动量和能量结合综合题附答案解析

合集下载

2023版新教材高考物理微专题小练习专题41动量和能量的综合应用

2023版新教材高考物理微专题小练习专题41动量和能量的综合应用

专题41 动量和能量的综合应用1.[2022·九师联盟质量检测]如图所示,质量为M的小车置于光滑的水平面上,车的上表面粗糙,有一质量为m的木块以初速度v0水平地滑至车的上表面,若车足够长,则木块的最终速度大小和系统因摩擦产生的热量分别为( )A.Mv0m+MmMv22(m+M)B.Mv0m+MmMv2m+MC.mv0m+MmMv22(m+M)D.mv0m+MmMv2m+M2.(多选)如图所示,两物体A、B用轻质弹簧相连静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2,使A、B同时由静止开始运动.在以后的运动过程中,关于A、B两物体与弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)( )A.虽然A、B两物体会有加速运动,但它们的总动量保持不变B.在以后的运动过程中F1、F2一直做正功,系统的机械能一直在增大C.当弹簧弹力的大小与F1、F2的大小相等时,A、B两物体总动能最大D.当弹簧弹力的大小与F1、F2的大小相等时,弹簧弹性势能最大3.[2022·山东省德州市期中]如图所示,光滑水平面上静止着一长为L的平板车,一人站在车尾将一质量为m的物体水平抛出,物体恰好落在车的前端.物体可看做质点,抛出位置位于车尾正上方,距车上表面的竖直高度为h ,不计空气阻力,已知人和车的总质量为M,重力加速度为g ,物体水平抛出时获得的冲量大小为( )A.mLg2hB.MLg2hC.m2LM+mg2hD.MmLM+mg2h4.[2022·八省八校第一次联考](多选)内部长度为L、质量为M的木箱静止在光滑的水平面上,木箱内部正中间放置一可视为质点的质量为m的木块,木块与木箱之间的动摩擦因数为μ.初始时木箱向右的速度为v0,木块无初速度.木箱运动的v­t图像如图所示,所有碰撞均为弹性碰撞且碰撞时间极短,重力加速度为g,则在0~t0时间内,下列说法正确的是( )A.M=2mB.M与m间的相对路程为v2 04μgC.M对地的位移为v2 08μg +32LD.m对地的位移为3v28μg -32L5.[2022·江苏盐城期末]如图所示,光滑水平面上甲、乙两球间粘少许炸药,一起以速度0.5 m/s向右做匀速直线运动.已知甲、乙两球质量分别为0.1 kg和0.2 kg.某时刻炸药突然爆炸,分开后两球仍沿原直线运动,从爆炸开始计时经过3.0 s,两球之间的距离为x=2.7 m,则下列说法正确的是( )A.刚分离时,甲、乙两球的速度方向相同B.刚分离时,甲球的速度大小为0.6 m/sC.刚分离时,乙球的速度大小为0.3 m/sD.爆炸过程中释放的能量为0.027 J6.[2022·湖南省五市十校联考]如图所示,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一光滑圆弧轨道,BC段是水平粗糙轨道,两段轨道相切于B 点.一质量为m的滑块(可视为质点)从小车上的A点由静止开始沿轨道滑下,然后滑入BC 轨道,最后恰好停在C点.已知M=3m,滑块与轨道BC间的动摩擦因数为μ,重力加速度为g.则下列说法正确的是( )A.滑块从A滑到C的过程中,滑块和小车组成的系统动量守恒B .滑块滑到B 点时的速度大小为2gRC .滑块从A 滑到C 的过程中,小车的位移大小为13(R +L) D .水平轨道的长度L =R μ7.[2022·湖北十堰高三阶段练习]如图所示,足够长的光滑水平直轨道AB 与光滑圆弧轨道BC 平滑连接,B 为圆弧轨道的最低点.一质量为1 kg 的小球a 从直轨道上的A 点以大小为4 m /s 的初速度向右运动,一段时间后小球a 与静止在B 点的小球b 发生弹性正碰,碰撞后小球b 沿圆弧轨道上升的最大高度为0.2 m (未脱离轨道).取重力加速度大小g =10 m /s 2,两球均视为质点,不计空气阻力.下列说法正确的是( )A .碰撞后瞬间,小球b 的速度大小为1 m /sB .碰撞后瞬间,小球a 的速度大小为3 m /sC .小球b 的质量为3 kgD .两球会发生第二次碰撞8.如图所示,静止在光滑水平面上的小车质量为M =20 kg .从水枪中喷出的水柱的横截面积为S =10 cm 2,速度为v =10 m /s ,水的密度为ρ=1.0×103kg /m 3.若水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.试求:(1)当有质量为m =5 kg 的水进入小车时,小车的速度大小;(2)若将小车固定在水平面上,且水冲击到小车前壁后速度立即变为零,求水对小车的冲击力大小.专题41 动量和能量的综合应用1.C 木块在小车上表面滑动的过程中动量守恒,有mv 0=(M +m )v ,系统因摩擦产生的热量Q =12mv 20 -12(M +m )v 2,两式联立解得木块的最终速度v =mv 0M +m,摩擦产生的热量Q =mMv 22(M +m ),C 正确.2.AC 由题意,水平恒力F 1、F 2等大反向,则系统受合外力为零,总动量守恒,故A 正确;拉力与物体的运动方向相同,则F 1、F 2一直做正功,系统的机械能一直在增大,当物体减速为零后此时弹簧的弹力大于拉力,物体会反向运动,此时拉力与运动方向相反,都做负功则机械能减少,B 错误;当弹簧弹力的大小与F 1、F 2的大小相等后,弹力大于拉力,则物体减速运动,故弹力的大小与F 1、F 2的大小相等时,A 、B 两物体速度最大,总动能最大,C 正确;当弹簧弹力的大小与F 1、F 2的大小相等后,物体减速运动,但仍然会使弹簧继续伸长,弹性势能继续增大,D 错误.3.D 系统水平方向动量守恒,mv 1=Mv 2,有mx 1=Mx 2,且x 1+x 2=L ,解得x 1=ML M +m,x 2=mL M +m .由平抛运动的规律得h =12gt 2,x 1=v 1t ,由动量定理得I =mv 1,解得I =MmL M +m g 2h.4.BCD 由v ­t 图像可知木块与木箱最终共速,则mv 0=(M +m )v 02,得m =M ,则A 错;由能量守恒可得:12Mv 20 =12(M +m )v 20 4+μmgs ,得到两物体的相对路程为v 20 4μg,B 正确;由图知共碰撞三次,都是弹性碰撞,到共速为止所花总时间为t =v 0-v 02μg=v 02μg,则木箱运动的位移为32L +v 20 8μg ,木块相对地面的位移为3v 20 8μg -32L ,C 、D 正确.5.D 设甲、乙两球的质量分别为m 1、m 2,刚分离时两球速度分别为v 1、v 2,以向右为正方向,则由动量守恒得(m 1+m 2)v 0=m 1v 1+m 2v 2,根据题意有v 2-v 1=xt,代入数据可解得v 2=0.8 m/s ,v 1=-0.1 m/s ,说明刚分离时两球速度方向相反,故A 、B 、C 错误;爆炸过程中释放的能量ΔE =12m 1v 21 +12m 2v 22 -12(m 1+m 2)v 20 ,将v 2=0.8 m/s ,v 1=-0.1 m/s ,代入计算可得ΔE =0.027 J ,故D 正确.6.D 滑块从A 滑到C 的过程中水平方向动量守恒,竖直方向上合力不为零,系统动量不守恒,故A 错误;滑块刚滑到B 点时速度最大,取水平向右为正方向,由水平方向动量守恒定律和机械能守恒定律得0=mv m -Mv M ,mgR =12mv 2m +12Mv 2M ,解得v m =3gR2,v M = gR6,滑块滑到B 点时的速度为3gR2,故B 错误;设全程小车相对地面的位移大小为s ,根据题意可知全程滑块水平方向相对小车的位移为R +L ,则滑块水平方向相对地面的位移为x ′=R +L -s ,滑块与小车组成的系统在水平方向动量守恒,取水平向右为正方向,在水平方向,由动量守恒定律得m (R +L -s )-Ms =0.已知M =3m ,解得s =14(R +L ),x ′=34(R +L ),故C 错误;系统在水平方向动量守恒,以向右为正方向,对整个过程,由动量守恒定律得0=(m +M )v ′,解得v ′=0,由能量守恒定律得mgR =μmgL ,解得L =Rμ,故D 正确.7.C 由机械能守恒m b gh =12mv 2B 可得碰后小球b 在B 点的速度为v B =2 m/s ,故A 错误;由动量守恒定律可得m a v 0=m a v 1+m b v B ,由机械能守恒可得12m a v 20 =12m a v 21 +12m b v 2B ,联立求得m b =3 kg ,v 1=-2 m/s ,碰撞后瞬间,小球a 的速度大小为2 m/s ,故B 错误,C 正确;碰后a 球立刻向左运动,b 球先向右运动到最高点,再向左返回到平面上运动,两球速度大小相等,所以两球不会发生第二次碰撞,故D 错误.8.(1)2 m/s (2)100 N解析:(1)流进小车的水与小车组成的系统动量守恒,当流入质量为m 的水后,小车速度为v 1,则mv =(m +M )v 1代入数据解得v 1=2 m/s.(2)在极短的时间Δt 内,冲击小车的水的质量为Δm =ρSv Δt 根据动量定理-F Δt =0-Δmv 联立解得F =100 N .。

