续快捷的测量。
如:铁路桥梁的应力检测、产品质量检测及待测量的变化量中。
尤其在传感器技术越来越广泛应用于各种非电学量测量情况下,智能检测和自动控制系统中,直流非平衡电桥就显示出了优势,这时电桥中某一个或几个桥臂,往往是具有一定功能的传感元件,这些元件的电阻值随待测物理量(如温度、压力)的变化而相应改变,电桥处于非平衡状态。
利用非平衡电桥可以很快连续测量这些传感元件电阻的变化,由此获得这些物理量变化的信息。
本实验就是利用直流非平衡电桥的特点设计一款数字温度计。
非平衡电桥
非平衡电桥非平衡电桥是一种常用的电路实验装置,用于测量电阻、电容、电感等物理量,以及检测电路中的故障。
它由四个电阻或其他电子元件组成的电路桥,通过调节电桥的电阻值,可以得到电路中各个元件的参数。
电桥的基本原理是利用电流的分压和分流特性来测量电路中的电阻。
在一个平衡电桥中,当桥路中每个分支的电势差相等时,称为平衡状态。
在这种情况下,电桥的输出电压为零,可以通过调节电阻值使得电桥处于平衡状态,从而测量电路中的未知电阻。
然而,非平衡电桥与平衡电桥有所不同。
非平衡电桥的一个或多个分支中存在非零的电势差,因此无法通过简单地调节电阻值来使电桥达到平衡状态。
这种电桥常用于实际测量中,因为在实际电路中,很难确保所有分支的电势差都为零。
非平衡电桥可以通过测量电桥输出的电压来计算电路中的未知电阻。
通过改变电桥中的其他电子元件的参数,可以调整电桥的输出电压,从而得到准确的测量结果。
非平衡电桥在实际应用中非常重要,例如用于测量电池的内阻、测量电容的容值、检测电路中的开路或短路等。
在非平衡电桥的实验中,我们需要注意一些细节。
首先,电桥中的电子元件应选择合适的数值范围,以确保测量结果的准确性。
其次,电桥的电源应保持稳定,以避免电压波动对测量结果的影响。
另外,实验时应注意接线的正确性,避免因接触不良或接错导致实验结果出错。
非平衡电桥的原理和应用广泛存在于物理、化学、电子等实验中。
例如,在物理学中,我们可以通过非平衡电桥来测量导线的电阻,从而研究导体的导电性质。
在化学实验中,非平衡电桥可以用来测量溶液的电导率,从而研究溶液中的离子浓度。
而在电子工程中,非平衡电桥常常用于检测电路中的故障,例如开路、短路等。
非平衡电桥是一种常用的电路实验装置,用于测量电阻、电容、电感等物理量,以及检测电路中的故障。
通过调节电桥的电阻值,我们可以得到电路中各个元件的参数。
非平衡电桥在实际应用中非常重要,它的原理和应用广泛存在于物理、化学、电子等实验中。
非平衡直流电桥实验报告
非平衡直流电桥实验报告实验名称:非平衡直流电桥实验实验目的:1.理解直流电桥的工作原理;2.掌握非平衡直流电桥的测量方法;3.学会使用直流电桥测量未知电阻。
仪器与材料:1.非平衡直流电桥装置;2.电源;3.电阻箱;4.未知电阻;5.导线;6.电压表。
实验原理:直流电桥是一种用电桥原理来测量电阻值的仪器。
在实验中,利用直流电桥装置中的电阻箱和未知电阻建立一个电桥电路,然后通过调整电桥中的电阻值来使电桥平衡,最终测得未知电阻的值。
实验步骤:1.将直流电桥装置连接电源,并调整电源输出电压到适当的值;2.将电阻箱连接到电桥上,设置一个适当的已知电阻;3.将未知电阻连接到电桥上,将电压表连接到示数端口;4.调整电桥中的电阻值,使电桥示数最小;5.记录电压表示数和电桥中的电阻值;6.重复步骤4和5,直到得到稳定的测量值;7.计算未知电阻的值。
实验数据:已知电阻:R1=100Ω电阻箱设定值(Ω)电桥示数电阻箱设定值(Ω)电桥示数50 0 150 0.1600.03 1600.05700.051700.1数据处理与分析:根据实验数据,我们可以得到如下电桥示数与电阻箱设定值的关系表:电阻箱设定值(Ω)电桥示数50 060 0.0370 0.051500.11600.051700.1根据电桥原理,当电桥平衡时,电桥示数为0。
由上表可知,50Ω和150Ω的电阻箱设定值电桥示数均为0,所以未知电阻应在50Ω和150Ω之间。
对于60Ω和70Ω的电阻箱设定值,电桥示数较小但不为0,说明未知电阻值与这两组值相比较接近。
通过计算,可以得到未知电阻的近似值为:60Ω实验总结:本实验通过非平衡直流电桥进行电阻测量,掌握了非平衡直流电桥实验的基本步骤和方法。
实验中注意到电桥示数的变化,并根据示数的变化来预测未知电阻的取值范围。
通过数据处理与分析,得出了未知电阻的近似测量值。
实验结果与预期值较为接近,实验目的达到,实验取得了满意的结果。
直流非平衡电桥实验
(11)常用半导体热敏电阻的B 值约为1500~5000K 之间。
②用非平衡电桥进行热敏电阻线性化设计的方法。
在图1中,R 1、R 2、R 3为桥臂测量电阻,具有很小的温度系数,Rx 为热敏电阻,由于只检测电桥的输出电压,故R L 开路,根据(2)式有式中可见U 0是温度T 的函数,将U 0在需要测量的温度范围的中点温度T 1处,按泰勒级数展开(12)其中式中U 01为常数项,不随温度变化。
U 0'(T -T 1)为线性项,U n 代表所有的非线性项,它的值越小越好,为此令 =0,从U n 的三次开始是非线性项, 且数值很小,可以忽略不计。
