(完整版)追击相遇问题专题总结,推荐文档
追击相遇问题(附详细的解题思路和解答)
追击相遇问题(附详细的解题思路和解答)
队伍长120m。
一士兵从队尾赶到队首向指挥官报告了队尾发生的情况后又回到队尾。
他一共走了432m路程。
设士兵和队伍都做匀速运动,这时队伍走的路程是多少?(设士兵向指挥官报告的时间不计)
答案详解见下页
[思路分析]
求解路程要抓住士兵的速度与通讯员的速度恒定为突破口,然后把整个过程分为两段进行考虑,即以通讯员恰好到达排头为第一段,此时他们的都是往前走的,他们的位移关系满足通讯员比士兵队伍多了120m,第二段以通讯员回走到达对尾为对象,此时他们的位移关系满足两者之和为120m。
然后以他们的速度之比为一恒量,列出等式,求解。
[解题过程]。
追击和相遇问题专题
追击和相遇问题1.速度大者追速度小者:【例1】一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m 处有一列快车以72 km/h 的速度向它靠近。
快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止。
试判断两车是否会相碰。
★解析:两车速度相等恰追及前车,这是恰不相碰的临界情况,因此只要比较两车等速时的位移关系,即可明确是否相碰。
因快车减速运动的加速度大小为:222/1.020002202s m s v a =⨯==快故快车刹车至两车等速历时: s a v v t 1201.0820=-=-=慢快 该时间内两车位移分别是:m at t v s 16801201.021120202122=⨯⨯-⨯=-=快快 m t v s 9601208=⨯==慢慢因为s 快>s 货+s 0=1560 m ,故两车会发生相撞。
针对训练:火车以速率V 1向前行驶,司机突然发现在前方同一轨道上距车为S 处有另一辆火车,它正沿相同的方向以较小的速率V 2作匀速运动,于是司机立即使车作匀减速运动,加速度大小为a ,要使两车不致相撞,求出a 应满足关式。
★解析:速度相等时,位移也相等则恰好不撞,at 21υυ-= a S a 21221212υυυυυυυ-⋅+=-⋅+ 解得:S a 2)(221υυ-=,则要求Sa 2)(221υυ-≥ 2.速度小者追速度大者:【例2】一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s 的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s 后警车发动起来,并以2.5m/s 2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?★解析:(l )警车在追赶货车的过程中,当两车速度相等时.它们的距离最大,设警车发动后经过t 1时间两车的速度相等.则.11042.5t =s=s s 货=(5.5+4)×10m = 95ms 警22111 2.54m 20m 22=at ==⨯⨯ 所以两车间的最大距离△s =s 货-s 警=75m (2) v 0=90km/h=25m/s ,当警车刚达到最大速度时,运动时间225s 10s 2.5t == s 货’=(5.5+10)×10m=155ms 警’=22211 2.510m 125m 22at ==⨯⨯ 因为s 货’>s 警’,故此时警车尚未赶上货车,且此时两本距离△s’=s 货’-s 警’=30m警车达到最大速度后做匀速运动,设再经过△t 时间迫赶上货车.则:m 2s s't==-∆∆v v所以警车发动后耍经过212s t=t +t=∆才能追上货车。
高中物理追击和相遇问题专题(含详解)
第3页 共8页
13.汽车以 3 m/s2 的加速度开始启动的瞬间,一辆以 6 m/s 的速度沿同方向做匀速直线运动的自行车
12
x v(t0 t1) at1 60m
此时
2
(2)警车发动到达到最大速度需要 t2= vm/a=8s
(1) 小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?
(2) 小汽车什么
时候追上自行车,此时小汽车的速度是多少?