解密07动量和能量的综合应用(分层训练)(全国通用)解析版

解密07动量和能量的综合应用(分层训练)(全国通用)解析版

解密07 动量和能量的综合应用1.如图所示,小明在演示惯性现象时,将一杯水放在桌边,杯下压一张纸条。

若缓慢拉动纸条,发现杯子会出现滑落;当他快速拉动纸条时,发现杯子并没有滑落。

对于这个实验,下列说法正确的是()A.缓慢拉动纸条时,摩擦力对杯子的冲量较小B.快速拉动纸条时,摩擦力对杯子的冲量较大C.为使杯子不滑落,杯子与纸条的动摩擦因数尽量大一些D.为使杯子不滑落,杯子与桌面的动摩擦因数尽量大一些【答案】选D【解析】纸条对杯子的摩擦力一定,缓慢拉动纸条时时间长,则摩擦力对杯子的冲量较大;快速拉动纸条时时间短,则摩擦力对杯子的冲量较小,故A、B错误;为使杯子不滑落,杯子与桌面的动摩擦因数尽量大一些,这样杯子在桌面上运动的加速度大,位移短,故C 错误、D正确。

2.“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动,从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是()A.绳对人的冲量始终向上,人的动量先增大后减小B.绳对人的拉力始终做负功,人的动能一直减小C.绳恰好伸直时,绳的弹性势能为零,人的动能最大D.人在最低点时,绳对人的拉力等于人所受的重力【答案】选A【解析】从绳恰好伸直到人第一次下降至最低点的过程中,人先做加速度减小的加速运动,后做加速度增大的减速运动,加速度等于零时,速度最大,故人的动量和动能都是先增大后减小,加速度等于零时(即绳对人的拉力等于人所受的重力时)速度最大,动量和动能最大,在最低点时人具有向上的加速度,绳对人的拉力大于人所受的重力。

绳的拉力方向始终向上与运动方向相反,故绳对人的冲量方向始终向上,绳对人的拉力始终做负功。

故A正确,B、C、D错误。

A组基础练3.(2021·广西钦州综测)“飞针穿玻璃”是一项高难度的绝技表演,曾引起质疑。

为了研究该问题,以下测量能够得出飞针在穿越玻璃的时间内,对玻璃平均冲击力大小的是( )A .测出玻璃厚度和飞针穿越玻璃前后的速度B .测出玻璃厚度和飞针穿越玻璃所用的时间C .测出飞针质量、玻璃厚度和飞针穿越玻璃所用的时间D .测出飞针质量、飞针穿越玻璃所用时间和穿越玻璃前后的速度【答案】选D【解析】在“飞针穿玻璃”的过程中,由动量定理得:-F - t =mv 2-mv 1,结合牛顿第三定律可知,应测出飞针质量、飞针穿越玻璃所用时间和穿越玻璃前后的速度,故D 正确,A 、B 、C 错误。

“动量和能量”综合练习题

“动量和能量”综合练习题
1 . 一 0 2 一 1 . 5m 6 . 5 6 2
1 . 1 2 2 6 、 m 7 ( ) s( ) m l
1. 1 2  ̄ 8 () /
(一 三5十1 ̄ 2 √一4 -t ) 5 % h 3 /, 。 / - 3 t
1 F 一 6 t ng 9. a
维普资讯
第2 6卷 总 第 3 6期 1 20 0 8年 第 5期 ( 下半 月)






Vo . 6 No 3 6 12 . 1
J u n l o Phy is Te c i g o r a f sc ahn
“ 量 和 能 量 ’综 合 练 习题 动 ’
l .在 光 滑 水 平 面 上 , 能 为 、 量 的 大 O 动 动
小 为 P 的小钢 球 1 。 与静止 小钢球 2 生碰撞 , 发 碰 撞前 后球 1的运 动方 向相反 。 将碰 撞 后球 1的动 能 和动量 的大 小乡 别 记为 E。P , 2的动能 和 j 、 。球 动量 的大小 分别 记 为 E 、 。 则必 有 2P ,

李 志 豪
衢 州 第 二 中学 , 江 省 衢 州 市 3 4 0 浙 200


选 择 题
网上 1 8 高处 , .m 已知演员 与 网接触 时 间为 2 , sg 取 1 m/ 则演 员对 网的平 均 冲力 大小 是 0 s,
A. 0 N 50
C. 5 N 50
1 以初速度 " 水平抛 出一质量为 的物体 , . o 0 当物 体的速率为 时 , 重力做功 的瞬时功率为
1 .( ) 开木 板 时有水 平初 速度 而做平 抛 3 1离
维普资讯

专题20 动量与能量综合问题(解析版)

专题20  动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练专题20动量与能量综合问题【专题导航】目录热点题型一应用动量能量观点解决“子弹打木块”模型 (1)热点题型二应用动量能量观点解决“弹簧碰撞”模型 (4)热点题型三应用动量能量观点解决“板块”模型 (9)热点题型四应用动量能量观点解决斜劈碰撞现象 (13)【题型演练】 (16)【题型归纳】热点题型一应用动量能量观点解决“子弹打木块”模型s 2d s 1v 0子弹打木块实际上是一种完全非弹性碰撞。

作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。

下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。

设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……①从能量的角度看,该过程系统损失的动能全部转化为系统的内能。