(12)式中U 0的一阶导数为将代入上式并展开求导可得:U 0的二阶导数为令 =0,可得:TB2Ae )T 2B ()T 2B (R --+=0Un )T (T U U U 10010+-'=+n13n 0(n)210)T (T U n!)T (T U Un -∑∞-''==+121TBX e A R =ER R R Rx R Rx U 31320⋅'⎪⎭⎫ ⎝⎛+-+='T B X e A R =0U ''E R R R RxR RxU 31320⋅⎪⎭⎫ ⎝⎛+-+=0U ''ET )Ae R (AeBR U 22T B 2TB20⋅+-=''⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅+-=''E T )Ae R (Ae BR U 22T B2T B20E Ae )T 2B ()T 2B (R T )Ae R (AeBR TB243T B2TB2⋅⎭⎬⎫⎩⎨⎧--++=2TB R T 2B Ae ⋅+=即也就是 13)根据以上的分析,将(12)线性函数部分改为如下表达式:(非线性部分是系统误差,忽略不计)U 0=λ+m(t-t 1) (14)式中t 和t 1分别T 和T 1对应的摄氏温度,λ为U 0在温度T 1时的值;m 为 U 0' 在温度T 1时的值:(15)(16)③线性化设计的过程如下:根据给定的温度范围确定T 1的值,一般为温度中间值,例如设计一个30.0~50.0℃的数字表,则T 1选313K ,即t 1=40.0℃。
非平衡电桥
非平衡电桥
非平衡电桥是一种电路配置,通常用于测量未知电阻值或检测电阻的变化。
它
是由一对电阻、一个未知电阻以及一个电阻传感器组成的。
当这个电桥处于平衡状态时,电桥的输出电压为零。
但如果电桥中的某些参数发生变化,就会导致电桥处于非平衡状态,输出电压不再为零。
电桥原理
电桥的原理基于基尔霍夫定律和欧姆定律。
在一个平衡电桥中,当电桥中的电
阻和其他参数符合特定条件时,电桥两侧电压相等,且电桥两侧的电流为零。
在非平衡状态下,电桥两侧的电压不相等,导致电桥输出一个电压信号。
这个电信号可以用来测量未知电阻的值。
电桥的应用
非平衡电桥在许多领域中都有广泛的应用。
例如在传感器领域,用于检测物理
量的变化;在测量仪器中,用于测量电阻值;在电子工程中,用于校准电路。
非平衡电桥的精度和灵敏度较高,可以用来测量微小的电阻变化。
非平衡电桥的优势
与其他电路相比,非平衡电桥具有准确性高、灵敏度高、稳定性好等优点。
它
可以测量较小范围内的电阻变化,适用于需要高精度测量的场合。
电桥的结构简单,易于调试和使用。
结语
非平衡电桥作为一种重要的电路配置,在科学研究和工程实践中扮演着重要的
角色。
它的原理简单易懂,应用范围广泛。
通过理解非平衡电桥的工作原理和特点,可以更好地应用它来解决实际问题,提高测量的准确性和精度。
非平衡直流电桥实验报告
非平衡直流电桥实验报告非平衡直流电桥实验报告引言:非平衡直流电桥是一种用于测量电阻、电容、电感等电路元件参数的实验装置。
它通过比较电桥两侧的电势差来判断电路是否平衡,并根据非平衡的程度来计算待测元件的数值。
本实验旨在通过搭建非平衡直流电桥,探究其原理和应用。
实验步骤:1. 准备实验所需材料:直流电源、电阻箱、电流表、电压表、待测元件等。
2. 搭建非平衡直流电桥电路:将电源的正负极连接到电桥的两个对角,电阻箱的两个端子分别连接到电桥的两个相邻节点,待测元件连接到电桥的另外两个相邻节点。
3. 调节电阻箱的阻值,使电桥达到平衡状态:通过调节电阻箱的阻值,使电桥两侧的电势差为零,即电桥平衡。
4. 测量电桥两侧的电压和电流:使用电压表和电流表分别测量电桥两侧的电压和电流数值。
5. 计算待测元件的数值:根据电桥的原理和公式,利用测量到的电压和电流数值,计算待测元件的参数。
实验结果与分析:通过搭建非平衡直流电桥电路,并进行测量和计算,我们得到了如下结果:待测元件的电阻值为100欧姆,电桥两侧的电压为2伏特,电流为0.02安培。
根据电桥的公式,我们可以计算出待测元件的电阻值为100欧姆。
在实验中,我们发现电桥的平衡状态是通过调节电阻箱的阻值来实现的。
当电桥两侧的电势差为零时,电桥达到平衡状态。
而非平衡的程度取决于电桥两侧的电势差大小,即电压和电流的数值。
通过测量和计算,我们可以得到待测元件的参数。
非平衡直流电桥在实际应用中有着广泛的用途。
它可以用于测量电阻、电容、电感等电路元件的参数,帮助我们了解电路的性质和特点。
同时,非平衡直流电桥也可以用于判断电路的故障,例如电阻的断路或短路等问题。
然而,非平衡直流电桥也存在一些局限性。
首先,它对电源的稳定性要求较高,一旦电源波动较大,可能导致电桥无法平衡。
其次,非平衡直流电桥只适用于直流电路,对于交流电路无法进行测量。
此外,电桥的精度也受到仪器和测量误差的影响。
结论:通过本次实验,我们成功搭建了非平衡直流电桥,探究了其原理和应用。
直流非平衡电桥的原理和应用
直流非平衡电桥的原理和应用1. 引言直流非平衡电桥是一种常见的电子测量仪器,它通过比较两个电阻或电压的差异来检测电流或电压的变化。
本文将介绍直流非平衡电桥的基本原理和常见的应用。
2. 原理直流非平衡电桥是基于电桥原理设计的。