( 二 ) .匀速运动追匀加速运动的情况 (开始时 v1> v 2):
1.当 v1> v 2 时,两者距离变小;
2.当 v1= v 2 时,①若满足 x1< x 2+Δ x,则永远追不上,此时两者距离最近;
———— -( 3)
由上面 3 式可解得 sAB 60km sAB 表示 AB 间的距离
4.设轿车行驶的速度为 v1,卡车行驶的速度为 v2,
则 v1= 108 km/h=30 m/s ,
v2=72 km/h=20 m/s , 在反应时间Δ t 内两车行驶的距离分别为 s1、 s2,则
s1= v1Δt ① s2= v2Δt ② 轿车、卡车刹车所通过的距离分别为
直线运动中的追及和相遇问题
一、相遇和追及问题的实质
研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键 1. 画出物体运动的情景图 2. 理清三大关系
( 1)时间关系 : tA tB t0
( 2)位移关系: xA xB x0
相遇追击问题总结
行程问题
基本公式:路程=速度×时间
(1)相遇问题
①、设:题目的问题既是所要设的未知量;
②、分析:根据题意画出相应的横线图
相遇点
甲所行驶路程乙所行驶的里程
③、等量关系:由②得
甲所行驶的路程+乙所行驶的路程=总路程
④、根据③中的等量关系列方程;
⑤、解、验、答。
(2)追击问题
①、设:题目的问题既是所要设的未知量;
②、分析:根据题意画出相应的横线图
甲乙相距距离追击过程中乙的路程及时间
甲乙
追击过程中甲的路程及时间
③、等量关系:一般的,追击者所走的路程=被追击者所走的路程+两者原来的距离
追击者所用时间=被追击者所用时间
④、根据③中的等量关系列方程;
⑤、解、验、答。
第1页共1 页。
高中物理追及相遇问题总结
高中物理追及相遇问题总结
追及相遇问题是高中物理中常见的一类问题,涉及到物体在不同的速度下,相对运动以及相遇时的时间、距离等概念。
下面是关于追及相遇问题的总结:
1.基本概念:
o相对速度:指两个物体之间的相对移动速度。
o追及问题:指两个物体一起出发后,其中一个物体追赶另一个物体,最终相遇的问题。
o相遇时的距离和时间:指在相对运动中,两个物体最终相遇时的距离和花费的时间。
2.追及相遇问题的解题方法:
o建立数学模型:根据问题描述,确定需要求解的变量,设定符号和数学关系。
o列方程:根据物体的运动特点,建立相对速度与距离、时间之间的数学关系。
o解方程:将列出的方程求解,得到未知数的数值。
o验证答案:回到原问题中,用求得的数值重新计算相关参数,验证答案的合理性。
3.常见的追及相遇问题类型:
o同向追及问题:两个物体以相同的方向、不同的速度移动,追及后相遇。
o反向追及问题:两个物体以相反的方向、不同的速
度移动,追及后相遇。
o来回追及问题:一个物体以一定速度往返移动,另一个物体以相同或不同的速度追及后相遇。
4.注意点:
o单位一致:保持问题中涉及的速度、时间、距离等单位统一,并根据需要进行换算。
o确定起点:确定问题中物体的起点位置,并根据需要选择相对位置进行计算。
o考虑时间方面:确保在方程中的时间一致,有时候需要根据问题的描述将时间分割为多个段落。
追及相遇问题需要根据具体的问题情境和要求,学生可以多进行实际问题的练习和实践,熟练掌握解决此类问题的方法和技巧。
追击相遇问题知识点总结
追击相遇问题知识点总结
追击相遇问题是数学中较为常见的几何问题,通常涉及到两个物体在同一直线
上追逐的情况。
以下是追击相遇问题的一些核心知识点总结:
1. 相对速度:追击相遇问题中,我们需要计算追赶者与被追赶者的相对速度。
这可以通过将两者的速度相减得出。
2. 时间关系:追赶者通常会追上被追赶者,因此我们关注的是时间的关系。
如
果我们能够确定他们相遇的时间,就能解决问题。
3. 距离关系:追击相遇问题中,我们通常需要确定两者的初始距离以及相遇时
的距离。
这些信息可以帮助我们计算出相遇的时间。
4. 运动方向:追击相遇问题中,我们需要考虑追赶者和被追赶者的运动方向。
这可以通过正负号来表示,正号表示正向运动,负号表示反向运动。
5. 使用方程:追击相遇问题通常可以通过建立方程来解决。
我们可以利用速度、时间和距离的关系来建立方程,从而求解问题。
总的来说,追击相遇问题要求我们理解速度、时间、距离和运动方向的关系,
并能够灵活运用这些关系来解题。
熟练掌握以上知识点,可以帮助我们解决各种追击相遇问题。
追击相遇问题方法全
解析:依题意,人与车运动的时间相等,设为t, 当人追上车时,两者之间的位移关系为: x人-x0=x车 即: v人t-x0=at2/2 由此方程求解t,若有解,则可追上;若无解,则 不能追上。 代入数据并整理得: t2-12t+50=0 Δ=b2-4ac=122-4×50=-56<0 所以,人追不上车。
1)当
v加=v匀
时,A、B距离最大;
2)当两者位移相等时,有
v加=2v匀 且A追上B。
例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的 加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶 来,从后边超过汽车。试求:汽车从路口开动后,在追上自行车之 前经过多长时间两车相距最远?此时距离是多少?