设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有ds s =-21对子弹用动能定理:20212121mv mv s f -=⋅-……②对木块用动能定理:2221Mv s f =⋅……③②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅……④对子弹用动量定理:0-mv mv t f -=⋅……⑤对木块用动量定理:Mv t f =⋅……⑥【例1】(2020·江苏苏北三市模拟)光滑水平地面上有一静止的木块,子弹水平射入木块后未穿出,子弹和木块的v -t 图象如图所示.已知木块质量大于子弹质量,从子弹射入木块到达稳定状态,木块动能增加了50J ,则此过程产生的内能可能是()A .10JB .50JC .70JD .120J【答案】D.【解】析:设子弹的初速度为v 0,射入木块后子弹与木块共同的速度为v ,木块的质量为M ,子弹的质量为m ,根据动量守恒定律得:mv 0=(M +m )v ,解得v =mv 0m +M .木块获得的动能为E k =122=Mm 2v 202(M +m )2=Mmv 202(M +m )·m M +m .系统产生的内能为Q =12mv 20-12(M +m )v 2=Mmv 202(M +m ),可得Q =M +m mE k >50J ,当Q =70J 时,可得M ∶m =2∶5,因已知木块质量大于子弹质量,选项A 、B 、C 错误;当Q =120J 时,可得M ∶m =7∶5,木块质量大于子弹质量,选项D 正确.【变式1】(2020·陕西咸阳模拟)如图所示,相距足够远完全相同的质量均为3m 的两个木块静止放置在光滑水平面上,质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出第一块木块时的速度为25v 0,已知木块的长为L ,设子弹在木块中所受的阻力恒定。

动量和能量综合问题例析

动量和能量综合问题例析

动量和能量综合问题例析
动量和能量是物理学中最基础也是最重要的概念之一。

它们之间的关系
前五个世纪已进入各种相关科学的潮流,有各种综合实例让我们去分析和探索。

动量定义为物体所拥有的惯性,是物体移动时所产生的物理量,即动量
定义为物体的质量和速度的乘积,且它是一个守恒量,既不会减少,也不会
增加。

只有在力与动态平衡时,物体的动量才能保持稳定。

能量是物体发生变化时所拥有的量,它可以是动能、热能、电能等,它
至少有一种形式在变化,而另一种形式保持不变。

不像动量是守恒量,能量
却不是,能量在转化或消耗的过程中可会增加或减少。

实际上,动量和能量之间有相互联系和转化的规律,定义了它们之间有
某种影响的关系,其中又称为“动能定律”,即动能和动量之间是有相互联
系和转化的,当动量改变时,物体的动能也会随之改变,或反之,当动能发
生变化时,物体的动量也会改变。

举个例题:一弹球从高度h发射到地面,根据动能定律,给出该弹球从
发射到着陆的能量和转换过程:在发射时,弹球的动能为:Ea=mgh;发射时
的动量为:Pa=0。

然后当它准备落地时,弹球的动量已经为它提供了
Pb=2mv;而动能则被消耗为Eb=mgh,即与发射时相同,这里将发射落地两
个过程中速度&动量及动能转移做了对比。

总之,动量和能量之间是有相互联系和转化的,当其中一个改变的时候,另一个也会随之改变,这是一个重要的物理概念需要人们去分析和探索。

高中物理(新人教版)选择性必修一课后习题:第一章 动量和能量的综合应用(课后习题)【含答案及解析】

高中物理(新人教版)选择性必修一课后习题:第一章 动量和能量的综合应用(课后习题)【含答案及解析】

习题课:动量和能量的综合应用课后篇巩固提升必备知识基础练1.如图所示,木块A 、B 的质量均为2 kg,置于光滑水平面上,B 与一轻质弹簧的一端相连,弹簧的另一端固定在竖直挡板上,当A 以4 m/s 的速度向B 撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,弹簧具有的弹性势能大小为( )A.4 JB.8 JC.16 JD.32 J、B 在碰撞过程中动量守恒,碰后粘在一起共同压缩弹簧的过程中机械能守恒。

由碰撞过程中动量守恒得m A v A =(m A +m B )v ,代入数据解得v=m A vAm A +m B=2 m/s,所以碰后A 、B 及弹簧组成的系统的机械能为12(m A +m B )v 2=8 J,当弹簧被压缩至最短时,系统的动能为0,只有弹性势能,由机械能守恒得此时弹簧的弹性势能为8 J 。

2.(多选)如图甲所示,在光滑水平面上,轻质弹簧一端固定,物体A 以速度v 0向右运动压缩弹簧,测得弹簧的最大压缩量为x 。

现让弹簧一端连接另一质量为m 的物体B (如图乙所示),物体A 以2v 0的速度向右压缩弹簧,测得弹簧的最大压缩量仍为x ,则( )A.A 物体的质量为3mB.A 物体的质量为2mC.弹簧达到最大压缩量时的弹性势能为32mv 02 D.弹簧达到最大压缩量时的弹性势能为m v 02,设物体A 的质量为M ,由机械能守恒定律可得,弹簧压缩量为x 时弹性势能E p =12Mv 02;对题图乙,物体A 以2v 0的速度向右压缩弹簧,A 、B 组成的系统动量守恒,弹簧达到最大压缩量时,A 、B 二者速度相等,由动量守恒定律有M×(2v 0)=(M+m )v ,由能量守恒定律有E p =12M×(2v 0)2-12(M+m )v 2,联立解得M=3m ,E p =12M×v 02=32mv 02,A 、C 正确,B 、D 错误。

3.如图所示,带有半径为R 的14光滑圆弧的小车的质量为m 0,置于光滑水平面上,一质量为m 的小球从圆弧的最顶端由静止释放,求小球离开小车时,小球和小车的速度。

动量和能量观点的综合应用

动量和能量观点的综合应用
动量和能量观点的综合应用
一、滑块——木板类模型
1. 把滑块、滑板看作一个整体,摩擦力为内 力,则在光滑水平面上滑块和滑板组成的系 统动量守恒。 2.由于摩擦生热,机械能转化为内能,则系
统机械能不守恒。应由能量守恒求解问题。
1.有一质量为m=20千克的物体,以水平速度v=5米/ 秒的速度滑上静止在光滑水平面上的小车,小车质量 为M=80千克,物体在小车上滑行距离ΔL=4米后相对 小车静止。求: (1)物体与小车间的滑动摩擦系数。 (2)物体相对小车滑行的时间内,小车在地面上运动 的距离。
解析 木块m和物体P组成的系统在相互作用过程中遵守动 量守恒、能量守恒. (1)以木块开始运动至在斜面上上升到最大高度为研究过 程,当木块上升到最高点时两者具有相同的速度,根据动 量守恒,有 mv0=(2m+m)v①
根据能量守恒,有 1 2 1 mv0 = (2m+m)v2+fL+mgh② 2 2
碰后木块1停留在木板3的正中央,木板3碰撞前的初速
度v0为多大?(已知木块与木板之间的动摩擦因数为μ)
解析 设木板3的初速度为v0,对于3、2两木板的系统,设碰撞后 的速度为v1,据动量守恒定律得:
mv0=2mv1
量守恒定律得:
2mv1=3mv2 木块1恰好运动到木板3的正中央, 则据能量守恒有:
解析 画出运动示意图如图示 由动量守恒定律(m+M)V=mv
V=1m/s
由能量守恒定律 μmg L = 1/2 ×mv2 - 1/2 ×(m+M)V2 v m ∴μ= 0.25
M
对小车 μ mg S =1/2×MV2 ∴ S=0.8m S
L
m
M
V
2.如图所示,两块质量均为m,长度均为L的木板放置 在光滑的水平桌面上,木块1质量也为 m(可视为质点 ), 放于木板2的最右端,木板3沿光滑水平桌面运动并与 叠放在下面的木板2发生碰撞后粘合在一起,如果要求