电桥是由多个电阻和电压源组成的电路,普通的电桥是基于交流电的测量原理,而直流非平衡电桥则用于直流电的测量。
直流非平衡电桥通常由以下几个主要元件组成: - 电桥电路:包括电源和电阻组成的电桥电路,其中包括两个待测电阻和两个已知电阻。
- 微电流表:用于测量电桥两侧的电压差异。
- 可调电阻:用于调整电桥平衡状态。
当电桥平衡时,微电流表指针不会偏移,即电桥两边的电压差异为零。
如果待测电阻发生变化,电桥将不再平衡,微电流表将显示电压差异大小,通过测量电桥电路的非平衡度,可以得出待测电阻的值。
3. 应用直流非平衡电桥在实际应用中有多种用途,下面介绍其中几个常见的应用场景。
3.1 温度传感器直流非平衡电桥可以作为温度传感器的测量原理之一。
通过将热敏电阻作为待测电阻接入电桥电路中,当温度发生变化时,热敏电阻的电阻值会发生变化,导致电桥不平衡。
通过测量电桥的非平衡度,可以得到温度的变化情况。
3.2 压力传感器直流非平衡电桥也可以用作压力传感器的测量原理之一。
通过将压阻作为待测电阻接入电桥电路中,压阻的电阻值会随压力的变化而变化,导致电桥不平衡。
通过测量电桥的非平衡度,可以得到压力的变化情况。
3.3 流量传感器直流非平衡电桥还可以应用于流量传感器中。
通过将热敏电阻或压阻与流量传感器结合,当流体流过传感器时,流速的变化会导致热敏电阻或压阻的电阻值变化,从而引起电桥不平衡。
通过测量电桥的非平衡度,可以获得流速的变化情况。
3.4 拉力传感器直流非平衡电桥还可用于测量材料或装置的拉力。
通过将拉力传感器连接到电桥电路中,拉力的变化会导致电桥不平衡。
通过测量电桥的非平衡度,可以获得拉力的变化情况。
4. 总结直流非平衡电桥是一种常见的电子测量仪器,基于电桥原理设计。
直流非平衡电桥
直流非平衡电桥直流电桥是一种精密的非电量测量仪器,有着广泛的应用。
它的基本原理是利用已知阻值的电阻,通过比例运算,求出一个或几个未知电阻的阻值。
直流电桥可分为平衡电桥和非平衡电桥。
平衡电桥需要通过调节电桥平衡求得待测电阻阻值,如惠斯登电桥、开尔文电桥均是平衡式电桥。
平衡电桥可用来测定未知电阻,由于需要调节平衡,因此平衡电桥只能用于测量具有相对稳定状态的物理量,比如固定电阻的阻值。
而对变化电阻的测量有一定的困难。
如果采用直流非平衡电桥,则能对变化的电阻进行动态测量,直流非平衡电桥输出的非平衡电压能反映电阻的变化,在实际应用中许多被测物理量都与电阻有关,如力敏电阻、热敏电阻、光敏电阻等,只要将这些特殊的电阻装在电桥的一个桥臂上,当某些被测量发生变化时,就引起电阻值的变化,从而输出对应的非平衡电压,就能间接测出被测量的变化。
利用这种原理我们可制作电子天平、电子温度计、光通量计等。
因此直流非平衡电桥与平衡电桥相比,有着更为广泛的应用。
实验目的(1)了解非平衡电桥的组成和工作原理以及它在实际中的应用。
(2)学会用外接电阻箱研究非平衡电桥的输出电压与应变电阻的关系,通过作图研究其线性规律。
(3)了解桥臂电阻大小对待测电阻的灵敏度和线性范围的影响,学会根据不同的测量需求来选择合适的桥臂电阻。
(4)学会利用非平衡电桥测量Cu丝的电阻温度系数。
实验仪器稳压电源、电阻箱、万用表(用作毫伏表)、Keithy2000(用作微伏表)、铜丝(漆包线)、加热台、温度计、导线等。
实验原理非平衡电桥原理如图所示,当R3/R2=R4/R1时,电桥平衡,即:I g=0,U g=0;当用R4+ΔR代替R4时,R3/R2不等于R4+ΔR/R1,此时,I g不等于0,U g不等于0,为非平衡状态。
U g为数字电压表电压(电压表内阻为无穷大),应用电路分析知识,可算出输出的非衡电压为:图1 非平衡电桥电路图分析上式,可以得到电桥的三种形式:(1)等臂电桥:R1=R2=R3=R4=R(2)卧式电桥:R1=R4,R2=R3(3)立式电桥:R1=R2,R4=R3将等臂和卧式条件带入(1)式经简化得:δ=ΔR/R4称为电阻的应变。
非平衡直流电桥的原理和应用
非平衡直流电桥的原理和应用直流电桥是一种精密的电阻测量仪器,具有重要的应用价值.按电桥的测量方式可分为平衡电桥和非平衡电桥.平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值,如单臂直流电桥惠斯登电桥、双臂直流电桥开尔文电桥.它们只能用于测量具有相对稳定状态的物理量,而在实际工程中和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量;非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行运算处理,从而得到引起电阻变化的其它物理量,如温度、压力、形变等.实验目的本实验采用FQJ型教学用非平衡直流电桥,该仪器集单臂、非平衡电桥于一体,通过本实验能掌握以下内容:1.直流单臂电桥惠斯登电桥测量电阻的基本原理和操作方法;2.非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法;3.根据不同待测电阻选择不同桥式和桥臂电阻的初步方法及非平衡电桥功率输出法测电阻;4.单臂电桥采用“三端”法测量电阻的意义.实验仪器1. FQJ型教学用非平衡直流电桥;2. FQJ非平衡电桥加热实验装置.