问题三:解决追及问题的突破口在哪? 突破口:研究两者速度相等时的情况 在追及过程中两物体速度相等时, 是能否追上或两者间距离有极值
的临界条件。
两种典型追及问题——
常见题型一:
同地同时出发,匀加速(速度小)直线运动追及匀速(速 度大)直线运动
开始两者距离增加,直到两者速度相等, 然后两者距离开始减小,直到相遇,最后 距离一直增加。
v v 2as
2 t
2 vt2 v0 0 (6) 2 s m 6m 2a 23
以自行车为参 照物,公式中的各个 量都应是相对于自 行车的物理量.注意 物理量的正负号.
问:xm=-6m中负号表示什么意思?
表示汽车相对于自行车是向后运动的,其相对于自行车的位 移为向后6m.
x汽
△x
1 2 3 2 x v自t at 6t t 2 2
当t 6 3 2 ( ) 2 2s时
x自
x m
62 3 4 ( ) 2
高中物理追击和相遇问题专题(含详解)
直线运动中的追与和相遇问题一、相遇和追与问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追与问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追与、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追与问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v1< v2):1.当v1< v2时,两者距离变大;2.当v1= v2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以32的加速度行驶,恰有一自行车以6的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v1> v2):1.当v1> v2时,两者距离变小;2.当v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x12+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
追击相遇问题总结
专题1. 若雨滴从屋檐上自由落下,某人用秒表测得雨滴经过屋檐下一个高为1.2m的窗户所用时间是0.2s, 你能求出窗户上端到屋檐的距离吗?从窗户下端到达地面所用的时间是0.5s, 你能求出屋檐的高度吗?,经过另一点的2. 若雨滴从屋檐上自由落下,经过某点的速度大小为9.8ms。
你能求出这两点之间的距离和雨滴经过这两点所用速度大小是19.6ms的时间各是多少吗?3. 一物体自空中O点开始做自由落体运动,途径A点后到达地面上B点。
,AB间距为7m。
求O点已知物体在B点处的速度是A点处速度的43离地面多高?4. 矿井深为12m,在井口每隔一定时间自由下落一个小球,当第11个小球刚从井口开始下落时,第1个小球恰好到达井底,求:(1)相邻两个小球开始下落的时间间隔(2)这时第3个小球和第5个小球相隔的距离5. 一个物体从H高处自由落下,经过最后196m所用的时间是4s,求物体下落H高所用的总时间T和高度H是多少?取g=9.8m/s2,空气阻力不6. 从离地500m的空中自由落下一个小球,取g= 10 m/s2,求:(1)经过多少时间落到地面;(2)从开始落下的时刻起,在第1s内的位移、最后1s内的位移;(3)落下一半时间的位移.7. 一小汽车从静止开始以3m/s2的加速度启动,恰有一自行车以6m/s的速度从车边匀速驶过,(1)汽车在追上自行车前经过多长时间后两者距离最远?此时距离是多少?(2)经过多长时间汽车能追上自行车?此时汽车的速度是多少?8. 车从静止开始以1m/s2的加速度前进,车后相距x0为25m处,某人同时开始以6m/s的速度匀速追车,能否追上?如追不上,求人、车间的最小距离。
9.A、B两物体相距8m, A在水平拉力和摩擦阻力作用下以4m/s的速度向右做匀速直线运动,B此时的速度为4m/s,在摩擦阻力作用下做匀减速运动,加速度大小为1m/s2,问经过多长时间A 追上B.10. A、B两物体相距8m, A在水平拉力和摩擦阻力作用下以4m/s的速度向右做匀速直线运动,B此时的速度为4m/s,在摩擦阻力作用下做匀减速运动,加速度大小为2m/s2,问经过多长时间A 追上B.11. A、B两车在一条水平直线上同向匀速行驶,B车在前,车速v2=10m/s,A车在后,车速v1=20m/s,当A、B相距100m时,A车用恒定的加速度a减速。
追击相遇问题专题(基本)
追及相遇问题专题1.解题关键:两者速度相等——往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点2. 解题方法(1)基本公式法——根据运动学公式,列出两物体运动的位移方程,注意两个物体运动时间之间的关系。
