2019-2020学年新教材第八章立体几何初步双基训练金卷(二) (2)
人教A版必修第二册《第8章 立体几何初步》单元测试卷
人教A版(2019)必修第二册《第8章立体几何初步》2020年单元测试卷(3)一、选择题(本大题共3小题,共15.0分)1.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D—ABC体积的最大值为().A. 12√3B. 18√3C. 24√3D. 54√32.如图,用一边长为√2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. √22+12B. √62+12C. 32D. √32+123.已知直三棱柱ABC−A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A. √32B. √155C. √105D. √33二、填空题(本大题共4小题,共20.0分)4.如图,在长方体ABCD−A1B1C1D1中,截下一三棱锥D1−A1CD,则三棱锥D1−A1CD的体积与剩余部分的体积之比为______.5.如图,在等腰梯形ABCD中,AB=2CD=2,∠DAB=60°,E是AB的中点,将△ADE,△BEC分别沿ED,EC向上折起,使A,B重合于点P,若三棱锥P−CDE的各个顶点在同一球面上,则该球的体积为______.6.用一张正方形的纸把一个棱长为1的正方体形礼品盒完全包好,不将纸撕开,则所需纸的最小面积是______.7.如图,已知正方体ABCD−A1B1C1D1的棱长为1,则四棱锥A1−BB1D1D的体积为______.三、解答题(本大题共8小题,共96.0分)8.如图,边长为2的正方形ABCD所在的平面与半圆弧CD⏜所在平面垂直,M是CD⏜上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M−ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.9.如图,已知四棱锥P−ABCD,△PAD是以AD为斜边的等腰直角三角形,BC//AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE//平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.10.如图,四棱锥P−ABCD中,侧面PAB为等边三角形且垂直于底面ABCD,AB=AD,∠BAD=∠ABC=90°,E是PD的中点.BC=12(1)证明:直线CE//平面PAB;(2)求二面角B−PC−D的余弦值.11.如图,四棱柱ABCD−A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=√2.(Ⅰ)证明:平面A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD−A1B1D1的体积.12.如图,在三棱柱ABC−A1B1C1中,CC1⊥平面ABC,D,E,F分别为AA1,AC,A1C1的中点,AB=BC=√5,AC=AA1=2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求三棱锥C1−BCD的体积.13.如图,在直三棱柱ABC−A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE//平面A1C1F;(2)平面B1DE⊥平面A1C1F.14.如图,已知在侧棱垂直于底面三棱柱ABC−A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1//平面CDB1(3)求三棱锥A1−B1CD的体积.15.如图,三棱锥P−ABC,D为AC的中点,PA=PB=PC=√5,AC=2√2,AB=√2,BC=√6.(1)求证:PD⊥底面ABC;(2)求二面角P−AB−C的正切值.答案和解析1.【答案】B【解析】【分析】本题考查球的内接多面体,棱锥的体积的求法,考查空间想象能力以及计算能力.求出,△ABC为等边三角形的边长,画出图形,判断D的位置,然后求解即可.【解答】解:△ABC为等边三角形且面积为9√3,可得√34×AB2=9√3,解得AB=6,球心为O,三角形ABC的外心为O′,显然D为O′O的延长线与球的交点时,三棱锥的体积最大.如图:O′C=23×√32×6=2√3,OO′=√42−(2√3)2=2,则三棱锥D−ABC高的最大值为:6,则三棱锥D−ABC体积的最大值为:13×√34×63=18√3.故选:B.2.【答案】D【解析】【分析】本题考查点、线、面间距离的计算,解题时要认真审题,注意挖掘题设中的隐含条件,合理地化空间问题为平面问题,注意数形结合法的合理运用.蛋槽的边长是原来硬纸板的对角线长度的一半,为1cm,蛋槽立起来的小三角形部分高度是12,鸡蛋的半径根据已知的表面积4π=4πr2得到r=1cm,直径D=2cm,大于折好的蛋巢边长1cm,由此能求出鸡蛋中心(球心)与蛋巢底面的距离.【解答】解:蛋槽的边长是原来硬纸板的对角线长度的一半,为1cm,鸡蛋的半径根据已知的表面积4π=4πr2得到r=1cm,直径D=2cm,大于折好的蛋巢边长1cm四个三角形的顶点所在的平面在鸡蛋表面所截取的小圆直径就是蛋槽的边长1cm,根据图示,AB段由三角形AB求出得:AB=√32,AE=AB+BE=√32+12,∴鸡蛋中心(球心)与蛋巢底面的距离为√32+12.故选:D.3.【答案】C【解析】【分析】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.【解答】解:如图所示,设M 、N 、P 分别为AB ,BB 1和B 1C 1的中点, 则MN//AB 1,NP//BC 1,则AB 1、BC 1夹角为MN 和NP 夹角或其补角(因异面直线所成角为(0,π2]), 可知MN =12AB 1=√52,NP =12BC 1=√22;作BC 中点Q ,则△PQM 为直角三角形,PQ =1,MQ =12AC , △ABC 中,由余弦定理得AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos∠ABC =4+1−2×2×1×(−12)=7, ∴AC =√7,∴MQ =√72,MP =√MQ 2+PQ 2=√112; 在△PMN 中,由余弦定理得cos∠MNP =MN 2+NP 2−PM 22⋅MN⋅NP=(√52)2+(√22)2−(√112)22×√52×√22=−√105; 又异面直线所成角的范围是(0,π2], ∴AB 1与BC 1所成角的余弦值为√105.故选C .4.【答案】1:5【解析】解:已知长方体是直四棱柱, 设它的底面ADD 1A 1的面积为S ,高为h , 则它的体积为V =Sℎ.而三棱锥D 1−A 1CD 的体积等于棱锥C −A 1DD 1的体积, 且棱锥C −A 1DD 1的底面积为12S ,高为h , 故V D 1−A 1CD =V C−A 1DD 1=13×12Sℎ=16Sℎ, 余下部分体积为:Sℎ−16Sℎ=56Sℎ.∴棱锥D 1−A 1CD 的体积与剩余部分的体积之比为1:5. 故答案为:1:5.长方体看成直四棱柱,设它的底面ADD 1A 1面积为S ,高为h ,利用等体积法求出棱锥D 1−A 1CD 的体积,可得余下的几何体的体积,则答案可求.本题考查几何体的体积的有关计算,转化思想的应用,考查计算能力,是基础题.5.【答案】√68π【解析】解:由题意,折叠后的几何体为正四面体P−CDE,棱长为1,设△CDE的外心为G,连接DG并延长,交CE于F,得DG=23DF=√33,∴PG=√PD2−DG2=√1−13=√63,设三棱锥P−CDE的外接球的半径为R,在Rt△PGD中,有(√63−R)2+(√33)2=R2,解得R=√64.∴该球的体积为43π×(√64)3=√68π.故答案为:√68π.由题意,折叠后的几何体为正四面体P−CDE,棱长为1,求出正四面体的高,再由勾股定理求解其外接球的半径,代入球的体积公式得答案.本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.6.【答案】8【解析】解:把5个边长为1的正方形组成十字形,并在四端加上四个斜边为1的等腰直角三角形,就可以包住棱长为1的正方体,而这个形状可以用边长为2√2的正方形来覆盖,而这个正方形面积为8,∴所需包装纸的最小面积为8.故答案为:8.5个边长为1的正方形组成十字形,并在四端加上四个斜边为1的等腰直角三角形,就可以包住棱长为1的正方体.审题,注意等价转化思想的合理运用.7.【答案】13【解析】【分析】本题考查几何体体积的求法,判断几何体的形状是解题的关键.求出四棱锥的底面面积与高,然后求解四棱锥的体积.【解答】解:由题意可知四棱锥A1−BB1D1D的底面是矩形,边长分别为1和√2,四棱锥的高:12A1C1=√22,则四棱锥A1−BB1D1D的体积为:13×1×√2×√22=13.故答案为:13.8.【答案】解:(1)证明:在半圆中,DM⊥MC,∵正方形ABCD所在的平面与半圆弧CD⏜所在平面垂直,即平面ABCD⊥平面CDM,又平面ABCD∩平面CDM=CD,AD⊥CD,AD⊂平面ABCD,∴AD⊥平面DCM,∵MC⊂平面CDM,则AD⊥MC,∵AD∩DM=D,AD⊂平面ADM,DM⊂平面ADM,∴MC⊥平面ADM,∵MC⊂平面MBC,∴平面AMD⊥平面BMC.(2)∵△ABC的面积为定值,∴要使三棱锥M−ABC体积最大,则三棱锥的高最大,此时M为圆弧的中点,建立以O 为坐标原点,如图所示的空间直角坐标系如图∵正方形ABCD 的边长为2,∴A(2,−1,0),B(2,1,0),M(0,0,1), 则平面MCD 的法向量m⃗⃗⃗ =(1,0,0), 设平面MAB 的法向量为n⃗ =(x,y ,z) 则AB ⃗⃗⃗⃗⃗ =(0,2,0),AM ⃗⃗⃗⃗⃗⃗ =(−2,1,1),由n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =2y =0,n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =−2x +y +z =0, 令x =1,则y =0,z =2,即n ⃗ =(1,0,2), 则cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ ||n ⃗⃗ |=1×√1+4=√5,则面MAB 与面MCD 所成二面角的正弦值sinα=√1−(√5)2=2√55.【解析】本题主要考查空间平面垂直的判定以及二面角的求解,利用相应的判定定理以及建立坐标系,利用向量法是解决本题的关键,属于中档题. (1)根据面面垂直的判定定理证明MC ⊥平面ADM 即可.(2)根据三棱锥的体积最大,确定M 的位置,建立空间直角坐标系,求出点的坐标,利用向量法进行求解即可.9.【答案】证明:(Ⅰ)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的中点,∴EF//PA ,又PA ⊂平面PAB ,EF ⊄平面PAB , ∴EF//平面PAB ,在四边形ABCD 中,BC//AD ,AD =2CB ,F 为AD 中点, ∴BC = //AF ,∴四边形CBAF 为平行四边形,故CF //AB ,又AB ⊂平面PAB ,CF ⊄平面PAB , ∴CF//平面PAB ,∵CF ∩EF =F ,EF//平面PAB ,CF//平面PAB , CF ⊂平面EFC ,EF ⊂平面EFC , ∴平面EFC//平面PAB , ∵EC ⊂平面EFC , ∴EC//平面PAB .解:(Ⅱ)连接BF ,过F 作FM ⊥PB 于M ,连接PF , ∵PA =PD ,∴PF ⊥AD ,∵DF//BC ,DF =BC ,CD ⊥AD ,∴四边形BCDF 为矩形,∴BF ⊥AD , 又AD//BC ,故PF ⊥BC ,BF ⊥BC , 又BF ∩PF =F ,BF ,PF ⊂平面PBF , ∴BC ⊥平面PBF ,又PB ⊂平面PBF , ∴BC ⊥PB ,设DC =CB =1,由PC =AD =2DC =2CB ,得AD =PC =2, ∴PB =√PC 2−BC 2=√4−1=√3, BF =PF =1,∴MF =√12−(√32)2=12,又BC ⊥平面PBF ,MF ⊂平面PBF , ∴BC ⊥MF ,又PB ∩BC =B ,PB 、BC ⊂平面PBC ,∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12, ∵DF//BC,BC ⊂平面PBC ,DF ⊄平面PBC , ∴DF//平面PBC ,D 到平面PBC 的距离应该和F 到平面PBC 的距离相等,均为12, E 为PD 中点,E 到平面PBC 的距离应为D 到平面PBC 的距离的一半, ∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2,,故由余弦定理得CE =√2,设直线CE 与平面PBC 所成角为θ,则sinθ=14CE=√28.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查推理论证能力、运算求解能力、空间想象能力,属于较难题.(Ⅰ)取AD 的中点F ,连结EF ,CF ,推导出EF//PA ,CF//AB ,从而平面EFC//平面PAB ,由此能证明EC//平面PAB .(Ⅱ)连结BF ,过F 作FM ⊥PB 于M ,连结PF ,推导出四边形BCDF 为矩形,从而BF ⊥AD ,求出BC ⊥MF ,即可得解.10.【答案】(1)证明:取PA 的中点F ,连FE 、FB ,∵E 是PD 的中点,∴FE//=12AD ,又BC//=12AD ∴FE//=BC ,∴四边形EFBC 是平行四边形, ∴CE//BF ,又CE ⊄平面PAB ,BF ⊂平面PAB , ∴CE//平面PAB .(2)解:在平面PAB 内作PO ⊥AB 于O ,不妨令AB =BC =12AD =2,则AD =4, 由△PAB 是等边三角形,则PA =PB =2,O 为AB 的中点,PO =√3,分别以AB 、PO 所在的直线为x 轴和z 轴,以底面内AB 的中垂线为y 轴建立空间直角坐标系,则P(0,0,√3),B(1,0,0),C(1,2,0),D(−1,4,0), ∴PC ⃗⃗⃗⃗⃗ =(1,2,−√3),BC ⃗⃗⃗⃗⃗ =(0,2,0),CD ⃗⃗⃗⃗⃗ =(−2,2,0),设平面PBC 的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,1),平面PDC 的法向量为n 2⃗⃗⃗⃗ =(−1,y 2,z 2), 则{n 1⃗⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =x 1+2y 1−√3=0n 1⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0+2y 1+0=0⇒{x 1=√3y 1=0,则n 1⃗⃗⃗⃗ =(√3,0,1), {n 2⃗⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =−1+2y 2−√3z 2=0n 2⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =2+2y 2+0=0⇒{y 2=−1z 2=−√3,则n 2⃗⃗⃗⃗ =(−1,−1,−√3), ∴cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√3,0,1)⋅(−1,−1,−√3)2⋅√5=√32⋅√5=−√155, 经检验,钝二面角B −PC −D 的余弦值的大小为−√155.【解析】(1)取PA 的中点F ,连FE 、FB ,说明四边形EFBC 是平行四边形,得到CE//BF ,然后证明CE//平面PAB .(2)分别以AB 、PO 所在的直线为x 轴和z 轴,以底面内AB 的中垂线为y 轴建立空间直角坐标系,求出平面PBC 的法向量,平面PDC 的法向量,然后求解二面角B −PC −D 的余弦值的大小.本题考查二面角的平面角的求法,直线与平面平行的判断定理的应用,考查空间想象能力以及计算能力,逻辑推理能力,是中档题.11.【答案】解:(Ⅰ)∵四棱柱ABCD −A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1=√2,由棱柱的性质可得BB 1 和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD//平面CB 1D 1. 同理可证,A 1BCD 1为平行四边形,A 1B//平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD//平面CD 1B 1. (Ⅱ) 由题意可得A 1O 为三棱柱ABD −A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O =√A 1A 2−AO 2=√2−1=1,∴三棱柱ABD −A 1B 1D 1的体积V =S △ABD ⋅A 1O =AB 22⋅A 1O =22×1=1.【解析】(Ⅰ)由四棱柱的性质可得四边形BB1D1D为平行四边形,故有BD和B1D1平行且相等,可得BD//平面CB1D1.同理可证,A1B//平面CB1D1.而BD和A1B是平面A1BD内的两条相交直线,利用两个平面平行的判定定理可得平面A1BD//平面CD1B1.(Ⅱ)由题意可得A1O为三棱柱ABD−A1B1D1的高,由勾股定理可得A1O=√A1A2−AO2的值,再根据三棱柱ABD−A1B1D1的体积V=S△ABD⋅A1O,运算求得结果.本题主要考查棱柱的性质,两个平面平行的判定定理的应用,求三棱柱的体积,属于中档题.12.【答案】解:(Ⅰ)证明:∵在三棱柱ABC−A1B1C1中,CC1⊥平面ABC,D,E,F分别为AA1,AC,A1C1的中点,AB=BC=√5,AC=AA1=2.∴AC⊥EF,AC⊥BE,∵EF∩BE=E,∴AC⊥平面BEF.(Ⅱ)解:三棱锥C1−BCD的体积为:V C1−BCD =V B−DCC1=13×S△DCC1×BE=13×12×2×2×√5−1=43.【解析】(Ⅰ)推导出AC⊥EF,AC⊥BE,由此能证明AC⊥平面BEF.(Ⅱ)三棱锥C1−BCD的体积为V C1−BCD =V B−DCC1=13×S△DCC1×BE,由此能求出结果.本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.13.【答案】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE//AC,∵ABC−A1B1C1为棱柱,∴AC//A1C1,∴DE//A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE//面A1C1F;(2)在ABC−A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∵A1C1⊂平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE//A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【解析】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度适中.(1)通过证明DE//AC,进而DE//A1C1,据此可得直线DE//平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.14.【答案】(1)证明:在△ABC中,∵AC=3,AB=5,BC=4,∴△ABC为直角三角形,∴AC⊥BC…(2分)又∵CC1⊥平面ABC,∴CC1⊥AC,CC1∩BC=C,∴AC⊥平面BCC1,∴AC⊥BC1.…(5分)(2)证明:设B1C与BC1交于点E,则E为BC1的中点,连结DE,则在△ABC1中,DE//AC1,又DE⊂面CDB1,AC1⊄面CDB1,∴AC1//平面B1CD.…(10分)(3)解:在△ABC中,过C作CF⊥AB,F为垂足,∵平面ABB1A1⊥平面ABC,且平面ABB1A1∩平面ABC=AB,∴CF⊥平面ABB1A1,而CF=AC⋅BCAB =3×45=125,∵V A1−B1CD =V C−A1DB1,而S△DA1B1=12A1B1⋅AA1=5×4×12=10,∴V A1−B1CD =13×10×125=8.…(14分)【解析】(1)由勾股定理得AC⊥BC,由CC1⊥面ABC得到CC1⊥AC,从而得到AC⊥面BCC1,故AC⊥BC1.(2)连接B1C交BC1于点E,则DE为△ABC1的中位线,得到DE//AC1,从而得到AC1//面B1CD.(3)过C作CF⊥AB垂足为F,CF⊥面ABB1A1,面积法求CF,求出三角形DB1A1的面积,代入体积公式进行运算.本题考查证明线线垂直、线面平行的方法,求三棱锥的体积,求点C到面A1B1D的距离是解题的难点.15.【答案】(1)证明:连结BD,∵三棱锥P−ABC,D为AC的中点,PA=PB=PC=√5,AC=2√2,AB=√2,BC=√6,∴PD⊥AC,AB⊥BC,∴BD=12AC=√2,PD=√5−2=√3,∴BD2+PD2=PB2,∴PD⊥BD,∵AC∩BD=D,∴PD⊥底面ABC.(2)解:由(1)知PD⊥底面ABC,过点D作DE⊥AB,连结PE,由三垂线定理知∠PED是二面角P−AB−C的平面角,∵D是AC的中点,∴DE是△ABC的中位线,∴DE=12BC=√62,∴tan∠PED=PDDE =√3√62=√2.∴二面角P−AB−C的正切值为√2.故答案为:√2.【解析】(1)由已知条件条件出PD⊥AC,PD⊥BD,由此能证明PD⊥底面ABC.(2)过点D作DE⊥AB,连结PE,由三垂线定理知∠PED是二面角P−AB−C的平面角,由此能求出二面角P−AB−C的正切值.本题考查直线与底面垂直的证明,考查二面角的正切值的求法,解题时要认真审题,注意空间思维能力的培养.。
2020秋新人教版高中数学必修二第八章立体几何初步考试测试卷(含答案解析)
第八章立体几何初步测试卷(时间:120分钟分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.若用A,B表示点,用a表示直线, α表示平面,则下列叙述中正确的是()A.若A⊂α,B⊂α,则AB⊂αB.若A∈α,B∈α,则AB∈αC.若A∉a,a⊂α,则AB∉αD.若A∈a,a⊂α,则A∈α答案:D2.下列说法中正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等答案:B3.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是()A.球B.圆柱C.圆台D.两个共底面的圆锥组成的组合体答案:D4.(2020年新高考全国Ⅰ卷)日晷是中国古代用来测定时间的仪器,利用与晷面的垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案:B5.如果空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与直线CD的位置关系是()A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交答案:D6.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列命题:①若m∥α,n∥β,α∥β,则m∥n;②若α∥γ,β∥γ,则α∥β;③若m⊥α,n⊥β,α∥β,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中正确命题的序号是()A.①③B.①④C.②③D.②④答案:C7.现在国际乒乓球赛的用球已由“小球”改为“大球”.若“小球”的直径为38 mm,“大球”的直径为40 mm,则“小球”的表面积与“大球”的表面积之比为()A.√19∶√20B.19∶20C.192∶202D.193∶203答案:C8.若正三棱柱有一个半径为√3cm的内切球,则此棱柱的体积是()A.9√3cm3B.54 cm3C.27 cm3D.18√3cm3答案:B二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等腰直角三角形直角边长为1,若将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为()A.√2πB.(1+√2)πC.2√2πD.(2+√2)π答案:AB10.对于不重合的两个平面α与β,给定下列条件,其中可以判定α与β平行的有()A.存在平面γ,使得α,β都平行于γB.存在平面γ,使得α,β都垂直于γC.α内有不共线的三点到β的距离相等D.存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β答案:AD11.在正方体ABCD-A1B1C1D1中,E,F,G分别为棱A1D1,A1A,A1B1的中点,下列命题中正确的是()A.EF⊥B1CB.BC1∥平面EFGC.A1C⊥平面EFGD.异面直线FG,B1C所成角的大小为π4答案:ABC12.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法正确的是()A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P-BC-A的大小为45°D.BD⊥平面PAC答案:ABC三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.底面直径和高都是4 cm的圆柱的侧面面积为16π cm2.14.若四棱锥P-ABCD的底面为平行四边形,E,F,G分别为PA,PD, CD的中点,则BC与平面EFG的位置关系为平行.15.若棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为11.16.(2020年新高考全国Ⅰ卷)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,√5为半径的球面与侧面BCC1B1的π.交线长为√22四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算过程)17.(10分)某圆柱有一个内接长方体ABCD-A1B1C1D1,该长方体的体对角线长是10√2cm,该圆柱的侧面展开图为矩形,此矩形的面积是100π cm2,求该圆柱的体积.解:设该圆柱底面半径为r cm,高为h cm.如图所示,则该圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,{(2r)2+ℎ2=(10√2)2,2πrℎ=100π,所以{r=5,ℎ=10.所以V圆柱=Sh=πr2h=π×52×10=250π(cm3).18.(12分)如图,在三棱锥P-ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC.证明:因为平面PAC⊥平面ABC,PA⊥AC,平面ABC∩平面PAC=AC,PA⊂平面PAC,所以PA⊥平面ABC.因为BC⊂平面ABC,所以PA⊥BC.因为AB⊥BC,AB∩PA=A,AB⊂平面PAB,PA⊂平面PAB,所以BC⊥平面PAB,BC⊂平面PBC,所以平面PAB⊥平面PBC.19.(12分)如图,在正三棱柱ABC-A1B1C1中,F,F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF.(2)平面AB1F1⊥平面ACC1A1.证明:(1)在正三棱柱ABC-A1B1C1中,因为F,F1分别是AC,A1C1的中点,所以AF1∥C1F.易证得B1F1∥BF.因为B1F1∩AF1=F1,C1F∩BF=F,所以平面AB1F1∥平面C1BF.(2)在正三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,所以B1F1⊥AA1.易证得B1F1⊥A1C1.因为A1C1∩AA1=A1,所以B1F1⊥平面ACC1A1.因为B1F1⊂平面AB1F1,所以平面AB1F1⊥平面ACC1A1.20.(12分)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=√3.(1)求证:平面PBE⊥平面PAB.(2)求二面角A-BE-P的大小.(1)证明:如图所示,连接BD.由四边形ABCD是菱形,且∠BCD=60°,知△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.因为AB∥CD,所以BE⊥AB.因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.因为PA∩AB=A,PA⊂平面PAB,AB⊂平面PAB,所以BE⊥平面PAB.因为BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解:由(1)知BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.因为AB⊥BE,所以∠PBA 是二面角A -BE -P 的平面角.在Rt △PAB 中,tan ∠PBA =PA AB =√31=√3, 所以∠PBA =60°.故二面角A -BE -P 的大小是60°.21.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形.已知AB =AD =PA =PB =2,PD =2√2.(1)求点B 到面PAD 的距离.(2)取AB 中点O ,过点O 作OE ⊥BD 于点E.①求证:∠PEO 为二面角P -BD -A 的平面角.②求∠PEO 的正切值.(1)解:因为PA =PB =AB =2,PA =AD =2,PD =2√2,所以△PAB 为等边三角形,PA 2+AD 2=PD 2 ,所以AD ⊥PA. 因为AD ⊥AB ,PA ∩AB =A ,PA ⊂平面PAB ,AB ⊂平面PAB , 所以AD ⊥平面PAB.所以S △PAB =12×2×2×√32=√3,S △PAD =12×2×2=2. 设点B 到平面PAD 的距离为h ,由V 三棱锥B -PAD =V 三棱锥D -PAB ,得13S △PAD ·h =13S △PAB ·AD , 即13×2×h =13×√3×2,所以h =√3 .(2)①证明:如图所示,连接PO.在△PAB 中,PA =PB =AB =2,所以PO ⊥AB.由(1)知AD ⊥平面PAB ,PO ⊂平面PAB ,所以PO ⊥AD. 因为AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以PO ⊥平面ABCD.因为BD ⊂平面ABCD ,所以PO ⊥BD. 因为OE ⊥BD ,PO ∩OE =O ,PO ⊂平面POE ,OE ⊂平面POE , 所以BD ⊥平面POE ,所以BD ⊥PE ,所以∠PEO 为二面角P -BD -A 的平面角.②解:PO =√PA 2-AO 2=√3.由AB =AD 可得四边形ABCD 为正方形,则OE =14AC =14×2√2=√22. 在△POE 中,∠POE =90°,所以tan ∠PEO =PO OE = √3√22 =√6.22.(12分)如图①所示,在四棱锥S -ABCD 中,∠BAD =∠CDA =∠CBD =2∠ABD =90°,平面SBD ⊥平面ABCD , 且△SBD 是边长为√ 的等边三角形.① ②(1)求证:CB ⊥DS.(2)过点S 作ST ∥BD ,使得四边形STDB 为菱形,连接TA ,TD ,TC ,得到的图形如图②所示,已知平面BMN ∥平面ADT ,且直线DC ∩平 面BMN =M ,直线TC ∩平面BMN =N ,求三棱锥D -MNB 的体积.(1)证明:因为∠CBD =90°,所以CB ⊥BD.因为平面SBD ∩平面ABCD =BD ,平面SBD ⊥平面ABCD ,CB ⊂平面ABCD ,所以CB ⊥平面SBD.因为SD ⊂平面SBD ,所以CB ⊥DS.(2)解:如图,取BD 的中点为O ,连接SO ,SM ,TB ,TM.由平面BMN ∥平面ADT ,得AD ∥BM ,DT ∥MN.因为∠CDA =90°,所以∠BMD =90°,即BM ⊥CD.因为∠BAD =∠CDA =90°,所以AB ∥CD.因为∠CBD =2∠ABD =90°,所以∠ABD =∠CDB =45°,即△CBD 为等腰直角三角形.所以DM =MC =1.因为在△CDT 中,MN ∥DT ,M 是DC 的中点,所以N 是TC 的中点.所以V 三棱锥D -MNB =V 三棱锥N -DMB =12V 三棱锥T -DMB =12V 三棱锥S -DMB . 因为DS =DB =BS ,所以SO ⊥DB.因为平面SBD ⊥平面ABCD ,所以SO ⊥平面ABCD ,所以V 三棱锥D -MNB = 12V 三棱锥S -DMB =12×13×SO ×S △BDM =16×√62×12 = √624.。
第八章 立体几何初步单元检测(提升卷)高一数学新教材单元双测卷(人教A版2019必修第二册)