实验原理FQJ型教学用非平衡直流电桥包括单臂直流电桥,非平衡直流电桥,上节我们已经对单臂电桥有所了解,下面对非平衡电桥的工作原理进行介绍.图1 非平衡电桥原理图1.非平衡电桥桥路输出电压非平衡电桥原理如图1所示,当负载电阻g R →∞ ,即电桥输出处于开路状态时,g 0I = ,仅有电压输出,并用0U 表示,根据分压原理,ABC 半桥的电压降为S U ,通过14, R R 两臂的电流为:S 1414U I I R R ==+ 1则4R 上之电压降为:4BC S 14R U U R R =•+ 2同理3R 上的电压降为:3DC S23R U U R R =•+3输出电压0U 为BC U 与DC U 之差()()340BC DC S S14232413S1423()R R U U U U U R R R R R R R R U R R R R =-=-++-=++ 4当满足条件1324R R R R = 时,电桥输出00U = ,即电桥处于平衡状态.5式就称为电桥的平衡条件.为了测量的准确性,在测量的起始点,电桥必须调至平衡,称为预调平衡.这样可使输出只与某一臂电阻变化有关.若123, , R R R 固定,4R 为待测电阻4x R R =,则当44R R R →+∆ 时,因电桥不平衡而产生的电压输出为:()242130S 142323()()R R R R R R U U R R R R R R R +∆-=+++∆+ 5当12R R R '==,34R R R ==,且R R '≠电阻增量R ∆较小时,即满足r R R ∆<< 时,公式的分母中含R ∆项可略去,公式可得以简化,各种电桥的输出电压公式为: 02()RR RU R R R'∆='+6注意:上式中的R 和其R '均为预调平衡后的电阻.十分清楚,当满足r R R ∆<<时,测量得到电压输出与/R R ∆成线性比例关系,通过上述公式运算得/R R ∆或R ∆ ,从而求得44R R R =±∆或X X R R R =±∆.2.用非平衡电桥测热敏电阻本实验采用51MF k 7.2Ω型半导体热敏电阻进行测量.该电阻是由一些过渡金属氧化物主要用Fe ,Ni ,Co ,Mn 等氧化物在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成,具有P 型半导体的特性,对于一般半导体材料,电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略.但上述过渡金属氧化物则有所不同,在室温范围内基本上已全部电离,即载流子浓度基本上与温度无关,此时主要考虑迁移率与温度的关系.随着温度升高,迁移率增加,电阻率下降,故这类金属氧化物半导体是一种具有负温度系数的热敏电阻元件,其电阻-温度特性见表 6.根据理论分析,其电阻-温度特性的数学表达式通常可表示为t 25n 11exp[()]298R R B T =-式中,25t R R , 分别为C 25︒和°C t 时热敏电阻的电阻值;273T t =+;n B 为材料常数,制作时不同的处理方法其值不同.对于确定的热敏电阻,可以由实验测得的电阻-温度曲线求得.我们也可以把上式写成比较简单的表达式t 00E BU KTTR R eR e==因此,热敏电阻之阻值t R 与t 为指数关系,是一种典型的非线性电阻.式中298t 25BU R R e -= .k 为玻尔兹曼常数231.380610k -=⨯焦耳/开尔文.实验内容及方法1. 非平衡直流电桥实验内容及方法:FQJ 型非平衡直流电桥之三个桥臂a b , R R 及c R ,其中a b R R =由同轴双层同步变化的电阻盘Ω++++⨯)1.01101001000(10电阻箱组成,c R 则由10(100010010⨯+++10.10.01)++Ω电阻箱组成,调节范围在Ωk 1110.11~0内,负载电阻gR '由1个Ωk 10的多圈电位器粗调和1个Ω100多圈电位器细调串联而成,可在Ωk 1.10范围内调节.数字电压表量程mV 200.功率1为mA 20,采样电阻S 10R =Ω,用于测量Ω<k 1的较小电阻.功率2为A 200μ ,采样电阻S 1k ΩR =,用于测量Ω>k 1电阻.电压输出时,允许X R 变化率向上变化达到%100,向下变化为%70.2. 非平衡电桥电压输出形式测电阻 1C 2a 3b R R R R R R ===、、,测量范围:111.111k ΩΩ~.① 确定各桥臂电阻.使a c 1k ΩR R R ===,b 2k ΩR R '==左右供参考,可自己另行设计② 预调平衡,将待测电阻4R 接至X R ,功能、电压转换开关转至“电压”输出,按下, G B 微调C R 使电压输出00U = .③ 改变4R ,记录R ∆理论值,并记下相应的电压变化值g U ∆ .根据6计算出R ∆的实验值,其中S 1.3V U = .④ 计算出实验值和理论值的相对误差E . 3. 测量铜电阻配用FQJ 非平衡电桥加热装置 1非平衡电桥电压输出形式测量铜电阻① 确定各桥臂电阻值.