(有时利用二次函数Δ判别式判断) (2)图像法——正确画出物体运动的v--t 图像,根据图像的斜率、截距、面积的物理意义结合三大关系求解。
题型一: 相遇问题相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。
题型二:追及问题的图像关系 ①匀加速追匀速能追上且只能相遇一次; 交点意义:速度相等,两物体相距最远 ②匀减速追匀速当V 减=V 匀时,如果ΔS=S0,则恰能追上,这也是避免相撞的临界条件,只能相遇一次。
若ΔS <S0,则不能追上(其中S0为开始时两物体的距离) 交点意义:速度相等时若未追上,则距离最近.若ΔS >S0能相遇两次③匀速追匀加速,规律同上② ④匀速追匀减速,规律同上① ⑤匀加速追匀减速,规律同上① ⑥匀减速追匀加速,规律同上② 典型例题分析:例1. A 火车以v 1=20m/s 速度匀速行驶,司机发现前方同轨道上相距100m 处有另一列火车B 正以v 2=10m/s 速度匀速行驶,A 车立即做加速度大小为a 的匀减速直线运动。
要使两车不相撞,a 应满足什么条件? 解1:(公式法)两车恰好不相撞的条件是两车速度相同时相遇。
由A 、B 速度关系: 21v at v =- 由A 、B 位移关系: 022121x t v at t v +=-2220221/5.0/1002)1020(2)(s m s m x v v a =⨯-=-=2/5.0s m a >∴解2:(图像法)在同一个v-t 图中画出A 车和B 车的速度时间图像图线,根据图像面积的物理意义,两车位移之差等于图中梯形的面积与矩形面积的差,当t=t 0时梯形与矩形的面积之差最大,为图中阴影部分三角形的面积.根据题意,阴影部分三角形的面积不能超过100 .100)1020(210=-⨯t s t 200=∴5.0201020tan =-==αa 2/5.0s m a >∴解3:(二次函数极值法)若两车不相撞,其位移关系应为022121x t v at t v <--代入数据得:010010212>+-t at其图像(抛物线)的顶点纵坐标必为正值,故有0214)10(1002142>⨯--⨯⨯a a 2/5.0s m a >∴例2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始加速行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边超过汽车。
高一物理追击相遇问题知识点总结
高一物理追击相遇问题知识点总
结
1. 当两个物体在同一条直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距越来越大或越来越小时,就会涉及追及、相遇或避免碰撞等问题。
2. 追及问题的两类情况
(1) 若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度。
(2) 若后者追不上前者,则当后者的速度与前者速度相等时,两者相距最近。
3.相遇问题的常见情况
(1)两个同向运动的物体追上时相遇。
(2)相向运动的两物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。
4.追及相遇问题中的两个关系和一个条件
(1)两个关系:即时间关系和位移关系,这两个关系可通过画草图得到。
(2)一个条件:即两者速度相等,它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
5.追及相遇问题常见的情况
物体a追物体b,开始时,两个物体相距s。
(1)a追上b时,必有s=s a-s b且v a≥v b;
(2)要使两物体恰好不相撞,必有s=s a-s b且v a≥v b;;
(3)若使物体肯定不相撞,则由v a=v b;时s a-s b≤s,且之后
v a≤v b。
三总结提升
速度小者追速度大者
速度大者追速度小者
说明:
(1)表中的δx是开始追赶以后,后面物体因速度大而比前面物体多运动的位移;
(2)x0是开始追赶以前两物体之间的距离;
(3)t2-t0=t0-t1
(4)v1是前面物体的速度,v2是后面物体的速度。
专题4:追击和相遇问题
追击和相遇问题一、知识要点两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。
(一)追及问题1、追及问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。
若甲的速度小于乙的速度,则两者之间的距离。
若一段时间内两者速度相等,则两者之间的距离。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即。