必修第二册第八章立体几何初步提升卷学校:___________姓名:___________班级:___________考号:___________ 本卷共22小题,其中单选8小题,多选4小题,填空4小题,解答题6小题,满分150分一、单选题1.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个面是矩形的四棱柱B.底面是正方形,两个侧面垂直于底面的四棱柱C.底面是菱形,且有个顶点处的两条棱互相垂直的四棱柱D.底面是正方形,每个侧面都是全等的矩形的四棱柱【答案】D【分析】根据正四棱柱的概念,结合反例,即可得答案;【详解】选项A、B中,两个面为相对侧面时,四棱柱不一定是直四棱柱,C中底面不是正方形,故排除选项A、B、C,故选:D.2.如图是一个正方体的平面展开图,在这个正方体中BM ED①//EF CD②//③CN与BM为异面直线④DM BN以上四个命题中,正确的序号是()A.①②③B.②④C.③④D.②③④【答案】D【分析】作出直观图,根据正方体的结构特征进行判断.【详解】作出正方体得到直观图如图所示:由直观图可知,BM 与DE 为互相垂直的异面直线,故①不正确;////EF AB CD ,故②正确;CN 与BM 为异面直线,故③正确;由正方体性质可知BN ⊥平面DEM ,故BN DM ⊥,故④正确.故选:D【点睛】本题考查了正方体的结构特征,直线,平面的平行于垂直,属于基础题.3.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( ) A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //【答案】C【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误.【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误;对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误;对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳. 4.在直三棱柱111ABC A B C -中,16AA AB ==,8BC =,10AC =,则该三棱柱内能放置的最大球的表面积是( )A .16πB .24πC .36πD .64π 【答案】A【分析】先由题意可得球的半径为底面三角形内切圆的半径r ,易得2r ,又1r AA <,可得该三棱柱内能放置的最大球半径为2,最后由球的表面积计算公式计算即可.【详解】由题意,球的半径为底面三角形内切圆的半径r ,∵底面三角形的边长分别为6、8、10,∴底面三角形为直角三角形, 6810222AB BC AC r +-+-===, 又∵16AA =,26<,∴该三棱柱内能放置的最大球半径为2,此时2244216S r πππ==⨯=表面积.故选:A .【点睛】关键点睛:解题关键是得出所求球的半径为直三棱柱底面三角形内切圆的半径r ,继而进行分析计算. 5.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题. 6.《九章算术》卷五《商功》中描述几何体“阳马”为“底面为矩形,一棱垂直于底面的四棱锥”.现有阳马P ABCD -(如图),PA ⊥平面ABCD .1==PA AB ,3AD =,点E ,F 分别在AB ,BC 上,当空间四边形PEFD 的周长最小时,三棱锥P ADF -外接球的表面积为( )A .9πB .11πC .12πD .16π【答案】B【分析】 把平面PAB 展开到与平面ABCD 共面的P AB '的位置,根据图象可得当P ',E ,F ,D 四点共线时,空间四边形PEFD 的周长最小,进而可求得各个边长,根据正弦定理,可求得AFD 外接圆的半径r ,在三棱锥P ADF -中,可确定外接球球心的位置,根据勾股定理,可求得外接球半径,即可得答案.【详解】把平面PAB 展开到与平面ABCD 共面的P AB '的位置(如下图),延长DC 到D ,使得1CD '=,则DF D F '=,因为PD 的长度为定值,故只需求PE EF FD P E EF FD ''++=++最小,只需P ',E ,F ,D 四点共线,因为4P D '=,2DD '=,CF CD P D DD '='',所以2CF =,所以2AF =,5DF =,45DAF ∠=︒,由正弦定理得,AFD 外接圆的半径15102222r =⨯=. 设ADF 外接圆的圆心为O ',则三棱锥P ADF -外接球的球心O 一定在过O '且与平面ADF 垂直的直线上,因为O 到点P ,A 的距离相等,所以22101112442PA OA r ⎛⎫=+=+= ⎪⎝⎭, 此即为三棱锥P ADF -外接球的半径, 所以该球的表面积为2114π11π2⎛⎫⨯= ⎪ ⎪⎝⎭. 故选:B.【点睛】难点在于,需将平面PAB 展开到与平面ABCD 共面的位置,当P ',E ,F ,D 四点共线时,空间四边形PEFD 的周长最小,求得各个边长,进而再结合正弦定理,勾股定理求解,考查数形结合,分析计算的能力,属中档题.7.已知正方体1111ABCD A B C D -的棱长为2,AB ,AD 中点分别为E ,F ,若过EF 的平面截该正方体所得的截面是一个五边形,则该五边形周长的最大值为( )A .2213+B .213+C .3225+D .325+【答案】A【分析】 将面11BCC B 展开与面11ABB A 处于同一平面要使1l E QC C Q FH H +++最大,则沿面1C QEFH 切才能保证五点共面,展开图计算求解即可.【详解】将面11BCC B 展开与面11ABB A 处于同一平面要使1l E QC C Q FH H +++最大,则沿面1C QEFH 切才能保证五点共面,在1Rt ECC △中,112,12CC BC BE AB ====,此时()22122113EQ QC +=++=,又113FH HC EQ QC +=+=.∴周长()122213EF EQ QC =++=+故选:A8.(chuhong ),中国古代算术中的一种几何形体,《九章算术》中记载“刍甍者,下有褒有广,而上有褒无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍甍字面意思为茅草屋顶”,如图为一“刍甍”的五面体,其中ABCD 为矩形,ADE 和BCF △都是等腰三角形,2AE ED BF CF AD ====,//EF AB ,若3AB EF =,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6πB .4πC .3πD .2π 【答案】C【分析】作平行四边形AGFE ,得到//AE GF ,异面直线AE 与CF 所成角为GFC ∠,求出GFC 的边长求角即可.【详解】设1EF =,在AB 上取点G 满足1AG EF ==,故//AG EF 且AG EF =,故四边形AGFE 是平行四边形,故//AE GF异面直线AE 与CF 所成角为GFC ∠,22GF CF == 22222222CG GB BC =+=+=故GFC 为等边三角形故3GFC π∠=故选:C【点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、多选题9.如图,在透明塑料制成的长方体ABCD -A 1B 1C 1D 1容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法中正确的是( )A .水的部分始终呈棱柱状;B .水面四边形EFGH 的面积不改变;C .棱A 1D 1始终与水面EFGH 平行;D .当E ∈AA 1时,AE +BF 是定值.【答案】ACD【分析】从棱柱的特征平面可判断A ;由水是四棱柱或者五棱柱时或者三棱柱时可判断B ;由11//B C 平面EFGH ,棱1111//B C A D 可判断C ;由体积是定值,高BC 为定值,则底面积EABF 为定值,可判断D.【详解】由于BC 固定,所以倾斜的过程中,始终有AD //EH //FG //BC ,且平面AEFB //平面DHGC ,故水的部分始终呈现棱柱状(三棱柱、四棱柱、五棱柱);当水是四棱柱或者五棱柱时,水面面积与上下底面面积相等,当水是三棱柱时,则水面四边形EFGH 的面积可能变大,也可能变小,水面的面积改变;BC 为棱柱的一条侧棱,随着倾斜度的不同, 但水的部分始终呈棱柱状,且棱11//B C 平面EFGH ,棱1111//B C A D ,∴11//A D 平面EFGH ;∵体积是定值,高BC 为定值,则底面积EABF 为定值,即EA BF +为定值,综上ACD 正确.故选:ACD.【点睛】方法点睛:本题考查了线面平行的判定、棱柱的结构特征,对于证明线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明,对于棱柱的结构特征要非常熟悉.10.如图,在棱长为a 的正方体1111ABCD A B C D -中,P 为11A D 的中点,Q 为11A B 上任意一点,E 、F为CD 上两点,且EF 的长为定值,则下面四个值中是定值的是( )A .点P 到平面QEF 的距离B .直线PQ 与平面PEF 所成的角C .三棱锥P QEF -的体积D .QEF △的面积【答案】ACD【分析】 由Q 为11A B 上任意一点,知平面QEF 是确定,从而判断A ,而11//A B CD ,因此11A B 与平面PCD 平行,根据直线与平面所成的角的定义可判断B ,由棱锥体积公式和三角形面积公式可判断CD .【详解】平面QEF 就是平面11A B CD ,是确定的平面,因此点P 到平面QEF 的距离为定值,A 正确; 平面PEF 即平面PCD ,而Q 在直线11A B 上,11//A B CD ,因此11A B 与平面PCD 平行,Q 到平面PEF 的距离为定值,但Q 运动时,PQ 的长度在变化,因此直线PQ 与平面PEF 所成的角也在变化,B 错误; P 点到直线CD 的距离是确定,而EF 的长度不变,因此PEF S △为定值,又Q 到平面PEF 的距离为定值,从而三棱锥P QEF -的体积为定值,C 正确;11//A B CD ,Q 到EF 的距离为定值,EF 的长度不变,∴QEF △的面积为定值,D 正确.故选:ACD .【点睛】关键点点睛:本题考查点到平面的距离,直线与平面所成的角,棱锥的体积等知识,解题关键是抓住11//A B CD ,由此得平面QEF 是确定的平面,再结合定点和定长,从而确定各选项中的定值. 11.如图所示,有一正四面体形状的木块,其棱长为a ,点P 是ACD △的中心.劳动课上,需过点P 将该木块锯开,并使得截面平行于棱AB 和CD ,则下列关于截面的说法中正确的是( )A .截面与侧面ABC 的交线平行于侧面ABDB .截面是一个三角形C .截面是一个四边形D .截面的面积为24a【答案】AC 【分析】先作出符合题意的截面,分别取BC 、AC 、BD 、AD 的三等分点E 、M (靠近C 点),F 、N (靠近D 点),四边形EMNF 是平行四边形,即为所作截面,即可逐一判断四个选项的正误. 【详解】因为正四面体的四个面都是等边三角形, 点P 是ACD △的中心,所以P 位于CD 中线的23处, 分别取BC 、AC 、BD 、AD 的三等分点E 、M (靠近C 点),F 、N (靠近D 点), 则//EM AB ,//EF CD ,且截面EMNF 经过点P ,满足题意, 因为//EM FN 且=EM FN ,所以四边形EMNF 是平行四边形, 平面EMNF ⋂平面ABC EM =,//EM FN ,NF ⊂平面ABD , 所以//EM 平面ABD ,所以选项A 正确;截面是一个四边形,故选项B 不正确;选项C 正确;四边形EMNF 是边长为23a 的菱形,所以面积不是24a ,故选项D 不正确,故选:AC 【点睛】本题主要考查了线面平行判断的应用以及空间几何体的截面图形,属于中档题12.如图所示,在棱长为1的正方体1111—ABCD A B C D 中,M ,N 分别为棱11A D ,1DD 的中点,则以下四个结论正确的是( )A .1//BC MN B .1B C ⊥平面1MNC C .A 到直线MN 的距离为324D .过MN 作该正方体外接球的截面,所得截面的面积的最小值为38π 【答案】ACD 【分析】由11//A D B C 可得判断AB ,利用11AD A D ⊥,1AD MN ⊥,求出距离可判断C ,由对称性得过MN 作该正方体外接球的截面,所得截面的面积的最小的圆是以MN 所在弦为直径的圆,圆心为MN 中点F ,求出圆面积断D . 【详解】正方体中,11//A D B C ,而M ,N 分别为棱11A D ,1DD 的中点,则1//MN A D ,所以1//B C MN ,A 正确,B 错误;设1AD 与1,A D MN 分别交于点,E F ,则11AD A D ⊥,1AD MN ⊥, 由M ,N 分别为棱11A D ,1DD 的中点,知F 是1ED 中点,133244AF AD ==,C 正确;正方体外接球球心是正方体对角线交点O ,由对称性知过MN 作该正方体外接球的截面,所得截面的面积最小的圆是以MN 所在的弦为直径的截面圆,即截面圆圆心为F ,13OD =,124DF =,11126cos 3AD OD F BD ∠===, 222111112cos OF D F D O D F D OFD O =+-⋅∠23236321648=+-⨯⨯⨯=, 截面圆半径为r ,则2221333488r OD OF =-=-=,面积为238S r ππ==,D 正确. 故选:ACD .【点睛】关键点点睛:本题考查正方体中的平行与垂直,考查球的截面圆问题.特殊的几何图形如正方体、正四面体等几何体中有许多直线、平面间的平行与垂直关系,我们必须掌握,并能应用,在判断D 时,利用正方体的对称性是解题的关键.这样可得到面积最小的截面圆的直径是MN 所在的弦,从而求得半径长.三、填空题13.如图,矩形O A B C ''''水平放置的一个平面图形OABC 的直观图,其中6O A ''=,3O C ''=,//B C x '''轴,则原平面图形OABC 的面积为______.【答案】362 【分析】还原图形后可知原图形的高是直观图中矩形高的22底不变,由此可得面积比,利用直观图的面积求得原图形的面积.【详解】设B C ''与y '轴交于点D ,还原后BC 与y 轴交于点DO D ''在y '轴上 ∴OD 在y 轴上且2OD O D ''=,可还原图形如下:OD ∴为还原后的平行四边形OABC 的高 222OD O D O C ''''==,OA O A ''=∴原平面图形OABC 的面积S 为矩形O A B C ''''的面积S '的2222222263362S S O A O C '''''∴==⋅=⨯=故答案为:362【点睛】本题考查根据直观图计算原图形的面积的问题,关键是能够通过高的比例关系得到直观图面积与原图形面积的比例关系,进而求得结果.14.中国南北朝时期,祖冲之与他的儿子祖暅通过对几何体体积的研究,早于西方1100多年,得出一个原理:“幂势既同,则积不容异”,“幂”是面积,“势”是高.也就是说:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.上述原理被称为祖暅原理.现有水平放置的三棱锥和圆锥各一个,用任何一个平行于底面的平面去截它们时,所截得的两个截面面积都相等,若圆锥的侧面展开图是半径为4的半圆,根据祖暅原理可知这个三棱锥的体积为______. 83π【分析】根据圆锥侧面积展开图是半径为4的半圆,求得圆锥底面半径,进一步求圆锥的高,计算出圆锥的体积,由此求出三棱锥的体积. 【详解】设圆锥的底面半径为r ,则12242r ππ=⨯⨯,解得2r ,圆锥的高为224223h =-=,所以圆锥的体积即为三棱锥的体积为218322333V ππ=⨯⨯=. 故答案为:833π. 15.早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36︒按35计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.【答案】336π【分析】可得正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,可得56l r =,311R =,即可表示出外接球的表面积和正二十面体的表面积,得出答案. 【详解】由图知正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,则3sin 3652lr =︒=,得56lr =, 所以正五棱锥的顶点到底面的距离是22225116l h l r l ⎛⎫=-=-= ⎪⎝⎭,所以222()R r R h =+-,即22251166l R R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得311R =.所以该正二十面体的外接球表面积为222311364411S R l l πππ⎛⎫==⨯= ⎪ ⎪⎝⎭球,而该正二十面体的表面积是2120sin 60532S l l l =⨯⨯⨯⨯︒=正二十面体, 所以该正二十面体的表面积与该正二十面体的外接球表面积之比等于55336π. 故答案为:553. 【点睛】本题考查几何体的外接球问题,解题的关键是将正二十面体的外接球等价于上方正五棱锥的外接球,表示出半径.16.如图,已知边长为1的正方形ABCD 与正方形BCFE 所在平面互相垂直,P 为EF 的中点,Q 为线段FC 上的动点,当三棱锥P ABQ -的体积最大时,三棱锥P ABQ -的外接球的表面积为______.【答案】4116π 【分析】由题意知三棱锥P ABQ -的体积最大时,点Q 与点C 重合,问题转化为求三棱锥P ABC -外接球的表面积,然后,利用勾股定理求出外接球半径R ,进而可求解 【详解】如图,由题意知三棱锥P ABQ -的体积最大时,点Q 与点C 重合,即求三棱锥P ABC -外接球的表面积,因为正方形ABCD 与正方形BCFE 的边长均为1,点P 为EF 的中点,所以1AB BC ==,2AC =,5BP PC ==过点P 作PG BC ⊥,垂足为G ,由正方形ABCD 与正方形BCFE 所在平面互相垂直,得PG ⊥平面ABC .设三棱锥P ABC -外接球的球心为O ,AC 的中点为1O ,连接1OO ,则1OO ⊥平面ABC .延长1OO 到点H ,使1O H PG =.连接,,PH OP OA ,设1OO x =,则1OH x =-,()222221122x x ⎛⎛⎫+=+- ⎪ ⎝⎭⎝⎭,解得38x =,设三棱锥P ABC -外接球的半径为R ,则2221314128264R x ⎛⎫=+=+=⎪⎝⎭.故所求表面积24141446416S R πππ==⨯= 故答案为:4116π 【点睛】关键点睛:三棱锥的体积与底面积和高有关,若底面面积不变,高增大时,体积增大;若高不变,底面面积增大时,体积增大,本题中,点A 到平面PBQ 的距离不变,当三角形PBQ 的面积最大时,三棱锥P ABQ -的体积取最大值,另外求球的半径,可以根据题意先确定出球心的位置,然后可在直角三角形中表示球的半径,此类问题考查空间想象能力和运算求解能力,难度比较大.四、解答题17.如图,在三棱柱111ABC A B C -中,平面11A ABB ⊥平面ABC ,AB BC ⊥,114===B B AB AB ,3BC =,D 为AC 的中点.(1)求证:1//AB 平面1BC D ; (2)求三棱锥11-B A CB 体积. 【答案】(1)证明见解析;(2)3【分析】(1)设1B C 与1C B 交于点O ,连接OD ,得1//OD AB ,可证得线面平行;(2)设1B A 与1A B 交于点O ',证明1'B O 是三棱锥11-B A CB 的高,由体积公式可得. 【详解】(1)证明:设1B C 与1C B 交于点O ,连接OD , 在三棱柱111ABC A B C -中,侧面11B C CB 是平行四边形, 因为对角线1B C 与1C B 交于点O ,所以O 为1B C 的中点, 因为D 为AC 的中点,所以1//OD AB 因为OD ⊂平面1BC D ,1AB ⊄平面1BC D , 所以1//AB 平面1BC D ;(2)设1B A 与1A B 交于点O ',在三棱柱111ABC A B C -中,侧面11A ABB 是平行四边形, 因为114===B B AB AB ,所以侧面11A ABB 是菱形,1322443A B BO '===, 因为1B A ,1A B 为菱形11A ABB 的对角线,所以11B A A B ⊥因为平面11A ABB ⊥平面ABC ,平面11A ABB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面11A ABB ,因为11,⊂A B B A 平面11A ABB ,所以1⊥BC B A ,1BC A B ⊥ 因为1BC A B B ⋂=,1,⊂BC A B 平面ABC ,1B A ⊥平面1A CB 所以三棱锥11-B A CB 的高为1'B O , 所以三棱锥11-B A CB 的体积11111143344332212V BA BC B A =⨯⨯⨯⨯=⨯⨯= 【点睛】思路点睛:本题考查证明线面平行,考查求三棱锥的体积.证明线面平行的方法是利用中位线定理得线线平行,然后根据线面平行的判定定理得出结论.求棱锥的体积的方法是棱锥体积公式,找到棱锥的高,求出底面积即可得体积.18.如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=︒,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图),G 为AE 中点.(1)求证:DG ⊥平面ABCE ; (2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)523;(3)存在,34BP BD = 【分析】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ; (2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证明//PCF 平面ADE ,故//CP 平面ADE ,根据//PF AD 计算BPBD的值. 【详解】(1)因为G 为AE 中点,2AD DE ==, 所以DG AE ⊥,因为平面ADE ⊥平面ABCE , 平面ADE平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE ; (2)在直角三角形ADE 中,2AD DE ==,22AE ∴=,122DG AE ∴== 所以四棱锥D ABCE -的体积为()111521422332D ABCE ABCE V S DG -=⋅=⨯⨯+⨯=梯形; (3)如图,过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC , 因为//CF AE ,AE ⊂平面ADE ,CF ⊄平面ADE , 所以//CF 平面ADE , 同理//PF 平面ADE , 又因为CF PF F ⋂=, 所以平面//PCF 平面ADE , 因为CP ⊂平面CFP , 所以//CP 平面ADE ,所以BD 上存在点P ,使得//CP 平面ADE ,//AE CF ,//AF CE∴四边形AECF 是平行四边形,1AF CE ∴==, 3FB ∴=,又//PF AD ,34BP BF BD AB ∴==. 19.在四棱锥P -ABCD 中,侧面PAD ⊥ 底面ABCD ,底面ABCD 为直角梯形,//BC AD ,∠ADC =90°,BC =CD =12AD =1,PA =PD ,E ,F 分别为AD ,PC 的中点.(1)求证://PA 平面BEF ;(2)若PC 与AB 所成角为45°,求二面角F -BE -A 的余弦值.【答案】(1)证明见解析;(2)33-. 【分析】(1)连接AC 交BE 于O ,并连接FO ,根据条件可证//OF PA ,从而可证明结论.(2)由ABCE 为平行四边形可得//EC AB ,PCE ∠为PC 与AB 所成角,即45PCE ∠=︒,又由条件可得PE ABCD ⊥平面,可得2PE EC ==,取PD 中点M ,连,ME MA MF ,,可得MEA ∠为F BE A --的平面角,可得答案.【详解】(1)证明:连接AC 交BE 于O ,并连接FO ,1,2BC AD BC AD =∥,E 为AD 中点,∴//AE BC ,且AE =BC . ∴四边形ABCE 为平行四边形,∴O 为AC 中点, 又F 为AD 中点,//OF PA ∴,OF ⊂平面,BEF PA ⊄平面BEF ,//PA ∴平面BEF .(2)由BCDE 为正方形可得22EC BC ==由ABCE 为平行四边形可得//EC AB .PCE ∴∠为PC 与AB 所成角,即45PCE ∠=︒.PA PD =E 为AD 中点,所以PE AD ⊥.侧面PAD ⊥底面,ABCD 侧面PAD底面,ABCD AD PE =⊂平面PAD ,PE ∴⊥平面ABCD ,PE EC ∴⊥,2PE EC ∴==.取PD 中点M ,连,ME MA MF ,,由M F ,,分别为,PD PC 的中点,所以//,MF CD 又//CD BE ,所以//MF BE ,所以,,,B E M F 四点共面. 因为平面PAD ⊥平面ABCD ,且平面PAD平面,ABCD AD BE AD =⊥,BE ∴⊥平面PAD ,,EM AE ⊂平面PAD所以,BE AE BE EM ⊥⊥,则MEA ∠为F BE A --的平面角.又311,1,EM AE AM ===,3cos MEA ∴∠=-. 所以二面角F BE A --的余弦值为3-. 【点睛】本题考查证明线面平行和求二面角的平面角,解答本题的关键是取PD 中点M ,连,ME MA MF ,,证明出,BE AE BE EM ⊥⊥,得到MEA ∠为F BE A --的平面角,属于中档题.20.如图所示,已知平行四边形ABCD 和矩形ACEF 所在平面互相垂直,1AB =,2AD =,ADC 60∠=,1AF =,M 是线段EF 的中点.(1)求证:AC BF ⊥;(2)求直线AD 与平面BDF 所成角的余弦值;(3)设点P 为一动点,若点P 从M 出发,沿棱按照→→M E C 的路线运动到点C ,求这一过程中形成的三棱锥P BFD -的体积的最小值.【答案】(1)证明见解析;(2;(3.【分析】(1)利用余弦定理求出AC ,利用勾股定理可得出AB AC ⊥,由已知可得出AF AC ⊥,利用线面垂直的判定定理可得出AC ⊥平面ABF ,由此可得出AC BF ⊥;(2)设点A 在平面BDF 内的射影为点O ,连接DO ,可得出ADO ∠为直线AD 与平面BDF 所成角,利用等体积法计算出AO ,可求得sin ADO ∠,再利用同角三角函数的基本关系可求得直线AD 与平面BDF 所成角的余弦值;(3)设AC 与BD 相交于N ,连接FN 、CM ,推导出//FN CM ,可得出//CM 平面BDF ,结合图形可知,当点P 在M 或C 时,三棱锥P BFD -的体积最小,可得()min P BFD C BFD F BCD V V V ---==,利用锥体体积公式可求得结果. 【详解】(1)在平行四边形ABCD 中,ADC 60∠=,1CD AB ==,2AD =,由余弦定理可得2222cos 3AC AD CD AD CD ADC =+-⋅∠=,AC ∴=2BC AD ==,222AB AC BC ∴+=,90BAC ∴∠=,AB AC ∴⊥,因为四边形ACEF 为矩形,则AF AC ⊥,AB AF A =,AC ∴⊥平面ABF ,BF ⊂平面ABF ,所以AC BF ⊥;(2)在ABD △中,1AB =,2AD =,180120BAD ADC ∠=-∠=, 由余弦定理可得2222cos 7BD AB AD AB AD BAD =+-⋅∠=,AB AC ⊥,平面ABCD ⊥平面ACEF ,平面ABCD 平面ACEF AC =,AB 平面ABCD ,AB ∴⊥平面ACEF ,AF ⊂平面ACEF ,AB AF ∴⊥,则BF == AF AC ⊥,AB AC A ⋂=,AF ∴⊥平面ABCD ,AD ⊂平面ABCD ,AD AF ∴⊥,DF ∴=,222BF DF BD ∴+=,由勾股定理的逆定理知90BFD ∠=,11022BDF S BF DF ∴=⋅=△, 设点A 在平面BFD内的射影为O ,连接DO ,则ADO ∠为直线AD 与平面BDF 所成角,132ABD ABC S S AB AC ==⋅=△△, 由A BDF F ABD V V --=,可得1133BDF ABD AO S AF S ⋅=⋅△△,可得313021010ABD BDFAF S AO S ⨯⋅===△△,又2AD =,30130sin 2AO ADO AD ∠==⨯=,2370cos 1sin ADO ADO ∴∠=-∠=, 因此,直线AD 与平面BDF 所成角的余弦值为37020; (3)设AC 与BD 相交于N ,连接FN 、CM ,因为四边形ABCD 为平行四边形,且AC BD N ⋂=,则N 为AC 的中点,//AC EF 且AC EF =,M 为EF 的中点,//CN FM ∴且CN FM =,所以,四边形CMFN 为平行四边形,则//CM FN ,FN ⊂平面BDF ,CM ⊄平面BDF ,//CM ∴平面BDF ,由图可知,当点P 在M 或C 时,三棱锥P BFD -的体积最小,()min 11321sin120132P BFD C BFD F BCD V V V ---===⋅⋅⋅⋅⋅=. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.21.已知四棱锥P ABCD -的底面是菱形,60,BCD PD AD ∠=︒⊥,点E 是BC 边的中点.(Ⅰ)求证:AD ⊥平面PDE ;(Ⅱ)若二面角P AD C --的大小等于60︒,且34,3AB PD == ①点P 到平面ABCD 的距离;②求直线PB 与平面ABCD 所成角的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ)①4,②3π. 【分析】(Ⅰ)连接BD ,点E 是BC 边的中点,得出DE BC ⊥,DE AD ⊥再由DP AD ⊥,得出结果; (Ⅱ)DE AD ⊥,PD AD ⊥,PDE ∠为二面角P AD C --的平面角,60PDE ∠=︒,过P 在平面PDE 内做PK DE ⊥于K ,易证PK ⊥面ABCD ,PK 为点到面的距离,PBK ∠即为线面角. 【详解】(Ⅰ)连接BD ,底面ABCD 是菱形,∠BDC =60°, ∴△BCD 是正三角形.∵点E 是BC 边的中点,∴DE ⊥BC ,∵AD ∥BC ,∴DE ⊥AD .∵DP ⊥AD ,DP ∩AD =D , ∴AD ⊥平面PDE ;(Ⅱ)①∵DE ⊥AD ,PD ⊥AD ,∴PDE ∠为二面角P -AD -C 的平面角,∴60PDE ∠=︒, 过P 在平面PDE 内做PK DE ⊥于K ,由(Ⅰ)易AD PK ⊥. ∴PK ⊥面ABCD . ∵83PD =∴43DK =,4PK =, 即点P 到平面ABCD 的距离是4. ②AB =4,∴23DE =∴23DK DE =,∴K 为BCD △重心. 连接BK ,∵BCD △为正三角形,所以BK 为BP 在面ABCD 内的射影. ∴PB ⊥AB ,PBK ∠为直线PB 与平面ABCD 所成角,RT PKB △中,tan 3PK PK PKB KB DK ∠===3PKB π∠=, 直线PB 与平面ABCD 所成角的大小为3π.【点睛】求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成; ②计算,要把直线与平面所成的角转化到一个三角形中求解.22.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在各顶点的曲率为233πππ-⨯=,故其总曲率为4π.。
第八章立体几何初步单元测试 2020-2021学年高一下学期数学人教A版(2019)必修第二册
第八章 立体几何初步考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中真命题的个数是( ) A .0 B .1 C .2D .32.以长为8 cm ,宽为6 cm 的矩形的一边为旋转轴旋转而成的圆柱的底面面积为( ) A .64π cm 2B .36π cm 2C .64π cm 2或36π cm 2D .48π cm 23.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( )A .平行B .平行或异面C .平行或相交D .异面或相交4.空间四点A ,B ,C ,D 共面而不共线,那么这四点中( ) A .必有三点共线 B .必有三点不共线 C .至少有三点共线D .不可能有三点共线5.如图所示,正方形ABCD 中,E ,F 分别是AB ,AD 的中点,将此正方形沿EF 折成直二面角后,异面直线AF 与BE 所成角的余弦值为( )A .22 B .3 C .12D .326.E ,F ,G 分别是空间四边形ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是( )A .0B .1C .2D .37.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .81π4 B .16π C .9πD .27π48.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30°B .45°C .60°D .90°二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.以下关于空间几何体特征性质的描述,错误的是( )A .以直角三角形一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥B .有两个面互相平行,其余各面都是四边形的几何体是棱柱C .有一个面是多边形,其余各面都是三角形的几何体是棱锥D .两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台 10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则下列说法正确的是( )A .A 1M ∥D 1PB .A 1M ∥B 1QC .A 1M ∥平面DCC 1D 1 D .A 1M ∥平面D 1PQB 111.如图,在四面体ABCD 中,截面PQMN 是正方形,则在下列命题中,一定正确的为( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45°12.正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点.则( )A .直线D 1D 与直线AF 垂直B .直线A 1G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 与点G 到平面AEF 的距离相等三、填空题(本大题共4小题,每小题5分,共20分)13.一个圆柱的侧面展开图是一个边长为1的正方形,则该圆柱的体积是___.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为____厘米.15.已知a ,b 表示直线,α,β,γ表示平面.①若α∩β=a ,b ⊂α,a ⊥b ,则α⊥β;②若a ⊂α,a 垂直于β内任意一条直线,则α⊥β;③若α⊥β,α∩β=a ,α∩γ=b ,则a ⊥b ;④若a ⊥α,b ⊥β,a ∥b ,则α∥β.上述命题中,正确命题的序号是____.16.(2020·全国Ⅰ卷理)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB = ____.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.长方体的长、宽、高分别是40 cm、40 cm、20 cm,正四棱锥P-EFGH的高为60 cm.(1)求该安全标识墩的体积;(2)求该安全标识墩的侧面积.18.(本小题满分12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.19.(本小题满分12分)如图所示,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面PAB⊥平面PCD.20.(本小题满分12分)(2020·江苏卷)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.21.(本小题满分12分)在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC 且分别交AC,SC于D,E,又SA=AB,SB=BC.(1)求证:BD⊥平面SAC;(2)求二面角E-BD-C的大小.22.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,AB =2A1A=4,以AB,BC为邻边作平行四边形ABCD,连接A1D,DC1.(1)求证:DC1∥平面A1ABB1;(2)若二面角A1-DC-A为45°.①求证:平面A1C1D⊥平面A1AD;②求直线AB1与平面A1AD所成角的正切值.第八章立体几何初步考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中真命题的个数是(A)A.0B.1C.2D.3[解析]①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图所示;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.2.以长为8 cm ,宽为6 cm 的矩形的一边为旋转轴旋转而成的圆柱的底面面积为( C ) A .64π cm 2B .36π cm 2C .64π cm 2或36π cm 2D .48π cm 2[解析] 分别以长为8 cm ,宽为6 cm 的边所在的直线为旋转轴,即可得到两种不同大小的圆柱,显然C 选项正确.3.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( B )A .平行B .平行或异面C .平行或相交D .异面或相交[解析] 由直线与平面平行的判定定理,可知CD ∥α,所以CD 与平面α内的直线没有公共点.4.空间四点A ,B ,C ,D 共面而不共线,那么这四点中( B ) A .必有三点共线 B .必有三点不共线 C .至少有三点共线D .不可能有三点共线[解析] ∵A ,B ,C ,D 共面而不共线,这四点可能有三点共线,也可能任意三点不共线,A 错.如果四点中没有三点不共线,则四点共线,矛盾,B 正确.当任意三点不共线时,也满足条件,C 错.当其中三点共线,第四个点不共线时,也满足条件,D 错.5.如图所示,正方形ABCD 中,E ,F 分别是AB ,AD 的中点,将此正方形沿EF 折成直二面角后,异面直线AF 与BE 所成角的余弦值为( C )A .22 B .3 C .12D .32[解析] 过点F 作FH ∥DC ,交BC 于H ,过点A 作AG ⊥EF ,交EF 于G ,连接GH ,AH ,则∠AFH 为异面直线AF 与BE 所成的角.设正方形ABCD 的边长为2,在△AGH 中,AH =52+24=3,在△AFH 中,AF =1,FH =2,AH =3,∴cos ∠AFH =12.6.E ,F ,G 分别是空间四边形ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是( C )A .0B .1C .2D .3[解析] 在△ACD 中,∵G ,F 分别为AD 与CD 的中点,∴GF ∥AC .而GF ⊂平面EFG ,AC ⊄平面EFG ,∴AC ∥平面EFG .同理,BD ∥平面EFG .故选C .7.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( A )A .81π4 B .16π C .9πD .27π4[解析] 如图所示,设球的半径为R ,球心为O ,正四棱锥的底面中心为O ′.∵正四棱锥P -ABCD 中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4,故选A .8.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( C )A .30°B .45°C .60°D .90°[解析] 如图,取B 1C 1的中点E ,连接BE ,DE ,则AC ∥A 1C 1∥DE ,则∠BDE 即为异面直线BD 与AC 所成的角.由条件可知BD =DE =EB =5,所以∠BDE =60°,故选C .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分) 9.以下关于空间几何体特征性质的描述,错误的是(ABC)A.以直角三角形一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥B.有两个面互相平行,其余各面都是四边形的几何体是棱柱C.有一个面是多边形,其余各面都是三角形的几何体是棱锥D.两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台[解析]以直角三角形的一个直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥,可得A错误;有两个面互相平行,其余各面都是四边形的几何体可能是棱台,不一定是棱柱,故B错误;有一个面是多边形,其余各面都是有公共顶点三角形的几何体叫棱锥,故C错误;根据棱台的定义,可得D正确.故选ABC.10.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则下列说法正确的是(ACD)A.A1M∥D1P B.A1M∥B1QC.A1M∥平面DCC1D1D.A1M∥平面D1PQB1[解析]连接PM,因为M、P为AB、CD的中点,故PM平行且等于AD.