设定室温时之铜电阻值为0R 查表使340R R R R ===选择1250R R R '===Ω供参考,可自行设计② 预调平衡,将待测电阻接至X R ,123050, R R R R ==Ω=,功能转换开关转至电压输出,, G B 按钮按下,微调1R 使电压00U =③ 开始升温,每C 5︒测量1个点,同时读取温度t 和输出0()U t ,连续升温,分别将温度及电压值记录入表1.表 1 温度和电压记录表数据处理:根据6式求出各点之()R t ∆和()R t 值,用最小二乘法求C 0︒时的电阻值0R 和α,计算α的不确定度.4. 热敏电阻的测量1采用非平衡电桥的电压输出测量热敏电阻51MF k 7.2Ω之()R t ,温度范围从室温加热至C 65︒ .① 根据51MF k 7.2Ω之电阻-温度特性研究桥式电路,并设计各桥臂电阻,, R R ',以确保电压输出不会溢出预习时设计计算好.实验时可以先用电阻箱模拟,若不满足要求,立即调整R ' 阻值.② 预调平衡a 根据桥式,预调, R R '.室温时之电阻值为0R .b 将功能转换开关旋至“电压”输出,按下, G B 开关,微调3R 使数字电压表为0.③ 升温,每隔C 5︒测1个点,、利用测量数据按公式6计算得电阻值填入表2.表2 温度和电阻记录表思考题1.测量电阻的原理是什么2.与二端法测试电阻相比,三端法测试电阻有何优点 3.使用双桥测量小电阻时为什么要使12R R = ,如果不相等有何影响4.非平衡电桥在工程中有哪些应用试举一、二例. 5.非平衡电桥之立式桥为什么比卧式桥测量范围大 6.当采用立式桥测量某电阻变化时,如产生电压表溢出现象,应采取什么措施表 5 铜电阻50Cu 的电阻—温度特性C /004280.0︒=α附录二表 6 51MF k 7.2Ω 型热敏电阻的电阻-温度特性供参考其它说明:1. 仪器面板中间桥路图中的“X R ”已在仪器内部与面板右上角的“X R ”、“X1R ”接线柱接通,参见附录四的图2.2. “功能、电压选择”开关中的“平衡”区块有三档电压,供单臂电桥测量时选用.“非平衡”区块也有三档,其中“电压”档表示电桥“桥”上的“g R ”无穷大,不消耗功率;“功率1”测量小电阻时用,采样电阻“S R ”为10Ω,g R '内部线已连通,阻值可调;“功率2”测量大电阻时用,采样电阻“S R ”为1000Ω,g R '内部线已连通,阻值可调.3.功率输出时负载电阻g S g R R R '=+. 4. “电压”、“功率1”、“功率2”三档的工作电压均为.附录四FQJ-2型非平衡直流电桥加热实验装置一、概述2FQJ -型非平衡直流电桥加热实验装置,是专为FQJ 系列非平衡直流电桥在实验过程中配套使用的装置.该装置具有下列特点:1.加热温度可自由设定不超过上限值2.XMT 系列智能双数显调节仪,控温精度高3.装置内配装有铜电阻,热敏电阻,增加了实验内容 4.加热装置电源输入为低电压,并通过变压器隔离,安全可靠5.装置内装有风扇,根据实验的需要,可强制加速降温 6.装置结构新颖,紧凑合理 二.结构和连接:该装置由加热炉及温度控制仪二大部分组成.其结构及连接见下图3.三.使用说明:1、使用前,将温控仪机箱底部的撑架竖起,以便在测试时方便观察及操作.2、实验开始前,应连接好温控仪与加热炉之间的导线,根据实验内容,用导线把“铜电阻”或“热敏电阻”接线柱与FQJ非平衡电桥的“R”端相接.实验装置的加温操作步骤X如下:1温度设定:根据实验温度需要,设定加热温度上限,其方法为:开启温控仪电源,“PV显示屏”显示的温度为环境温度.按“SET”键秒,“PV显示屏”显示“SO”,说明温控仪进入设置状态,这时,“SV显示屏”最低位数字闪烁,表示这一位可以用“上调”或“下调”键调整大小,每按一次“位移”键,闪烁位随即移动一位,即调节位改变,如此,即可把需要上限温度设置好.设置完毕,再按一下“SET”键,设置程序结束.这时“PV显示屏”显示加热炉实时温度,“SV显示屏”显示设置上限温度.温控仪进入“测量”状态.在温度设定时,仪器上“加热选择”开关置于“断”处图3 非平衡直流电桥结构图2加热:根据环境温度和所需升温的上限及升温速度来确定温控仪面板上“加热选择”开关的位置.该开关分为“3,2,1”三档,由“断”位置转到任意一挡,即开始加热,升温的高低及速度以“1”档为最低、最慢,“3”档为最高、最快 ,一般在加热过程中温度升至离设定上限温度C~5︒时,应将加10热档位降低一档,以减小温度过冲.总之:在加热升温时,应根据实际升温需求,选择加热档位;加热档位的选择可参考:环境温度与设定温度上限之间的差距为CC︒时,宜选择20︒30~“2”档;当差距大于C30︒时,宜选择“3”档.由于温度控制受环境温度、仪表调节、加热电流大小等诸多因素的影响,因此实验时需要仔细调节,才能取得温度控制的最佳效3 测量:在加热过程中,根据实验内容,调节FQJ系列非平衡直流电桥,可进行50Cu铜电阻或517.2Ω热敏电阻特性的MFk测量.测量时连接导线的直流电阻估计值为Ω5.0左右4降温:实验过程中或实验完毕,可能需要对加热铜块或加热炉体降温.降温时操作方法如下:将加热铜块及传感器组件升至一定高度并固定,开启温控仪面板中的“风扇开关”使炉体底部的风扇转动,达到使炉体加快降温目的.如要加快加热铜块的降温速度,可断电后将加热铜块提升至加热炉外,并浸入冷水中.注意:放回炉体内时,要先把水擦干四.注意事项:1.实验开始前,所有导线,特别是加热炉与温控仪之间的信号输入线应连接可靠.2.传热铜块与传感器组件,出厂时已由厂家调节好,不得随意拆卸.3.装置在加热时,应注意关闭风扇电源.4.“备用测试口”为一根一端封闭,并插入加热铜块中的空心铜管,供实验时加入介质后测试用.如在空心管中加入变压器油及铜电阻,用44QJ双臂电桥测试铜电阻随着温度变化时的电阻值.5.温控仪机箱后部的电源插座中的熔丝管应选用~1 .5.1A6.实验完毕后,应切断仪器工作电源.由于热敏电阻、铜电阻耐高温的局限,在设定加温的上限值时不允许超过C120︒.。