v v=乙甲⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶ 匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
3、分析追及问题的注意点:⑴ 要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t-图象的应用。
(二)相遇⑴ 同向运动的两物体的相遇问题即追及问题,分析同上。
⑵ 相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
二、知识运用典型例题例1.在十字路口,汽车以0.5m/s2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?例2.火车以速度v1匀速行驶,司机发现前方同轨道上相距S处有另一列火车沿同方向以速度v2(对地、且v1>v2)做匀速运动,司机立即以加速度a 紧急刹车,要使两车不相撞, a应满足什么条件?三、知识运用课堂训练1、为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v=120km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s.刹车时汽车的加速度为a=4m/s2.该高速公路上汽车间的距离s 至少应为多少?(取重力加速度g=10m/s2.)2、客车以20m/s的速度行驶,突然发现同轨前方120m处有一列货车正以6m/s的速度同向匀速前进,于是客车紧急刹车,刹车引起的加速度大小为0.8m/s2,问两车是否相撞?3、如图,A、B两物体相距S=7米,A正以V1=4米/秒的速度向右做匀速直线运动,而物体B此时速度V2=10米/秒,方向向右,做匀减速直线运动(不能返回),加速度大小a=2米/秒2,从图示位置开始计时,经多少时间A追上B.家庭作业:1.甲乙两个质点同时同地向同一方向做直线运动,它们的v—t图象如图所示,则()A.乙比甲运动的快B.2 s乙追上甲C.甲的平均速度大于乙的平均速度D.乙追上甲时距出发点40 m远2.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s的速度从A 车旁边驶过,且一直以相同速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始()A.A车在加速过程中与B车相遇B.A、B相遇时速度相同C.相遇时A车做匀速运动 D.两车不可能再次相遇3.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为V0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行的距离为s,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为:()A.1s B.2s C.3s D.4s4.A与B两个质点向同一方向运动,A做初速为零的匀加速直线运动,B做匀速直线运动.开始计时时,A、B位于同一位置,则当它们再次位于同位置时: ( ).A.两质点速度相等.B.A与B在这段时间内的平均速度相等.C.A的即时速度是B的2倍.D.A与B的位移相等.5.汽车甲沿平直公路以速度V做匀速直线运动,当它经过某处的另一辆静止的汽车乙时,乙开始做初速度为零的匀加速直线运动去追甲。
追击相遇问题复习总结
追及与相遇问题一、要点阐释追击和相遇问题是高考中的难点,也是高考中比较容易出现的一个考点。
讨论追击、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置的问题。
(1)两个关系:时间关系和位移关系(2)一个条件:两者速度相等两者速度相等,往往是物体间能否追上,或两者距离最大、最小的临界条件,是分析判断的切入点。
1.追及问题常见的情形(1)速度小的物体甲追速度大的物体乙判断:甲一定能追上乙,V甲=V乙的时刻为甲、乙有最大距离的时刻(2)速度大的物体甲追速度小的物体乙判断V甲=V乙的时刻甲乙的位置情况:①若甲在乙后面,则甲追不上乙,此时是甲乙距离最小的时候。
②若甲乙在同一处,则甲恰能追上乙。
③若甲在乙前,则追上,并相遇两次。
2.相遇问题(1)同向运动的两物体能追上即相遇。
(2)相向运动的物体,当各自位移大小之和等于开始时两物体的距离,即相遇。
3.相撞问题两物体“恰相撞”或“恰不相撞”的临界条件:(1)两物体在同一位置时,速度恰相同。
(2)若后面的速度大于前面的速度,则相撞。
4.解题基本思路(1)分析两物体的运动,画出两物体的运动示意图,把各参量标在图上。
(2)列出两物体的位移方程。
(3)由运动示意图找出两物体位移间关系方程。
(4)联立方程组,解题,检查结果的合理性。