由题意知AD 平行且等于A1D1,故PM平行且等于A1D1,所以PMA1D1为平行四边形,所以A1M∥D1P.故A正确;显然A1M与B1Q为异面直线,故B错误;由A知A1M∥D1P,由于D1P既在平面DCC1D1内,又在平面D1PQB1内,且A1M即不在平面DCC1D1内,又不在平面D1PQB1内,故C、D正确.故选ACD.11.如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,一定正确的为(ABD)A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45°[解析] ∵QM ∥PN ,∴QM ∥平面ABD ,∴QM ∥BD ,同理可得AC ∥MN ,∵QM ∥BD ,AC ∥MN ,MN ⊥QM ,∴AC ⊥BD ,A 正确;∵AC ∥MN ,∴AC ∥截面PQMN ,B 正确;∵QM ∥BD ,AC ∥MN ,∴MN AC +QMBD =1,C 不一定正确;∵QM ∥BD ,∴异面直线PM 与BD 所成的角为∠PMQ =45°,D 正确.故选ABD .12.正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点.则( BC )A .直线D 1D 与直线AF 垂直B .直线A 1G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98 D .点C 与点G 到平面AEF 的距离相等[解析] 取DD 1中点M ,则AM 为AF 在平面AA 1D 1D 上的射影,∵AM 与DD 1不垂直,∴AF 与DD 1不垂直,故A 选项错误;∵A 1G ∥D 1F ,A 1G ⊄平面AEFD 1,∴A 1G ∥平面AEFD 1,故B 选项正确;平面AEF 截正方体所得截面为等腰梯形AEFD 1,易知梯形面积为98,故C 选项正确;假设C 与G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 中点,连接CG 交EF 于H ,而H 不是CG 中点,则假设不成立.故D 选项错误.故选BC .三、填空题(本大题共4小题,每小题5分,共20分)13.一个圆柱的侧面展开图是一个边长为1的正方形,则该圆柱的体积是__14π__. [解析] ∵圆柱的侧面展开图是边长为1的正方形, ∴该圆柱的高h =1,底面周长2πr =1,∴底面半径r =12π, ∴该圆柱的体积V =π×14π2×1=14π.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为__12__厘米.[解析] V =Sh =πr 2h =43πR 3,R =364×27=12(cm).15.已知a ,b 表示直线,α,β,γ表示平面.①若α∩β=a ,b ⊂α,a ⊥b ,则α⊥β;②若a ⊂α,a 垂直于β内任意一条直线,则α⊥β;③若α⊥β,α∩β=a ,α∩γ=b ,则a ⊥b ;④若a ⊥α,b ⊥β,a ∥b ,则α∥β.上述命题中,正确命题的序号是__②④__.[解析] 对①可举反例,如图,需b ⊥β才能推出α⊥β;对③可举反例说明,当γ不与α,β的交线垂直时,即可知a ,b 不垂直;根据面面、线面垂直的定义与判定知②④正确.16.(2020·全国Ⅰ卷理)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB = __-14__.[解析] ∵AB ⊥AC ,AB =3,AC =1,由勾股定理得BC =AB 2+AC 2=2,同理得BD =6,∴BF =BD =6,在△ACE 中,AC =1,AE =AD =3,∠CAE =30°, 由余弦定理得CE 2=AC 2+AE 2-2AC ·AE cos30°=1+3-2×1×3×32=1,∴CF =CE =1,在△BCF 中,BC =2,BF =6,CF =1, 由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ·BC=1+4-62×1×2=-14. 四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥P -EFGH ,下半部分是长方体ABCD -EFGH .长方体的长、宽、高分别是40 cm 、40 cm 、20 cm ,正四棱锥P -EFGH 的高为60 cm.(1)求该安全标识墩的体积; (2)求该安全标识墩的侧面积.[解析] (1)该安全标识墩的体积V =V P -EFGH +V ABCD -EFGH =13×402×60+402×20=64 000(cm 3).(2)如图,连接EG ,HF 交于点O ,连接PO ,结合三视图可知OP =60 cm ,OG =12EG =20 2 cm ,可得PG =602+(202)2=2011(cm).于是四棱锥P -EFGH 的侧面积S 1=4×12×40×(2011)2-202=1 60010(cm 2), 四棱柱EFGH -ABCD 的侧面积S 2=4×40×20=3 200(cm 2), 故该安全标识墩的侧面积S =S 1+S 2=1 600(10+2)(cm 2).18.(本小题满分12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.[解析] 不会溢出杯子.理由如下:由题图可知半球的半径为4 cm ,所以V 半球=12×43πR 3=12×43π×43=1283π(cm 3),V 圆锥=13πr 2h =13π×42×12=64π(c m 3).因为V 半球<V 圆锥,所以如果冰淇淋融化了,不会溢出杯子.19.(本小题满分12分)如图所示,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面PAB⊥平面PCD.[解析](1)∵CD∥平面PBO,CD⊂平面ABCD,且平面ABCD∩平面PBO=BO,∴BO∥CD.又BC∥AD,∴四边形BCDO为平行四边形,则BC=DO,而AD=3BC,∴AD=3OD,即点O是靠近点D的线段AD的一个三等分点.(2)证明:∵侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,AB⊂底面ABCD,且AB⊥AD,∴AB⊥平面PAD.又PD⊂平面PAD,∴AB⊥PD.又PA⊥PD,AB∩PA=A,AB,PA⊂平面PAB,∴PD⊥平面PAB.又PD⊂平面PCD,∴平面PAB⊥平面PCD.20.(本小题满分12分)(2020·江苏卷)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.[解析](1)因为E,F分别是AC,B1C的中点,所以EF∥AB1.又EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB.又AB⊥AC,B1C⊂平面AB1C1,AC⊂平面AB1C,B1C∩AC=C,所以AB⊥平面AB1C.又因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.21.(本小题满分12分)在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC 且分别交AC,SC于D,E,又SA=AB,SB=BC.(1)求证:BD⊥平面SAC;(2)求二面角E-BD-C的大小.[解析](1)证明:如图,∵DE⊥SC,且E为SC的中点,又SB=BC,∴BE⊥SC.又DE∩BE=E,根据直线与平面垂直的判定定理知SC⊥平面BDE,∵BD⊂平面BDE,∴SC⊥BD.又SA⊥平面ABC,BD⊂平面ABC,∴SA⊥BD.又SA∩SC=S,∴BD⊥平面SAC.(2)由(1)知∠EDC为二面角E-BD-C的平面角,又△SAC∽△DEC,∴∠EDC=∠ASC.在Rt△SAB中,∠SAB=90°,设SA=AB=1,则SB= 2.由SA⊥BC,AB⊥BC,AB∩SA=A,∴BC⊥平面SAB,SB⊂平面SAB,∴BC⊥SB.在Rt △SBC 中,SB =BC =2,∠SBC =90°,则SC =2. 在Rt △SAC 中,∠SAC =90°,SA =1,SC =2. ∴cos ∠ASC =SA SC =12,∴∠ASC =60°,即二面角E -BD -C 的大小为60°. 22.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AC =BC ,AB =2A 1A =4,以AB ,BC 为邻边作平行四边形ABCD ,连接A 1D ,DC 1.(1)求证:DC 1∥平面A 1ABB 1; (2)若二面角A 1-DC -A 为45°. ①求证:平面A 1C 1D ⊥平面A 1AD ; ②求直线AB 1与平面A 1AD 所成角的正切值. [解析] (1)证明:连接AB 1, ∵AD ∥BC ∥B 1C 1且AD =BC =B 1C 1, ∴四边形ADC 1B 1为平行四边形, ∴AB 1∥DC 1,又∵AB 1⊂平面A 1ABB 1,DC 1⊄平面A 1ABB 1. ∴DC 1∥平面A 1ABB 1.(2)①证明:如图,取DC 的中点M ,连接A 1M ,AM .易知Rt △A 1AD ≌Rt △A 1AC , ∴A 1D =A 1C ,∴A 1M ⊥DC , 又AM ⊥DC ,∴∠A 1MA 为二面角A 1-DC -A 的平面角, ∴∠A 1MA =45°. ∴在Rt △A 1AM 中,AA 1=AM =2, ∴AD =AC =22,∴AC 2+AD 2=DC 2,∴AC ⊥AD ,又∵AC ⊥AA 1,AD ∩AA 1=A ,∴AC ⊥平面A 1AD . 又∵AC ∥A 1C 1,∴A 1C 1⊥平面A 1AD .∵A 1C 1⊂平面A 1C 1D , ∴平面A 1C 1D ⊥平面A 1AD . ②∵AB 1∥DC 1,∴DC 1与平面A 1AD 所成角等于AB 1与平面A 1AD 所成角. 由①知A 1C 1⊥平面A 1AD ,∴A 1D 为DC 1在平面A 1AD 内的射影, 故∠A 1DC 1为直线DC 1与平面A 1AD 所成角, 在Rt △A 1DC 1中,tan ∠A 1DC 1=A 1C 1A 1D =63, ∴直线AB 1与平面A 1AD 所成角的正切值为63.。
高中数学必修二 第八章 立体几何初步 章末总结 同步练习(含答案)
第八章 立体几何初步一、单选题1.如图所示,观察四个几何体,其中判断正确的是( )A .(1)是棱台B .(2)是圆台C .(3)是棱锥D .(4)不是棱柱【答案】C 【解析】对于(1),由于几何体上下底面不相似,所以不是棱台,A 选项错误.对于(2),由于几何体上下底面不平行,所以不是圆台,B 选项错误.对于(3),几何体是棱锥,所以C 选项正确.对于(4),几何体有两个平面平行且全等,侧面都是平行四边形,故是棱柱,所以D 选项错误. 故选:C.2.若P 为两条异面直线l m ,外的任意一点,则( )A .过点P 有且仅有一条直线与l m ,都平行B .过点P 有且仅有一条直线与l m ,都垂直C .过点P 有且仅有一条直线与l m ,都相交D .过点P 有且仅有一条直线与l m ,都异面【答案】B【解析】因为若点P 是两条异面直线l m ,外的任意一点,则过点P 有且仅有一条直线与l m ,都垂直,选B3.如图,四棱柱1111ABCD A B C D -中,,E F 分别是1AB 、1BC 的中点,下列结论中,正确的是( )A .1EF BB ⊥ B .EF ⊥平面11BCC BC .//EF 平面1D BCD .//EF 平面 11ACC A【答案】D 【解析】连接1B C 交1BC 于F ,由于四边形11BCC B 是平行四边形,对角线平分,故F 是1B C 的中点.因为E 是1AB 的中点,所以EF 是三角形1B AC 的中位线,故//EF AC ,所以//EF 平面11ACC A .故选D.4.一个底面半径为2,高为4的圆锥中有一个内接圆柱,该圆柱侧面积的最大值为( )A .2πB .3πC .4πD .5π【答案】C【解析】设圆柱底面半径为为r ,02r <<,则圆柱的高为42r -,其侧面积22(42)4(2)S r r r r ππ=-=-+,根据二次函数性质,当1r =时,侧面积取得最大值max 4S π=.故选:C5.如图,三棱锥A BCD -中,90DAB DAC BAC ∠=∠=∠=︒,1AB AD AC ===,M ,N 分别为CD ,BC 的中点,则异面直线AM 与DN 所成角余弦值为( )A .16BC .6D .56【答案】B【解析】取NC 中点P ,连接,AP MP ,又因为M 为CD 中点,故//DN MP ,故AM 与DN 所成角即为AM 与MP 所成的角.由题得11,44AC NP CP BC ====,又N 为BC 的中点, 1AB AC ==,90BAC ∠=︒,所以12AN BC ==AN BC ⊥.故4AP ==,又12MP DN ====.又12AM DC ==故222135cos 2624AM MP AP AMP AM MP +-+-∠===⋅ 所以异面直线AM 与DN. 故选:B.6.我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱111ABC A B C -,其中AC BC ⊥,若11AA AB ==,当“阳马”即四棱锥11B A ACC -体积最大时,“堑堵”即三棱柱111ABC A B C -的表面积为A 1B 1CD 【答案】C【解析】四棱锥11B A ACC -的体积是三棱柱体积的23,11111122ABC A B C V AC BC AA AC BC -=⋅⋅=⋅222111()444AC BC AB ≤+==,当且仅当2AC BC ==时,取等号.∴12(1)122222S =⨯⨯⨯+++⨯32+=. 故选C .7.三棱锥P ABC -中,,,PA PB PC 互相垂直,1PA PB ==,M 是线段BC 上一动点,若直线AM 与平面PBC P ABC -的外接球的表面积是( ) A .2πB .4πC .8πD .16π 【答案】B【解析】 M 是线段BC 上一动点,连接PM ,∵,,PA PB PC 互相垂直,∴AMP ∠就是直线AM 与平面PBC 所成角,当PM 最短时,即PM BC ⊥时直线AM 与平面PBC 所成角的正切的最大.此时AP PM =3PM =,在直角△PBC 中,··PB PC BC PM PC PC =⇒=⇒=三棱锥P ABC -扩充为长方体,则长方体的对角线长为1122++=,∴三棱锥P ABC -的外接球的半径为1R =,∴三棱锥P ABC -的外接球的表面积为244R ππ=.选B.8.在三棱锥P ABC -中,PA ⊥底面ABC ,AB BC ⊥,E ,F 分别为棱PB ,PC 的中点,过E ,F 的平面分别与棱AB ,AC 相交于点D ,G ,给出以下四个结论:①//EF DG ;②//PA ED ;③ED DG ⊥;④AC FG ⊥.则以上正确结论的个数是A .1B .2C .3D .4【答案】B【解析】因为E ,F 分别为棱PB ,PC 的中点,所以//EF BC ,可得//EF 平面ABC ,平面EFGD 与平面ABC 的交线为DG ,所以//EF DG ,故①正确;当截面EFGD 与棱AB 的交点D 是AB 的中点时,//PA ED ,否则P A 与ED 相交,故②错误; 由PA ⊥底面ABC ,可得PA DG ⊥,由//EF DG 可得//DG BC ,又AB BC ⊥,所以AB DG ⊥,所以DG ⊥平面P AB ,所以ED DG ⊥,故③正确;只有当截面EFGD 与AC 的交点G 是AC 的中点时,//PA FG ,此时可得AC FG ⊥,否则AC 与FG 不垂直,故④错误.所以正确结论的个数是2.故选:B .二、多选题9.已知两条直线l ,m 及三个平面α,β,γ,则αβ⊥的充分条件是( ).A .l α⊂,l β⊥B .l α⊥,m β⊥,l m ⊥C .αγ⊥,β∥γD .l α⊂,m β⊂,l m ⊥【答案】ABC【解析】由面面垂直定理可以判断,,A B C 正确,对于选项D ,l α⊂,m β⊂,l m ⊥,也可以得到αβ∥,故D 错.故选:ABC .10.在正四面体ABCD 中,E 、F 、G 分别是BC 、CD 、DB 的中点,下面四个结论中正确的是( )A .//BC 平面AGFB .EG ⊥平面ABFC .平面AEF ⊥平面BCD D .平面ABF ⊥平面BCD【答案】ABD【解析】A .F 、G 分别是CD 、DB 的中点,//GF BC ∴,则//BC 平面AGF ,故A 正确.B .E 、F 、G 分别是BC 、CD 、DB 的中点,CD AF ∴⊥,CD BF ⊥,即CD ⊥平面ABF ,//EG CD ,EG ∴⊥平面ABF ,故B 正确.D .E 、F 、G 分别是BC 、CD 、DB 的中点,CD AF ∴⊥,CD BF ⊥,即CD ⊥平面ABF ,CD ⊂面BCD ,∴平面ABF ⊥平面BCD ,故D 正确,只有C 错误,故选:ABD .11.在三棱锥D -ABC 中,1AB BC CD DA ====,且AB BC ⊥,CD DA ⊥,M ,N 分别是棱BC ,CD 的中点,下面结论正确的是( )A .AC BD ⊥B .//MN 平面ABDC .三棱锥A -CMND .AD 与BC 一定不垂直【答案】ABD【解析】根据题意,画出三棱锥D -ABC 如下图所示,取AC 中点O ,连接,OB OD :对于A ,因为1AB BC CD DA ====,且AB BC ⊥,CD DA ⊥, 所以,ABC ADC ∆∆为等腰直角三角形,则,,OD AC BO AC ⊥⊥且OD BO O ⋂=,则AC ⊥平面BOD ,所以AC BD ⊥,即A 正确;对于B ,因为M ,N 分别是棱BC ,CD 的中点,由中位线定理可得//MN BD ,而BD ⊂平面ABD ,MN ⊄平面ABD , 所以//MN 平面ABD ,即B 正确;对于C ,当平面DAC ⊥平面ABC 时,三棱锥A -CMN 的体积最大,则最大值为1111113222248A CMN N ACM V V --⎛⎫==⨯⨯⨯⨯⨯= ⎪⎝⎭,即C 错误; 对于D ,假设AD BC ⊥,由AB BC ⊥,且AD AB A ⋂=,所以BC ⊥平面ABD ,则BC BD ⊥,又因为AC BD ⊥,且AC BC C =,所以BD ⊥平面ABC ,由OB ⊂平面ABC ,则BD OB ⊥,由题意可知OB OD =,因而BD OB ⊥不能成立,因而假设错误,所以D 正确; 综上可知,正确的为ABD ,故选:ABD.12.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则 ( )A .直线1BD ⊥平面11AC DB .三棱锥11P ACD -的体积为定值 C .异面直线AP 与1A D 所成角的取值范围是[]45,90︒︒ D .直线1C P 与平面11AC D所成角的正弦值的最大值为3【答案】ABD【解析】对于选项A,连接11B D ,由正方体可得1111AC B D ⊥,且1BB ⊥平面1111D C B A ,则111BB AC ⊥,所以11A C ⊥平面11BD B ,故111AC BD ⊥;同理,连接1AD ,易证得11A D BD ⊥,则1BD ⊥平面11AC D ,故A 正确; 对于选项B,1111P A C D C A PD V V --=,因为点P 在线段1B C 上运动,所以1112A DP S A D AB =⋅,面积为定值,且1C 到平面11A PD 的距离即为1C 到平面11A B CD 的距离,也为定值,故体积为定值,故B 正确; 对于选项C,当点P 与线段1B C 的端点重合时,AP 与1A D 所成角取得最小值为60︒,故C 错误; 对于选项D,因为直线1BD ⊥平面11AC D ,所以若直线1C P 与平面11AC D 所成角的正弦值最大,则直线1C P 与直线1BD 所成角的余弦值最大,则P 运动到1B C 中点处,即所成角为11C BD ∠,设棱长为1,在Rt △D 1C 1B 中,1111cos C B C BD BD ∠===,故D 正确 故选:ABD三、填空题13.如图,点P 在正方形ABCD 所在的平面外,,PD ABCD PD AD ⊥=,则PA 与BD 所成角的度数为____________.【答案】60【解析】构造正方体ABCD SRQP -,如图所示:显然//,BD RP APR ∆为等边三角形,则60APR ∠=,即P A 与BD 所成的角是60.14.如图,在直角梯形ABCD 中,0190,//,12A AD BC AD AB BC ∠====,将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD .在四面体A BCD -中,下列说法正确的序号是____________.①平面ABD ⊥平面ABC ,②平面ACD ⊥平面ABC ,③平面ABC ⊥平面BCD ,④平面ACD ⊥平面BCD【答案】②【解析】∵在直角梯形ABCD 中,AD ∥BC ,AD=AB=12BC=1,∠A =90°,在BCD ∆中,BC=2,45DBC ∠= ,由余弦定理得 90BDC ∠= ,∴BD ⊥CD ,又平面ABD ⊥平面BCD ,且平面ABD∩平面BCD =BD ,故CD ⊥平面ABD ,则CD ⊥AB ,又由AD ⊥AB ,CDAD D = ∴AB ⊥平面ADC ,又AB ⊂平面ABC ,∴平面ABC ⊥平面ADC .故填②.15.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是___________.【答案】⎤⎥⎣⎦【解析】由题意可得:直线OP 于平面A 1BD 所成的角α的取值范围是111,,22AOA C OA ππ⎡⎤⎡⎤∠⋃∠⎢⎥⎢⎥⎣⎦⎣⎦, 不妨取AB =2.在Rt △AOA 1中,sin ∠AOA 1=11AA AO == sin ∠C 1OA 1=()1111sin 2sin 22sin cos AOA AOA AOA AOA π-∠=∠=∠∠2==>,∴sin α的取值范围是⎤⎥⎣⎦.16.如图,在一个倒置的高为2的圆锥形容器中,装有深度为h 的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则h 的值为____________.【解析】设圆锥的底面半径为r ,体积为V ,半球的体积为1V ,水(小圆锥)的体积为2V ,如图则,1,2,OA r OC OB BE h ====,所以2rh ED =,21r ⨯=,解得243r =, 所以218239V r ππ=⨯=,123V π=,23211()329rh V h h ππ=⨯⨯=,由12V V V =+,得3821939h πππ=+,解得h =四、解答题 17.图(1)为一个几何体的表面展开图.(1)沿图中虚线将它折叠起来,是哪一种几何体?画出其空间图形.(2)需要几个这样的几何体才能拼成一个棱长为6的正方体?若图(2)是棱长为6的正方体,试在图中画出这几个几何体的一种组合情况.【答案】(1)这个几何体是有一条侧棱垂直于底面且底面为正方形的四棱推,作图见解析(2)需要3个这样的几何体,作图见解析【解析】(1)这个几何体是有一条侧棱垂直于底面且底面为正方形的四棱推,如图(3).(2)需要3个这样的几何体.如图(4),分别为四棱锥111D ABB A -,1D ABCD -,111D BCC B -(答案不唯一)18.如图,四棱锥P ABCD -,PA ⊥平面ABCD ,四边形ABCD 是直角梯形,//AD BC ,90BAD ∠=︒,2BC AD =,E 为PB 中点.(1)求证://AE 平面PCD ;(2)求证:AE BC ⊥.【答案】(1)证明见详解;(2)证明见详解【解析】如图,取PC 的中点F ,连接,EF DF ,E 为PB 中点,//EF BC ∴,且12EF BC =, 又//AD BC ,2BC AD =,AD EF ∴=,//AD EF ,AEFD ∴为平行四边形,即//AE DF ,又AE ⊄平面PCD ,DF ⊂平面PCD ,所以//AE 平面PCD .(2)由PA ⊥平面ABCD ,所以PA BC ⊥,又因为//AD BC ,90BAD ∠=︒,所以BC AB ⊥,PA AB A =,BC ∴⊥平面PAB ,又AE ⊂平面PAB ,∴AE BC ⊥.19.如图所示,已知AB ⊥平面ABCD ,M ,N 分别是AC ,AD 的中点,BC CD ⊥.(1)求证://MN 平面BCD ;(2)求证:平面BCD ⊥平面ABC ;(3)若1AB =,BC =,求直线AC 与平面BCD 所成的角.【答案】(1)证明见解析(2)证明见解析(3)30【解析】(1)因为M ,N 分别是AC ,AD 的中点,所以//MN CD .又MN ⊄平面BCD 且CD ⊂平面BCD ,所以//MN 平面BCD .(2)因为AB ⊥平面BCD ,CD ⊂平面BCD ,所以AB CD ⊥.又CD BC ⊥且AB BC B ⋂=,所以CD ⊥平面ABC .又CD ⊂平面BCD ,所以平面BCD ⊥平面ABC .(3)因为AB ⊥平面BCD ,所以ACB ∠为直线AC 与平面BCD 所成的角.在直角ABC ∆中,1AB =,BC =,所以tan AB ACB BC ∠== 所以30ACB ∠=︒.故直线AC 与平面BCD 所成的角为30.20.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABD -的体积 4V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为13【解析】(1)设BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB又EO 平面AEC ,PB 平面AEC所以PB ∥平面AEC .(2)166V PA AB AD AB =⋅⋅= 由,可得.作交于. 由题设易知,所以 故,又31313PA AB AH PB ⋅==所以到平面的距离为 法2:等体积法166V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d , 又因为PB=所以又因为(或),,所以21.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(Ⅰ)证明:BE DC ⊥;(Ⅰ)求直线BE 与平面PBD 所成角的正切值.【答案】(Ⅰ)详见解析;(Ⅰ)2【解析】(1)如图,取PD 中点M ,连接,EM AM .由于,E M 分别为,PC PD 的中点, 故//EM BC ,且12EM DC =,又由已知,可得//EM AB 且EM AB =,故四边形ABEM 为平行四边形,所以//BE AM .因为PA ⊥底面ABCD ,故PA CD ⊥,而CD DA ⊥,从而CD ⊥平面PAD ,因为AM ⊂平面PAD ,于是CD AM ⊥,又//BE AM ,所以BE CD ⊥.(2)连接BM ,由(Ⅰ)有CD ⊥平面PAD ,得CD PD ⊥,而//EM CD ,故PD EM ⊥.又因为AD AP =,M 为PD 的中点,故PD AM ⊥,从而PD BE ⊥,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD .所以直线BE 在平面PBD 内的射影为直线BM ,而BE EM ⊥,可得EBM ∠为锐角,故EBM ∠为直线BE 与平面PBD 所成的角.依题意,有PD =M 为PD 中点,可得AM =BE =故在直角三角形BEM 中,tanEM AB BEM BE BE ∠====所以直线BE 与平面PBD 所成的角的正切值为2 22.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,点P 在面ABCD 内的射影为A ,1==PA AB ,点A 到平面PBC AC 与PB 垂直.(Ⅰ)在棱PD 上找一点E ,使直线PB 与平面ACE 平行,并说明理由; (Ⅰ)在(Ⅰ)的条件下,求二面角B AC E --的大小.【答案】(Ⅰ)点E 为PD 中点时直线PB 与平面ACE 平行,证明详见解析;(Ⅰ)34π. 【解析】(Ⅰ)点E 为PD 中点时直线PB 与平面ACE 平行,证明:连接BD ,交AC 于点O ,则点O 为BD 的中点,因为点E 为PD 中点, 故OE 为PDB △的中位线,则//OE PB ,OE ⊂平面ACE ,PB ⊄平面ACE ,所以PB 与平面ACE 平行.(Ⅰ)根据题意AC PB ⊥,PA ⊥底面ABCD ,AC ⊂底面ABCD ,则有AC PA ⊥, PA PB P =,所以AC ⊥平面PAB ,由(Ⅰ)可知//OE PB ,又AC PB ⊥,所以OE AC ⊥,AC ⊥平面PAB ,AB 平面PAB ,所以AB AC ⊥,取BC 中点F ,连接OF ,由于O 是AC 中点,则//OF AB ,OF AC ⊥, ∴EOF ∠为二面角B AC E --的平面角,其为钝角,那么PB ,AB 所成的角即为二面角B AC E --的补角,等腰直角PAB △中,4PBA π∠=,因此二面角B AC E --的大小为34π.。
高中数学必修二《第八章 立体几何初步》复习教案及练习
《第八章立体几何初步》复习教案8.1 基本立体图形第1课时棱柱、棱锥、棱台的结构特征【基础知识拓展】1.几类特殊的四棱柱四棱柱是一种非常重要的棱柱,平行六面体(底面是平行四边形的四棱柱)、直平行六面体(侧棱垂直于底面的平行六面体)、长方体、正四棱柱、正方体等都是一些特殊的四棱柱,它们之间的关系如下.2.棱柱、棱锥、棱台之间的关系棱柱、棱锥、棱台之间有着内在的联系:将棱台的上底面慢慢扩大到与下底面相同时,转化为棱柱;将棱台的上底面慢慢缩小为一点时,转化为棱锥.如图所示.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)棱柱的侧面可以不是平行四边形.( )(2)各面都是三角形的多面体是三棱锥.( )(3)棱台的上下底面互相平行,且各侧棱延长线相交于一点.( )答案(1)×(2)×(3)√2.做一做(1)有两个面平行的多面体不可能是( )A.棱柱 B.棱锥C.棱台 D.以上都错(2)面数最少的多面体的面的个数是________.(3)三棱锥的四个面中可以作为底面的有________个.(4)四棱台有________个顶点,________个面,________条边.答案(1)B (2)4 (3)4 (4)8 6 12【核心素养形成】题型一对棱柱、棱锥、棱台概念的理解例1 下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有4个面.[解析] 棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①正确.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②正确.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错误,④正确.⑤显然正确.因而真命题有①②④⑤.[答案] ①②④⑤【解题技巧】关于棱柱、棱锥、棱台结构特征问题的解题方法(1)根据几何体的结构特征的描述,结合棱柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间想象能力,必要时做几何模型通过演示进行准确判断.(2)解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念类的命题进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【跟踪训练】下列关于棱锥、棱柱、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥;④棱柱的侧棱与底面一定垂直.其中正确说法的序号是________.答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥;④错误,棱柱的侧棱与底面不一定垂直.题型二对棱柱、棱锥、棱台的识别与判断例2 如图长方体ABCD-A1B1C1D1,(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分的几何体还是棱柱吗?[解] (1)是棱柱.是四棱柱,因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)截后的各部分都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABFA1-DCED1.[条件探究] 若本例(2)中将平面BCEF改为平面ABC1D1,则分成的两部分各是什么体?解截后的两部分分别为棱柱ADD1-BCC1和棱柱AA1D1-BB1C1.【解题技巧】棱柱判断的方法判断棱柱,依据棱柱的定义,先确定两个平行的面——底面,再判断其余面——侧面是否为四边形及侧棱是否平行.【跟踪训练】判断下图甲、乙、丙所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是不是棱台的标准有两个:一是共点,二是平行,即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,在图甲中多面体侧棱延长线不相交于同一点,不是棱台;图乙中多面体不是由棱锥截得的,不是棱台;图丙中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.题型三空间几何体的展开图问题例3 如下图是三个几何体的侧面展开图,请问各是什么几何体?[解] 由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.【解题技巧】空间几何体的展开图(1)解答空间几何体的展开图问题要结合多面体的结构特征发挥空间想象能力和动手能力.(2)若给出多面体画其展开图,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.(3)若是给出表面展开图,则按上述过程逆推.【跟踪训练】根据如下图所给的平面图形,画出立体图.解将各平面图折起来的空间图形如下图所示.【课堂达标训练】1.下列说法中,正确的是( )A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形答案 D解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.2.下列三种叙述,正确的有( )①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个 B.1个 C.2个 D.3个答案 A解析本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错误;②③可用如图的反例检验,故②③不正确.故选A.3.下列图形中,不是三棱柱展开图的是( )答案 C解析本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.4.①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.以上说法正确的序号有________.答案①③解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错误;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错误.5.已知M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到M的最短路程是多少?解若以BC或DC为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为2 cm,3 cm,故两点之间的距离为13 cm,若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为1 cm,4 cm.故两点之间的距离是17 cm.故沿正方体表面从A到M的最短路程是13 cm.第2课时圆柱、圆锥、圆台、球和简单组合体的结构特征【基础知识拓展】1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.空间几何体的轴截面(1)圆柱、圆锥、圆台可以分别看作以矩形的一条边、直角三角形的一条直角边、直角梯形垂直于底边的腰所在直线为旋转轴,经过旋转而成的曲面所围成的几何体.(2)圆柱、圆锥、圆台的轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题时,一般要画出轴截面.(3)画出轴截面图形,将立体几何的空间问题转化为平面问题来计算,这种把有关立体几何问题转化为平面几何问题的数学思想方法是我们解决立体几何问题的重要思想方法.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)到定点的距离等于定长的点的集合是球.( )(2)用平面去截圆锥、圆柱和圆台,得到的截面都是圆.( )(3)用平面截球,无论怎么截,截面都是圆面.( )答案(1)×(2)×(3)√2.做一做(1)圆锥的母线有( )A.1条 B.2条C.3条 D.无数条(2)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(3)图②的组合体是由________和________构成.(4)图③中的几何体有________个面.