动量与能量综合问题归类分析

动量与能量综合问题归类分析

量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0

设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J

⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。

v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:

动量和能量的综合例题竞赛难度

动量和能量的综合例题竞赛难度

动量和能量的综合例1:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。

设单位体积的太空均匀分布垃圾n颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。

飞船维持恒定的速率v飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。

试求飞船引擎所应提供的平均推力F 。

思考:如图所示,全长L、总质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v将绳子拉直。

忽略地面阻力,试求手的拉力F 。

例2:如图所示,两根长度均为L的刚性轻杆,一端通过质量为m 的球形铰链连接,另一端分别与质量为m和2m的小球相连。

将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。

忽略一切摩擦,试求:两杆夹角为90°时,质量为2m的小球的速度v2。

例3:如图所示,一个质量为M ,半径为R的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m的质点,由静止开始沿球面下滑。

试求:当质点m滑到方位角θ时(未脱离半球),质点的速度v的大小、方向怎样?练习1.在光滑水平的轨道上有两个玩具小车A、B,m A= 3 kg,m B=6 kg,它们之间有一根轻绳相连,开始时绳子完全松驰,二车紧靠在一起,如左下图所示,用3牛的水平恒力F拉B车,使B先运动,绳绷直后再拖动A前进,在B车前进了0.75米时,二车共同前进的速度v为2/3 m/s,求连接二车的绳长l。

(不计阻力,车可看作质点)练习2.质量为m1、运动速度为v1的物体与质量为m2,运动速度为v2的物体发生完全非弹性碰撞,v1与v2之间的夹角为α,求碰撞后的速度和碰撞时所损失的动能。

练习3.三个钢球,放在光滑桌面上,球心成一直线,位于中间的球,质量为m1,两边的球质量均为m2,给中间球一个初速,方向沿球心联成的直线,使它和另外两球先后相碰,并使此球能发生第三次碰撞,则m 1和m 2关系应如何?练习4.有四个大小可以不计的小木块l、2、3、4等距地依次排列在倾角300的斜面上,它们的质量分别为m l=m ,m2=2m,m3=3m,m4= 4m,斜面在木块2以上部分是光滑的,以下部分是粗糙的,四个木块与斜面粗糙部分之间的静摩擦系数和滑动摩擦系数均是μ,开始时用手扶住l,其余木块都静止在斜面上,放开手后,使1块自然下落并与2块相撞,接着与3块相撞,设各木块间的碰撞都是完全非弹性的,当l、2、3木块联合体下滑时,恰好停在第4块木块前面,并不发生碰撞,求摩擦系数μ的值。

碰撞、动量和能量的综合问题-试题君之每日一题君2017-2018学年高二物理人教版(上学期期末复习)

碰撞、动量和能量的综合问题-试题君之每日一题君2017-2018学年高二物理人教版(上学期期末复习)

1月26日碰撞、动量和能量的综合问题考纲要求:Ⅱ难易程度:★★★☆☆如图所示,在光滑水平桌面上放有足够长的木板C,在C上左端和距左端x处各放有小物块A和B,A、B均可视为质点,A、B与C间的动摩擦因数均为μ,A、B、C的质量均为m。

开始时,B、C静止,A以某一初速度v0向右做匀减速运动,设B与C间的最大静摩擦力等于滑动摩擦力。

下列说法正确的是A.A运动过程中,B受到的摩擦力为B.最终A、B、C一起向右以做匀速直线运动C.若要使A、B恰好不相碰,A的初速度D.若要使A、B恰好不相碰,A的初速度【参考答案】ABD【试题解析】设A在C上滑动时,B相对于C不动,则对B、C有,解得,又B依靠摩擦力能获得的最大加速度,故B未相对C滑动,B、C一起向右做加速运动,B受到的摩擦力,方向向右,A正确;A、B、C整体所受外力为零,动量守恒,故有,解得,B正确;若A、B恰好不相碰,则A 运动到B处时,A、B、C速度相等,由能量守恒有,解得,C错误,D正确。

质量为m A的A球以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰。

假设B球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大如图所示,在光滑水平面上,有质量分别为3m和m的A、B两滑块,它们中间夹着(不相连)一根处于压缩状态的轻质弹簧,由于被一根细绳拉着而处于静止状态。

则下列说法正确的是A.剪断细绳,在两滑块脱离弹簧后,A、B两滑块的动量大小之比p A:p B=3:1B.剪断细绳,在两滑块脱离弹簧后,A、B两滑块的速度大小之比v A:v B=3:1C.剪断细绳,在两滑块脱离弹簧后,A、B两滑块的动能之比E k A:E k B=1:3D.剪断细绳到两滑块脱离弹簧过程中,弹簧对A、B两滑块做功之比W A:W B=1:1如图所示,在光滑的水平面上静止放一质量为m的木板B,木板表面光滑,左端固定一轻质弹簧。

高中物理压轴题04 用动量和能量的观点解题(解析版)

高中物理压轴题04 用动量和能量的观点解题(解析版)

压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于动量和能量的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。