二、例题分析例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3 m/s 2的加速度开始加速行驶,恰在这时一辆自行车以6 m/s 的速度匀速驶来,从后边超过汽车。
试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?方法一:公式法解:当汽车的速度与自行车的速度相等时,两车之间的距离最大。
设经时间t 两车之间的距离最大。
则:自汽v at v ==那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?方法二:图象法 解:画出自行车和汽车的速度-时间图线,自行车的位移x 自等于其图线与时间轴围成的矩形的面积,而汽车的位移x 汽则等于其图线与时间轴围成的三角形的面积。
追及相遇问题专题总结含答案
追及相遇问题专题总结一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =±(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
二、追及问题中常用的临界条件:1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离;2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上:(1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。
(2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。
(3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。
二.几种典型的追击、相遇问题在讨论A 、B 两个物体的追击问题时,先定义几个物理量,0x 表示开始追击时两物体之间的距离,x ∆表示开始追及以后,后面的物体因速度大而比前面物体多运动的位移;1v 表示运动方向上前面物体的速度,2v 表示后面物体的速度。
下面分为几种情况:1. 特殊情况:同一地点出发,速度小者(初速度为零,匀加速运动)追击速度大者(匀速运动)。
(1)当12v v =,A 、B 距离最大。
(2)当两者位移相等时,有 122v v =且A 追上B 。
(3)A 追上B 所用的时间等于它们之间达到最大距离时间的两倍,122t t =。
(4)两者运动的速度时间图像2. 速度小者(2v )追击速度大者(1v )的一般情况3. 速度大者(2v )追速度小者(1v )的一般情况追击与相遇问题专项典型例题分析类型图象 说明匀加速追匀速①t =t 0以前,后面物体与前面物体间距离增大②t =t 0时,两物体相距最远为x 0+Δx③t =t 0以后,后面物体与前面物体间距离减小④当两者的位移相同时,能追及且只能相遇一次。
(完整word版)追击相遇问题专题讲解
追击与相遇专题讲解1。
速度小者追速度大者:匀加速追匀速①t=t 0以前,后面物体与前面物体间距离增大②t=t 0时,两物体相距最远为x 0+Δx③t=t 0以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀速追匀减速匀加速追匀减速2。
速度大者追速度小者:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx匀速追匀加速匀减速追匀加速③若Δx〉x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2—t0=t0—t1;④v1是前面物体的速度,v2是后面物体的速度.考点1 追击问题1、追及问题中两者速度大小与两者距离变化的关系.甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。
若甲的速度小于乙的速度,则两者之间的距离。
若开始甲的速度小于乙的速度过一段时间后两者速度相等,则两者之间的距离(填最大或最小)。
2、追及问题的特征及处理方法:“追及"主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即v v.乙甲⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
判断方法是:假定速度相等,从位置关系判断。
①当甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②当甲乙速度相等时,甲的位置在乙的前方,则追上,此情况还存在乙再次追上甲。
③当甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态.解决问题时要注意二者是否同时出发,是否从同一地点出发。