直流非平衡电桥实验报告
一、实验目的1. 了解直流非平衡电桥的原理和组成。
2. 掌握直流非平衡电桥的使用方法。
3. 通过实验验证直流非平衡电桥的测量原理。
4. 提高对电桥电路分析和故障排查的能力。
二、实验原理直流非平衡电桥是一种测量电阻、电容、电感等参数的电路。
它由四个电阻组成,其中两个电阻作为电桥的臂,另外两个电阻作为测量臂。
当电桥达到平衡状态时,测量臂上的电压为零,此时可以通过测量测量臂上的电阻值来得到被测电阻的值。
三、实验仪器与设备1. 直流稳压电源2. 数字多用表3. 非平衡电桥4. 标准电阻5. 连接线四、实验步骤1. 按照电路图连接直流非平衡电桥,确保电路连接正确。
2. 将标准电阻接入电桥的测量臂,调整电桥的平衡旋钮,使电桥达到平衡状态。
3. 记录此时测量臂上的电阻值。
4. 将被测电阻接入电桥的测量臂,再次调整电桥的平衡旋钮,使电桥达到平衡状态。
5. 记录此时测量臂上的电阻值。
6. 根据测量数据,计算被测电阻的值。
7. 对实验结果进行分析和讨论。
五、实验数据与结果1. 标准电阻值:R0 = 100Ω2. 第一次测量数据:R1 = 101Ω,电压U1 = 0.5V3. 第二次测量数据:R2 = 99Ω,电压U2 = 0.5V六、实验结果分析通过实验,我们得到了以下结论:1. 直流非平衡电桥可以有效地测量电阻值。
2. 实验过程中,电桥的平衡状态可以通过调整平衡旋钮来实现。
3. 实验结果与理论计算值基本一致,说明实验结果可靠。
七、实验讨论1. 实验过程中,由于电桥的平衡旋钮调整幅度较小,可能导致测量误差较大。
2. 在实际应用中,直流非平衡电桥可以应用于电阻、电容、电感等参数的测量。
3. 为了提高实验精度,可以采用高精度的电阻和电压表。
八、实验总结本次实验成功地验证了直流非平衡电桥的测量原理,通过实验我们掌握了直流非平衡电桥的使用方法,提高了对电桥电路分析和故障排查的能力。
在实验过程中,我们发现了实验误差和不足之处,为今后的实验提供了借鉴和改进的方向。
直流非平衡电桥实验报告
直流非平衡电桥
直流电桥是一种精密的电阻测量仪器,具有重要的应用价值。
按电桥的测量方式可分为平衡电桥和非平衡电桥。
平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值,如单臂直流电桥(惠斯登电桥)、双臂直流电桥(开尔文电桥)。
它们
只能用于测量具有相对稳定状态的物理量,而在实际工程中和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量;非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行运算处理,从而得到引起电阻变化的其它物理量,如温度、压力、形变等。
实验目的
1.了解非平衡电桥的组成和工作原理,以及在实际中的应用。
2.学会用外接电阻箱法研究非平衡电桥的输出电压与电阻应变量之间的关系,通
过作图研究其线性规律。
3.了解桥臂电阻大小对非平衡电桥的灵敏度和线性围的影响,学会根据不同的
测量需求来选择合适的桥臂电阻。
4.学会利用非平衡电桥测量Cu丝的电阻温度系数。
实验容:
此处仅对2.(2)的作图给出例(用Origin作图):
要画三大组图,分别是R0=1000欧5000欧50欧三种情况下的。
每组三小图,包括原图,放大后的上界图,放大后的下界图。
这样能比较精确的找到线性区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非平衡直流电桥的原理和应用非平衡直流电桥的原理和应用直流电桥是一种精密的电阻测量仪器,具有重要的应用价值。
按电桥的测量方式可分为平衡电桥和非平衡电桥。
平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值,如单臂直流电桥(惠斯登电桥)、双臂直流电桥(开尔文电桥)。
它们只能用于测量具有相对稳定状态的物理量,而在实际工程中和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量;非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行运算处理,从而得到引起电阻变化的其它物理量,如温度、压力、形变等。
【实验目的】本实验采用FQJ型教学用非平衡直流电桥,该仪器集单臂、非平衡电桥于一体,通过本实验能掌握以下内容:1.直流单臂电桥(惠斯登电桥)测量电阻的基本原理和操作方法;2.非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法;3.根据不同待测电阻选择不同桥式和桥臂电阻的初步方法及非平衡电桥功率输出法测电阻;4.单臂电桥采用“三端”法测量电阻的意义。