考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。

2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。

3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。

(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。

4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。

研究过程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。

(3)规定正方向。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。

第十六章 专题 动量和能量的综合应用

第十六章  专题 动量和能量的综合应用

第16章 动量守恒定律 专题 动量和能量的综合应用题型一 滑块—木板模型例1.如图所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?练习1.如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )A .L B.3L 4C.L 4D.L 2【小结】:1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.班级: 姓名:题型二子弹打木块模型例2.如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.练习2.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图所示,则上述两种情况相比较,下列说法不正确的是()A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大【小结】:1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.题型三 弹簧类模型例3.两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m 4,速度为v 0,子弹射入木块A 并留在其中.求:(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.练习3.如图所示,与水平轻弹簧相连的物体A 停放在光滑的水平面上,物体B 沿水平方向向右运动,跟与A 相连的轻弹簧相碰.在B 跟弹簧相碰后,对于A 、B 和轻弹簧组成的系统,下列说法中正确的是( )A .弹簧压缩量最大时,A 、B 的速度相同B .弹簧压缩量最大时,A 、B 的动能之和最小C .弹簧被压缩的过程中系统的总动量不断减少D .物体A 的速度最大时,弹簧的弹性势能为零【小结】:1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例4.(动量与能量的综合应用)如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.第16章 动量守恒定律专题 动量和能量的综合应用课后练习(一)1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12m v 2 B .μmgLC.12NμmgLD.mM v 22(m +M )3.用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图4所示.现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,重力加速度为g ,则下列说法正确的是( )A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v 0M +mC .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D .子弹和木块一起上升的最大高度为m 2v 022g (M +m )24.如图所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .4 JC .12 JD . 6 J班级: 姓名:5.如图所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h 4D .B 与A 分开后能达到的最大高度不能计算6.如图所示,光滑水平面上一质量为M 、长为L 的木板右端紧靠竖直墙壁.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v 滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后向左运动,刚好能够滑到木板左端而不从木板上落下,试求v v 0的值.动量守恒定律专题 动量和能量的综合应用课后练习(二)1.如图,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)(1)小滑块的最终速度大小;(2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少?2.两物块A 、B 用水平轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?班级: 姓名:3.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用不可伸长的细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平(细线绷直)无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g =10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,则小车B的最小长度为多少?4.如图所示,质量m B=2 kg的平板车B上表面水平,在平板车左端相对于车静止着一块质量m A=2 kg 的物块A,A、B一起以大小为v1=0.5 m/s的速度向左运动,一颗质量m0=0.01 kg的子弹以大小为v0=600 m/s的水平初速度向右瞬间射穿A后,速度变为v=200 m/s .已知A与B之间的动摩擦因数不为零,且A 与B最终达到相对静止时A刚好停在B的右端,车长L=1 m,g=10 m/s2,求:(1)A、B间的动摩擦因数;(2)整个过程中因摩擦产生的热量为多少?微型专题 动量和能量的综合应用[学习目标] 1.进一步熟练掌握动量守恒定律的应用.2.综合应用动量和能量观点解决力学问题.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ①得:v =v 04② (2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02③ 则木块A 所发生的位移为x 1=15v 0232μg④ (3)方法一:B 向右加速过程的位移设为x 2.则μmgx 2=12×3m v 2⑤ 由⑤得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二:从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2 得:L =3v 028μg. 二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图2(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案 (1)Mm v 22(M +m )(2)m 2v 22(M +m )2μg解析 因子弹未射出,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.(1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得:m v =(M +m )v ′①射入过程中系统损失的机械能ΔE =12m v 2-12(M +m )v ′2② 解得:ΔE =Mm v 22(M +m ). (2)子弹射入木块后二者一起沿地面滑行,设滑行的距离为x ,由动能定理得:-μ(M +m )gx =0-12(M +m )v ′2③ 由①③两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统动量守恒.当子弹不穿出木块时,相当于完全非弹性碰撞,机械能损失最多. 三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大. 例3 两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m4,速度为v 0,子弹射入木块A 并留在其中.求:图3(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能. 答案 (1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A 解得v A =v 05(2)由于子弹击中木块A 后木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给A 、B 木块施以弹力,使得木块A 加速、B 减速运动,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧弹性势能最大,在弹簧压缩过程木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒. 设弹簧压缩量最大时共同速度为v ,弹簧的最大弹性势能为E pm , 选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm 联立解得v =13v 0,E pm =140m v 02.1.(滑块—木板模型)如图4所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图4A .L B.3L 4 C.L 4 D.L2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C 项错误.2.(子弹打木块模型)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图5所示,则上述两种情况相比较,下列说法不正确的是( )图5A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 D解析 设子弹的质量是m ,初速度是v 0,滑块的质量是M ,选择子弹初速度的方向为正方向,由动量守恒定律知滑块获得的最终速度(最后滑块和子弹的共同速度)为v.则:m v0=(m+M)v所以:v=m v0M+m可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(子弹初、末速度相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;滑块的末速度是相等的,所以获得的动能是相同的,根据动能定理,滑块动能的增量是子弹做功的结果,所以两次子弹对滑块做的功一样多,故C正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,Q=F f·x相对,由于两种情况相比较子弹能射穿的厚度不相等,即相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类模型)(多选)如图6所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图6A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.4.(动量与能量的综合应用)如图7所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:图7(1)滑块A 与B 碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度. 答案 (1)2.5 m/s (2)0.375 m解析 (1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律得:m A gh =12m A v 12①代入数据解得v 1=2gh =5 m/s ②设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,以向右的方向为正方向, m A v 1=(m A +m B )v 2③ 代入数据解得v 2=2.5 m/s ④(2)设小车C 上表面的最短长度为L ,滑块A 与B 最终恰好没有从小车C 上滑出,三者最终速度相同设为v 3,以向右的方向为正方向 根据动量守恒定律有: (m A +m B )v 2=(m A +m B +m C )v 3⑤ 根据能量守恒定律有:μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 32⑥联立⑤⑥式代入数据解得L =0.375 m.一、选择题考点一 滑块-木板模型1.如图1所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )图1A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能答案 A解析 开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v 1,规定向右为正方向,根据动量守恒定律得:(M -m )v =M v 1代入数据解得:v 1≈2.67 m/s <2.9 m/s ,所以物块处于向左减速的过程中.2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图2所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图2A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1 系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.考点二 子弹打木块模型3.如图3所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法不正确的是( )图3A .木块的机械能增量为F f LB .子弹的机械能减少量为F f (L +d )C .系统的机械能减少量为F f dD .系统的机械能减少量为F f (L +d )答案 D解析子弹对木块的作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.4.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图4所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图4A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由于弹簧射入木块瞬间系统动量守恒可知:m v0=(m+M)v′所以子弹射入木块后的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.考点三弹簧类模型5.如图5所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图5A .P 的初动能B .P 的初动能的12C .P 的初动能的13D .P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确.6.如图6所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )图6A .3 JB .4 JC .12 JD .6 J 答案 D7.(多选)如图7所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图7A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,即A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,B 能达到的最大高度为h ′=14h ,即C 正确,D 错误. 二、非选择题8.(滑块—木板模型)如图8,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)图8(1)小滑块的最终速度大小; (2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少? 答案 (1)0.6 m/s (2)0.072 J (3)0.135 m 解析 (1)小滑块与长木板组成的系统动量守恒, 规定向右为正方向,由动量守恒定律得: m v 0=(m +M )v 解得最终速度为:v =m v 0M +m =0.2×1.20.2+0.2 m/s =0.6 m/s (2)由能量守恒定律得: 12m v 02=12(m +M )v 2+Q 代入数据解得热量为:Q =0.072 J (3)对小滑块应用动能定理: -μmgs =12m v 2-12m v 02代入数据解得距离为s =0.135 m.9.(子弹打木块模型)如图9所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一块质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度向左运动,一颗质量m 0=0.01 kg 的。

动量和能量的综合应用 例题精选

动量和能量的综合应用 例题精选

动量和能量的综合应用 例题精选例题1: 如图,质量为3m 、长度为L 的木块放于光滑水平面上,质量为m 的子弹以初速度v 0水平向右射入木块,穿出木块时速度变为0.4v 0 ,设木块对子弹的阻力始终保持不变,求:(1)子弹穿出木块后,木块的速度大小;(2)子弹穿出木块中所受平均阻力大小。