专题07 追击相遇问题 (原稿版)
专题07 追击相遇问题专题导航常考点追及相遇问题的分类、解题思路以及解题方法分析................................................. 错误!未定义书签。
考点拓展练习 .. (6)常考点追及相遇问题的分类、解题思路以及解题方法分析【典例1】火车A以速度v1匀速行驶,司机发现前方同轨道上相距S处有另一火车B沿同方向以速度v2(对地,且v1>v2)做匀速运动,司机立即紧急刹车,火车A做加速度大小为a1的匀减速直线运动.问:(1)要使两车不相撞,a1应满足什么条件?(2)若火车A开始刹车时,火车B的司机也同时开始紧急刹车,其加速度大小为a2,为了使火车A,B不发生相碰,则开始刹车时,火车A、B之间的距离S应满足什么条件?【典例2】2021年1月22日,历时4年多建设的成都天府国际机场迎来国内6家航空公司的试飞,一架川航空客A330﹣300“大运号”彩绘机以40m/s的速度安全降落在机场西一的平直跑道上,并立即以0.8m/s2的加速度匀减速滑行。
求:(1)着地后45s末的速度大小;(2)着地后60s内的位移大小。
【技巧点拨】一.追及和相遇问题的解题思路(1)在解决追及、相遇类问题时,要紧抓“一图、三式”,即:过程示意图,时间关系式、速度关系式和位移关系式,最后还要注意对结果的讨论分析.(2)解决追及问题的思路流程:二.追及中的三个关系(1)位移关系:x后= x前+ Δx(同地出发x后= x前);(2)时间关系:t先=t后+ Δ t(同时出发t相等);(3)速度关系:慢追快距离增;快追慢距离减。
①一定能追上(例如加速追匀速)追上前,速度相等时,二者距离有最大值。
①不一定能追上(例如减速追匀速)①.如果追不上,当速度相等时,二者距离有最小值;①.如果恰好追上,则追上时,速度恰好相等;①.如果追上时,追者速度大于被追者,那么会出现两次相遇的问题。
三.追及和相遇问题的四种解题方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,认真审题,挖掘题中的隐含条件,在头脑中建立起一幅物体运动的图景.(2)相对运动法:巧妙地选取参考系,然后找出两物体的运动关系.(3)数学分析法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相碰.(4)图象分析法:将两者的速度-时间图象在同一坐标系中画出,然后利用图象分析求解.四.追及相遇的图像问题①t 1时刻速度相等,相距最远; ①t 2时刻有交点,表示相遇。
四年级相遇与追击综合问题知识点总结
相遇和追及综合知识点总结一、基础知识点(相遇和追及):其实相遇和追及最核心的问题就是路程S、速度V和时间T的问题,基本公式就是S÷V=T以及这个公式的变形S÷T=V,V×T=S。
相遇问题:路程和S和--—-—-相遇时间T--—--- 速度和V和⏹S和:一定是甲乙两者共同时间内走过的路程。
如果其中一方提前走了一段路程,这个不算,需要去掉。
⏹T相遇时间:一定是在相遇过程中共同经历过的时间。
需要小心题目陷阱,如其中一方休息了一段时间,其中一方提前出发了一段时间都应该剔除。
⏹V和=V甲+ V乙⏹路程和÷速度和=相遇时间路程和÷相遇时间=速度和速度和×相遇时间=路程和追击问题:路程差S差---———-追及时间T —--————速度差V差⏹S差:有些题没有明确给出路程差,而是隐含在一些条件中,如甲先出发一段时间.。
⏹T追及时间:一定是在追及过程中共同经历过的时间。
需要小心题目陷阱,如其中一方休息了一段时间,其中一方提前出发了一段时间都应该剔除.⏹V和=V甲- V乙路程差÷速度差=追及时间路程差÷追及时间=速度差速速度差×追及时问=路程差二、直线的相遇与追击略三、环形跑道的相遇与追击1、同时同地每次相遇都是合走一圈S和=S甲+S乙=1圈2、同时不同地首次相遇等于初始距离,初始距离需要依据双方的运动方向确定.每次相遇都是合走一圈S和=S甲+S乙=1圈四、火车过桥火车过杆:S火=车长火车完全过桥:S火=车长+桥长火车完全在桥上:S火= 桥长-车长超人(同向):S差=车长—--等效为:人追行人错人(相向):S和=车长--—等效为:车尾人与行人相遇超车(同向):S差=车长1+车长2 ---等效为:快车车尾人追慢车车头人错车(相向):S和==车长1+车长2 ———等效为:两个车尾的人相遇五、流水行船静水速度(船速),水速,顺水速度,逆水速度顺水速度=船速+ 水速逆水速度=船速—水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
“
”
“
”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!