答案(1)D (2)球球心半径直径(3)圆柱圆锥(4)3【核心素养形成】题型一旋转体的概念例1 下列命题:(1)以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(2)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(3)圆柱、圆锥、圆台的底面都是圆;(4)用一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[解析] 根据圆柱、圆锥、圆台的概念不难做出判断.(1)以直角三角形的一条直角边为轴旋转才可以得到圆锥;(2)以直角梯形垂直于底边的一腰为轴旋转才可以得到圆台;(3)圆柱、圆锥、圆台的底面都是圆面;(4)用平行于圆锥底面的平面截圆锥,才可得到一个圆锥和一个圆台.故4个均不正确.[答案] A[条件探究] 若本例中(2)改为“以直角梯形的各边为轴旋转”,得到的几何体是由哪些简单几何体组成的?解①以垂直于底边的腰为轴旋转得到圆台;②以较长的底为轴旋转得到的几何体为一圆柱加上一个圆锥;③以较短的底为轴旋转得到的几何体为一圆柱挖去一个同底圆锥;④以斜腰为轴旋转得到的几何体为圆锥加上一个圆台挖去一个小圆锥.【解题技巧】平面图形旋转形成的几何体的结构特征圆柱、圆锥、圆台和球都是由平面图形绕着某条轴旋转而成的,平面图形不同,得到的旋转体也不同,即使是同一平面图形,所选轴不同,得到的旋转体也不一样.判断旋转体,要抓住定义,分清哪条线是轴,什么图形,怎样旋转,旋转后生成什么样的几何体.【跟踪训练】一个有30°角的直角三角尺绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥;如图(3)所示,绕其斜边所在直线旋转一周围成的几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在直线旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.题型二简单组合体的结构特征例2 描述下图几何体的结构特征.[解] 图(1)中的几何体是由一个四棱柱和一个四棱锥拼接而成的组合体.图(2)中的几何体是在一个圆台中挖去一个圆锥后得到的组合体.图(3)中的几何体是在一个圆柱中挖去一个三棱柱后得到的组合体.图(4)中的几何体是由两个同底的四棱锥拼接而成的简单组合体.【解题技巧】简单组合体的两种构成方法(1)简单组合体的构成一般有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.(2)识别或运用几何体的结构特征,要从几何体的概念入手,掌握画图或识图的方法,并善于运用身边的特殊几何体进行判断、比较、分析.【跟踪训练】观察下列几何体,并分析它们是由哪些基本几何体组成的.解图(1)是由一个圆柱中挖去一个圆台形成的.图(2)是由一个球、一个四棱柱和一个四棱台组合而成的.题型三旋转体的计算问题例3 一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解] (1)如图,圆台的轴截面是等腰梯形ABCD,由已知可得上底面半径O1A =2 cm,下底面半径OB=5 cm,又腰长AB=12 cm,所以圆台的高为AM=122-(5-2)2=315(cm).(2)设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l-12l=25,所以l=20(cm).故截得此圆台的圆锥的母线长为20 cm.【解题技巧】旋转体中的计算问题及截面性质(1)圆柱、圆锥和圆台中的计算问题,一要结合它们的形成过程,分辨清轴、母线及底面半径与旋转前平面图形量的关系;二要切实体现轴截面的作用.解题时,可把轴截面从旋转体中分离出来,以平面图形的计算解决立体问题.(2)球中的计算应注意一个重要的直角三角形,设球的半径为R,截面圆的半径为r,球心到截面的距离为d,则R2=d2+r2.(3)用平行于底面的平面去截柱体、锥体、台体等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.【跟踪训练】圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解将圆台还原为圆锥,如图所示.O2,O1,O分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2, 设上底面的面积为S 1,半径为r 1, 则S 1=πr 21=1,下底面的面积为S 2,半径为r 2,则S 2=πr 22=49, 截面的面积为S =S 1+S 22=25,半径为r 3,则S =πr 23.由三角形相似得⎩⎪⎨⎪⎧h +h 1h =49+121,h +h 1+h 2h =491,所以⎩⎨⎧h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1.题型四 圆柱、圆锥、圆台侧面展开图的应用例4 如图所示,已知圆柱的高为80 cm ,底面半径为10 cm ,轴截面上有P ,Q 两点,且PA =40 cm ,B 1Q =30 cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?[解] 将圆柱侧面沿母线AA 1展开,得如图所示矩形.【解题技巧】求圆柱、圆锥、圆台侧面上两点间最短距离都要转化到侧面展开图中,“化曲为直”是求几何体表面上两点间最短距离的好方法.【跟踪训练】国庆节期间,要在一圆锥形建筑物上挂一宣传标语,经测量得圆锥的母线长为3米,高为22米,如图所示.为了美观需要,在底面圆周上找一点M拴系彩绸的一端,沿圆锥的侧面绕一周挂彩绸,彩绸的另一端仍回到原处M,则彩绸最短要多少米?解把圆锥的侧面沿过点M的母线剪开,并铺平得扇形MOM1,如图所示.这样把空间问题转化为平面问题,易知彩绸的最短长度即为线段MM1的长度,由母线长为3米,高为22米,得底面半径为1米,所以扇形的圆心角为120°,所以MM1=33米,即彩绸最短要33米.【课堂达标训练】1.下列几何体中不是旋转体的是( )答案 D解析正方体不可能是旋转体.2.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是( )A.球体B.圆柱C.圆台D.两个共底面的圆锥的组合体答案 D解析过等腰三角形的顶点向底边作垂线,得到两个有一条公共边的全等直角三角形,而直角三角形以一条直角边为轴旋转得到的几何体是圆锥.故选D.3.下列几何体中是旋转体的是( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤ B.① C.③和④ D.①和④答案 D解析根据旋转体的概念知①④正确.4.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.5.圆台的两底面圆的半径分别为2 cm,5 cm,母线长是310 cm,求其轴截面的面积.解如图,在轴截面内过点A作AB⊥O1A1,垂足为B.由已知OA=2,O1A1=5,AA1=310,∴A1B=3.∴AB=AA21-A1B2=90-9=9.∴S轴截面=12(2OA+2O1A1)·AB=12×(4+10)×9=63(cm2).故圆台轴截面的面积为63 cm2.8.2 立体图形的直观图【基础知识拓展】1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等,而求原图形的面积可把直观图还原为原图形.两者之间关系为:S 直S 原=24.2.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)相等的角,在直观图中仍相等.( )(2)长度相等的线段,在直观图中长度仍相等.( )(3)若两条直线垂直,在直观图中对应的直线也互相垂直.( )答案(1)×(2)×(3)×2.做一做(1)利用斜二测画法画边长为3 cm的正方形的直观图,可以是下列选项中的( )(2)在已知图形中平行于x轴的线段AB=6 cm,则在直观图中线段A′B′=______cm;在已知图形中平行于y轴的线段CD=4 cm,则在直观图中线段C′D′=______cm.(3)在空间几何体中,平行于z轴的线段AB=10 cm,则在直观图中对应的线段A′B′=________cm.(4)在用斜二测画法画水平放置的△ABC时,若∠A的两边平行于x轴、y轴,则在直观图中,∠A′=________.答案(1)C (2)6 2 (3)10 (4)45°或135°【核心素养形成】题型一平面图形的直观图画法例1 画水平放置的正五边形的直观图.[解] (1)建立如图①所示的直角坐标系xOy,再建立如图②所示的坐标系x′O′y′,使∠x′O′y′=45°.(2)在图①中作BG⊥x轴于G,EH⊥x轴于H,在坐标系x′O′y′中作O′H′=OH,O′G′=OG,O′A′=12OA,O′F′=12OF.过F′作C′D′∥x′轴且C′D′=CD,C′F′=F′D′.(3)在平面x′O′y′中,过G′作G′B′∥y′轴,且G′B′=12GB,过H′作H′E′∥y′轴,且H′E′=12HE.连接A′B′,B′C′,C′D′,D′E′,E′A′,得五边形A′B′C′D′E′为正五边形ABCDE的直观图.【解题技巧】画平面图形直观图的技巧(1)要画好对应平面图形的直观图,首先应在原图形中确定直角坐标系,然后在此基础上画出水平放置的平面坐标系.(2)画水平放置的平面多边形的直观图的关键是确定多边形的顶点位置.顶点位置可以分为两类:一类是在轴上或在与轴平行的线段上,这类顶点比较容易确定;另一类是不在轴上且不在与轴平行的线段上,这类顶点一般通过过此点作与轴平行的线段,将此点转到与轴平行的线段上来确定.【跟踪训练】用斜二测画法画边长为4 cm的水平放置的正三角形的直观图.解(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在的直线为y轴.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上截取O′B′=O′C′=2 cm,在y′轴上截取O′A′=12OA,连接A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图②所示.题型二空间几何体的直观图画法例2 画出底面是正方形,侧棱均相等的四棱锥的直观图.[解] 画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(或135°),∠xOz=90°,如图①.(2)画底面.以O为中心在xOy平面内,画出正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是原四棱锥的高.(4)成图.顺次连接PA,PB,PC,PD,并擦去辅助线,将被遮住的部分改为虚线,得四棱锥的直观图如图②.【解题技巧】画空间几何体的直观图应遵循的原则(1)对于一些常见简单几何体(柱体、锥体、台体、球)的直观图,应该记住它们的大致形状,以便可以较快、较准确地画出.(2)画空间几何体的直观图比画平面图形的直观图增加了一个z轴,表示竖直方向.(3)平行于z轴(或在z轴上)的线段,平行性与长度都与原来保持一致.(4)画空间几何体的直观图,可先画出底面的平面图形,坐标系的建立要充分利用几何体的对称性,然后画出竖轴.此题也可以把点A,B,C,D放在坐标轴上,画法实质是各顶点的确定.【跟踪训练】已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解(1)画轴.如图①,画x轴,y轴,z轴,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面.利用椭圆模板,画出底面⊙O,在z轴上截取OO′,使OO′等于三视图中相应的长度,过点O′作Ox的平行线O′x′,Oy的平行线O′y′,类似底面⊙O的作法作出上底面⊙O′.(3)画圆锥的顶点.在O′z上截取O′P,使O′P等于三视图中O′P的长度.(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图所表示的几何体的直观图,如图②.题型三直观图还原平面图形例 3 (1)如图,△A′B′C′是水平放置的平面图形的斜二测直观图,将其恢复成原图形;(2)在(1)中若|C′A′|=2,B′D′∥y′轴且|B′D′|=1.5,求原平面图形△ABC的面积.[解] (1)画法:①画直角坐标系xOy,在x轴上取OA=O′A′,即CA=C′A′.②在题图中,过B′作B′D′∥y′轴,交x′轴于D′,在x轴上取OD=O′D′,过D作DB∥y轴,并使DB=2D′B′.③连接AB,BC,则△ABC即为△A′B′C′原来的图形,如图.(2)∵B′D′∥y′,∴BD⊥AC.又|B′D′|=1.5且|A′C′|=2,∴|BD|=3,|AC|=2.∴S△ABC=12·|BD|·|AC|=3.[结论探究] 若设原平面图形的面积为S,则其直观图的面积S′为多少?解设原图形的高为h,则直观图的高为24h.又平行于x轴的线段长度不变,∴S′=24 S.【解题技巧】直观图还原平面图形的策略还原的关键是找与x′轴、y′轴平行的直线或线段,且平行于x′轴的线段还原时长度不变,平行于y′轴的线段还原时放大为斜二测直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.【跟踪训练】如图是四边形ABCD的水平放置的直观图A′B′C′D′,则原四边形ABCD的面积是( )A.14 B.10 2 C.28 D.14 2答案 C解析∵A′D′∥y′轴,A′B′∥C′D′,A′B′≠C′D′,∴原图形是一个直角梯形.又A′D′=4,∴原直角梯形的上、下底及高分别是2,5,8,故其面积为S=12×(2+5)×8=28.题型四直观图与原图间的计算问题例4 已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2 B.38a2 C.68a2 D.616a2[解析] 如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a,所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.[答案] D【解题技巧】1.利用斜二测画法画空间图形的直观图应遵循的基本原则(1)画空间图形的直观图在要求不太严格的情况下,长度和角度可适当选取.为了增强立体感,被挡住的部分通常用虚线表示.(2)画图时要紧紧把握一斜——在已知图形中垂直于x轴的线段,在直观图中与x轴成45°或135°;二测——两种度量形式,即在直观图中,平行于x轴的线段长度不变,平行于y轴的线段变为原长度的一半2.若一个平面多边形的面积为S原,斜二测画法得到的直观图的面积为S直,则有S直=24S原.【跟踪训练】如图所示,矩形O′A′B′C′是水平放置的平面图形OABC的斜二测直观图,其中O′A′=6 cm,C′D′=2 cm,则四边形OABC的形状是________.答案菱形解析如图,在四边形OABC中,有OD=2O′D′=2×22=4 2 cm,CD=C′D′=2 cm,∴OC=OD2+CD2=(42)2+22=6 cm,∴OA=OC,故四边形OABC是菱形.【课堂达标训练】1.关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的12C.画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同答案 C解析∠x′O′y′也可以是135°.2.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是( )A.AB B.ACC.BC D.AD答案 B解析由直观图可知△ABC是以∠B为直角的直角三角形,所以斜边AC最长.3.如图,已知等腰三角形ABC,则如图所示的四个图中,可能是△ABC的直观图的是( )A.①② B.②③ C.②④ D.③④答案D解析根据平面图形直观图的斜二测画法知③④可能是△ABC的直观图.4.如图,一个三角形的斜二测直观图是等腰直角三角形A′B′O′,若O′B′=1,则原△AOB的面积是________.答案 2解析由题意得O′B′=B′A′=1,∴O′A′=2,且∠B′O′A′=45°,∴△AOB是以∠O为直角的三角形,且OB=1,OA=22,∴S△AOB =12OB·OA=12×1×22= 2.5.有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm,高为3 cm,画出这个正六棱锥的直观图.解(1)先画出边长为3 cm的正六边形的水平放置的直观图,如图①所示.(2)过正六边形的中心O′建立z′轴,在z′轴上截取O′V′=3 cm,如图②所示.(3)连接V′A′,V′B′,V′C′,V′D′,V′E′,V′F′,如图③所示.(4)擦去辅助线,遮挡部分用虚线表示,即得到正六棱锥的直观图,如图④所示.。
第八章立体几何初步同步训练卷 (含答案)高一数学人教A版(2019)必修第二册
人教版(2019)必修第二册第八章同步训练卷立体几何初步注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列说法正确的是( )A .有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥B .有两个面平行且相似,其余各面都是梯形的多面体是棱台C .如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥D .如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体 2.用斜二测画法画水平放置的的直观图,得到如图所示的等腰直角三角形A B C '''△.已知点O '是斜边B C ''的中点,且1A O ''=,则ABC △的边BC 边上的高为( )A .1B .2C .2D .223.如图所示,在长方体1111ABCD A B C D -中,1B C 和1C D 与底面所成的角分别为60︒和45︒,则异面直线1B C 和1C D 所成角的余弦值为( )A .64B .63C .26D .234.设平面α过正方体1111ABCD A B C D -的顶点A ,且正方体的棱AB ,1CC ,11A D ,在平面α上的射影相等,那么满足条件的平面α的个数为( )A .3B .4C .5D .65.设m ,n 为两条不同的直线,α,β为两个不同的平面,给出下列命题: ①若m α∥,m n ∥,则n α∥; ②若m α⊥,m β∥,则αβ⊥; ③若αβ⊥,n αβ=,m n ⊥,则m β⊥;④若m n ∥,αβ∥,则m 与α所成的角和n 与β所成的角相等. 其中正确命题的序号是( ) A .①②B .①④C .②③D .②④6.直线AB 与直二面角l αβ--的两个面分别交于A ,B 两点,且A ,B 都不在棱l 上,设直线AB 与,αβ所成的角分别为θ和ϕ,则θϕ+的取值范围是( ) A .090θϕ︒<+<︒B .090θϕ︒<+≤︒C .90180θϕ︒<+<︒D .90θϕ+=︒7.古希腊数学家阿基米德是世界上公认的三位最伟大的数学家之一,其墓碑上刻着他认为最满意的一个数学发现,如图,一个“圆柱容球”的几何图形,即圆柱容器此卷只装订不密封班级 姓名 准考证号 考场号 座位号里放了一个球,该球顶天立地,四周碰边,在该图中,球的体积是圆柱体积的23,并且球的表面积也是圆柱表面积的23,若圆柱的表面积是6π现在向圆柱和球的缝隙里注水,则最多可以注入的水的体积为( )A .π2B .2π3C .πD .4π38.已知正方体1111ABCD A B C D -的棱长为2,M 为1CC 的中点,点N 在侧面11ADD A 内,若1BM A N ⊥,则ABN △面积的最小值为( )A .55B .255C .1D .5二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.如图,正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为BC ,1CC ,1BB 的中点,则( )A .直线1DD 与直线AF 垂直B .直线1A G 与平面AEF 平行C .点C 与点G 到平面AEF 的距离相等D .平面AEF 截正方体所得的截面面积为9810.如图,梯形ABCD 中,AD BC ∥,1AD AB ==,AD AB ⊥,45BCD ∠=︒,将ABD △沿对角线BD 折起.设折起后点A 的位置为A ′,并且平面A BD '⊥平面BCD .给出下面四个命题:( )A .A D BC '⊥B .三棱锥A BCD '-的体积为22C .CD ⊥平面A BD 'D .平面A BC '⊥平面A DC '11.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵111ABC A B C -中,AC BC ⊥,且1AA AB =2=.下列说法正确的是( )A .四棱锥11B A ACC -为“阳马” B .四面体11AC CB 为“鳖膈”C .四棱锥11B A ACC -体积最大为23D .过A 点分别作1AE A B ⊥于点E ,1AF A C ⊥于点F ,则1EF A B ⊥ 12.如图,正方体1111ABCD A B C D -的棱长为a ,线段11B D 上有两个动点E ,F ,且22EF a =,以下结论正确的有( )A .AC BE ⊥B .点A 到BEF △的距离为定值C .三棱锥A BEF -的体积是正方体1111ABCD A B C D -体积的112D .异面直线AE ,BF 所成的角为定值三、填空题:本大题共4小题,每小题5分.13.如图,在直角梯形ABCD 中,AB CD ∥,AB AD ⊥,2CD =,3AB =,60ABC ∠=︒,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是_____________.14.如图,四棱锥的底面是正方形,顶点P 在底面上的投影是底面正方形的中心,侧棱长为4,侧面的顶角为30︒.过点A 作一截面与PB 、PC 、PD 分别相交于E 、F 、G ,则四边形AEFG 周长的最小值是________.15.在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,且PAD △为等边三角形,若四棱锥P ABCD -的体积与四棱锥P ABCD -外接球的表面积大小之比为37π,则正方形ABCD 的边长为______. 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有_______个面,其棱长为_______.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知四棱锥P ABCD -中,底面ABCD 是直角梯形,90BAD ∠=︒,22CD AB AD ==,侧面PAD 是正三角形且垂直于面ABCD ,E 是PC 中点.(1)求证:BE ∥面PAD ;(2)求证:BE⊥平面PCD.18.(12分)已知一个圆锥的底面半径为R,高为H,在其内部有一个高为x的内接圆柱.(1)求此圆柱的侧面积的表达式;(2)当x为何值时,圆柱的侧面积最大?19.(12分)如图,四面体ABCD中,点E,F分别为线段AC,AD的中点,平面EFNM平面BCD MN=,90CDA CDB∠=∠=︒,DH AB⊥,垂足为H.(1)求证:EF MN∥;(2)求证:平面CDH⊥平面ABC.20.(12分)如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠=︒,AF DE ∥,22DE DA AF ===.(1)求证:AC ⊥平面BDE ; (2)求证:AC ∥平面BEF ;(3)若AC 与BD 相交于点O ,求四面体BOEF 的体积.21.(12分)如图1,在ABC △中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,25AB AC ==,4BC =.将ADE △沿DE 折起到1A DE △的位置,使得平面1A DE ⊥平面BCED ,F 为1A C 的中点,如图2. (1)求证:EF ∥平面1A BD ;(2)求证:平面1AOB ⊥平面1A OC ; (3)线段OC 上是否存在点G ,使得OC ⊥平面EFG ?说明理由.22.(12分)如图,棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,侧棱1AA ⊥底面ABCD ,过AB 的截面与上底面交于PQ ,且点P 在棱11A D 上,点Q在棱11C B 上,且1AB =,3AC=,2BC =. (1)求证:11//PQ A B ;(2)若二面角1A C D C --的平面角的余弦值为219,求侧棱1BB 的长.人教版(2019)必修第二册第八章同步训练卷答 案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】选项A ,有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面围成的多面体是棱锥,即其余各面的三角形必须有公共的顶点, 故选项A 错误;选项B ,棱台是由棱锥被平行于棱锥底面的平面所截而得的, 而有两个面平行且相似,其余各面都是梯形的多面体不一定是棱台, 因为它的侧棱延长后不一定交于一点,故选项B 错误;选项C ,当棱锥的各个侧面的共顶点的角之和是360︒时,各侧面构成平面图形,构不成棱锥,由此推导出这个棱锥不可能为六棱锥,即选项C 错误; 选项D ,若每个侧面都是长方形,则说明侧棱与底面垂直, 又底面也是长方形,符合长方体的定义,即选项D 正确, 故选D . 2.【答案】D【解析】∵直观图是等腰直角三角形A B C ''',90B A C '''∠=︒,1A O ''=, ∴2A C ''=,根据直观图中平行于y 轴的长度变为原来的一半,∴ABC △的边BC 上的高222AC A C '='=,故选D . 3.【答案】A 【解析】如图所示:∵1B B ⊥平面ABCD ,∴1BCB ∠是1B C 与底面所成角,∴160BCB ∠=︒,∵1C C ⊥底面ABCD ,∴1CDC ∠是1C D 与底面所成的角,∴145CDC ∠=︒, 连接1A D ,11A C ,则11A D B C ∥.∴11A DC ∠或其补角为异面直线1B C 与1C D 所成的角.不妨设1BC =,则112CB DA ==,113BB CC CD ==,∴16C D =,112A C =.在等腰11A C D △中,1111162cos 4C DA DC A D ∠==,所以面直线1B C 和1C D 6,故选A .4.【答案】B【解析】棱AB ,1CC ,11A D ,在平面α上的射影相等, 即棱AB ,1AA ,AD 在平面α上的射影相等, 即棱AB ,1AA ,AD 与平面α所成的角相等, ①若三条棱在平面α的同侧,这样的平面有一个,②若其中一条和另外两条分别在平面α的异侧,这样的平面α有三个, 故满足条件的平面α的个数为4个,故选B . 5.【答案】D【解析】①若m α∥,m n ∥,则n α∥或n α⊂,因此不正确;②若m β∥,则β内必存在一条直线m m '∥, 因为m α⊥,所以m α'⊥, 又因为m β'⊂,所以αβ⊥,正确; ③若αβ⊥,n αβ=,m n ⊥,则m β⊂或m β∥或m 与β相交,因此不正确;④若m n ∥,αβ∥,则m 与α所成的角和n 与β所成的角相等,正确, 其中正确命题的序号是②④,故选D . 6.【答案】B【解析】当AB l ⊥时,90θϕ+=︒.当AB 与l 不垂直时,如图,分别过点A ,B 向平面,βα作垂线,垂足为1A ,1B ,连接1BA ,1AB .由已知αβ⊥,所以1AA β⊥,1BB α⊥,因此1BAB θ∠=,1ABA ϕ∠=. 由()11sin cos sin 90BB BA AB ABθϕϕ=<==︒-,知90θϕ<︒-,即90θϕ+<︒, 综上可知,090θϕ︒<+≤︒,故选B .7.【答案】B【解析】设球的半径为r ,则由题意可得球的表面积为224π6π3r =⨯,所以1r =,所以圆柱的底面半径为1,高为2,所以最多可以注入的水的体积为2342ππ12π133⨯⨯-⨯=,故选B . 8.【答案】B【解析】如图,取1DD 的中点为E ,易知AE BM ∥.取AD 的中点P ,则在正方形11AA D D 中,1A AP ADE ≅△△, 则1EAD PA A ∠=∠,11π2PA A A PA ∠+∠=,则1π2EAD A PA ∠+∠=, 可得1A P AE ⊥,即1A P BM ⊥,所以点N 的轨迹为线段1A P . 因为AB ⊥平面11ADD A ,AN ⊂平面11ADD A ,则AB AN ⊥, 所以ABN △为直角三角形, 当1NA A P ⊥时,NA 取最小值为255=, 此时ABN △面积最小,最小值为1252522⨯⨯=,故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.【答案】BD【解析】对于A ,取1DD 中点M ,则AM 为AF 在平面11AA D D 上的射影,AM 与1DD 不垂直,AF ∴与1DD 不垂直,故A 错;对于B ,取11B C 中点N ,连接1A N ,GN ,在正方体1111ABCD A B C D -中,1A N AE ∥,NG EF ∥,1A N ⊄平面AEF ,AE ⊂平面AEF ,所以1A N ∥平面AEF ,同理可证NG ∥平面AEF ,1A NNG N =,所以平面1AGN ∥平面AEF , 1AG ⊂平面1A GN ,所以1A G ∥平面AEF ,故B 正确; 对于C ,假设C 与G 到平面AEF 的距离相等,即平面AEF 将CG 平分, 则平面AEF 必过CG 的中点,连接CG 交EF 于H ,而H 不是CG 中点, 则假设不成立,故C 错;对于D ,在正方体1111ABCD A B C D -中,1AD EF ∥, 把截面AEF 补形为四边形1AEFD , 由等腰梯形计算其面积98S =,故D 正确,故选BD . 10.【答案】CD【解析】∵90BAD ∠=︒,AD AB =,∴45ADB ABD ∠=∠=︒, ∵AD BC ∥,45BCD ∠=︒,∴BD DC ⊥,∵平面A BD '⊥平面BCD ,CD ⊂平面BCD , ∴CD ⊥平面A BD ',∵A D '⊂平面A BD ',∴CD A D ⊥',故A D BC '⊥不成立, 故A 错误,C 正确;由1AB AD ==,90BAD ∠=︒,可得2BD =,2CD BD ==,三棱锥A BCD '-的体积为三棱锥C A BD '-的体积, 即为11122113326A BD CD S '⋅⨯⨯⨯⨯==△,故B 错误; 折叠前,在四边形ABCD 中,AD BC ∥,AD AB =,90BAD ∠=︒, ∴△ABD 为等腰直角三角形.又∵45BCD ∠=︒,45DBC ∠=︒,∴90BDC ∠=︒.折叠后,∵平面BCD ⊥平面A BD ',CD BD ⊥,∴CD ⊥平面A BD '. 又∵A B '⊂平面A BD ',∴CD A B ⊥'. 又A B A D '⊥',A DCD D '=,∴A B '⊥平面A DC '.又A B '⊂平面A BC ',∴平面A BC '⊥平面A DC ',故D 正确, 故选CD .11.【答案】ABD【解析】底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”. 所以在堑堵111ABC A B C -中,AC BC ⊥,侧棱1AA ⊥平面ABC . 在选项A 中.因为三棱柱111ABC A B C -为堑堵,所以1AA BC ⊥,又AC BC ⊥,且1AA AC A =,则BC ⊥平面11AAC C .所以四棱锥11B A ACC -为“阳马”,故A 正确; 在选项B 中.由AC BC ⊥,即11AC BC ⊥,又111AC C C ⊥且1C C BC C =,所以11A C ⊥平面11BB C C ,所以111AC BC ⊥,则11A BC △为直角三角形. 又由BC ⊥平面11AAC C,得1A BC △为直角三角形, 由“堑堵”的定义可得11A C C △为直角三角形,1CC B △为直角三角形, 所以四面体11AC CB 为“鳖膈”,故B 正确;在选项C 中.在底面有2242AC BC AC BC =+≥⋅,即2AC BC ⋅≤,当且仅当AC BC =时取等号.1111111243333B A ACC A ACC V S BC AA AC BC AC BC -=⨯=⨯⨯=⨯≤,所以C 不正确; 在选项D 中.由上面有BC ⊥平面11AAC C , 则BC AF ⊥,1AF A C ⊥且1AC BC C =,则AF ⊥平面1A BC ,所以1AF A B ⊥,1AE A B ⊥且AFAE A =,则1A B ⊥平面AEF ,则1A B EF ⊥,所以D 正确,故选ABD . 12.【答案】ABC【解析】对于A ,根据题意,AC BD ⊥,1AC DD ⊥,AC ⊥平面11BDD B , 所以AC BE ⊥,所以A 正确;对于B ,A 到平面11BDD B 的距离是定值,所以点A 到BEF △的距离为定值, 则B 正确;对于C ,三棱锥A BEF -的体积为311111221sin 4532322212A BEF V EF AB BB a a a a -=⋅⋅⋅⋅⋅︒=⨯⨯⨯⨯⨯=三棱锥,三棱锥A BEF -的体积是正方体1111ABCD A B C D -体积的112,正确; 对于D ,如图所示异面直线AE ,BF 所成的角的平面角为AEM ∠不为定值, 命题D 错误, 故选ABC .三、填空题:本大题共4小题,每小题5分. 13.【答案】23π【解析】将此梯形以AD 所在直线为轴旋转一周,得到的是圆台,其中圆台的上底半径为2r CD ==,下底半径为3R AB ==,母线2BC =, ∴圆台的上底面积为2π4πr =,下底面积为2π9πR =, 圆台的侧面积为()()πππ23210πr R BC +⋅=+⨯=, ∴圆台的表面积为4π9π10π23π++=,故答案为23π. 14.【答案】3【解析】依题意,四棱锥为正四棱锥,且每个侧面的顶角为30︒, 将四棱锥P ABCD -的侧面沿PA 展开,如图,A 展开后到A ', 则4PA =,且120APA '∠=︒,则当如图,E ,F ,G 和AA '在同一直线上时,四边形AEFG 的周长的最小值,最小值为AA '.所以在三角形APA '中,由余弦定理得:22212cos1201616244482AA PA PA PA PA ⎛⎫''=+-⨯⨯⨯︒=+-⨯⨯⨯-= ⎪⎭'⎝,所以43AA '=, 故答案为43.15.【答案】2【解析】由题,画出图象,取AD 中点O .设正方形ABCD 的边长为a ,则因为PAD △为等边三角形, 故32PO a =,且PO AD ⊥. 又平面PAD ⊥平面ABCD 且平面PAD 平面ABCD AD =,故PO ⊥平面ABCD ,故四棱锥P ABCD -的体积为23133326V a a a =⨯⨯=. 又四棱锥P ABCD -外接以PAD ∆为底面,CD 为高的直三棱柱, 故四棱锥P ABCD -的外接球与该三棱柱外接球相同, 则底面PAD △的外接圆直径2sin 603AD d a ==︒,故外接球直径22224733a D d CD a a =+=+=, 故外接球表面积2224π23π7πD S D a ⎛⎫=== ⎪⎝⎭,故3233677π3πaa =,解得2a =,即正方形ABCD 的边长为2,故答案为2.16.【答案】共26个面,棱长为21-【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面, 所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==, 延长BC 与FE 交于点G ,延长BC 交正方体棱于H , 由半正多面体对称性可知,BGE △为等腰直角三角形,22BG GE CH x ∴===,()222112GH x x x ∴=⨯+=+=,2121x ∴==-+,即该半正多面体棱长为21-.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)证明见解析;(2)证明见解析. 【解析】证明:(1)取PD 的中点F ,连接AF 、EF ,E 是PC 中点,EF CD ∴∥,12EF CD =,AB CD ∥,2CD AB =,EF AB ∴∥,EF AB =,∴四边形ABEF 是平行四边形,BE AF ∴∥,又BE ⊄平面PAD ,AF ⊂平面PAD ,BE ∴∥面PAD .(2)面PAD ⊥面ABCD ,面PAD 面ABCD AD =,CD AD ⊥,CD ∴⊥面PAD ,AF ⊂平面PAD ,CD AF ∴⊥,等边三角形PAD ,F 为PD 的中点,AF PD ∴⊥, 又CDPD D =,CD 、PD ⊂平面PCD ,AF ∴⊥平面PCD ,AF BE ∥,BE ∴⊥平面PCD .18.【答案】(1)见解析;(2)见解析.【解析】(1)过圆锥及其内接圆柱的轴作截面,如图所示,因为r H x R H -=,所以R r R x H =-,从而22π2π2πR S rx Rx x H==-侧. (2)由(1)22π2πR S Rx x H=-侧, 因为2π0R H -<,所以当2π4π22b R H x R a H=-==时,S 侧最大,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大. 19.【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)因为点E 、F 分别为线段AC 、AD 的中点,EF ∴为ACD △的中位线,则EF CD ∥,CD ⊂平面BCD ,EF ⊄平面BCD ,EF ∴∥平面BCD ,又EF ⊂平面EFNM ,平面EFNM平面BCD MN =,EF MN ∴∥.(2)90CDA CDB ∠=∠=︒,CD DA ∴⊥,CD DB ⊥,DA DB D =,DA ⊂平面ADB ,DB ⊂平面ADB ,CD ∴⊥平面ADB ,CD AB ∴⊥,又DH AB ⊥,DH CD D =,DC ⊂平面DCH ,DH ⊂平面DCH ,AB ∴⊥平面CDH ,AB ⊂平面ABC ,∴平面CDH ⊥平面ABC .20.【答案】(1)证明见解析;(2)证明见解析;(3)23. 【解析】(1)证明:平面ABCD ⊥平面ADEF ,90ADE ∠=︒,DE ∴⊥平面ABCD ,DE AC ∴⊥.ABCD 是正方形,AC BD ∴⊥,因为BD ,DE ⊂平面BDE ,BDDE D =,AC ∴⊥平面BDE .(2)证明:设ACBD O =,取BE 中点G ,连接FG ,OG ,OG 为BDE △的中位线,1//2OG DE ∴,AF DE ∥,2DE AF =,//AF OG ∴,∴四边形AFGO 是平行四边形,FG AO ∴∥.FG ⊂平面BEF ,AO ⊂/平面BEF , AO ∴∥平面BEF ,即AC ∥平面BEF .(3)∵平面ABCD ⊥平面ADEF ,AB AD ⊥,AB ∴⊥平面ADEF , 因为AF DE ∥,90ADE ∠=︒,22DE DA AF ===,DEF ∴△的面积为122DEF S ED AD =⨯⨯=△, ∴四面体BDEF 的体积1433DEF V S AB =⋅⨯=△,又因为O 是BD 中点,所以1223BOEFBDEF V V ==,23BOEF V ∴=. 21.【答案】(1)证明见解析;(2)证明见解析;(3)不存在,详见解析. 【解析】(1)取线段1A B 的中点H ,连接HD ,HF .因为在ABC △中,D ,E 分别为AB ,AC 的中点, 所以DE BC ∥,12DE BC =. 因为H ,F 分别为1A B ,1A C 的中点,所以HF BC ∥,12HF BC =, 所以HF DE ∥,HF DE =,所以四边形DEFH 为平行四边形,所以EF HD ∥. 因为EF ⊄平面1A BD ,HD ⊂平面1A BD ,所以EF ∥平面1A BD . (2)因为在ABC △中,D ,E 分别为AB ,AC 的中点, 所以AD AE =,所以11A D A E =, 又O 为DE 的中点,所以1A O DE ⊥.因为平面1A DE ⊥平面BCED ,且1AO ⊂平面1A DE , 所以1A O ⊥平面BCED ,所以1CO A O ⊥. 在OBC △中,4BC =,易知22OB OC == 所以CO BO ⊥,所以CO ⊥平面1A OB ,所以平面1AOB ⊥平面1A OC . (3)线段OC 上不存在点G ,使得OC ⊥平面EFG . 否则,假设线段OC 上存在点G ,使得OC ⊥平面EFG , 连接GE ,GF ,则必有OC GF ⊥,且OC GE ⊥.在1AOC Rt △中,由F 为1A C 的中点,OC GF ⊥,得G 为OC 的中点.在EOC △中,因为OC GE ⊥,所以EO EC =, 这显然与1EO =,5EC =矛盾!所以线段OC 上不存在点G ,使得OC ⊥平面EFG . 22.【答案】(1)证明见解析;(2)2.【解析】(1)在棱柱1111ABCD A B C D -中,//AB 面1111D C B A ,AB 面ABPQ ,面1111A B C D 面ABPQ PQ =,由线面平行的性质定理有//AB PQ , 又11//AB A B ,故11//PQ A B .(2)证明:在底面ABCD 中,1AB =,3AC =,2BC =.222AB AC BC +=,AB AC ∴⊥,AC CD ∴⊥,又因为侧棱1AA ⊥底面ABCD ,则1CC ⊥底面ABCD ,AC ⊂面11ABB A ,1CC AC ∴⊥,又1=CC CD C ,AC ∴⊥面11CDD C ,过点C 作1CS C D ⊥于S ,连接AS ,则CSA ∠是二面角1A C D C --的平面角.2os 199c 1CSA ∠=,22cos sin 1CSA CSA ∠+∠=, 则1in 159s CSA ∠=,故1an 52t CSA ∠=,153tan AC CS CSA ==∠=,5CS ∴=. 设1CC x =,则1111122CC D S C D CS CD CC =⋅⋅=⋅△. 21x CS x ∴+⋅=,251CS x ∴==+, 故12CC =,故12BB =.。