【实验仪器】1. FQJ型教学用非平衡直流电桥;2. FQJ非平衡电桥加热实验装置。
【实验原理】FQJ型教学用非平衡直流电桥包括单臂直流电桥,非平衡直流电桥,上节我们已经对单臂电桥有所了解,下面对非平衡电桥的工作原理进行介绍。
图1 非平衡电桥原理图1.非平衡电桥桥路输出电压非平衡电桥原理如图1所示,当负载电阻gR →∞ ,即电桥输出处于开路状态时,g0I = ,仅有电压输出,并用0U 表示,根据分压原理,ABC 半桥的电压降为S U ,通过14, R R 两臂的电流为:S1414UI I R R ==+ (1)则4R 上之电压降为:4BC S14R U U R R =•+(2)同理3R 上的电压降为:3DC S23R U U R R =•+(3)输出电压0U 为BCU 与DCU 之差()()340BC DC S S14232413S1423()R R U U U U U R R R R R R R R U R R R R =-=-++-=++(4)当满足条件1324R R R R = 时,电桥输出00U = ,即电桥处于平衡状态。
(5)式就称为电桥的平衡条件。
为了测量的准确性,在测量的起始点,电桥必须调至平衡,称为预调平衡。
这样可使输出只与某一臂电阻变化有关。
若123, , R R R 固定,4R 为待测电阻4xR R =,则当44R R R →+∆ 时,因电桥不平衡而产生的电压输出为:()242130S142323()()R R R R R RU U R R R R R R R +∆-=+++∆+ (5)当12R R R '==,34R R R ==,且R R '≠电阻增量R ∆较小时,即满足rR R ∆<< 时,公式的分母中含R ∆项可略去,公式可得以简化,各种电桥的输出电压公式为:02()RR RU R R R'∆='+ (6)注意:上式中的R 和其R '均为预调平衡后的电阻。
十分清楚,当满足rR R ∆<<时,测量得到电压输出与/R R ∆成线性比例关系,通过上述公式运算得/R R ∆或R ∆ ,从而求得44R R R =±∆或XXR R R =±∆。
2.用非平衡电桥测热敏电阻本实验采用51MF k 7.2Ω型半导体热敏电阻进行测量。
该电阻是由一些过渡金属氧化物(主要用Fe ,Ni ,Co ,Mn 等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成,具有P 型半导体的特性,对于一般半导体材料,电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略。
但上述过渡金属氧化物则有所不同,在室温范围内基本上已全部电离,即载流子浓度基本上与温度无关,此时主要考虑迁移率与温度的关系。
随着温度升高,迁移率增加,电阻率下降,故这类金属氧化物半导体是一种具有负温度系数的热敏电阻元件,其电阻-温度特性见表6。
根据理论分析,其电阻-温度特性的数学表达式通常可表示为t25n11exp[()]298R R B T =- 式中,25tR R , 分别为C 25︒和°C t 时热敏电阻的电阻值;273T t =+;nB 为材料常数,制作时不同的处理方法其值不同。
对于确定的热敏电阻,可以由实验测得的电阻-温度曲线求得。
我们也可以把上式写成比较简单的表达式t 00E BU KTTR R eR e==因此,热敏电阻之阻值tR 与t 为指数关系,是一种典型的非线性电阻。
式中298t25BUR Re-= 。
k 为玻尔兹曼常数(231.380610k -=⨯焦耳/开尔文)。
【实验内容及方法】1. 非平衡直流电桥实验内容及方法:FQJ 型非平衡直流电桥之三个桥臂ab, R R 及cR ,其中a bR R =由同轴双层(同步变化的电阻盘)Ω++++⨯)1.01101001000(10电阻箱组成,cR 则由10(100010010⨯+++10.10.01)++Ω电阻箱组成,调节范围在Ωk 1110.11~0内,负载电阻gR '由1个Ωk 10的多圈电位器(粗调)和1个Ω100多圈电位器(细调)串联而成,可在Ωk 1.10范围内调节。
数字电压表量程mV 200。
功率1为mA 20,采样电阻S10R =Ω,用于测量Ω<k 1的较小电阻。
功率2为A 200μ ,采样电阻S1k ΩR =,用于测量Ω>k 1电阻。
电压输出时,允许XR 变化率向上变化达到%100,向下变化为%70。
2. 非平衡电桥电压输出形式测电阻 1C2a3bR R R R R R ===、、,测量范围:111.111k ΩΩ~。
① 确定各桥臂电阻。
使ac1k ΩR R R ===,b2k ΩR R '==左右(供参考,可自己另行设计)② 预调平衡,将待测电阻4R 接至XR ,功能、电压转换开关转至“电压”输出,按下, G B 微调CR 使电压输出00U = 。
③ 改变4R ,记录R ∆理论值,并记下相应的电压变化值gU ∆ 。
根据(6)计算出R ∆的实验值,其中S1.3V U = 。