解:(1)子弹与木块组成的系统动量守恒,有mv 0=0.4mv 0+3mv ,则子弹穿出后木块的速度为v=0.2v 0 ;(2)子弹穿越木块的过程中,设木块的位移为s , 则据动能定理对子弹有:-f(s+L)= 12m(0.4v 0)2-12mv 02 对木块有: fs=123mv 2 联立解得:f=9mv 20/(25L)变式训练1:如图所示,质量为M 的木块固定在水平面上,有一质量为m 的子弹以初速度v 1水平射向木块,并恰能射穿,设木块的厚度及木块对子弹的平均阻力恒定. 试问若木块可以在光滑的水平面上自由滑动,子弹要射穿该木块速度至少应为多少?【解析】若木块在光滑水平面上能自由滑动,设子弹以速度v 0射入恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即 mv 0=(m +M )v设木块对子弹阻力为f, 木块厚度为d ,对系统应用能量守恒得fd =12mv 02-12(M +m )v 2由上面两式消去v 可得fd =12mv 02-12(m +M )(mv 0m +M)2 整理得12mv 20=m +M Mfd -----------------① 据题目条件,在木板固定时对子弹列动能定理有 -fd= - 12mv 12 ………………②联立① ② 可得v 0v 1例题2:如图甲质量m B =1 kg 的平板小车B 在光滑水平面上以v1=1 m/s 的速度向左匀速运动.当t =0时,质量m A =2 kg 的小铁块A 以v 2=2 m/s 的速度水平向右滑上小车,A 与小车间的动摩擦因数为μ=0.2.若A 最终没有滑出小车,取水平向右为正方向,g =10 m/s 2,则:1)A 在小车上停止运动时,小车的速度为多大?(2)小车的长度至少为多少?(3)在图乙所示的坐标纸中画出1.5 s 内的小车B 运动的速度—时间图象.解:因p A =m A v 2>p B =m B v 1,所以系统的总动量水平向右,即A 在车上停止运动时,它们必定以共同速度向右运动.此过程中A 的运动方向不变,做减速运动,而B 是先向左做匀减速运动而后再向右做匀加速运动,最后与A 达到共同速度.(1)A 在小车上停止运动时,A 、B 以共同速度运动,设其速度为v ,取水平向右为正方向,由动量守恒定律得 m A v 2-m B v 1=(m A +m B )v解得:v =1 m/s.(2)设小车的最小长度为L ,由功能关系得μmAgL =12m A v 22+12m B v 12-12(m A +m B )v 2 解得:L =0.75 m.(3)设小车匀变速运动的时间为t ,由动量定理得μmAgt =mB (v +v 1)解得:t =0.5 s故小车的速度—时间图象如右图所示.答案:(1)1 m/s (2)0.75 m (3)见解析图变式训练2:如图所示,一质量m 2=0.20 kg 的平顶小车,车顶右端放一质量m 3=0.25 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.4,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=12 3 m/s 射中小车左端,并留在车中.子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10 m/s 2.求:(1)小车的最小长度应为多少?最后小物体与小车的共同速度为多少?(2)小物体在小车上相对小车滑行的时间.【解析】(1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得 m 1v 0=(m 2+m 1)v 1 ①由三物体组成的系统动量守恒得(m 2+m 1)v 1=(m 2+m 1+m 3)v 2 ②设小车最小长度为L ,三物体相对静止后,对系统利用能量守恒定律得12(m 2+m 1)v 21-12(m 2+m 1+m 3)v 22=μm 3gL ③联立以上方程解得L =0.9 m车与物体的共同速度为 v 2=2.1 m/s(或1.2 3 m/s)(2)以m 3为研究对象,利用动量定理得:μm 3gt =m 3v 2 ④解得t =0.52 s(或0.3 3 s)例题3:如图所示,一轻质弹簧两端连着物体A 和物体B ,放在光滑的水平面上,水平速度为v 0的子弹射中物体A 并嵌在其中(作用时间极短),已知物体B 的质量为m B ,物体A 的质量是物体B的质量的34,子弹的质量是物体B 的质量的14,求(1) 弹簧被压缩至最短时的弹性势能;(2) B 物体的最大速度。

动量和能量综合问题

动量和能量综合问题

动量和能量综合问题班级__________ 座号_____ 姓名__________ 分数__________1. 弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m 1和m 2,碰前速度为v 1,v 2,碰后速度分别为v 1ˊ,v 2ˊ,则有: m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1)21m 1v 12+21m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 (2) 联立(1)、(2)解得:v 1ˊ=1212211-2v m m v m v m ++,v 2ˊ=2212211-2v m m v m v m ++.特殊情况:①若m 1=m 2 ,v 1ˊ= v 2 ,v 2ˊ= v 1 . ②若v 2=0则 v 1ˊ=12121-v m m m m +,v 2ˊ=21112m m v m +.(i)m 1>>m 2 v 1ˊ=v 1,v 2ˊ=2v 1 . (ii)m 1<<m 2 v 1ˊ=-v 1,v 2ˊ=0 . 2. 完全非弹性碰撞碰后物体的速度相同, 根据动量守恒定律可得:m 1v 1+m 2v 2=(m 1+m 2)v 共 (1)完全非弹性碰撞系统损失的动能最多,损失动能:ΔE k = ½m 1v 12+ ½ m 2v 22- ½(m 1+m 2)v 共2. (2) 联立(1)、(2)解得:v 共 =212211m m v m v m ++;ΔE k =2212121-21)v v (m m m m + 3. 非弹性碰撞介于弹性碰撞和完全非弹性碰撞之间的碰撞。

动量守恒,碰撞系统动能损失。

根据动量守恒定律可得:m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1) 损失动能ΔE k ,根据机械能守恒定律可得: ½m 1v 12+ ½ m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 + ΔE k . (2) 恢复系数e =2112-′-v v v v ′ ①非弹性碰撞:0<e <1;②弹性碰撞:e =1;③完全非弹性碰撞:e =0。

动量与能量结合综合题附答案

动量与能量结合综合题附答案

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cdB.cd始终做减速运动,ab始终做加速运动,但追不上cdC.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动D.磁场力对两金属杆做功的大小相等h,如图所示。

2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为后又向上运动。

若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求:1,质量为m时物块与木板碰撞后的速度;2,质量为2m时物块向上运动到O的速度。

3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热Q最多是多少?(2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?4.(20分) 如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,两物块的质量均为M=0.60kg。

一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A物块,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面。

板块动量能量综合题(答案)

板块动量能量综合题(答案)

板块动量能量综合题(参考答案)一、计算题1. 【答案】(1)3v;(2)273v gμ;(329v g μ 【解析】(1)以A 、B 两物体及小车组成的系统为研究对象,以A 的初速度方向为正方向,由动量守恒定律得203m v mv mv '⋅-+=解得'=3vv方向向右;(2)设平板车的长度至少为L ,根据系统能量守恒得222111(2)32223v m v mv m mgL μ⎛⎫+-⋅= ⎪⎝⎭解得273v L gμ=(3)①物体A 、B 未相碰撞,B 停止时,A 继续运动,此时小车开始运动.对小车应用动能定理210223v mgs m μ⎛⎫-=-⋅⨯ ⎪⎝⎭解得29v s gμ= ②物体B 速度为零时正好与A 相撞,碰后小车开始加速,最终达到共同速度3vv =共 .对小车应用动能定理得212023v mgs m μ⎛⎫'-⋅=-⋅⨯ ⎪⎝⎭,则 2=36v s g μ'所以小车位移大小的取值范围是 22369v v s g gμμ≤≤ 2. 【答案】 (1)4 m/s (2) m/s m/s 0.5 m 【解析】(1)对a 滑块在B 点有mg=m 得v B =m/s滑块a 与滑块b 碰后,由A 点运动到B 点,根据机械能守恒定律得 m =m +2mgR滑块a 与滑块b 发生弹性碰撞,有 mv 0=-mv A +Mv 1 m =m +M 联立解得v 1=4 m/s 。

(2)b 滑块冲上c 木板至刚离开c 木板的过程有 Mv 1=Mv 2+2Mv 3M=M+×2M+μMgL解得b刚离开长木板c时b滑块的速度v2=m/s,c木板的速度v3=m/s(另一解不合题意,已舍)b滑块冲上d木板的过程Mv2+Mv3=2Mv4M+M=×2M+μMgd解得d=0.5 m。

3.【答案】(1)物块A、B第一次碰撞前的速度大小各为13m/s和0.66m/s。

(2)B物块与木板C右端挡板碰后瞬间的速度为1.5m/s,方向向左;(3)若物块A、B第二次相碰于木板C左端,则v0应为3m/s。

2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习(附答案)