新教材 人教A版高中数学必修第二册 第八章立体几何初步 课时练习题及章末测验 精选配套习题含解析
第八章立体几何初步1、棱柱、棱锥、棱台的结构特征................................................................................ - 1 -2、圆柱、圆锥、圆台、球与简单组合体的结构特征................................................ - 7 -3、立体图形的直观图.................................................................................................. - 12 -4、棱柱、棱锥、棱台的表面积和体积...................................................................... - 18 -5、圆柱、圆锥、圆台的表面积和体积...................................................................... - 23 -6、球的表面积和体积.................................................................................................. - 29 -7、平面 ......................................................................................................................... - 35 -8、空间点、直线、平面之间的位置关系.................................................................. - 40 -9、直线与直线平行直线与平面平行...................................................................... - 44 -10、平面与平面平行.................................................................................................... - 49 -11、直线与直线垂直.................................................................................................... - 56 -12、直线与平面垂直.................................................................................................... - 63 -13、平面与平面垂直.................................................................................................... - 70 -章末综合测验................................................................................................................ - 76 -1、棱柱、棱锥、棱台的结构特征一、选择题1.(多选题)观察如下所示的四个几何体,其中判断正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台ACD[结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥.]2.(多选题)下列说法错误的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形ABC[选项A错误,反例如图①;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图②,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.①②]3.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()C[动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.]4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定A[如图.因为有水的部分始终有两个平面平行,而其余各面都易证是平行四边形,因此是棱柱.]5.用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形C[按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.①②]二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.12[该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,所以每条侧棱长为12 cm.]7.如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.10[将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.]8.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.3[如图,三棱台可分成三棱锥C1-ABC,三棱锥C1-ABB1,三棱锥A-A1B1C1,共3个.]三、解答题9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解]这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.10.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.[解](1)如图①所示,三棱锥A1-AB1D1(答案不唯一).(2)如图②所示,三棱锥B1-ACD1(答案不唯一).(3)如图③所示,三棱柱A1B1D1-ABD(答案不唯一).①②③11.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是() A.三棱柱B.三棱台C.三棱锥D.四棱锥B[该多面体有三个面是梯形,而棱锥最多有一个面是梯形(底面),棱柱最多有两个面是梯形(底面),所以该多面体不是棱柱、棱锥,而是棱台.三个梯形是棱台的侧面,另两个三角形是底面,所以这个棱台是三棱台.]12.如图所示都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()①②③④A.①②B.②③C.③④D.①④B[在图②③中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图②③完全一样,而图①④则不同.]13.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.10[在上底面选一个顶点,同时在下底面选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有10条.]14.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?[解](1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=12a2,S△DPF=S△DPE=12×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-12a2-a2-a2=32a2.15.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从点A出发沿长方体表面爬行到点C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.[解]把长方体的部分面展开,如图,有三种情况.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为90,74,80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为74.2、圆柱、圆锥、圆台、球与简单组合体的结构特征一、选择题1.下列几何体中是旋转体的是 ( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A .①和⑤B .①和②C .③和④D .①和④D [根据旋转体的概念可知,①和④是旋转体.]2.图①②中的图形折叠后的图形分别是( )① ②A .圆锥、棱柱B .圆锥、棱锥C .球、棱锥D .圆锥、圆柱B [根据图①的底面为圆,侧面为扇形,得图①折叠后的图形是圆锥;根据图②的底面为三角形,侧面均为三角形,得图②折叠后的图形是棱锥.]3.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是( )A .等边三角形B .等腰直角三角形C .顶角为30°等腰三角形D .其他等腰三角形A [设圆锥底面圆的半径为r ,依题意可知2πr =π·a 2,则r =a 4,故轴截面是边长为a 2的等边三角形.]4.如图,在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是( )A .一个棱柱中挖去一个棱柱B .一个棱柱中挖去一个圆柱C .一个圆柱中挖去一个棱锥D .一个棱台中挖去一个圆柱B [一个六棱柱挖去一个等高的圆柱,选B .]5.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A .32B .32πC .16πD .8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.]二、填空题6.如图是一个几何体的表面展开图形,则这个几何体是________.圆柱 [一个长方形和两个圆折叠后,能围成的几何体是圆柱.]7.下列命题中错误的是________.①过球心的截面所截得的圆面的半径等于球的半径;②母线长相等的不同圆锥的轴截面的面积相等;③圆台所有平行于底面的截面都是圆面;④圆锥所有的轴截面都是全等的等腰三角形.② [因为圆锥的母线长一定,根据三角形面积公式,当两条母线的夹角为90°时,圆锥的轴截面面积最大.]8.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为________ cm 2.9π [设截面圆半径为r cm ,则r 2+42=52,所以r =3.所以截面圆面积为9π cm 2.]三、解答题9.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.[解]如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.10.一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解](1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得上底面半径O1A=2(cm),下底面半径OB=5(cm),又因为腰长为12 cm,所以高AM=122-(5-2)2=315(cm).(2)如图所示,延长BA,OO1,CD交于点S,设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l-12l=25,解得l=20 (cm),即截得此圆台的圆锥的母线长为20 cm.11. (多选题)对如图中的组合体的结构特征有以下几种说法,其中说法正确的是()A.由一个长方体割去一个四棱柱所构成的B.由一个长方体与两个四棱柱组合而成的C.由一个长方体挖去一个四棱台所构成的D.由一个长方体与两个四棱台组合而成的AB[如图,该组合体可由一个长方体割去一个四棱柱所构成,也可以由一个长方体与两个四棱柱组合而成.故选项AB正确.]12.在正方体ABCD-A′B′C′D′中,P为棱AA′上一动点,Q为底面ABCD上一动点,M是PQ的中点,若点P,Q都运动时,点M构成的点集是一个空间几何体,则这个几何体是()A.棱柱B.棱台C.棱锥D.球的一部分A[由题意知,当P在A′处,Q在AB上运动时,M的轨迹为过AA′的中点,在平面AA′B′B内平行于AB的线段(靠近AA′),当P在A′处,Q在AD上运动时,M的轨迹为过AA′的中点,在平面AA′D′D内平行于AD的线段(靠近AA′), 当Q在B处,P在AA′上运动时,M的轨迹为过AB的中点,在平面AA′B′B内平行于AA′的线段(靠近AB), 当Q在D处,P在AA′上运动时,M的轨迹为过AD的中点,在平面AA′D′D内平行于AA′的线段(靠近AB), 当P在A处,Q在BC上运动时,M 的轨迹为过AB的中点,在平面ABCD内平行于AD的线段(靠近AB), 当P在A处,Q在CD上运动时,M的轨迹为过AD的中点,在平面ABCD内平行于AB的线段(靠近AD), 同理得到:P在A′处,Q在BC上运动;P在A′处,Q在CD上运动;Q在C处,P在AA′上运动;P,Q都在AB,AD,AA′上运动的轨迹.进一步分析其他情形即可得到M的轨迹为棱柱体.故选A.]13.如图所示,已知圆锥SO中,底面半径r=1,母线长l=4,M为母线SA 上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.则绳子的最短长度的平方f(x)=________.x2+16(0≤x≤4)[将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA′的长度L就是圆O的周长,所以L=2πr=2π,所以∠ASM=Ll=π2.由题意知绳子长度的最小值为展开图中的AM,其值为AM=x2+16 (0≤x≤4).所以f(x)=AM2=x2+16(0≤x≤4).]14.球的两个平行截面的面积分别是5π,8π,两截面间的距离为1,求球的半径.[解]设两个平行截面圆的半径分别为r1,r2,球半径为R.由πr21=5π,得r1= 5.由πr22=8π,得r2=2 2.(1)如图,当两个截面位于球心O的同侧时,有R2-r21-R2-r22=1,即R2-5=1+R2-8,解得R=3.(2)当两个截面位于球心O的异侧时,有R2-5+R2-8=1.此方程无解.由(1)(2)知球的半径为3.15.圆台上底面面积为π,下底面面积为16π,用一个平行于底面的平面去截圆台,该平面自上而下分圆台的高的比为2∶1,求这个截面的面积.[解]圆台的轴截面如图,O1,O2,O3分别为上底面、下底面、截面圆心.过点D作DF⊥AB于点F,交GH于点E.由题意知DO1=1,AO2=4,∴AF=3.∵DE=2EF,∴DF=3EF,∴GEAF=DEDF=23,∴GE=2.∴⊙O3的半径为3.∴这个截面面积为9π.3、立体图形的直观图一、选择题1.(多选题)如图,已知等腰三角形ABC,则如下所示的四个图中,可能是△ABC 的直观图的是()A B C DCD[原等腰三角形画成直观图后,原来的腰长不相等,CD两图分别为在∠x′O′y′成135°和45°的坐标系中的直观图.]2.(多选题)对于用斜二测画法画水平放置的图形的直观图来说,下列描述正确的是()A.三角形的直观图仍然是一个三角形B.90°的角的直观图会变为45°的角C.与y轴平行的线段长度变为原来的一半D.由于选轴的不同,所得的直观图可能不同ACD [对于A ,根据斜二测画法特点知,相交直线的直观图仍是相交直线,因此三角形的直观图仍是一个三角形,故A 正确;对于B,90°的角的直观图会变为45°或135°的角,故B 错误;C ,D 显然正确.]3.把△ABC 按斜二测画法得到△A ′B ′C ′(如图所示),其中B ′O ′=C ′O ′=1,A ′O ′=32,那么△ABC 是一个( )A .等边三角形B .直角三角形C .等腰三角形D .三边互不相等的三角形A [根据斜二测画法还原三角形在直角坐标系中的图形,如图所示:由图易得AB =BC =AC =2,故△ABC 为等边三角形,故选A .]4.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m 、5 m 、10 m ,四棱锥的高为8 m ,若按1∶500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为( )A .4 cm,1 cm,2 cm,1.6 cmB .4 cm,0.5 cm,2 cm,0.8 cmC .4 cm,0.5 cm,2 cm,1.6 cmD .2 cm,0.5 cm,1 cm,0.8 cmC [由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm 和1.6 cm ,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm ,2 cm ,1.6 cm.]5.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2B .1+22C .2+22D .1+2A[画出其相应平面图易求,故选A.]二、填空题6.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________.(4,2)[在x′轴的正方向上取点M1,使O′M1=4,在y′轴上取点M2,使O′M2=2,过M1和M2分别作平行于y′轴和x′轴的直线,则交点就是M′.] 7.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.2.5[由直观图知,由原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.]8.水平放置的△ABC在直角坐标系中的直观图如图所示,其中D′是A′C′的中点,且∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.2[△ABC为直角三角形,因为D为AC中点,所以BD=AD=CD.所以与BD的长相等的线段有2条.]三、解答题9.画出水平放置的四边形OBCD(如图所示)的直观图.[解](1)过点C作CE⊥x轴,垂足为点E,如图①所示,画出对应的x′轴、y′轴,使∠x′O′y′=45°,如图②所示.①②③(2)如图②所示,在x′轴上取点B′,E′,使得O′B′=OB,O′E′=OE;在y′轴上取一点D′,使得O′D′=12OD;过点E′作E′C′∥y′轴,使E′C′=12EC.(3)连接B′C′,C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图③所示,四边形O′B′C′D′就是所求的直观图.10.如图,△A′B′C′是水平放置的平面图形的直观图,试画出原平面图形△ABC.[解](1)画法:过C′,B′分别作y′轴的平行线交x′轴于D′,E′.(2)在直角坐标系xOy中.在x轴上取两点E,D使OE=O′E′,OD=O′D′,再分别过E,D作y轴平行线,取EB=2E′B′,DC=2D′C′.连接OB,OC,BC即求出原△ABC.11.如图所示,△A′O′B′表示水平放置的△AOB的直观图,B′在x′轴上,A′O′和x′轴垂直,且A′O′=2,则△AOB的边OB上的高为()A .2B .4C .2 2D .42D [设△AOB 的边OB 上的高为h ,由题意,得S 原图形=22S 直观图,所以12OB ·h =22×12×2×O ′B ′.因为OB =O ′B ′,所以h =4 2.故选D .]12.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为 3 cm ,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cmD [由题意可知其直观图如图,由图可知两个顶点之间的距离为5 cm.故选D .]13.已知用斜二测画法,画得的正方形的直观图面积为182,则原正方形的面积为________.72 [如图所示,作出正方形OABC 的直观图O ′A ′B ′C ′,作C ′D ′⊥x ′轴于点D ′.S 直观图=O ′A ′×C ′D ′.又S 正方形=OC ×OA . 所以S 正方形S 直观图=OC ×OAO ′A ′×C ′D ′, 又在Rt △O ′D ′C ′中,O ′C ′=2C ′D ′,即C ′D ′=22O ′C ′,结合平面图与直观图的关系可知OA =O ′A ′,OC =2O ′C ′, 所以S 正方形S 直观图=OC ×OA OA ×22O ′C ′=2O ′C ′22O ′C ′=2 2. 又S 直观图=182,所以S 正方形=22×182=72.]14.如图是一个边长为1的正方形A ′B ′C ′D ′,已知该正方形是某个水平放置的四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.[解]四边形ABCD的真实图形如图所示,因为A′C′在水平位置,A′B′C′D′为正方形,所以∠D′A′C′=∠A′C′B′=45°,所以在原四边形ABCD中,AD⊥AC,AC⊥BC,因为AD=2D′A′=2,AC=A′C′=2,=AC·AD=2 2.所以S四边形ABCD15.画出底面是正方形,侧棱均相等的四棱锥的直观图.[解](1)画轴.画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°,如图①.(2)画底面.以O为中心在xOy平面内画出正方形水平放置的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是原四棱锥的高.(4)成图.连接P A、PB、PC、PD,并擦去辅助线,得四棱锥的直观图如图②.①②4、棱柱、棱锥、棱台的表面积和体积一、选择题1.如图,ABC-A′B′C′是体积为1的棱柱,则四棱锥C-AA′B′B的体积是()A .13 B .12 C .23D .34C [∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,∴V C -AA ′B ′B=1-13=23.] 2.正方体的表面积为96,则正方体的体积为( ) A .48 6 B .64 C .16 D .96[答案] B3.棱锥的一个平行于底面的截面把棱锥的高分成1∶2(从顶点到截面与从截面到底面)两部分,那么这个截面把棱锥的侧面分成两部分的面积之比等于( )A .1∶9B .1∶8C .1∶4D .1∶3 B [两个锥体的侧面积之比为1∶9,小锥体与台体的侧面积之比为1∶8,故选B .]4.若正方体八个顶点中有四个恰好是正四面体的顶点,则正方体的表面积与正四面体的表面积之比是( )A . 3B . 2C .23D .32 A [如图所示,正方体的A ′、C ′、D 、B 的四个顶点可构成一个正四面体,设正方体边长为a ,则正四面体边长为2a . ∴正方体表面积S 1=6a 2, 正四面体表面积为S 2=4×34×(2a )2=23a 2,∴S 1S 2=6a 223a 2= 3.] 5.四棱台的两底面分别是边长为x 和y 的正方形,各侧棱长都相等,高为z ,且侧面积等于两底面积之和,则下列关系式中正确的是( )A .1x =1y +1zB .1y =1x +1zC .1z =1x +1yD .1z =1x +yC [由条件知,各侧面是全等的等腰梯形,设其高为h ′,则根据条件得, ⎩⎪⎨⎪⎧4·x +y 2·h ′=x 2+y 2,z 2+⎝ ⎛⎭⎪⎫y -x 22=h ′2,消去h ′得,4z 2(x +y )2+(y -x )2(y +x )2=(x 2+y 2)2. ∴4z 2(x +y )2=4x 2y 2, ∴z (x +y )=xy , ∴1z =1x +1y .] 二、填空题6.已知一个长方体的三个面的面积分别是2,3,6,则这个长方体的体积为________.6[设长方体从一点出发的三条棱长分别为a ,b ,c ,则⎩⎪⎨⎪⎧ab =2,ac =3,bc =6,三式相乘得(abc )2=6,故长方体的体积V =abc = 6.]7.(一题两空)已知棱长为1,各面均为等边三角形的四面体,则它的表面积是________,体积是________.3 212 [S 表=4×34×12=3, V 体=13×34×12×12-⎝ ⎛⎭⎪⎫33 2=212.]8.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,则点A 到平面A 1BD 的距离d =________.33a [在三棱锥A 1-ABD 中,AA 1是三棱锥A 1-ABD 的高,AB =AD =AA 1=a ,A 1B =BD =A 1D =2a ,∵V 三棱锥A 1-ABD =V 三棱锥A -A 1BD , ∴13×12a 2×a =13×12×2a ×32×2a ×d , ∴d =33a .∴点A 到平面A 1BD 的距离为33a .] 三、解答题9.已知四面体ABCD 中,AB =CD =13,BC =AD =25,BD =AC =5,求四面体ABCD 的体积.[解] 以四面体的各棱为对角线还原为长方体,如图. 设长方体的长、宽、高分别为x ,y ,z ,则⎩⎨⎧x 2+y 2=13,y 2+z 2=20,x 2+z 2=25,∴⎩⎨⎧x =3,y =2,z =4.∵V D -ABE =13DE ·S △ABE =16V 长方体, 同理,V C -ABF =V D -ACG =V D -BCH =16V 长方体, ∴V 四面体ABCD =V 长方体-4×16V 长方体=13V 长方体. 而V 长方体=2×3×4=24,∴V 四面体ABCD =8.10.如图,已知正三棱锥S -ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,求此正三棱锥的表面积.[解] 如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ⊥AB ,与AB 交于点E ,连接SE ,则SE ⊥AB ,SE =h ′.∵S 侧=2S 底, ∴12·3a ·h ′=34a 2×2. ∴a =3h ′.∵SO ⊥OE ,∴SO 2+OE 2=SE 2. ∴32+⎝ ⎛⎭⎪⎫36×3h ′2=h ′2.∴h ′=23,∴a =3h ′=6.∴S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ∴S 表=S 侧+S 底=183+93=27 3.11.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为( ) A .3π B .43 C .32πD .1B [如图所示,由图可知,该几何体由两个四棱锥构成,并且这两个四棱锥体积相等.四棱锥的底面为正方形,且边长为2,故底面积为(2)2=2;四棱锥的高为1,故四棱锥的体积为13×2×1=23.则几何体的体积为2×23=43.]12.正三棱锥的底面周长为6,侧面都是直角三角形,则此棱锥的体积为( ) A .423 B . 2 C .223 D .23D [由题意,正三棱锥的底面周长为6,所以正三棱锥的底面边长为2,侧面均为直角三角形,可知侧棱长均为2,三条侧棱两两垂直,所以此三棱锥的体积为13×12×2×2×2=23.]13.(一题两空)已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是________,表面积是________.90 138 [该几何体的体积V =4×6×3+12×4×3×3=90,表面积S =2(4×6+4×3+6×3)-3×3+12×4×3×2+32+42×3+3×4=138.]14.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为4的正方形,EF ∥AB ,EF =2,EF 上任意一点到平面ABCD 的距离均为3,求该多面体的体积.[解] 如图,连接EB ,EC .四棱锥E -ABCD 的体积 V 四棱锥E -ABCD =13×42×3=16. ∵AB =2EF ,EF ∥AB , ∴S △EAB =2S △BEF .∴V 三棱锥F -EBC =V 三棱锥C -EFB =12V 三棱锥C -ABE =12V 三棱锥E -ABC =12×12V 四棱锥E -ABCD =4. ∴多面体的体积V =V 四棱锥E -ABCD +V 三棱锥F -EBC =16+4=20.15.一个正三棱锥P -ABC 的底面边长为a ,高为h .一个正三棱柱A 1B 1C 1-A 0B 0C 0的顶点A 1,B 1,C 1分别在三条棱上,A 0,B 0,C 0分别在底面△ABC 上,何时此三棱柱的侧面积取到最大值?[解] 设三棱锥的底面中心为O ,连接PO (图略),则PO 为三棱锥的高,设A 1,B 1,C 1所在的底面与PO 交于O 1点,则A 1B 1AB =PO 1PO ,令A 1B 1=x ,而PO =h ,则PO 1=ha x ,于是OO 1=h -PO 1=h -h a x =h ⎝ ⎛⎭⎪⎫1-x a .所以所求三棱柱的侧面积为S =3x ·h ⎝ ⎛⎭⎪⎫1-x a =3h a (a -x )x =3h a ⎣⎢⎡⎦⎥⎤a 24-⎝ ⎛⎭⎪⎫x -a 22.当x =a 2时,S 有最大值为34ah ,此时O 1为PO 的中点.5、圆柱、圆锥、圆台的表面积和体积一、选择题1.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为( ) A .πQ B .2πQ C .3πQD .4πQB [正方形绕其一边旋转一周,得到的是圆柱,其侧面积为S =2πrl =2π·Q ·Q =2πQ .故选B .]2.一个圆台的母线长等于上、下底面半径和的一半,且侧面积是32π,则母线长为( )A .2B .2 2C .4D .8C[圆台的轴截面如图,由题意知,l=12(r+R),S圆台侧=π(r+R)·l=π·2l·l=32π,∴l=4.]3.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7B.6C.5D.3A[设圆台较小底面半径为r,则另一底面半径为3r.由S=π(r+3r)·3=84π,解得r=7.]4.已知某圆柱的底面周长为12,高为2,矩形ABCD是该圆柱的轴截面,则在此圆柱侧面上,从A到C的路径中,最短路径的长度为()A.210 B.2 5C.3 D.2A[圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从A到C的最短路径为线段AC,AC=22+62=210.故选A.]5.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这截面把圆锥母线分为两段的比是()A.1∶3 B.1∶ (3-1)C.1∶9 D.3∶2B[由面积比为1∶3,知小圆锥母线与原圆锥母线长之比为1∶3,故截面把圆锥母线分为1∶(3-1)两部分,故选B.]二、填空题6.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.2 [设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr .解得r =1,即直径为2.]7.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 3 [圆台的轴截面是下底长为12寸,上底长为28寸,高为18寸的等腰梯形,雨水线恰为中位线,故雨水线直径是20寸,所以降水量为π3(102+10×6+62)×9π×142=3(寸).]8.圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图扇环的圆心角是180°(如图),那么圆台的体积是________.7 000π3 3 cm 3[180°=20-10l ×360°,∴l =20, h =103,V =13π(r 21+r 22+r 1r 2)·h =7 0003π3 (cm 3).] 三、解答题9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. [解] 设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 圆锥=πr 2+πr ·6r =7πr 2=15π,得r =157,圆锥的高h =⎝⎛⎭⎪⎫61572-⎝⎛⎭⎪⎫1572=53,V =13πr 2h =13π×157×53=2537π.10.如图是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,且水面高于圆锥顶部,当铅锤从水中取出后,杯里的水将下降多少?[解] 因为圆锥形铅锤的体积为13×π×⎝ ⎛⎭⎪⎫622×20=60π(cm 3),设水面下降的高度为x cm ,则小圆柱的体积为π⎝ ⎛⎭⎪⎫2022x =100πx .所以有60π=100πx ,解此方程得x =0.6. 故杯里的水将下降0.6 cm.11.已知圆柱的侧面展开图矩形面积为S ,底面周长为C ,它的体积是( ) A .C 34πS B .4πS C 3 C .CS 2πD .SC 4πD [设圆柱底面半径为r ,高为h ,则⎩⎨⎧Ch =S ,C =2πr ,∴r =C 2π,h =S C .∴V =πr 2·h =π⎝ ⎛⎭⎪⎫C 2π2·S C =SC4π.]12.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b .那么圆柱被截后剩下部分的体积是________.πr 2(a +b )2 [采取补体方法,相当于一个母线长为a +b 的圆柱截成了两个体积相等的部分,所以剩下部分的体积V =πr 2(a +b )2.]13.(一题两空)圆柱内有一个内接长方体ABCD -A 1B 1C 1D 1,长方体的体对角线长是10 2 cm ,圆柱的侧面展开图为矩形,此矩形的面积是100π cm 2,则圆柱的底面半径为________cm ,高为________cm.5 10 [设圆柱底面半径为r cm ,高为h cm ,如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,则:⎩⎨⎧(2r )2+h 2=(102)2,2πrh =100π, 所以⎩⎨⎧r =5,h =10.即圆柱的底面半径为5 cm ,高为10 cm.]14.如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S .则R =OC =2,AC =4, AO =42-22=2 3.如图所示,易知△AEB ∽△AOC ,所以AE AO =EB OC ,即323=r 2,所以r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以S =S 底+S 侧=2π+23π=(2+23)π.15.某养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪用).已建的仓库的底面直径为12 m ,高为4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪种方案更经济些?[解] (1)设两种方案所建的仓库的体积分别为V 1,V 2.方案一:仓库的底面直径变成16 m ,则其体积V 1=13×π×⎝ ⎛⎭⎪⎫1622×4=2563π(m 3); 方案二:仓库的高变成8 m ,则其体积V 2=13×π×⎝ ⎛⎭⎪⎫1222×8=96π(m 3).(2)设两种方案所建的仓库的表面积分别为S 1,S 2. 方案一:仓库的底面直径变成16 m ,半径为8 m , 此时圆锥的母线长为l 1=82+42=45(m),则仓库的表面积S 1=π×8×(8+45)=(64+325)π(m 2);方案二:仓库的高变成8 m ,此时圆锥的母线长为l 2=82+62=10(m), 则仓库的表面积S 2=π×6×(6+10)=96π(m 2). (3)因为V 2>V 1,S 2<S 1, 所以方案二比方案一更加经济.。