④ 计算出实验值和理论值的相对误差E 。
3. 测量铜电阻(配用FQJ 非平衡电桥加热装置)(1)非平衡电桥电压输出形式测量铜电阻① 确定各桥臂电阻值。
设定室温时之铜电阻值为0R (查表)使340R R R R ===选择1250R R R '===Ω(供参考,可自行设计)② 预调平衡,将待测电阻接至XR ,123050, R R R R ==Ω=,功能转换开关转至电压输出,, G B 按钮按下,微调1R 使电压00U = ③ 开始升温,每C 5︒测量1个点,同时读取温度t 和输出0()U t ,连续升温,分别将温度及电压值记录入表1。
表 1 温度和电压记录表温度(C ︒) 0()(mA)V t数据处理:根据(6)式求出各点之()R t ∆和()R t 值,用最小二乘法求C 0︒时的电阻值0R 和α,计算α的不确定度。
4. 热敏电阻的测量(1)采用非平衡电桥的电压输出测量热敏电阻51MF k 7.2Ω之()R t ,温度范围从室温加热至C 65︒ 。
① 根据51MF k 7.2Ω之电阻-温度特性研究桥式电路,并设计各桥臂电阻,, R R ',以确保电压输出不会溢出(预习时设计计算好)。
实验时可以先用电阻箱模拟,若不满足要求,立即调整R ' 阻值。
② 预调平衡a) 根据桥式,预调, R R '。
室温时之电阻值为0R 。
b) 将功能转换开关旋至“电压”输出,按下, G B 开关,微调3R 使数字电压表为0。
③ 升温,每隔C 5︒测1个点,、利用测量数据按公式(6)计算得电阻值填入表2。
表2 温度和电阻记录表温度 )C (︒ 25 30 35 40 45 50 55 60 65 电阻(Ω)【思考题】1.测量电阻的原理是什么?2.与二端法测试电阻相比,三端法测试电阻有何优点?3.使用双桥测量小电阻时为什么要使12R R = ,如果不相等有何影响?4.非平衡电桥在工程中有哪些应用?试举一、二例。
5.非平衡电桥之立式桥为什么比卧式桥测量范围大?6.当采用立式桥测量某电阻变化时,如产生电压表溢出现象,应采取什么措施?【附录一】表 5 铜电阻50Cu 的电阻—温度特性C/004280.0︒=α温度)C (︒0 1 2 3 4 5 6 7 8 9电阻值)(Ω-539.24-4 0 41.40 41.18 40.97 40.75 40.54 40.32 40.10 39.89 39.67 39.46-3 0 43.55 43.34 43.12 42.91 42.69 42.48 42.27 42.05 41.83 41.61-2 0 45.70 45.49 45.27 45.06 44.84 44.63 44.41 42.20 43.98 43.77-1 0 47.85 47.64 47.42 47.21 46.99 46.78 46.56 46.35 46.13 45.92-0 50.00 49.78 49.57 49.35 49.1448.92 48.71 48.50 48.28 48.07 0 50.00 50.21 50.43 50.64 50.8651.07 51.28 51.50 51.81 51.93 10 52.l4 52.36 52.57 52.78 53.0053.21 53.43 53.64 53.86 54.07 20 54.28 54.50 54.71 54.92 55.1455.35 55.57 55.78 56.00 56.21 30 56.42 56.64 56.85 57.07 57.2857.49 57.71 57.92 58.14 58.35 40 58.56 58.78 58.99 59.20 59.4259.63 59.85 60.06 60.27 60.49 50 60.70 60.92 61.13 61.34 61.5661.77 61.93 62.20 62.41 62.63 60 62.84 60.05 63.27 63.48 63.7063.91 64.12 64.34 64.55 64.76 70 64.98 65.19 65.41 65.62 65.8366.05 66.26 66.48 66.69 66.90 80 67.12 67.33 67.54 67.76 67.9768.19 68.40 68.62 66.83 69.0490 69.26 69.47 69.68 69.90 70.11 70.33 70.54 70.76 70.97 71.18 100 71.40 71.61 71.83 72.04 72.25 72.47 72.68 72.90 73.11 73.33 110 73.54 73.75 73.97 74.18 74.40 74.61 74.83 75.04 75.26 75.47 12075.68【附录二】表 6 51MF k 7.2Ω 型热敏电阻的电阻-温度特性(供参考)温度 )C (︒25 30 35 40 45 50 55 60 65 电阻 (Ω) 2700 2225 1870 1573 1341 1160 1000 868 748【附录三】其它说明:1. 仪器面板中间桥路图中的“XR ”已在仪器内部与面板右上角的“XR ”、“X1R ”接线柱接通,(参见【附录四】的图2)。