2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习(附答案)

2025届高考英语复习:经典好题专项(动量和能量的综合问题)练习1. (多选)一个质量为m 的小型炸弹自水平地面朝右上方射出,在最高点以水平向右的速度v 飞行时,突然爆炸为质量相等的甲、乙、丙三块弹片,如图所示。

爆炸之后乙由静止自由下落,丙沿原路径回到原射出点。

若忽略空气阻力,则下列说法正确的是( )A .爆炸后乙落地的时间最长B .爆炸后甲落地的时间最长C .甲、丙落地点到乙落地点O 的距离比为4∶1D .爆炸过程释放的化学能为7m v 232. (2023ꞏ湖南永州市模拟)如图所示,质量均为m 的木块A 和B ,并排放在光滑水平地面上,A 上固定一竖直轻杆,轻杆上端的O 点系一长为L 的细线,细线另一端系一质量为m 0的球C(可视为质点),现将C 球拉起使细线水平伸直,并由静止释放C 球,重力加速度为g ,忽略空气阻力,则下列说法不正确的是( )A .A 、B 两木块分离时,A 、B 的速度大小均为m 0m mgL2m +m 0B .A 、B 两木块分离时,C 的速度大小为2mgL2m +m 0C .C 球由静止释放到最低点的过程中,A 对B 的弹力的冲量大小为2m 0mgL2m +m 0D .C 球由静止释放到最低点的过程中,木块A 移动的距离为m 0L2m +m 03. (多选)如图所示,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧轨道,BC 段是长为L 的粗糙水平轨道,两段轨道相切于B 点。

一质量为m 的可视为质点的滑块从小车上的A 点由静止开始沿轨道下滑,然后滑入BC 轨道,最后恰好停在C 点。

已知小车质量M =4m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g ,则( )A .全过程滑块在水平方向上相对地面的位移的大小为R +LB .小车在运动过程中速度的最大值为gR 10C .全过程小车相对地面的位移大小为R +L5 D .μ、L 、R 三者之间的关系为R =μL4. (多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F 。

动量及能量经典题剖析及答案

动量及能量经典题剖析及答案

动量及能量经典题剖析一.动量问题1.斜面问题【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。

质量为m的小球以速度v1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H和物块的最终速度v。

2.子弹打木块类问题【例2】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。

这类问题相互作用过程中系统的动能增大,有其它能向动能转化。

可以把这类问题统称为反冲。

【例3】质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远?【例4】总质量为M的火箭模型从飞机上释放时的速度为v0,速度方向水平。

火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例5】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

5.某一方向上的动量守恒【例6】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例7】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

动量与能量守恒2025年综合题解析

动量与能量守恒2025年综合题解析

动量与能量守恒2025年综合题解析在物理学的领域中,动量与能量守恒定律一直是极为重要的核心概念,不仅在理论研究中具有关键地位,更在实际问题的解决中发挥着不可或缺的作用。

接下来,让我们深入探讨 2025 年的一道有关动量与能量守恒的综合题,通过解析这道题,来进一步加深对这两个重要定律的理解和应用。

题目如下:在一个光滑的水平面上,有两个质量分别为 m1 = 2kg 和 m2 = 3kg 的物体,它们以速度 v1 = 5m/s 和 v2 = 2m/s 相向运动,发生正碰。

碰撞后两物体粘在一起,求碰撞后的共同速度以及碰撞过程中损失的机械能。

首先,我们来分析一下这道题所涉及的知识点。

动量守恒定律指出,在一个不受外力或者所受合外力为零的系统中,系统的总动量保持不变。

对于这道题,在水平方向上,没有外力的作用,所以系统在碰撞前后的总动量是守恒的。

碰撞前两物体的总动量为:P1 = m1 v1 = 2 5 = 10 kg·m/sP2 = m2 v2 = 3 (-2) =-6 kg·m/s (因为相向运动,速度方向相反)总动量 P = P1 + P2 = 10 6 = 4 kg·m/s碰撞后两物体粘在一起,共同速度为 v,根据动量守恒定律可得:(m1 + m2) v = 4(2 + 3) v = 45v = 4v = 08 m/s接下来,我们来计算碰撞过程中损失的机械能。

碰撞前两物体的总动能为:E1 = 1/2 m1 v1^2 = 1/2 2 5^2 = 25 JE2 = 1/2 m2 v2^2 = 1/2 3 2^2 = 6 J总动能 E = E1 + E2 = 25 + 6 = 31 J碰撞后两物体的总动能为:E' = 1/2 (m1 + m2) v^2 = 1/2 5 08^2 = 16 J碰撞过程中损失的机械能为:ΔE = E E' = 31 16 = 294 J通过对这道题的解析,我们可以看出,在解决动量与能量守恒的综合问题时,关键是要清晰地判断系统是否满足动量守恒和能量守恒的条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由②③④解得物块B到桌边的最小距离 smin=2.5×10-2m
本题考查动量守恒与能量守恒的应用,物块A被子弹射穿后做平抛运动飞出桌面,由平抛运动规律可求得平抛运动的初速度及子弹射穿后木块的速度,在子弹射穿木块过程中系统动量守恒,子弹射进木块B中,木块B向右加速,使得A、B分离,如果以子弹、木块A、B为一个系统,内力远远大于外力,系统动量始终守恒,初状态为AB静止,末状态为子弹与B共速,列式可求得B的速度,再以子弹和木块A为研究对象,动量守恒可求得子弹飞出后的速度,此时AB速度相同,再以子弹和B为一个系统,系统动能的减小量完全转化为内能,系统的内能为阻力乘以相对距离及打进物体B的深度,由此可求解
5.(1) (2)
【解析】①轰击前后系统动量守恒,选中子速度方向为正方向
(1分)
氢核速度为 方向与中子原速度方向相同 (1分)
②由质能方程 (1分)