必修二《第八章 立体几何初步》同步检测试卷与答案
《8.1 基本立体图形》同步检测试卷一、基础巩固1.下列图形中,不是三棱柱展开图的是( )A .B .C .D .2.把一个已知圆锥截成个圆台和一个小圆锥,已知圆台的上、下底面半径之比为1:3,母线长为6cm ,则已知圆锥的母线长为()cm .A .8B .9C .10D .123.如图所示的组合体,其结构特征是( )A .左边是三棱台,右边是圆柱B .左边是三棱柱,右边是圆柱C .左边是三棱台,右边是长方体D .左边是三棱柱,右边是长方体 4.下列说法正确的是( )A .侧棱垂直于底面的棱柱一定是直棱柱B .棱柱中两个互相平行的平面一定是棱柱的底面C .棱柱中各条棱长都相等D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形5.如图,在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别是11A D ,11A B 的中点,过直线BD 的平面α平面AMN ,则平面α截该正方体所得截面的面积为( )AB .98C D .26.一个圆锥的母线长为l ,母线与轴的夹角为30,则该圆锥侧面展开图的圆心角大小为( )A .3π B .2π C .23π D .π7.已知过球面上三点,,A B C 的截面到球心距离等于球半径的一半,且ABC 是边长为6的等边三角形,则球面面积为( )A .42πB .48πC .64πD .60π8.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 9.棱台的上、下底面面积分别为4和9,则这个棱台的高和截得棱台的原棱锥的高的比是( )A .12B .13C .23D .3410.已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( )A .4BC .D .11.下列说法中错误的是( ) A .正棱锥的所有侧棱长相等 B .圆柱的母线垂直于底面 C .直棱柱的侧面都是全等的矩形D .用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形12.正三棱锥底面边长为a ,,则此正三棱锥的侧面积为( )A .234aB .232aC .24a D .22a 二、拓展提升13.已知四棱台的上底面、下底面分别是边长为4、8的正方形,各侧棱长均,求四棱台的高.14.把一个圆锥截成圆台,已知圆台的上,下底面半径的比是1﹕4.母线长为10,求圆锥的母线长.15.一个圆台的母线长为12cm ,两底面面积分别为24cm π和225cm π. (1)求圆台的高;(2)求截得此圆台的圆锥的母线长.答案解析一、基础巩固1.下列图形中,不是三棱柱展开图的是( )A .B .C .D .【答案】C 【详解】由图可知,ABD 选项可以围成三棱柱,C 选项不是三棱柱展开图. 2.把一个已知圆锥截成个圆台和一个小圆锥,已知圆台的上、下底面半径之比为1:3,母线长为6cm ,则已知圆锥的母线长为()cm .A .8B .9C .10D .12【答案】B 【详解】设圆锥的母线长为l ,因为圆台的上、下底面半径之比为1:3, 所以6:1:3l l -=, 解得9l =.3.如图所示的组合体,其结构特征是( )A .左边是三棱台,右边是圆柱B .左边是三棱柱,右边是圆柱C .左边是三棱台,右边是长方体D .左边是三棱柱,右边是长方体 【答案】D 【详解】根据三棱柱和长方体的结构特征,可知此组合体左边是三棱柱,右边是长方体.4.下列说法正确的是( )A .侧棱垂直于底面的棱柱一定是直棱柱B .棱柱中两个互相平行的平面一定是棱柱的底面C .棱柱中各条棱长都相等D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形 【答案】A 【详解】 A 显然正确;棱柱中两个互相平行的平面不一定是棱柱的底面, 例如正六棱柱的相对侧面,故B 错误;棱柱的每条侧棱长相等,而不是各条棱长都相等,故C 错误; 棱柱的底面可以是平行四边形,如长方体,故D 错误.5.如图,在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别是11A D ,11A B 的中点,过直线BD 的平面α平面AMN ,则平面α截该正方体所得截面的面积为( )A B .98C D .2【答案】B 【详解】取1111C D B C ,的中点为,P Q .易知11////MN B D BD ,AD//NP.AD NP =,所以四边形ANPD 为平行四边形,所以AN //DP .又BD 和DP 为平面DBQP 的两条相交直线,所以平面DBQP //平面AMN ,即DBQP 的面积即为所求.由PQ //DB ,1PQ 2BD ==,所以四边形DBQP 为梯形,高为h ==. 所以面积为:()1928PQ BD h +=.6.一个圆锥的母线长为l ,母线与轴的夹角为30,则该圆锥侧面展开图的圆心角大小为( )A .3πB .2π C .23π D .π【答案】D 【详解】 设半径为r ,由母线长为l ,母线与轴的夹角为30, 得:1sin 302r r l l ︒=⇒=, 则底面圆的周长为:r l 2π=π,所以该圆锥侧面展开图的圆心角大小为:llπαπ==.7.已知过球面上三点,,A B C 的截面到球心距离等于球半径的一半,且ABC 是边长为6的等边三角形,则球面面积为( )A .42πB .48πC .64πD .60π【答案】C 【详解】取AB 的中点D ,连接CD ,由题意可得△ABC 的外心O '在线段CD 上,由ABC 是边长为6的等边三角形可得CD =23O C CD '==, 设球的球心为O ,半径为R ,连接OC 、OO ',如图:由球的性质可得OC R =,OO '⊥平面ABC ,即2R OO '=, 所以OO O C''⊥,在Rt OO C '△中,222O O O C OC ''+=即(2222R R ⎛⎫+= ⎪⎝⎭,解得4R =或4R =-(舍去), 所以该球的表面积2464S R ππ==.8.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 【答案】C 【详解】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高h ==.所以体积22311332224R V r h R R ππ⎛⎫=⨯=⨯= ⎪⎝⎭.9.棱台的上、下底面面积分别为4和9,则这个棱台的高和截得棱台的原棱锥的高的比是( )A .12B .13C .23D .34【答案】B 【详解】设棱台的高为h 与截得它的棱锥的高H ,作出草图,如下图所示:由相似关系可得,111SO O C SO OC =,所以2211122S SO O C SO OC S ==上下,则249H h H ⎛⎫ ⎪⎭=⎝- 即2419h H ⎛⎫ ⎪⎭=⎝-, 可得 21133h H =-=.10.已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( )A .4 BC .D .【答案】B 【详解】设长方体的三条棱的长分别为:,,x y z ,则2()524()36xy yz zx x y z ++=⎧⎨++=⎩,可得对角线的长为===.11.下列说法中错误的是( ) A .正棱锥的所有侧棱长相等 B .圆柱的母线垂直于底面 C .直棱柱的侧面都是全等的矩形D .用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形 【答案】C 【详解】对于A ,根据正棱锥的定义知,正棱锥的所有侧棱长相等,故A 正确; 对于B ,根据圆柱是由矩形绕其一边旋转而成的几何体,可知圆柱的母线与底面垂直,故B 正确;对于C ,直棱柱的侧面都是矩形,但不一定全等,故C 错误; 对于D ,圆锥的轴截面是全等的等腰三角形,故D 正确. 综上可知,错误的为C12.正三棱锥底面边长为a ,,则此正三棱锥的侧面积为( ) A .234aB .232aC2D2【答案】A因为底面正三角形中高为2a,其重心到顶点距离为2233a a ⨯=,且棱锥高6a ,所以利用直角三角形勾股定理可得侧棱长为22632632a a a 2221222aa a ,所以侧面积为21133224Sa a a .选A.二、拓展提升13. 已知四棱台的上底面、下底面分别是边长为4、8的正方形,各侧棱长,求四棱台的高.【答案】3.由题意可知该四棱台为正四棱台,过作于E 点, 在△中,, ∴ 故答案为314.把一个圆锥截成圆台,已知圆台的上,下底面半径的比是1﹕4.母线长为10,求圆锥的母线长.【答案】403. 【详解】设圆锥的母线长为l ,圆台的上、下底面半径分别为r ,R1014l r l R -== 403l ∴= 即圆锥的母线长为:40315.一个圆台的母线长为12cm ,两底面面积分别为24cm π和225cm π. (1)求圆台的高;(2)求截得此圆台的圆锥的母线长. 【答案】(1) . (2) 20cm . 【详解】(1)如图,过圆台的轴作截面,则截面为等腰梯形ABCD ,1O ,O 分别为AD ,BC 的中点,作AM BC ⊥于点M ,连接1O O .由已知可得上底半径12cm O A =,下底半径5cm OB =,且腰长12cm AB =, ∴)cm AM ==,即圆台的高为.(2)如图,延长BA ,1OO 交于点S ,设截得此圆台的圆锥的母线长为cm l ,则由1SAO SBO △∽△,得1AO SA SB BO =,即1225l l -=,∴即截得此圆台的圆锥的母线长为20cm.1A 1A E AC ⊥1A EA 1A A =2AE ==13A E =《8.2 立体图形的直观图》同步检测试卷一、基础巩固1.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ABC 的面积是( )A B .C .2D .42.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④3.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2,则原平面图形的面积为( )A .4 cm 2B .2C .8 cm 2D .24.已知边长为1的菱形ABCD 中,3A π∠=,则用斜二测画法画出这个菱形的直观图的面积为( )A B C D 5.如图,正方形O A B C ''''的边长为1cm ,它是水平放置的一个平面图形用斜二测画法得到的直观图,则原图形的周长是( )A .8cmB .6cmC .(21cm +D .(21cm6.已知正ABC 的边长为a ,那么ABC 的平面直观图A B C '''的面积为( )A 2B 2C 2D 2 7.一个水平放置的平面图形的直观图是一个底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ).A .1B .2+C .12+D .1 8.如图,已知OAB ∆的直观图O A B '''∆是一个直角边长是1的等腰直角三角形,那么OAB ∆的面积是( )A .12B .2C .1D9.下列说法正确的是( )A .互相垂直的两条直线的直观图仍然是互相垂直的两条直线B.梯形的直观图可能是平行四边形C.矩形的直观图可能是梯形D.正方形的直观图可能是平行四边形''''的边长为1,它是水平放置的一个平面图形10.如图所示,正方形O A B C的直观图,则原图形的周长是()A.6 B.8 C.2+D.2+11.用斜二测画法画水平放置的ABC的直观图,得到如图所示的等腰直角三角形A B C'''.已知点O'是斜边B C''的中点,且1A O,则ABC的边BC 边上的高为()A.1 B.2 C D.12.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是( )A.AB B.AD C.BC D.AC二、拓展提升13.如图为一几何体的平面展开图,按图中虚线将它折叠起来,画出它的直观图.14.如图,正方形O A B C ''''的边长为1cm ,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.15.圆台的上、下底面半径分别为5cm 、10cm ,母线长20AB cm =,从圆台母线AB 的中点M 拉一条绳子绕圆台侧面转到B 点(B 在下底面),求:(1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离.答案解析一、基础巩固1.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=2,那么原△ABC 的面积是( )A B .C D 【答案】A 【详解】由题图可知原△ABC 的高为AO ,∴S △ABC =12×BC ×OA =12A 2.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④【答案】A 【详解】由斜二测画法的规则可知: 因为平行关系不变,所以①正确; 因为平行关系不变,所以②是正确;因为直角变为45或135,所以正方形的直观图是平行四边形,所以③错误; 因为平行于y 轴的线段长度减半,平行于x 轴的线段长度不变,所以④是错误,3.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2,则原平面图形的面积为( )A .4 cm 2B .2C .8 cm 2D .2【答案】C 【解析】详解:设斜二测画法中梯形的上底为长度a ,下底长度为b ,AB h =,则梯形的面积为:()122S a b =+⨯=()28a b h cm +=, 原平面图形是一个梯形,且上底为长度a ,下底长度为b ,高为22AB h =, 其面积为:()()21'282S a b h a b h cm =+⨯=+=. 4.已知边长为1的菱形ABCD 中,3A π∠=,则用斜二测画法画出这个菱形的直观图的面积为( )A B C D 【答案】D 【详解】菱形ABCD 中,1AB =,3A π∠=,则菱形的面积为12211sin 23ABD ABCD S S π∆==⨯⨯⨯⨯=菱形;所以用斜二测画法画出这个菱形的直观图面积为S S ===5.如图,正方形O A B C ''''的边长为1cm ,它是水平放置的一个平面图形用斜二测画法得到的直观图,则原图形的周长是( )A .8cmB .6cmC .(21cm +D .(21cm【答案】A 【详解】解:将直观图还原为平面图形,如图所示.2OB O B ''==1OA O A ''==,所以3AB ==,所以原图形的周长为8cm ,6.已知正ABC 的边长为a ,那么ABC 的平面直观图A B C '''的面积为( )A .24a B .28a C .28a D .216a 【答案】D 【详解】如图①②所示的实际图形和直观图.由斜二测画法可知,A B AB a ''==,12O C OC ''==,在图②中作C D A B ''''⊥于D ,则3sin 454C D O C ''='=='.所以21122816A B C S A B C D a '''''''=⋅=⨯=△. 7.一个水平放置的平面图形的直观图是一个底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ).A .1B .2+C .122+D .12+【答案】B 【详解】如图,恢复后的原图形为一直角梯形,所以1(11)222S =+⨯=+8.如图,已知OAB ∆的直观图O A B '''∆是一个直角边长是1的等腰直角三角形,那么OAB ∆的面积是( )A .12B .2C .1D【答案】 D【详解】平面直观图'''O A B ∆与其原图形如图,直观图'''O A B ∆是直角边长为1的等腰直角三角形,还原回原图形后,边''O A 还原为OA , 直观图中的'OB 在原图形中还原为OB 长度,且长度为2,所以原图形的面积为11222S OA OB =⋅=⨯=,故选D.9.下列说法正确的是( )A .互相垂直的两条直线的直观图仍然是互相垂直的两条直线B .梯形的直观图可能是平行四边形C .矩形的直观图可能是梯形D .正方形的直观图可能是平行四边形 【答案】D 【详解】A 项,原图形相互垂直的两条直线在直观图中不一定相互垂直,故A 项错误.B 项,原图形中平行的两条线段仍然平行,不平行的两条线段也不会平行,所以梯形的直观图不可能为平行四边形,故B 项错误.C 项,原图形相互垂直的两条直线在直观图中不一定仍然相互垂直,但是原图形相互平行的两条线段在直观图中仍然互相平行,所以矩形的直观图中对边仍然平行,所以矩形的直观图可能为平行四边形而不能为梯形.故C 项错误.D 项,原图形相互垂直的两条直线在直观图中不一定仍然相互垂直,但是原图形相互平行的两条线段在直观图中仍然互相平行,所以正方形中垂直的两边不一定仍然垂直,但是对边仍然平行,所以正方形的直观图可能是平行四边形.故D 项正确.选D10.如图所示,正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A .6B .8C .2+D .2+【答案】B 【详解】作出该直观图的原图形,因为直观图中的线段//C B x '''轴, 所以在原图形中对应的线段平行于x 轴且长度不变,点C '和B ′在原图形中对应的点C 和B 的纵坐标是O B ''的2倍,则OB =所以3OC =,则四边形OABC 的长度为8.11.用斜二测画法画水平放置的ABC 的直观图,得到如图所示的等腰直角三角形A B C '''.已知点O '是斜边B C ''的中点,且1A O ,则ABC 的边BC边上的高为( )A .1B .2C D .【答案】D 【详解】∵直观图是等腰直角三角形A B C ''',90,1B A C A O,∴2A C ,根据直观图中平行于y 轴的长度变为原来的一半,∴△ABC 的边BC 上的高222ACA C.故选D.12.如图所示,△A′B′C′是水平放置的△ABC 的直观图,则在△ABC 的三边及中线AD 中,最长的线段是 ( )A .AB B .ADC .BCD .AC【答案】D 【解析】因为A′B′与y′轴重合,B′C′与x′轴重合,所以AB ⊥BC ,AB=2A′B′,BC=B′C′.所以在直角△ABC 中,AC 为斜边,故AB<AD<AC ,BC<AC.二、拓展提升13.如图为一几何体的平面展开图,按图中虚线将它折叠起来,画出它的直观图.【答案】见解析 【详解】由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.14.如图,正方形的边长为1cm ,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.【答案】原图见解析,, 【详解】如图,建立平面直角坐标系xOy ,在x 轴上取;在y 轴上取;在过点B 的x 轴的平行线上取.连接O ,A ,B ,C 各点,即得到原图形.易知,四边形OABC 为平行四边形,,平行四边形OABC 的周长为,面积.15.圆台的上、下底面半径分别为、,母线长,从圆台O A B C ''''8cm 21OA O A cm ''==2OB O B ''==1BC B C cm ''==()3OC cm ===∴()()3128cm +⨯=)21cm S =⨯=5cm 10cm 20AB cm =母线的中点拉一条绳子绕圆台侧面转到点(在下底面),求:(1)绳子的最短长度;(2)在绳子最短时,上底圆周上的点到绳子的最短距离. 【答案】(1);(2).【解析】试题解析:(1)画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为.有图得:所求的最短距离是,设,圆心角是,则由题意知,①,②,由①②解得,,,∴,则.故绳子最短的长度为:.(2)作垂直于交于,是顶点到的最短距离,则是与弧的最短距离,,即上底面圆周上各点到绳子的最短距离是.《8.3.1棱柱、棱锥、棱台的表面积与体积》同步检测试卷AB M BB一、基础巩固1.某组合体如图所示,上半部分是正四棱锥P EFGH -,下半部分是长方体ABCD EFGH -.正四棱锥P EFGH -的高为,2EF =,1AE =,则该组合体的表面积为( )A .20B .12C .16D .82.一个正四棱锥的底面边长为2 A .8B .12C .16D .203.如图所示,已知正三棱柱111ABC A B C -的所有棱长均为1,则三棱锥11B ABC -的体积为( )A B C D 4.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )A .90°B .60C .45°D .30°5.某几何体的三视图如图所示,则此几何体的体积为( )A .23B .1C .43 D .836.轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为( )A .43B .32C D .7.我国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱32EF ,EF //平面ABCD ,EF 与平面ABCD 的距离为2,该刍甍的体积为( )A .6B .113C .314D .128.已知三棱锥P -ABC 满足:PC =AB PA =BC ,AC =PB =2,则三棱锥P -ABC 的体积为( )A B C D 9.如图所示,网格纸上每个小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为()A .6+B .18+C .9+D .18+10.在直三棱柱111ABC A B C -中,2AB AC BC ===,11AA =,则点A 到平面1A BC 的距离为( )A .4B .2C .4D11.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则该处的平地降雨量(盆中积水体积与盆口面积之比)为( )(台体体积公式:V 台体=121()3S S h +,1S ,2S 分别为上、下底面面积,h 为台体的高,一尺等于10寸)A .3B .4C .23749D .4744912.在正方体ABCDA 1B 1C 1D 1中,三棱锥D 1AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1∶C .1∶D .1∶2二、拓展提升13.如图,已知1111ABCD A B C D -是棱长为2的正方体.(1)求证:平面11//AB D 平面1C BD ; (2)求多面体111B C D ABCD -的体积.14.如图,正方体ABCD A B C D ''''-的棱长为a ,连'',',',,','A C A D A B BD BC C D 得到一个三棱锥.求:(1)三棱锥''A BC D -的表面积与正方体的表面积之比; (2)三棱锥''A BC D -的体积.15.如图,已知四棱锥的底面是正方形,且边长为4cm ,侧棱长都相等,E 为BC 的中点,高为PO ,且30OPE ∠=︒,求该四棱锥的侧面积和表面积.答案解析一、基础巩固1.某组合体如图所示,上半部分是正四棱锥P EFGH -,下半部分是长方体ABCD EFGH -.正四棱锥P EFGH -的高为,2EF =,1AE =,则该组合体的表面积为( )A .20B .12C .16D .8【答案】A 【详解】由题意,正四棱锥P EFGH -2=,该组合体的表面积为122421422202⨯+⨯⨯+⨯⨯⨯=.2.一个正四棱锥的底面边长为2 A .8B .12C .16D .20【答案】B 【详解】,所以该四棱锥的全面积为212+422=122⋅⋅⋅.3.如图所示,已知正三棱柱111ABC A B C -的所有棱长均为1,则三棱锥11B ABC -的体积为( )A .12B .4C .12D .4【答案】A 【详解】三棱锥11B ABC -的体积等于三棱锥11C AB B -的体积,因此,三棱锥1B ABC -的体积为111132212⨯⨯⨯=, 3.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )A .90°B .60C .45°D .30°【答案】C 【详解】记正方形ABCD 的对角线AC 与BD 交于点O , 将正方形ABCD 沿对角线AC 折起后,如图, 当DO ⊥平面ABC 时,三棱锥D ABC -的体积最大.DBO∴∠为直线BD和平面ABC所成的角,∵因为正方体对角线相互垂直且平分,所以在Rt DOB中,OD OB=,∴直线BD和平面ABC所成的角大小为45°.4.某几何体的三视图如图所示,则此几何体的体积为()A.23B.1 C.43D.83【答案】C 【解析】该几何体为三棱锥,其直观图如图所示,体积114222323V⎛⎫=⨯⨯⨯⨯=⎪⎝⎭.故选C.5.轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为( )A .43B .32C .3D .【答案】C 【详解】设圆柱的底面半径为R ,则圆柱的高为2R ,圆柱的体积V =πR 2•2R =2πR 3,,故球的体积为:334)3R π=,. 6.我国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱32EF =,EF //平面ABCD ,EF 与平面ABCD 的距离为2,该刍甍的体积为( )A .6B .113C .314D .12【答案】B 【详解】如图,作FN //AE ,FM //ED ,则多面体被分割为棱柱与棱锥部分,因为EF与平面ABCD的距离为2,所以四棱锥F-NBCM的高为2,所以V四棱锥F-NBCM=13SNBCM132 2222323⎛⎫⨯=⨯⨯-⨯=⎪⎝⎭V棱柱ADE-NMF =S直截面313223222⨯=⨯⨯⨯=所以该刍甍的体积为V=V四棱锥F-NBCM+V棱柱ADE-NMF=211 +3=33.故选:B7.已知三棱锥P-ABC满足:PC=AB PA=BC,AC=PB=2,则三棱锥P-ABC 的体积为()A B C D【答案】B【详解】因为PC=AB PA=BC AC=PB=2,构造长方体如图所示:则PC AB PA BC AC PB,,,,,为长方体的面对角线,设,,AD a BD b CD c ===,则222222534a b c b a c ⎧+=⎪+=⎨⎪+=⎩,解得1a b c ⎧=⎪⎪=⎨⎪=⎪⎩P -ABC 的体积为:长方体的体积减去三棱锥,,,C DAB F PAC G PBC E PAB ----的体积,即111432V -⨯1⨯=,8.如图所示,网格纸上每个小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为( )A.6+B .1892+C .9+D .18+【答案】C 【详解】根据三视图可还原为三棱锥,如图A BCD -,取BD 中点O ,连接,OA OC ,由三视图可得,AC ⊥平面BCD ,且3AC =,6BD =,3OC =,OA ∴==BC CD == 132ABCADCSS∴==⨯= 16392BCDS=⨯⨯=,162ABDS =⨯⨯=,∴=9.在直三棱柱111ABC A B C -中,2AB AC BC ===,11AA =,则点A 到平面1A BC 的距离为( )A B C D【答案】B 【详解】2AB BC AC === ABC ∆∴为边长为2的等边三角形 14sin 6032ABC S ∆∴=⨯=,又1AA ⊥平面ABC11133A ABC ABC V S AA -∆∴=⋅=11A B AC ===2BC =1A BC ∴∆中BC 边上的高2h == 1122A BC S BC h ∆∴=⋅= 设点A 到平面1A BC 的距离为d11A ABC A A BC V V --= 11233A BC S d d ∆∴⋅==d =10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则该处的平地降雨量(盆中积水体积与盆口面积之比)为( )(台体体积公式:V 台体=121()3S S h +,1S ,2S 分别为上、下底面面积,h 为台体的高,一尺等于10寸)A .3B .4C .23749D .47449【答案】A 【详解】解:由题意可得:池盆盆口的半径为14寸,盆底半径为6寸,盆高为18寸,因为积水深九寸,故水面半径为1(146)102⨯+=寸,则盆中水的体积为221(610610)95883ππ⨯++⨯⨯=(立方寸),故该处的平地降雨量为:2588314ππ=⨯(寸), 11.在正方体ABCDA 1B 1C 1D 1中,三棱锥D 1AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1∶C .1∶D .1∶2【答案】C 【详解】设正方体ABCD-A 1B 1C 1D 1的棱长为a ,则正方体ABCD-A 1B 1C 1D 1的表面积为S 2=6a 2,且三棱锥D 1-AB 1C 为各棱长均为 的正四面体,其中一个面的面积为212S ==,所以三棱锥D 1-AB 1C 的表面积为:22142S a =⨯=;所以三棱锥D 1-AB 1C 的体积与正方体ABCD-A 1B 1C 1D 1的表面积之比为:12S S =: .二、拓展提升13.如图,已知1111ABCD A B C D -是棱长为2的正方体.(1)求证:平面11//AB D 平面1C BD ; (2)求多面体111B C D ABCD -的体积. 【答案】(1)见解析;(2)203. 【详解】(1)由已知,在四边形DBB 1D 1中,BB 1∥DD 1且BB 1=DD 1, 故四边形DBB 1D 1为平行四边形,即D 1B 1∥DB , ∵D 1B 1⊄平面DBC 1,∴D 1B 1∥平面DBC 1; 同理在四边形ADC 1B 1中,AB 1∥DC 1, 同理AB 1∥平面DBC 1, 又∵AB 1∩D 1B 1=B 1, ∴平面AB 1D 1∥平面BDC 1.(2)在正方体中,111114222323A AB D V -=⨯⨯⨯⨯=,又正方体的体积为V =8,∴所求多面体111B C D ABCD -的体积=842033-=14.如图,正方体ABCD A B C D ''''-的棱长为a ,连'',',',,','A C A D A B BD BC C D 得到一个三棱锥.求:(1)三棱锥''A BC D -的表面积与正方体的表面积之比; (2)三棱锥''A BC D -的体积.【答案】(1)3(2)313a【详解】 如图所示:(1)由图可知,三棱锥''A BC D -为正四面体,所以三棱锥''A BC D -的表面积为)224=正方体ABCD A B C D ''''-D 的表面积为26a所以三棱锥''A BC D -的表面积与正方体ABCD A B C D ''''-D 的表面积之比= (2)因为三棱锥''A BC D -的体积等于正方体的体积减去四个等体积的三棱锥的体积,所以棱锥''A BC D -的体积为:331114323a a a a -⨯⨯⨯⨯=.15.如图,已知四棱锥的底面是正方形,且边长为4cm ,侧棱长都相等,E 为BC 的中点,高为PO ,且30OPE ∠=︒,求该四棱锥的侧面积和表面积.【答案】()232cm ,()248cm【详解】如图,2,30OE cm OPE ︒=∠=,∴在Rt POE 中,4sin 30OEPE ︒==. PB PC =,E 为BC 的中点, ()21,8cm 2PBCPE BC SBC PE ∴⊥=⋅⋅= 侧棱长都相等,()2432cm PBCS S∴==侧,()2321648cm S =+=全《8.3.2圆柱、圆锥、圆台、球的表面积与体积》同步检测试卷一、基础巩固1.已知两个球的表面积之比为1:9,则这两个球的半径之比为( )A .1:3B .C .1:9D .1:272.如图,圆柱内有一内切球(圆柱各面与球面均相切),若内切球的体积为43π,则圆柱的侧面积为A .πB .2πC .4πD .8π3.已知圆锥的高为3同一个球面上,则这个球的体积等于( )A .83π B .323π C .16πD .32π4.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )AB .C .2πD .4π5.已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且AB BC ==2AC =,若该三棱锥体积的最大值为1,则这个球的表面积为( )A .50081πB .1009πC .259πD .4π6.圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .77.一个三棱锥的三条侧棱两两垂直且长分别为3、4、5,则它的外接球的表面积是( )A .πB .50πC .πD .200π8.一个正方体的表面积等于224cm ,则该正方体的内切球的体积为( )A .312cm πB .3cmC .34cm πD .34cm 3π9.正四面体ABCD 的俯视图为边长为1的正方形(两条对角线一条是虚线一条是实线),则正四面体ABCD 的外接球的表面积为( )A B .32π C .3π D .12π10.在三棱锥S ABC -中,5,SA BC SB AC SC AB ======该三棱锥外接球的表面积为( )A .20πB .25πC .26πD .34π11.已知菱形ABCD ,60BAD ∠=︒,将ABD △沿BD 折起,使A ,C A BCD -的外接球的表面积为( )A .3πB .92πC .6πD .152π12.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .73π B .7π C .712π D .79π二、拓展提升13.如图,在底半径为2,母线长为4(1)求圆锥的表面积和体积. (2)求圆柱的表面积.14.已知一圆锥的母线长为10cm ,底面圆半径为6cm . (1)求圆锥的高;(2)若圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,求球的表面积.15.如图所示,在四边形ABCD 中,90DAB ∠=︒,120ADC =∠︒,AB =2CD =,1AD =,将四边形ABCD 绕AD 旋转一周所形成的一个几何体.(Ⅰ)求这个几何体的表面积; (Ⅱ)求这个几何体的体积.答案解析一、基础巩固1.已知两个球的表面积之比为1:9,则这两个球的半径之比为( )A .1:3B .C .1:9D .1:27【答案】A 【详解】设两个球的半径分别为1R 和2R ,则22124:41:9R R ππ=12:1:3R R ∴=2.如图,圆柱内有一内切球(圆柱各面与球面均相切),若内切球的体积为43π,则圆柱的侧面积为A .πB .2πC .4πD .8π【答案】C 【解析】设球的半径为r ,则34433r π=π,解得1r =,所以圆柱的底面半径1r =,母线长为22l r ==, 所以圆柱的侧面积为224S rl =π=π⨯1⨯2=π,故选C .3.已知圆锥的高为3同一个球面上,则这个球的体积等于( )A .83π B .323π C .16π D .32π【答案】B 【详解】。