追及相遇问题专题总结
一、 解相遇和追及问题的关键
(1)时间关系 : tA tB t0
(2)位移关系: xA xB x0
(3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是 分析判断的切入点。
二、追及问题中常用的临界条件:
1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离; 2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就
例 2 中若汽车在自行车前方 4m 的地方,则自行车能否追上汽车?若能,两车经多长时间相遇?
2
(三).匀减速运动追匀速运动的情况(开始时 v1> v2):v1> v2 时,两者距离变小;v1= v2 时,①若满足 x1<x2+Δx,则永远追不上,此时两者距离最近;②若满足 x1= x2+Δx,则恰能追上,全程只相遇一次;③ 若满足 x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例 3】汽车正以 10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以 4m/s 的速度做同方 向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s2 的匀减速运动,汽车恰好不碰上自行车。 求关闭油门时汽车离自行车多远?
特别注意:若被追者做匀减速直线运动,要注意追上之前是否已经停止运动 【例 4】甲车在前以 15m/s 的速度匀速行驶,乙车在后以 9m/s 的速度行驶。当两车相距 32m 时,甲车开 始刹车,加速度大小为 1m/s2。问(1)两车间的最大距离(2)经多少时间乙车可追上
(四).匀速运动追匀减速运动的情况(开始时 v1< v2):v1< v2 时,两者距离变大;v1= v2 时,两者距离最 远;v1>v2 时,两者距离变小,相遇时满足 x1= x2+Δx,全程只相遇一次。 【例 5】当汽车 B 在汽车 A 前方 7m 时,A 正以 vA =4m/s 的速度向前做匀速直线运动,而汽车 B 此时速度 vB =10m/s,并关闭油门向前做匀减速直线运动,加速度大小为 a=2m/s2。此时开始计时,则 A 追上 B 需 要的时间是多少?
【针对练习】一辆执勤的警车停在公路边,当警员发现从他旁边驶过的货车(以 8m/s 的速度匀速行驶) 有违章行为时,决定前去追赶,经 2.5s 将警车发动起来,以 2m/s2 的加速度匀加速追赶。求:①发现后 经多长时间能追上违章货车?②追上前,两车最大间距是多少?
(二).匀速运动追匀加速运动的情况(开始时 v1> v2):v1> v2 时,两者距离变小;v1= v2 时,①若满足 x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足 x1=x2+Δx,则恰能追上,全程只相遇一次;③ 若满足 x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例 2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以 3m/s2 的加速度开使行驶,恰在这时一辆自行车 在汽车后方相距 20m 的地方以 6m/s 的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小 间距是多少?
【针对训练】在一条平直的公路上,乙车以 10m/s 的速度匀速行驶,甲车在乙车的后面做初速度为 15m/s,加速度大小为 0.5m/s2 的匀减速运动,则两车初始距离 L 满足什么条件时可以使(1)两车不相遇; (2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动).
3
答案】能追上。 设经过 t 追上;则有 x 汽+x0=x 自;
1
追击与相遇问题专项典型例题分析
(一).匀加速运动追匀速运动的情况(开始时 v1< v2):v1< v2 时,两者距离变大;v1= v2 时, 两者距离最大;v1>v2 时,两者距离变小,相遇时满足 x1= x2+Δx,全程只相遇(即追上)一次。 【例 1】一小汽车从静止开始以 3m/s2 的加速度行驶,恰有一自行车以 6m/s 的速度从车边匀速驶过.求: (1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候 追上自行车,此时小汽车的速度是多少?
不能追上:
(1( 当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。 (2( 若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。
(3( 若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相
ห้องสมุดไป่ตู้
遇两次。
二、图像法:画出v t 图象。
1、速度小者追速度大者(一定追上)