本题考查动量守恒定律,轰击前后系统动量守恒,找到初末状态,规定正方向,列公式求解,由爱因斯坦的质能方程可求得质量亏损
6.(1) (2) (3)12.5J
解得:
设物块与木板碰撞后一起开始向下运动的速度为 ,因碰撞时间极短,动量守恒: ,解得: 。
②设质量为 时物块与木板刚碰撞时弹簧的弹性势能为 ,当它们一起回到O点时,弹簧弹性势能为零,且此时物块与木板速度恰好都为零,以木板初始位置为重力势能零点,由机械能守恒得到:
设 表示质量为 时物块与木板碰撞后一起开始向下运动的速度,由动量守恒得到:
【名师点睛】本题主要考查了动量守恒定律、闭合电路的欧姆定律、导体切割磁感线时的感应电动势。分根据动量守恒定律确定两棒最后的末速度是本题的关键,分析这类电磁感应现象中的能量转化较易:系统减少的动能转化为回路的焦耳热;本题涉及到动生电动势、动量守恒定律、牛顿第二定律及闭合电路欧姆定律综合的力电综合问题,故本题属于难度较大的题。
考点:电磁感应问题的力的问题
【名师点睛】本题是牛顿第二定律在电磁感应现象中的应用问题.解答本题能搞清楚物体的受力情况和运动情况,突然让cd杆以初速度v向右开始运动,cd杆切割磁感线,产生感应电流,两杆受安培力作用,根据牛顿第二定律判断两杆的运动情况。
【答案】① ;②
【解析】
试题分析:①设物块与木板碰撞时,物块的速度为 ,由能量守恒得到:
(1)求滑块A从2L高度处由静止开始下滑,与B碰后瞬间B的速度。
(2)若滑块A能以与球B碰前瞬间相同的速度与滑块C相碰,A至少要从距水平轨道多高的地方开始释放?
(3)在(2)中算出的最小值高度处由静止释放A,经 一段时间A与C相碰,设碰撞时间极短,碰后一起压缩弹簧,弹簧最大压缩量为 L,求弹簧的最大弹性势能。
(1)在运动中产生的焦耳热 最多是多少?
(2)当 棒的速度变为初速度的 时, 棒的加速度 是多少?
4.(20分) 如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,两物块的质量均为M=0.60kg。一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A物块,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面。已知物块A的长度为0.27m,A离开桌面后,落地点到桌边的水平距离s=2.0m。设子弹在物块A、B 中穿行时受到的阻力保持不变,g取10m/s2。求:
【解析】(1)设木块被子弹击穿时的速度为u,子弹击穿木块过程动量守恒
解得 ………………………………(2分
设子弹穿出木块后,木块向右做匀减速运动的加速度为a,根据牛顿第二定律μmg=ma解得 …………………………………………(2分)木块向右运动到离A点最远时,速度为零,设木块向右移动最大距离为s1
解得 ………………………………………(2分) (2)根据能量守恒定律可知子弹射穿木块过程中产生的内能为
参考答案
1.C
【解析】
试题分析:让cd杆以初速度v向右开始运动,cd杆切割磁感线,产生感应电流,两杆受安培力作用,安培力对cd向左,对ab向右,所以ab从零开始加速,cd从v0开始减速.那么整个电路的感应电动势减小,所以cd杆将做加速度减小的减速运动,ab杆做加速度减小的加速运动,当两杆速度相等时,回路磁通量不再变化,回路中电流为零,两杆不再受安培力作用,将以相同的速度向右匀速运动.故C正确,AB错误.两导线中的电流始终相等,但由于通过的距离不相等,故磁场对两金属杆做功大小不相等;故D错误;故选C。
①棒运动达到稳定后的ab棒的速度大小;
②金属棒运动达到稳定的过程中,回路上释放出的焦耳热;
③金属棒运动达到稳定后,两棒间距离增加多少?
12.如图所示,导体棒ab质量为0.10kg,用绝缘细线悬挂后,恰好与宽度为50cm的光滑水平导轨良好接触,导轨上还放有质量为0.20kg的另一导体棒cd,整个装置处于竖直向上的匀强磁场中。将ab棒向右拉起0.80m高,无初速释放,当ab棒第一次经过平衡位置向左摆起的瞬间,cd棒获得的速度是0.50m/s。在ab棒第一次经过平衡位置的过程中,通过cd棒的电荷量为1C。空气阻力不计,重力加速度g取10m/s2,求:(1)ab棒向左摆起的最大高度;(2)匀强磁场的磁感应强度;(3)此过程中回路产生的焦耳热
3.(1) ;
(2)
【解析】
试题分析:(1)从开始到两棒达到相同速度 的过程中,两棒的总动量守恒,有
根据能量守恒定律,整个过程中产生的焦耳热
(2)设 棒的速度变为 时, 棒的速度为 ,则由动量守恒可知
解得
此时回路中的电动势为
此时回路中的电流为
此时 棒所受的安培力为
由牛顿第二定律可得, 棒的加速度
考点:动量守恒定律;闭合电路的欧姆定律;导体切割磁感线时的感应电动势
(1)滑块与小车共速时的速度及小车的最小长度;
(2)滑块m恰好从Q点离开圆弧轨道时小车的长度;
(3)讨论小车的长度L在什么范围,滑块能滑上P点且在圆轨道运动时不脱离圆轨道?
11.两根足够长的 平行光滑导轨,相距1m水平放置。匀强磁场竖直向上穿过整个导轨所在的空间B=0.4T。金属棒ab、cd质量分别为0.1kg和0.2kg,电阻分别为0.4Ω和0. 2Ω,并排垂直横跨在导轨上。若两棒以相同的初速度3m/s向相反方向分开,不计导轨电阻,求:
4.(1) =10m/s(2) m(3)smin=2.5×10-2m
【解析】(1)子弹射穿物块A后,A以速度vA沿桌面水平向右匀速运动,离开桌面后做平抛运动 t=0.40s
A离开桌边的速度 =5.0m/s
设子弹射入物块B后,子弹与B的共同速度为vB,子弹与两物块作用过程系统动量守恒:
B离开桌边的速度 =10m/s
E= …………………………(3分) 解得 …………………………………………………(1分)(3)设木块向右运动至速度减为零所用时间为t1,然后再向左做加速运动,经时间t2与传送带达到相对静止,木块向左移动的距离为s2。根据运动学公式
1,质量为m时物块与木板碰撞后的速度;
2,质量为2m时物块向上运动到O的速度。
3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为 ,导轨上面横放着两根导体棒 和 ,构成矩形回路,两根导体棒的质量皆为 ,电阻皆为 ,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为 。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒 静止,棒 有指向棒 的初速度 ,若两导体棒在运动中始终不接触,求:
动量与能量结合综合题
1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则( )
a.此过程中物体上升的高度;
b.此过程中物体的最大速度;
c.此过程中绳子对物体所做的功。
10.如图所示,水平地面和半圆轨道面均光滑,质量M=1kg的小车静止在地面上,小车上表面与R=0.24m的半圆轨道最低点P的切线相平。现有一质量m=2kg的滑块(可视为质点)以v0=6m/s的初速度滑上小车左端,二者共速时小车还未与墙壁碰撞,当小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ=0.2,g取10m/s2,求:
此后物块与木板碰撞后向上运动通过O点时,木板和物块具有相同的速度 ,由机械能守恒得到:
联立可以得到: 。
考点:能量守恒、动量守恒定律
【名师点睛】物体的碰撞瞬间,我们应该考虑到动量守恒定律;对于简谐运动,我们要运用该运动的特殊位置物理量的特点以及对称性;动能定理的应用范围很广,可以求速度、力、功等物理量,特别是可以去求变力功。
(2)设子弹离开A时的速度为 ,子弹与物块A作用过程系统动量守恒:
m/s
子弹在物块B中穿行的过程中,由能量守恒

子弹在物块A中穿行的过程中,由能量守恒

由①②解得 m
(3)子弹在物块A中穿行的过程中,物块A在水平桌面上的位移为s1,根据动能定理

子弹在物块B中穿行的过程中,物块B在水平桌面上的位移为s2,根据动能定理
13.(20分)如图所示,竖直放置的圆弧轨道和水平轨道两部分相连. 水平轨道的右侧有一质量为2m的滑块C与轻质弹簧的一端相连,弹簧的另一端固定在竖直的墙M上,弹簧处于原长时,滑块C静止在P点处;在水平轨道上方O处,用长为L的细线悬挂一质量为m的小球B,B球恰好与水平轨道相切,并可绕O点在竖直平面内摆动。质量为m的滑块A由圆弧轨道上静止释放,进入水平轨道与小球B发生弹性碰撞.P点左方的轨道光滑、右方粗糙,滑块A、C与PM段的动摩擦因数均为 =0.5,A、B、C均可视为质点,重力加速度为g.
(1)物块A和物块B离开桌面时速度的大小分别是多少;
(2)求子弹在物物块B未离开桌面,求物块B到桌边的最小距离。
相关文档
最新文档