高中数学人教a版(2019)必修第二册《 立体几何初步》测试卷
人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A B 2C .3D .322.下列说法正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台3.已知直角三角形的两直角边分别为1则该几何体的体积为( )A .4πB .3πC .2πD .π4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A .2B .1C .2D .87.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥P A B C D-的侧面积为()A .B .4C .D .10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 212.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π15.如图:正三棱锥A B C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 ,侧面积是 .17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是 .18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为 .19.已知正四面体SA B C-的棱长为16转动,则该长方体的长和宽形成的长方形的面积的最大值为 . 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 .21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 .22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是 .23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C DA B C D -截成两部分,则截面与11B C C B 的交线段长为 . 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D 所成的角的正切值是 ,点D 到平面1A C D 的距离为 . 25.在三棱锥PA B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C∠=︒,则A B C ∠为 .三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷参考答案与试题解析一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )AB 2C .3D .32【分析】证明E FB C⊥,E FA D⊥,得出截面四边形与A D ,B C 都平行,从而截面为矩形,设Q 为截面与A C 的交点,A Q A Cλ=,用λ表示出截面的面积,根据二次函数性质求出最大值.【解答】解:连接A F ,D F ,2A B A C B D C D ====,F 是B C 的中点,B C A F∴⊥,B CD F⊥,又A FD F F=,B C ∴⊥平面A D F ,又E F⊂平面A D F ,A D ⊂平面A D F ,B C E F∴⊥,B CA D⊥,又B CA D ==2A F D F ∴==,F是A D 的中点,E F A D∴⊥,E F ⊥平面α,//B C α∴,//A D α,设α与棱锥的截面多边形为M N P Q , 则////B C P Q M N ,////A DM Q P N,又B CA D⊥,故P QM Q⊥,∴截面四边形M N P Q 是矩形,设(01)A Q A Cλλ=<<,则P Q B Cλ=,1M Q C Q A DA Cλ==-,P Q ∴=,)Q Mλ=-,∴截面矩形M N P Q 的面积为2136(1)6()22λλλ-=--+,∴当12λ=时,截面面积取得最大值32.故选:D .【点评】本题考查了平面的性质,考查线面平行与垂直的性质,属于中档题. 2.下列说法正确的是()A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台 【分析】举反例判断A ,B ,D 错误,根据棱锥侧棱交于一点判断C .【解答】解:对于A ,棱台的上下底面互相平行,侧面都是四边形,但棱台不是棱柱,故A 错误;对于B ,当旋转轴为直角边时,所得几何体为圆锥,当旋转轴为斜边时,所得几何体为两个圆锥的组合体,故B 错误;对于C ,由于棱锥的所有侧棱都交于一点,故棱锥的侧面都是三角形,故C 正确; 对于D ,当平面与棱锥的底面不平行时,截面与棱锥底面间的几何体不是棱台,故D 错误. 故选:C .【点评】本题考查了空间几何体的结构特征,属于基础题.3.已知直角三角形的两直角边分别为1则该几何体的体积为()A .4πB .3πC .2πD .π【分析】几何体的体积是由上下两个圆锥的体积组成的,它们的底面半径相同,都是直角三角形斜边上的高,利用圆锥体积公式,即可求得结论.【解答】解:如图,1A C =,BC =2A B=,斜边的高为:122⨯÷=,以A C 为母线的圆锥体积213()32A Oπ=, 以B C 为母线的圆锥体积213()32B Oπ=,∴绕斜边旋转一周形成的几何体的体积等于213()322A B ππ=.故选:C .【点评】本小题主要考查圆锥的体积公式以及几何旋转体的知识等基础知识,考查运算求解能力,考查空间想象力,得到这个立体图形是由两个圆锥组成,以及圆锥体积公式求出是解决问题的关键.4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+【分析】设圆锥的母线为l ,底面半径为r ,高为h ;根据题意列方程求出r 的值,再计算圆柱和圆锥的侧面积之和.【解答】解:设圆锥的母线为l ,底面半径为r ,高为h ;所以4r lππ=,解得1r =,h ==又圆柱的侧面积为22r hπ⋅=,所以制作这样一个粮仓的用料面积为(4)π+.故选:D .【点评】本题考查了圆柱与圆锥的侧面积计算问题,也考查了空间想象能力,是基础题. 5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .【分析】结合S =原图直观图,可得答案.【解答】解:由已知直观图O A B C '''的面积为4,∴原来图形的面积4S=⨯=,故选:C .【点评】本题考查的知识点是斜二测画法,熟练掌握水平放置的图象S =原图观图,是解答的关键.6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A 2B .1C .2D .8【分析】求出直观图面积后,根据S S =原图直观图可得答案.【解答】解:三角形的直观图中点D 是B C 的中点,且2A B B C ==,A B ,B C 分别与y '轴、x '轴平行,122452A B C S s in ∴=⨯⨯⨯︒=直观图,又4S S ===原图直观图,A C D∴∆在原图中的对应三角形的面积为:122S =原图.故选:C .【点评】本题考查的知识点是平面图形的直观图,其中熟练掌握原图面积与直观图面积关系公式S S =原图直观图是解答本题的关键.7.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .【分析】先确定直观图中的线段长,再确定平面图形中的线段长,从而求得平面图形的面积. 【解答】解:直观图中,45A D C∠=︒,2A BB C ==,D CB C⊥,A D ∴=4D C=,∴原来的平面图形上底长为2,下底为4,高为∴该平面图形的面积为1(24)12+⨯=.故选:C .【点评】本题考查了斜二测画法直观图与平面图形的面积计算问题,是基础题. 8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .【分析】根据斜二测画法所得的直观图是平面图形,原面积与直观图的面积比为1,由此求出直观图的面积.【解答】解:水平放置的正方形的面积与斜二测画法所得的直观图是一个四边形,两者面积之比为1,由边长为2的正方形的面积为4,所以这个四边形的直观图面积为4÷=.故选:B .【点评】本题考查了斜二测画法中水平放置的平面图形与原图形面积比问题,是基础题.9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥PA B C D-的侧面积为()A .B .4C .D .【分析】利用勾股定理计算侧面三角形的高,再计算侧面积.【解答】解:设P 在底面A B C D 上的射影为O ,则O 为底面正方形A B C D 的中心, 取C D 的中点E ,连接O E ,则112O EA B ==,P E ∴==,P C P D=,P E C D∴⊥,∴正四棱锥PA B C D-的侧面积为14422P C DS ∆=⨯⨯⨯=,故选:D .【点评】本题考查棱锥的结构特征与侧面积计算,属于基础题. 10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π【分析】首先根据勾股定理求得底面半径,则可以得到底面周长,然后利用扇形的面积公式即可求解.【解答】解:圆锥的母线长为5,高为4,底面半径是:3,则底面周长是6π, 则圆锥的侧面积是:165152ππ⨯⨯=,底面积为9π,则表面积为15924πππ+=.故选:B .【点评】考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 2【分析】过P 作P M ⊥底面A B C D E F ,取O 为球心,设A B a=,P Mh=,求解直角三角形可得226a h h=-,求出正六棱锥的底面积,代入棱锥体积公式,再由基本不等式求最值.【解答】解:如图,过P 作P M⊥底面A B C D E F ,取O 为球心,设A Ba=,P Mh=,在R t D O M ∆中,222(3)3ha-+=,226a h h∴=-,(06)h <<,∴正六棱锥的体积为2116322Vh=⨯⨯⨯23122(6)(122)()12443h h hh h h h ++-=-=⋅-=…当且仅当122hh=-,即4h=时上式等号成立.故该球名为如果获得六棱锥的体积的最大值为1.故选:C .【点评】本题考查球内接多面体体积最值的求法,考查空间中线线、线面、面面间的位置关系、训练利用基本不等式求最值等基础知识,是中档题.12.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m【分析】由题意可得正四棱锥的底面边长与高,代入棱锥体积公式求解. 【解答】解:如图, 四棱锥P A B C D-,P O⊥底面A B C D ,21P Om=,34A Bm=,则3134342180923P A B C DV m-=⨯⨯⨯=,故选:A .【点评】本题考查棱锥体积的求法,是基础的计算题.13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π【分析】扩展几何体为长方体,求解外接球的半径,然后求解该“鞠”的表面积. 【解答】解:因为A BC D=,B DA C=,A DB C=,所以可以把A ,B ,C ,D 四点放到长方体的四个顶点上,则该长方体的体对角线就是“鞠”的直径.设该长方体的长、宽、高分别为x ,y ,z , “鞠”的半径为R ,则2222(2)R x y z=++. 因为2225x y+=,2236x z+=,2249y z+=,所以21105584R ==,所以2455SR ππ==.故选:A .【点评】本题考查空间几何体的外接球的表面积的求法,考查转化思想以及计算能力. 14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π【分析】当此四棱锥体积取得最大值时,四棱锥为正四棱锥,根据该四棱锥的最大体积为6,确定球的半径为R ,从而可求球的体积.【解答】解:如图,可得A C =2A BA C ==,此四棱锥的体积最大值212(1)(1)(1)633A B C D V S R RR =+=-+= 整理可得:3219R RR +--=,即可得2(2)(35)0RRR -++=.解得2R=.则球O 的体积等于343233Rππ=,故选:A .【点评】本题考查球内接多面体,球的表面积,解题的关键是确定球的半径,再利用公式求解.15.如图:正三棱锥AB C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .【分析】首先,展开三棱锥,然后,两点间的连接线C C '即是截面周长的最小值,然后,求解其距离即可.【解答】解:把正三棱锥AB C D-的侧面展开,两点间的连接线C C '即是截面周长的最小值. 正三棱锥AB C D-中,30B A D∠=︒,所以A CA C ⊥',2A B=,C C ∴'=∴截面周长最小值是C C '=.故选:D .【点评】本题重点考查了空间中的距离最值问题,属于中档题.注意等价转化思想的灵活运用.二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 2 ,侧面积是 .【分析】根据圆锥底面的周长等于扇形的弧长,列方程求出圆锥的底面半径. 利用扇形的面积求出圆锥的侧面积. 【解答】解:设圆锥底面的半径为r ,则120226360r ππ=⨯⨯,解得2r=,所以该圆锥的底面半径是2. 圆锥的侧面积是2120612360S ππ=⋅⋅=圆锥侧.故答案为:2,12π.【点评】本题考查了圆锥的侧面展开图是扇形的应用问题,是基础题. 17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是O D B D A B B O<<< .【分析】利用直观图,求出原图对应的边长,写出结果即可. 【解答】解:设22A D ''=,则直观图的平面图形为:A B =B O=4B D=,2O D=.原三角形中A B ,B O ,B D ,O D 由小到大的顺序O D B D A B B O<<<.故答案为:O DB D A B B O<<<.【点评】本题考查斜二测平面图形的直观图的画法,以及数据关系,基本知识的考查. 18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为4+【分析】根据题意画出图形,结合图形得出原来的平面图形的上底与下底、高和腰长,即可求出它的周长. 【解答】解:根据题意画出图形,如图所示;原来的平面图形是直角梯形,上底是1,下底是1+2=,所以它的周长是1214+++=++.故答案为:4+【点评】本题考查了平面图形的直观图的画法与应用问题,是基础题19.已知正四面体SA B C-的棱长为1,如果一个高为6的长方体能在该正四面体内任意转动,则该长方体的长和宽形成的长方形的面积的最大值为 124.【分析】计算棱锥内切球的半径,令长方体体对角线长小于或等于内切球的直径,根据基本不等式求出长方体底面积的最大值.【解答】解:设S 在平面A B C 上的射影为O ,则O 为A B C ∆的中心,延长A O 交B C 于D ,则D 为B C 的中点,正四面体棱长为1,2A D ∴=,233A OA D ==,3S O ∴==,∴正四面体的体积为11113322312S A B C A B C V S S O -∆==⨯⨯⨯=,表面积为144122A B C S S ∆==⨯⨯⨯=表,设正四面体SA B C-的内切球半径为R ,则1312R ⨯=,解得12R=设长方体的长和宽分别为x ,y ,=626R =,22112xy ∴+…,221224xy x y +∴剟,当且仅当12xy ==时取等号.故答案为:124【点评】本题考查棱锥与球的位置关系,考查基本不等式的应用,属于中档题. 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 3 .【分析】证明A BQ A⊥,C DQ D⊥,由C Q DB Q A∠=∠,结合C DB=,可得Q DA=,由平面解析几何知识求得Q 到A D 建立的最大值,再由棱锥体积公式求解. 【解答】解:底面A B C D 是直角梯形,//A B C D,A BA D⊥,C DA B∴⊥,又P A ⊥平面A B C D ,P A ⊂平面P A D ,∴平面P A D ⊥平面A B C D ,则A B⊥平面P A D ,C D⊥平面P A D , 连接Q A ,Q D ,则A B Q A⊥,C DQ D⊥,由C Q DB Q A∠=∠,得tan tan C Q DB Q A∠=∠,则A B C D Q AQ D=,2C D B=,Q D A=,2A D =,在平面P A D 内,以D A 所在直线为x 轴,D A 的垂直平分线为y 轴建立平面直角坐标系,则(1,0)D -,(1,0)A ,设(,)Q x y ,由Q DA=,得222Q D Q A=,即2222(1)2(1)2xyx y++=-+,整理得:22610x y x +-+=,取1x =,可得2y=,得Q 在P A D ∆内距离A D 的最大值为2,此时Q 在P A 上,11222A B C S A B A D ∆=⨯⨯=⨯⨯=,∴三棱锥QA B C -的体积最大值为1233V =⨯=.3【点评】本题考查多面体体积最值的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 92π .【分析】以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥P A B C-的外接球,由此能求出三棱锥PA B C-的外接球的体积.【解答】解:在三棱锥PA B C-中,P A⊥平面A B C ,A CB C⊥,∴以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥PA B C-的外接球,∴三棱锥P A B C-的外接球的半径1322R=⋅=,∴三棱锥PA B C-的外接球的体积为:334439()3322S Rπππ==⨯=.故答案为:92π.【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是基础题. 22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C【分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:由题意知,底面圆的直径为2,故底面周长等于2π, 设圆锥的侧面展开后的扇形圆心角为α, 根据底面周长等于展开后扇形的弧长得,23πα=,解得:23πα=, 23A V A π∴∠'=,则13π∠=,过C 作C FV A⊥,C为V B 的三等分点,3B V =,1V C ∴=, 160∠=︒,30V C F ∴∠=︒,12F V ∴=,22234C FC V V F∴=-=,3A V =,12F V =,52A F ∴=,在R t A F C ∆中,利用勾股定理得:2227A C A FF C=+=,则A C=【点评】考查了平面展开-最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决. 23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C D A B C D -截成两部分,则截面与11B C C B 的交线段长为103.【分析】首先利用平行线的相交的应用和成比例问题的应用,求出C P 的长,进一步利用勾股定理的应用求出结果. 【解答】解:如图所示:过点F 作//F H A E交11A D 于H ,易知11D H=,所以点H 为11A D 的四等分点, 所以11114D H A D =过点E 作//E PA H交1C C 于点P ,则△1A A H P C E ∆∽, 所以11A A C P A HC E=,解得83C P=.所以截面与11B C C B的交线段长为103P E ==.故答案为:103.【点评】本题考查的知识要点:截面的交线,平行线成比例,主要考查学生的运算能力和转换能力及思维能力,属于基础题, 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D点D 到平面1A C D 的距离为 .【分析】以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1B D 与C D 所成的角的正切值和点D 到平面1A C D 的距离.【解答】解:以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系, 则(2B ,2,0),1(0D ,0,2),(0C ,2,0),(0D ,0,0),1(2B D =-,2-,2),(0C D=,2-,0),设异面直线1B D 与C D 所成角为θ, 则11||c o s ||||1243B D CD B D C D θ===,sin θ∴==,s in ta n c o s θθθ==∴异面直线1B D 与C D(2A ,0,0),(2A C=-,2,0),1(2A D =-,0,2),(2A D=-,0,0),设平面1A C D 的法向量(n x=,y ,)z ,则1220220n A C x y n A D x z ⎧=-+=⎪⎨=-+=⎪⎩,取1x=,得(1n =,1,1),∴点D 到平面1A C D的距离为||2||33n A D dn ===.3【点评】本题考查异面直线所成角的正切值、点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 25.在三棱锥P A B C-中,P A ⊥平面A B C ,45P B A ∠=︒,60P B C ∠=︒,则A B C ∠为4π.【分析】作P M B C⊥于点M ,连接A M ,设A Bx=,由已知可求P A x=,利用勾股定理可求P B =,利用三角函数的定义可求2B M =,由已知利用线面垂直的判定和性质可得B M A M⊥,进而可求c o s 2B M A B CA B∠==,结合A B C ∠为三角形内角,可求A B C∠的值.【解答】解:如图,作P M B C⊥于点M ,连接A M ,设A B x=,因为在三棱锥P A B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C ∠=︒,所以P Ax=,P B==,因为60P B C ∠=︒,P MB C⊥,所以12c o s 22B M P B P B C x=∠==,因为P A ⊥平面A B C ,B M⊂平面A B C ,所以B M A P⊥,又P MB C⊥,P MA P P=,所以B M ⊥平面P A M ,又AM⊂平面P A M,所以B M A M⊥,所以2c o s 2x B M A B CA Bx∠===,由于A B C ∠为三角形内角, 所以4A B C π∠=.故答案为:4π.【点评】本题主要考查了勾股定理,三角函数的定义,线面垂直的判定和性质在解三角形中的应用,考查了数形结合思想和转化思想,作辅助线P M B C⊥于点M 是解题的关键,属于中档题.三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.【分析】所得几何体为圆锥中挖去一个圆柱,然后利用公式求出即可. 【解答】解:所形成几何体是一个圆锥挖去一个圆柱,由题意可知圆柱的底面半径为322,圆锥底面半径为3,母线为6,所以32222S π=⨯⨯=圆柱侧,233627S πππ=⨯+⨯⨯=圆锥表,所以所求几何体的表面积为272SS S π=+=+圆锥表圆柱侧.【点评】本题主要考查旋转体的表面积计算,属于基础题. 27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.【分析】(1)取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,证明A M N G是平行四边形,//M N A G,推出//M N平面P A D ,得到//M NA G,证明A GP C⊥,A G P D⊥,推出A G⊥平面P D C ,得到M N⊥平面P D C ,然后证明平面M P C ⊥平面P C D ,(2)利用B M N CN M B CV V --=,转化求解点B 到平面M N C 的距离.【解答】(1)证明:取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,//N G C D∴,12N GC D=,//A MC D,12A MC D=,A M N G ∴是平行四边形,//M NA G,A G ⊂平面P A D ,M N ⊂/平面P A D ,//M N ∴平面P A D//M N A G∴,P M M C ==,N 为P C 中点,M N P C∴⊥,即A GP C⊥, G为P D 的中点,A P A D=,A G P D∴⊥,且P DPC P=,A G ⊥平面P D C ,M N ∴⊥平面P D C ,M N ⊂平面M P C ,∴平面M P C⊥平面P C D ,(2)解:1132B M N CN M B C M B CV V S P A--∆==,1222M B C S B C B M ∆==1222M N CS M N N C ∆==,则点B 到平面M N C 的距离为122hP A ==.【点评】本题考查平面与平面垂直以及直线与平面平行的判断定理的应用,空间点线面距离的求法,等体积法的应用,是中档题. 28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.【分析】(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.利用向量法能求出异面直线E F 与1A D 所成角的余弦值.(2)求出面D E F 的法向量,利用向量法能求出直线1A D 与平面D E F 所成角的正弦值. 【解答】解:(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.则(1E ,1,0),(0F ,12,(1A ,0,0),1(0D ,0则(1E F=-,0,)2,1(1A D =-,0,直线E F 与1A D 所成角为θ,则115||c o s 14||||744EF A D E F A D θ===.故异面直线E F 与1A D 14.(2)(1D E=,1,0),(0D F=,12,1(1A D =-,0,设面D E F 的法向量为(nx=,y ,)z ,则0302D E n x y D F n y ⎧=+=⎪⎨=+=⎪⎩,令2z=,可得(3,2)n=-,设直线1A D与平面D E F 所成角为θ,则11||3s in 20||||410A D n A D n θ===,所以直线1A D 与平面D E F 20.【点评】本题考查异面直线所成角的余弦值、线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.【分析】根据线面垂直的判定定理证明m ⊥平面A B C ,再得出m A B⊥.【解答】证明:m A C⊥,mB C⊥,A C ⊂平面A B C ,B C⊂平面A B C ,且A C B CC =,m ∴⊥平面A B C ,又A B ⊂平面A B C , m A B∴⊥.【点评】本题考查了线面垂直的判定定理,线面垂直的性质,属于基础题.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.【分析】(1)由已知利用平面与平面垂直的性质可得E D A C⊥,再由四边形A B C D 是正方形,得A CB D⊥,利用直线与平面垂直的判定可得A C⊥平面B D E ;(2)取E B 中点G ,连接O G ,F G ,证明A O G F 为平行四边形,可得//A C F G,再由直线与平面平行的判定可得//A C 面E FB ;(3)证明A B⊥平面A D E F ,求出三棱锥B D E F-的体积,结合O 为B D 的中点,可得四面体B O E F 的体积.【解答】证明:(1)平面A B C D⊥平面A D E F ,平面A B C D ⋂平面A D E FA D=E D A D ⊥,E D⊂平面A D E F ,E D ∴⊥面A B C D ,得E D A C⊥,又四边形A B C D 是正方形,A C B D∴⊥,又B DE D D=,A C ∴⊥平面B D E ;证明:(2)取E B 中点G ,连接O G ,F G ,O,G 分别为B D ,B E 的中点,//O GD E∴,12O GD E=,又//A F D E,12A F D E=,//A F O G ∴且A FO G=,则四边形A O G F 为平行四边形,得//A CF G,A C ⊂/平面E F B ,F G ⊂平面E F B ,//A C ∴面E FB ;解:(3)平面A B C D⊥平面A D E F ,A B A D⊥,A B ∴⊥平面A D E F .//A F D E,90A D E ∠=︒,22D ED A A F ===,D E F∴∆的面积为122D E FS E D A D ∆=⨯⨯=,∴四面体B D E F 的体积11422333D E F VS A B ∆=⨯=⨯⨯=,又O 是B D 中点,∴12O D E F B D E FV V --=,则1223B O E FB D E F V V -==.【点评】本题考查直线与平面平行、直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等体积法求多面体的体积,是中档题.。
高中试卷-人教A版2019必修二第八章 立体几何初步 单元测试卷(Word版含解析)(含答案)
第八章立体几何初步单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(共40分)1、(4分)若圆台的上、下底面面积分别为4,16,则圆台的中截面的面积为( ).2、(4分)已知正三棱锥P ABC-的六条棱长均为6,S是ABC△及其内部的点构成的集合,设集合{|5}T Q S PQ=Σ,则T表示的区域的面积为( )A.3π4B.πC.2πD.3π3、(4分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4C.π2D.π44、(4分)已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的母线长为( )C.2D.5、(4分)如图,某圆柱的一个轴截面是边长为2的正方形ABCD,点E在下底面圆周上,且2BC BE=,点F在母线AB上,点G是线段AC的靠近点A的四等分点,则EF FG+的最小值为( )B.3C.4D.9 26、(4分)若把一个高为10cm的圆柱的底面画在x O y¢¢¢平面上,则圆柱的高应画成( )A.平行于z¢轴且大小为10cmB.平行于z¢轴且大小为5cmC.与z¢轴成45°且大小为10cmD.与z¢轴成45°且大小为5cm7、(4分)用斜二测画法画水平放置的ABC△时,若AÐ的两边分别平行于x轴、y轴,且90AÐ=°,则在直观图中A¢Ð=( )A.45°B.135°C.45°或135°D.90°8、(4分)下列命题中假命题是( )A.如果平面a ^平面g ,平面b ^平面g ,l a b =I ,那么l g ^B.如果平面a ^平面b ,那么平面a 内一定存在直线平行于平面bC.如果平面a 不垂直于平面b ,那么平面a 内一定不存在直线垂直于平面bD.如果平面a ^平面b ,过a 内任意一点作交线的垂线,那么此垂线必垂直于b9、(4分)如图所示,四棱锥P ABCD -的底面是边长为1的正方形,侧棱1PA =,PB PD ==,则它的五个面中,互相垂直的共有( )A.3对B.4对C.5对D.6对10、(4分)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A. B. C. D.二、填空题(共25分)11、(5分)如图,在直三棱柱111ABC A B C -中,底面是ABC Ð为直角的等腰直角三角形,2AC a =,13BB a =,D 是11A C 的中点,点F 在线段1AA 上,当AF =____________时,CF ^平面1B DF .12、(5分)如图所示的直观图A O B ¢¢¢△,其平面图形的面积为_______.13、(5分)在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别是BC 和11C D 的中点,经过点A ,E ,F 的平面把正方体1111ABCD A B C D -截成两部分,则截面与11BCC B 的交线段长为________.14、(5分)已知l ,m 是平面a 外的两条不同直线,给出下列三个论断:①l m ^;②//m a ;③l a ^.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________________.15、(5分)已知四棱锥P ABCD -的底面ABCD 是边长为2的正方形,侧面PAB ^底面ABCD ,且4PA PB ==,则该四棱锥P ABCD -的外接球的表面积为______________.三、解答题(共35分)16、(8分)如图所示,PA ^平面ABC ,点C 在以AB 为直径的O e 上,点E 为线段PB 的中点,点M 在»AB 上,且//OM AC .(1)求证:平面//MOE 平面PAC ;(2)求证:平面PAC ^平面PCB .17、(9分)如图,四棱锥P ABCD -中,PA ^底面,,//,,ABCD AB AD AB DC E F ^分别为PC ,DC 的中点,222PA DC AB AD ====.(1)证明:平面//PAD 平面EBF .(2)求三棱锥P BED -的体积.18、(9分)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2,1,60AD AB BAD ==Ð=°, 平面PCD ^平面ABCD ,点M 为PC 上一点.(1)若//PA 平面MBD ,求证:点M 为PC 中点.(2)求证:平面MBD ^平面PCD .19、(9分)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ^平面,,2,3PCD PA CD CD AD ^==,(1)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD .(2)求证:PA ^平面PCD .(3)求直线AD 与平面PAC 所成角的正弦值.参考答案1、答案:C解析:设圆台的上、下底面半径分别为r 上、r 下,圆台中截面的半径为r 中,则24S r =p =上上,2、答案:B解析:设O 为ABC △的中心,连接PO ,AO ,在正三角形ABC 中,263AO ==,在Rt POA △中,PO ==,当5PQ =时,连接OQ ,根据勾股定理可得1OQ ==,易知Q 的轨迹是以O 为圆心,半径为1的圆,由于集合{5}T Q S PQ =Σ∣,故集合T 表示的区每的面积为π,故选B.3、答案:B解析:由圆柱的两个底面的圆周在直径为2的同一个球的球面上,知球的直径为2,因此球的半径1r =.因为圆柱的高21h =,所以圆柱的底面半径为1r ===.由圆柱体的体积公式得2213ππ2π14V r h =×=´´=.故选B.4、答案:C解析:依题意可知,半圆的弧长为2π12π×=,圆心角的弧度数为π,由弧长公式可得该圆锥的母线长为2π2π=.5、答案:A解析:如图,将ABE △绕AB 旋转到PAB △的位置,并且点P 在CB 的延长线上,连接PG ,交AB 于点F ,此时EF FG +最小.由已知可知轴截面ABCD 是边长为2的正方形,所以1,45AC CG BE BP ACB ====Ð=°.在PCG △中,由余弦定理得222992cos 92322PG PC CG PC CG PCG =+-×Ð=+-´=,PG \=.故选A.6、答案:A 解析:7、答案:C 解析:8、答案:D解析:因为平面a 内任意一点可以是交线上一点,所以过这一点的垂线不一定垂直于平面b .故选D.9、答案:C解析:因为1AB AD AP ===,PB PD ==,所以222AB AP PB +=,222AD AP PD +=,所以PA AB ^,PA AD ^.因为AB AD A =I ,所以PA ^底面ABCD .因为PA Ì平面PAB ,PA Ì平面PAD ,所以平面PAB ^平面ABCD ,平面PAD ^平面ABCD .因为四边形ABCD 是正方形,所以AB ^平面PAD ,可得平面PAB ^平面PAD ,BC ^平面PAB ,可得平面PAB ^平面PBC ,CD ^平面PAD ,可得平面PAD ^平面PCD .故选C.10、答案:B解析:如图所示,点M 为ABC △的中心,点E 为AC 的中点,点O 为球心,显然当DM ^平面ABC 时,三棱锥D ABC -的体积最大.因为球的半径为4,所以4OD OB ==.因为ABC △为等边三角形且面积为2AB =,解得6AB =.因为点M 为ABC △的中心,所以2233BM BE ==´=.在Rt OMB △中,根据勾股定理可知,2OM ===,所以426DM OD OM =+=+=,所以三棱锥D ABC -体积的最大值为163´=.故选B.11、答案:a 或2a解析:由已知得111A B C △是等腰直角三角形,1111A B B C =,D 是11A C 的中点,111B D A C \^.Q 平面111A B C ^平面11A ACC ,平面111A B C I 平面1111A ACC A C =,1B D \^平面11A ACC .又CF ÌQ 平面11A ACC ,1B D CF \^.若CF ^平面1B DF ,则CF DF ^.设(03)AF x x a =<<,则2224CF x a =+,222(3)DF a a x =+-,2222910CD a a a =+=,22222104(3)a x a a a x \=+++-,解得x a =或2a .12、答案:6解析:由直观图可知其对应的平面图形AOB 中,90,3,4AOB OB OA Ð=°==,所以162AOB S OA OB =×=△.13、答案:103解析:如图,连接AE 并延长交DC 延长线于M ,连接FM 交1CC 于G ,连接EG 并延长交11B C 延长线于N ,连接NF 并延长交11A D 于H ,连接AH ,则五边形AEGFH 为经过点A ,E ,F 的正方体的截面,因为E 为BC 的中点,所以122CE BC ==,因为//CE AD ,所以MCE MDA ∽△△,所以12CM CE DM AD ==,所以4CM CD ==,因为11//DM C D ,所以1MCG FC G ∽△△,所以112CG CM C G C F ==,所以28433CG =´=,所以103EG ==,所以截面与11BCC B 的交线段长为103,故答案为:103.14、答案:若l m ^,l a ^,则//m a (答案不唯一)解析:由题意可得到以下三个命题.(1)若①②,则③,即若l m ^,//m a ,则l a ^,不成立.(举反例)如图,//a b ,l ,m b Ì且l m ^,//m a ,显然l 与a 并不垂直.(2)若①③,则②,即l m ^,l a ^,则//m a ,成立.若l m ^,l a ^,则m a Ì或//m a .又已知m 为平面a 外的直线,则//m a 成立.(3)若②③,则①,即//m a ,l a ^,则l m ^,成立.如图,若//m a ,则在a 内存在直线n 与m 平行,即n a Ì且//m n .又l a ^Q ,l n \^.又//m n Q ,l m \^.15、答案:316π15解析:设正方形ABCD 的中心为1O ,三角形PAB 的外心为G ,取AB 的中点E ,连接EG ,1EO ,1O C ,则EG AB ^,1EO AB ^,分别以EG ,1EO 为邻边作平行四边形1EGOO ,如图.因为侧面PAB ^底面ABCD ,GE AB ^,所以1GE EO ^.则1OO ^平面ABCD ,OG ^平面PAB ,则OA OB OC OD OP ====,所以点O 就是该四棱锥外接球的球心.由4PA PB ==,2AB =,2222)GE BE BG GE +==,解得GE =.设该四棱锥的外接球半径为R ,在1Rt OO C △中,222211OC R OO O C ==+=221497921515GE O C +=+=,则四棱锥P ABCD -的外接球的表面积为279316π4π4π1515R =´=.故答案为316π15.16、答案:(1)见解析(2)见解析解析:(1)因为点E 为线段PB 的中点,点O 为线段AB 的中点,所以//OE PA .因为PA Ì平面PAC ,OE Ë平面PAC ,所以//OE 平面PAC .因为//OM AC ,AC Ì平面PAC ,OM Ë平面PAC ,所以//OM 平面PAC .因为OE Ì平面MOE ,OM Ì平面MOE ,OE OM O Ç=,所以平面//MOE 平面PAC .(2)因为点C 在以AB 为直径的O e 上,所以90ACB °Ð=,即BC AC ^.因为PA ^平面ABC ,BC Ì平面ABC ,所以PA BC ^.因为AC Ì平面PAC ,PA Ì平面PAC ,PA AC A Ç=,所以BC ^平面PAC .因为BC Ì平面PCB ,所以平面PAC ^平面PCB .17、答案:(1)见解析(2)13P BED V -=解析:(1)由已知F 为CD 的中点,且2CD AB =,所以DF AB =,因为//AB CD ,所以//AB DF ,又因为AB DF =,所以四边形ABFD 为平行四边形,所以//BF AD ,又因为BF Ì平面PAD ,AD Ì平面PAD ,所以//BF 平面PAD ,在PDC △中,因为E ,F 分别为PC ,CD 的中点,所以//EF PD ,因为BF Ì/平面,PAD PD Ì平面PAD ,所以//EF 平面PAD ,因为EF BF F Ç=,所以平面//PAD 平面EBF .(2)由已知E 为PC 中点,2P BDC E BDC V V --=,又因为P BDE P BDC E BDC V V V ---=-,所以12P BDE P BDC V V --=,因为11212BDC S =´´=△,1233P BDC BDC V S AP -=×=△,所以三棱锥P BED -的体积13P BED V -=.18、答案:(1)见解析(2)见解析解析:(1)连接AC 交BD 于O ,连接OM ,如图所示;因为//PA 平面,MBD PA Ì平面PAC ,平面PAC Ç平面MBD OM =,所以//PA OM .因为四边形ABCD 是平行四边形,所以O 是AC 的中点,所以M 是PC 的中点.(2)在ABD △中,2,1,60AD AB BAD ==Ð=°,所以2222cos 3BD AB AD AB AD BAD =+-×Ð=,所以222AD AB BD =+,所以AB BD ^.因为四边形ABCD 是平行四边形,所以//AB CD ,所以BD CD ^.又因为平面PCD ^平面ABCD ,且平面PCD Ç平面,ABCD CD BD =Ì平面ABCD ,所以BD ^平面PCD .因为BD Ì平面MBD ,所以平面MBD ^平面PCD .19、答案:(1)见解析.(2)见解析.(3).解析:(1)连接BD ,易知,AC BD H BH DH Ç==,又由BG PG =,故//GH PD ,又因为GH Ì/平面,PAD PD Ì平面PAD ,所以//GH 平面PAD .(2)取棱PC 的中点N ,连接DN ,依题意,得DN PC ^,又因为平面PAC ^平面PCD ,平面PAC Ç平面PCD PC =,所以DN ^平面PAC ,又PA Ì平面PAC ,故DN PA ^,又因为,PA CD CD DN D ^Ç=,所以PA ^平面PCD .(3)连接AN ,由(2)中DN ^平面PAC ,可知DAN Ð为直线AD 与平面PAC 所成的角.因为PCD △为等边三角形,2CD =且N 为PC 的中点,所以DN =,又DN AN ^,在Rt AND △中,sin DN DAN AD Ð==所以直线AD 与平面PAC .。
2019_2020学年新教材高中数学第8章立体几何初步8.6空间直线、平面的垂直课时作业新人教A版必修第二册
课时作业35 直线与平面垂直的判定知识点一直线与平面垂直的判定1.下列说法中正确的个数是( )①点到平面的距离是指这个点到这个平面的垂线段;②过一点垂直于已知平面的直线不一定只有一条;③若一条直线与一个平面内两条相交直线垂直,则这条直线垂直于这个平面;④若一条直线与一个平面内任意一条直线垂直,则这条直线垂直于这个平面;⑤若一条直线与一个平面内无数条直线垂直,则这条直线垂直于这个平面.A.1 B.2 C.3 D.4答案 B解析由点到平面的距离的概念及直线与平面垂直的判定定理和定义知正确的是③④,故选B.2.如图,PA垂直于以AB为直径的圆所在的平面,C为圆上异于A,B的任一点,则下列关系不正确的是( )A.PA⊥BC B.BC⊥平面PACC.AC⊥PB D.PC⊥BC答案 C解析由PA垂直于以AB为直径的圆所在的平面,可知PA⊥BC,故排除A.由题意可知BC ⊥AC,PA⊥BC.因为PA⊂平面PAC,AC⊂平面PAC,AC∩PA=A,所以BC⊥平面PAC,故排除B.结合B,根据直线与平面垂直的定义知BC⊥PC,故排除D.故选C.知识点二直线与平面所成的角3.线段AB的长等于它在平面α内的射影长的2倍,则AB所在直线与平面α所成的角为( )A.30° B.45° C.60° D.120°答案 C解析 如图所示,AC ⊥α,AB ∩α=B ,则BC 是AB 在平面α内的射影,则BC =12AB ,所以∠ABC =60°,它是AB 与平面α所成的角.4.若两条不同的直线与同一平面所成的角相等,则这两条直线( ) A .平行 B .相交 C .异面 D .以上皆有可能 答案 D解析 在正方体ABCD -A 1B 1C 1D 1中,A 1A ,B 1B 与底面ABCD 所成的角相等,此时两直线平行;A 1B 1,B 1C 1与底面ABCD 所成的角相等,此时两直线相交;A 1B 1,BC 与底面ABCD 所成的角相等,此时两直线异面.5.在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =2,BC =3,D 和E 分别是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为( )A .30° B.45° C.60° D.90° 答案 A解析 取AC 的中点F ,连接BF ,DF .因为在直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AC 1和BB 1的中点,所以ED ∥BF .过点F 作FG 垂直BC 交BC 于点G ,由题意得∠FBG 即为所求的角.因为AB =1,AC =2,BC =3,所以∠ABC =90°,∠BCA =30°,且BF =CF ,所以在△FBG 中∠FBG =30°.故选A.知识点三 直线与平面垂直的证明 6.如图,在四棱锥P -ABCD 中, 底面ABCD 为菱形,PA =PC ,PB =PD ,AC ∩BD =O .求证:(1)PO⊥平面ABCD;(2)AC⊥平面PBD.证明(1)∵四边形ABCD为菱形,AC∩BD=O,∴O为AC的中点,又PA=PC,∴PO⊥AC.同理可证PO⊥BD.又AC⊂平面ABCD,BD⊂平面ABCD,AC∩BD=O,∴PO⊥平面ABCD.(2)由(1)知AC⊥PO,又四边形ABCD为菱形,∴AC⊥BD,又BD⊂平面PBD,PO⊂平面PBD,PO∩BD=O,∴AC⊥平面PBD.7.如图,在四面体A-BCD中,∠BDC=90°,AC=BD=2,E,F分别为AD,BC的中点,且EF=2.求证:BD⊥平面ACD.证明取CD的中点为G,连接EG,FG.∵F,G分别为BC,CD的中点,∴FG∥BD.又E为AD的中点,AC=BD=2,则EG=FG=1.∵EF=2,∴EF2=EG2+FG2,∴EG⊥FG,∴BD⊥EG.∵∠BDC=90°,∴BD⊥CD.又EG⊂平面ACD,CD⊂平面ACD,EG∩CD=G,∴BD⊥平面ACD.一、选择题1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是( )A.α∥β,且m⊂α B.m∥n,且n⊥βC.m⊥n,且n⊂β D.m⊥n,且n∥β答案 B解析A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,B符合题意;C,D中,m⊂β或m ∥β或m与β相交,不符合题意.故选B.2.直线a与平面α所成的角为50°,直线b∥a,则直线b与平面α所成的角等于( ) A.40° B.50° C.90° D.150°答案 B解析根据两条平行直线和同一平面所成的角相等,知b与α所成的角也是50°.3.给出下列条件(其中l为直线,α为平面):①l垂直于α内的一五边形的两条边;②l垂直于α内三条不都平行的直线;③l垂直于α内无数条直线;④l垂直于α内正六边形的三条边.其中能够推出l⊥α的条件的所有序号是( )A.② B.①③ C.②④ D.③答案 C解析如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.①③都有可能垂直的是平面α内的平行直线,不能推出l⊥α.故选②④.4.在正方体ABCD-A1B1C1D1中,AB=2,则点A到平面A1DCB1的距离是( )A. 3B. 2C.22D.2答案 B解析如图,连接AD1,交A1D于点O,在正方体ABCD-A1B1C1D1中,CD⊥平面ADD1A1,∵AD1⊂平面ADD1A1,∴AD1⊥CD.在正方形ADD1A1中,AD1⊥A1D,∵CD∩A1D=D,∴AD1⊥平面A1DCB1,垂足为O,则AO的长即为所求,AO=2AB2= 2.故选B.5.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为( )A.23B.33C.23D.63答案 D解析画出图形,如图所示,BB1与平面ACD1所成的角等于DD1与平面ACD1所成的角,在三棱锥D-ACD1中,由三条侧棱两两垂直得点D在底面ACD1内的射影为等边三角形ACD1的垂心即中心H,则∠DD1H为DD1与平面ACD1所成的角,设正方体的棱长为a,则cos∠DD1H=63a a=63.二、填空题6.在正方体A1B1C1D1-ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心(如图),则EF与平面BB1O的关系是________.答案垂直解析由正方体性质知AC⊥BD,BB1⊥AC,∵E,F是棱AB,BC的中点,∴EF∥AC,∴EF⊥BD,EF ⊥BB1,又BD∩BB1=B,∴EF⊥平面BB1O.7.在矩形ABCD中,AB=1,BC=2,PA⊥平面ABCD,PA=1,则PC与平面ABCD所成的角是________.答案30°解析如图,∵PA⊥平面ABCD,∴∠PCA即PC与平面ABCD所成的角,又tan∠PCA=PAAC=PAAB2+BC2=13=33,∴∠PCA=30°.8.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等.若点A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成的角的正弦值等于________.答案23解析 如图,设A 1在底面ABC 内的射影为O ,O 为△ABC 的中心,OA =OB =OC ,则AA 1=A 1B =A 1C .连接AB 1,A 1B ,设AB 1∩A 1B =E ,则E 为A 1B 的中点.取OB 的中点D ,连接ED ,AD ,则ED ∥A 1O .由题意知A 1O ⊥平面ABC ,所以ED ⊥平面ABC . 则∠EAD 即为AB 1与底面ABC 所成的角. 设三棱柱ABC -A 1B 1C 1的棱长为a ,则OA =OB =33a . 在Rt △AA 1O 中,A 1O =AA 21-OA 2=63a ,ED =12A 1O =66a . 在正三角形AA 1B 中,AE =32a ,在Rt △ADE 中, sin ∠EAD =ED AE =66a32a =23,即AB 1与底面ABC 所成的角的正弦值为23. 三、解答题9.如图,在三棱锥P -ABC 中,H 为△ABC 的垂心,且PH ⊥平面ABC ,求证:AB ⊥PC ,BC ⊥AP .证明 连接AH ,∵H 为△ABC 的垂心, ∴AH ⊥BC ,又PH ⊥平面ABC , ∴PH ⊥BC ,又PH ∩AH =H ,∴BC ⊥平面PAH ,又AP ⊂平面PAH ,∴BC ⊥AP ,同理可证AB ⊥PC .10.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值. 解 (1)证明:∵P ,Q 分别为AE ,AB 的中点, ∴PQ ∥EB .又DC ∥EB ,因此PQ ∥DC ,因为PQ ⊄平面ACD ,CD ⊂平面ACD ,从而PQ ∥平面ACD .(2)如图,连接CQ ,DP .∵Q 为AB 的中点,且AC =BC ,∴CQ ⊥AB . ∵DC ⊥平面ABC ,EB ∥DC , ∴EB ⊥平面ABC . ∵CQ ⊂平面ABC , ∴CQ ⊥EB ,又AB ∩EB =B , 故CQ ⊥平面ABE .由(1)有PQ ∥DC ,又PQ =12EB =DC ,∴四边形CQPD 为平行四边形. ∴DP ∥CQ . ∴DP ⊥平面ABE .∴∠DAP 即为AD 和平面ABE 所成的角. 在Rt △DPA 中,AD =5,DP =CQ =1,sin ∠DAP =55.5 5.∴AD和平面ABE所成角的正弦值为。
高中数学第八章立体几何初步测评习题含解析第二册
第八章测评(时间:120分钟满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1。
如图所示,△A’O’B'表示水平放置的△AOB的直观图,B’在x’轴上,A'O’与x’轴垂直,且A’O’=2,则△AOB的边OB上的高为()A.2B.4 C。
2 D.4△AOB的边OB上的高为h,因为S原图形=2S直观图,所以×OB×h=2×O’B'×2,又OB=O’B',所以h=4.2。
如图,一圆锥的母线长为4,其侧面积为4π,则这个圆锥的体积为()A。
B.C。
πD。
π,此扇形的半径R=4,设其弧长为l,侧面积为扇形的面积,所以扇形的面积S1=Rl=4π,解得弧长l=2π,所以圆锥的底面周长为2π,由此可知底面半径r=1,所以底面面积为S=π,圆锥的高为h=,故圆锥的体积V=Sh=π.3。
在等腰直角三角形ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为()A。
30°B。
60°C.90°D.120°,由A'B=BC=1,∠A’BC=90°知A'C=.∵M为A’C的中点,∴MC=AM=,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM—A的平面角。
∵AC=1,MC=MA=,∴∠CMA=90°,故选C。
4.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,则四边形ABCD绕AD所在直线旋转一周所成几何体的表面积为()A.(60+4)πB。
(60+8)πC.(56+8)πD。
(56+4)πABCD绕AD所在直线旋转一周所成的几何体,如图.S表面=S圆台下底面+S圆台侧面+S圆锥侧面=π+π(r1+r2)l2+πr1l1=π×52+π×(2+5)×5+π×2×2=(60+4)π.故选A.5。
2019-2020学年人教A版必修第二册 第八章 立体几何初步 单元测试
2019-2020学年人教A 版必修第二册 第八章 立体几何初步 单元测试(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.空间中有三条线段AB ,BC ,CD ,且∠ABC =∠BCD ,那么直线AB 与CD 的位置关系是( )A.平行B.异面C.相交或平行D.平行或异面或相交均有可能 解析:选D.如图可知AB ,CD 有相交,平行,异面三种情况, 故选D.2.一个水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这个平面图形的面积为( )A.14+24 B.2+22C.14+22D.12+ 2 解析:选 B.将直观图 ABCD 还原后为直角梯形 A ′BCD ′,其中 A ′B =2AB =2,BC =1+22, A ′D ′=AD =1.所以平面图形的面积 S =12×(1+1+22)×2=2+22.3.对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A.a ⊂α,b ⊂αB.a ⊂α,b ∥αC.a ⊥α,b ⊥αD.a ⊂α,b ⊥α解析:选B.因为已知两条不相交的空间直线a 和b ,所以可以在直线a 上任取一点A ,则A ∉b ,过A 作直线c ∥b ,则过直线a ,c 必存在平面α且使得a ⊂α,b ∥α.4.正方体的表面积与其外接球的表面积的比为( ) A.3∶π B.2∶π C.1∶2πD.1∶3π解析:选B.设正方体的棱长为a ,则球的直径为2R =3a ,所以R =32a .正方体的表面积为6a 2.球的表面积为4πR 2=4π·⎝⎛⎭⎫32a 2=3πa 2,所以它们的表面积之比为6a 2∶3πa 2=2∶π.5.如图,在长方体ABCD -A 1B 1C 1D 1中,棱锥A 1ABCD 的体积与长方体的体积的比值为( )A.12B.16C.13D.15解析:选C.设长方体过同一顶点的棱长分别为a ,b ,c ,则长方体的体积为V 1=abc ,四棱锥A 1ABCD 的体积为V 2=13abc ,所以棱锥A 1ABCD 的体积与长方体的体积的比值为13.6.在正方体ABCD -A 1B 1C 1D 1中,点Q 是棱DD 1上的动点,则过A ,Q ,B 1三点的截面图形是( )A.等边三角形B.矩形C.等腰梯形D.以上都有可能解析:选D.当点Q 与点D 1重合时,截面图形为等边三角形AB 1D 1,如图(1);当点Q 与点D 重合时,截面图形为矩形AB 1C 1D ,如图(2);当点Q 不与点D ,D 1重合时,令Q,R分别为DD1,C1D1的中点,则截面图形为等腰梯形AQRB1,如图(3).故选D.7.给出下列命题:①过平面外一直线有且仅有一个平面和这个平面平行;②如果一个平面经过另一个平面的斜线,那么这两个平面不可能垂直;③若直角三角形ABC在平面α内的射影仍是直角三角形,则平面ABC∥平面α.其中正确命题的个数为()A.0B.1C.2D.3解析:选A.对于①,平面外的直线有两类,其一是与平面相交的直线,其二是与平面平行的直线,显然①不正确;对于②,容易判断②是错误的;对于③,平面ABC与平面α也有可能相交,因此③不正确.故选A.8.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE解析:选C.因为AB=CB,且E是AC的中点,所以BE⊥AC.同理,DE⊥AC,又DE∩BE =E,于是AC⊥平面BDE.又AC⊂平面ABC,AC⊂平面ADC,所以平面ABC⊥平面BDE,平面ADC⊥平面BDE.故选C.9.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析:选D.如图,在长方体ABCD-A1B1C1D1中,记l1=DD1,l2=DC,l3=DA,若l4=AA1,满足l1⊥l2,l2⊥l3,l3⊥l4,此时l1∥l4,可以排除选项A和C.若l4=DC1,也满足条件,可以排除选项B.故选D.10.在等腰Rt△A′BC中,A′B=BC=1,M为A′C的中点,沿BM把它折成二面角,折后A 与C 的距离为1,则二面角C -BM -A 的大小为( )A.30°B.60°C.90°D.120°解析:选C.如图所示,由A ′B =BC =1,∠A ′BC =90°,得A ′C = 2.因为M 为A ′C 的中点,所以MC =AM =22.且CM ⊥BM ,AM ⊥BM ,所以∠CMA 为二面角C -BM -A 的平面角.因为AC =1,MC =AM =22,所以∠CMA =90°.11.如图,已知六棱锥P -ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( )A.PB ⊥ADB.平面P AB ⊥平面PBCC.直线BC ∥平面P AED.直线PD 与平面ABC 所成的角为45°解析:选D.选项A ,B ,C 显然错误.因为P A ⊥平面ABC ,所以∠PDA 是直线PD 与平面ABC 所成的角.因为ABCDEF 是正六边形,所以AD =2AB .因为tan ∠PDA =P A AD =2AB 2AB=1,所以直线PD 与平面ABC 所成的角为45°.故选D.12.已知四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于4+43,则球O 的体积等于( )A.423πB.823πC.1623πD.3223π解析:选B.由题意可知四棱锥S -ABCD 的所有顶点都在同一个球面上,底面ABCD 是正方形且和球心O 在同一平面内,当体积最大时,可以判定该棱锥为正四棱锥,底面在球大圆上,可知底面正方形的对角线长度的一半为球的半径r ,且四棱锥的高h =r ,进而可知此四棱锥的四个侧面均是边长为2r 的正三角形,底面为边长为2r 的正方形,所以该四棱锥的表面积为S =4×34(2r )2+(2r )2=23r 2+2r 2=(23+2)r 2=4+43,因此r 2=2,r =2,所以球O 的体积V =43πr 3=43π×22=82π3,故选B.二、填空题:本题共4小题,每小题5分.13.如果用半径R =23的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是 W.解析:设圆锥筒的底面半径为r ,则2πr =πR =23π,则r =3,所以圆锥筒的高h =R 2-r 2=(23)2-(3)2=3.答案:314.已知a ,b 表示不同的直线,α,β,γ表示不重合的平面. ①若α∩β=a ,b ⊂α,a ⊥b ,则α⊥β;②若a ⊂α,a 垂直于β内任意一条直线,则α⊥β; ③若α⊥β,α∩β=a ,α∩γ=b ,则a ⊥b ; ④若a ⊥α,b ⊥β,a ∥b ,则α∥β. 上述命题中,正确命题的序号是 W.解析:对①可举反例,如图,需b ⊥β才能推出α⊥β;对③可举反例说明,当γ不与α,β的交线垂直时,即可知a ,b 不垂直;根据面面、线面垂直的定义与判定知②④正确.答案:②④15.已知直二面角α-l -β,A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离为 W.解析:如图,作DE ⊥BC 于点E ,由α-l -β为直二面角,AC ⊥l ,得AC ⊥β,进而AC ⊥DE ,又BC ⊥DE ,BC ∩AC =C ,于是DE ⊥平面ABC ,故DE 为D 到平面ABC 的距离.在Rt △BCD 中,利用等面积法得DE =BD ·DC BC =1×23=63. 答案:6316.如图,在棱长均相等的正四棱锥P -ABCD 中,O 为底面正方形的中心,M ,N 分别为侧棱P A ,PB 的中点,有下列结论:①PC ∥平面OMN ; ②平面PCD ∥平面OMN ; ③OM ⊥P A ;④直线PD与直线MN所成角的大小为90°.其中正确结论的序号是W.解析:连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确.同理PD∥ON,所以平面PCD∥平面OMN,结论②正确.由于四棱锥的棱长均相等,所以AB2+BC2=P A2+PC2=AC2,所以PC⊥P A,又PC∥OM,所以OM⊥P A,结论③正确.由于M,N分别为侧棱P A,PB的中点,所以MN∥AB.又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,即为∠PDC.又三角形PDC为等边三角形,所以∠PDC=60°,故④错误.答案:①②③三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)如图,在四棱锥P-ABCD中,底面ABCD是菱形,且PB=PD.(1)求证:BD⊥PC;(2)若平面PBC与平面P AD的交线为l,求证:BC∥l.证明:(1)连接AC,交BD于点O,连接PO.因为四边形ABCD为菱形,所以BD⊥AC.又因为PB=PD,O为BD的中点,所以BD⊥PO.因为PO∩AC=O,所以BD⊥平面P AC,因为PC⊂平面P AC,所以BD⊥PC.(2)因为四边形ABCD为菱形,所以BC∥AD.因为BC⊄平面P AD,AD⊂平面P AD.所以BC∥平面P AD.又因为BC⊂平面PBC,平面PBC与平面P AD的交线为l.所以BC∥l.18.(本小题满分12分)如图,在三棱锥P-ABC中,AB⊥平面P AC,∠APC=90°,E是AB的中点,M是CE的中点,N在PB上,且PB=4PN.(1)求证:平面PCE⊥平面P AB;(2)求证:MN∥平面P AC.证明:(1)因为AB⊥平面P AC,所以AB⊥PC.又∠APC=90°,所以AP⊥PC,又AB∩AP=A,所以PC⊥平面P AB.又PC⊂平面PCE,所以平面PCE⊥平面P AB.(2)取AE的中点Q,连接QN,QM,在△AEC中,因为M是CE的中点,所以QM∥AC.又PB=4PN,AB=4AQ,所以QN∥AP,又QM∩QN=Q,AC∩AP=A,所以平面QMN∥平面P AC.又MN⊂平面QMN,所以MN∥平面P AC.19.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1∥平面A1CD;(2)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积.解:(1)证明:连接AC 1交A1C于点F,连接DF,则F为AC1的中点.又D是AB中点,则BC1∥DF.因为DF ⊂平面A 1CD , BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD . 因为AC =CB ,D 为AB 的中点, 所以CD ⊥AB . 又AA 1∩AB =A , 所以CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2, 即DE ⊥A 1D .所以V 三棱锥C -A 1DE =13×12×6×3×2=1.20.(本小题满分12分)如图,在四棱锥P -ABCD 中,侧面P AD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD =60°,N 是PB 的中点,E 为AD 的中点,过A ,D ,N 的平面交PC 于点M .求证:(1)EN ∥平面PDC ; (2)BC ⊥平面PEB ; (3)平面PBC ⊥平面ADMN .证明:(1)因为AD ∥BC ,BC ⊂平面PBC , AD ⊄平面PBC , 所以AD ∥平面PBC .又平面ADMN ∩平面PBC =MN , 所以AD ∥MN .又因为AD ∥BC , 所以MN ∥BC .又因为N 为PB 的中点, 所以M 为PC 的中点, 所以MN =12BC .因为E 为AD 的中点, DE =12AD =12BC =MN ,所以DE ═∥MN , 所以四边形DENM 为平行四边形, 所以EN ∥DM .又因为EN ⊄平面PDC ,DM ⊂平面PDC , 所以EN ∥平面PDC .(2)因为四边形ABCD 是边长为2的菱形,且∠BAD =60°,E 为AD 的中点, 所以BE ⊥AD .又因为PE ⊥AD ,PE ∩BE =E , 所以AD ⊥平面PEB . 因为AD ∥BC , 所以BC ⊥平面PEB . (3)由(2)知AD ⊥PB .又因为P A =AB ,且N 为PB 的中点, 所以AN ⊥PB . 因为AD ∩AN =A , 所以PB ⊥平面ADMN . 又因为PB ⊂平面PBC , 所以平面PBC ⊥平面ADMN .21.(本小题满分12分)如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =90°,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1BCDE .(1)求证:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值. 解:(1)证明:在题图(1)中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =90°,所以BE ⊥AC ,BC =ED ,即在题图(2)中,BE ⊥A 1O ,BE ⊥OC ,从而BE ⊥平面A 1OC . 又BC ═∥ED ,所以四边形BCDE 是平行四边形, 所以CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,且平面A 1BE ∩平面BCDE =BE ,即A 1O 是四棱锥A 1BCDE 的高.由题图(1),可知A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1BCDE 的体积V =13×S ×A 1O =13×a 2×22a =26a 3.由26a 3=362,得a=6.22.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,M 为棱AC 的中点.AB =BC ,AC =2,AA 1= 2.(1)求证:B 1C ∥平面A 1BM ; (2)求证:AC 1⊥平面A 1BM ;(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时BNBB1的值;如果不存在,请说明理由.解:(1)证明:连接AB1交A1B于O,连接OM.如图所示.在△B1AC中,因为M,O分别为AC,AB1的中点,所以OM∥B1C.又OM⊂平面A1BM,B1C⊄平面A1BM,所以B1C∥平面A1BM.(2)证明:因为侧棱AA1⊥底面ABC,BM⊂平面ABC,所以AA1⊥BM.因为M为棱AC的中点,AB=BC,所以BM⊥AC.又AA1∩AC=A,所以BM⊥平面ACC1A1,所以BM⊥AC1.因为M为棱AC的中点,AC=2,所以AM=1.又AA1=2,所以在Rt△ACC1和Rt△A1AM中,tan∠AC1C=tan∠A1MA=2,所以∠AC1C=∠A1MA,所以∠AC1C+∠C1AC=∠A1MA+∠C1AC=90°,所以A1M⊥AC1.因为BM∩A1M=M,所以AC1⊥平面A1BM.(3)存在点N,且当点N为BB1的中点,即BN BB 1=12时,平面AC 1N ⊥平面AA 1C 1C . 设AC 1的中点为D ,连接DM ,DN .如图所示. 因为D ,M 分别为AC 1,AC 的中点,所以DM ∥CC 1,且DM =12CC 1. 又N 为BB 1的中点,所以DM ∥BN ,且DM =BN ,所以四边形DMBN 是平行四边形, 所以BM ∥DN .因为BM ⊥平面ACC 1A 1, 所以DN ⊥平面ACC 1A 1. 又DN ⊂平面AC 1N ,所以平面AC 1N ⊥平面ACC 1A 1.。
2019_2020学年新教材高中数学第8章立体几何初步单元质量测评新人教A版必修第二册
第八章 单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.轴截面是正三角形的圆锥称为等边圆锥,则等边圆锥的侧面积是底面积的( ) A .4倍 B .3倍 C. 2 倍 D .2倍答案 D解析 设等边圆锥的母线长为l ,底面半径为r ,由已知得l =2r ,所以S 侧S 底=πrl πr 2=lr=2. 2.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为( )A.4π3 B .3πC.3π2D .π答案 C解析 由三视图知,如图,此四面体的外接球即为棱长为1的正方体的外接球,设外接球的半径为R ,则2R =3,R =32.所以球的体积为V =43π×⎝ ⎛⎭⎪⎫323=3π2. 3.如图所示是古希腊数学家阿基米德墓碑上刻着的一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A.32,1B.23,1C.32,32D.23,32 答案 C解析 设球的半径为R ,则圆柱的底面半径为R ,高为2R . ∵V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3,∴V 圆柱V 球=2πR 343πR3=32. ∵S 圆柱表面积=2πR ×2R +2×πR 2=6πR 2,S 球表面积=4πR 2, ∴S 圆柱表面积S 球表面积=6πR 24πR 2=32. 4.已知一个棱长为2的正方体,被一个平面截去一部分后所得几何体的三视图如图所示,则该几何体的体积是( )A.143 B.173 C.203D .8 答案 B解析 由三视图,知该几何体的直观图是如图所示的多面体B 1C 1D 1-BCDFE ,该多面体可补全为棱长为2的正方体,其中E ,F 分别为AB ,AD 的中点,多面体AEF -A 1B 1D 1为棱台,棱台高为2,上、下底面均为等腰直角三角形.则该几何体的体积是2×2×2-13×2×⎝ ⎛⎭⎪⎫12+2+2×12=8-73=173,故选B.5.用斜二测画法画水平放置的△ABC 的直观图,得到如图所示的等腰直角三角形A ′B ′C ′.已知点O ′是斜边B ′C ′的中点,且A ′O ′=1,则△ABC 的边BC 上的高为( )A .1B .2 C. 2 D .2 2 答案 D解析 ∵△ABC 的直观图是等腰直角三角形A ′B ′C ′,∠B ′A ′C ′=90°,A ′O ′=1,∴A ′C ′= 2.根据直观图平行于y 轴的长度变为原来的一半,∴△ABC 的BC 边上的高为AC =2A ′C ′=2 2.故选D.6.E ,F ,G ,H 分别是空间四边形ABCD 四条边AB ,BC ,CD ,DA 的中点,则EG 与FH 的位置关系是( )A .异面B .平行C .相交D .重合 答案 C解析 如图所示,连接BD ,EF ,FG ,GH ,HE ,EG ,HF ,由E ,F ,G ,H 是空间四边形ABCD 的四边AB ,BC ,CD ,DA 的中点,有EH 綊12BD ,FG 綊12BD ,∴EH 綊FG ,∴四边形EFGH 是平行四边形,EG 与FH 是对角线,故选C.7.设直线l ⊂平面α,过平面α外一点A 与l ,α都成30°角的直线有且只有( ) A .1条 B .2条 C .3条 D .4条 答案 B解析如图,和α成30°角的直线一定是以A为顶点的顶角为120°的圆锥的母线所在的直线,当BC与l平行时,直线AC,AB都满足条件.故选B.8.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若m,n不平行,则m与n不可能垂直于同一平面D.若α,β不平行,则在α内不存在与β平行的直线答案 C解析垂直于同一个平面的两个平面可能相交也可能平行,故A错误;平行于同一个平面的两条直线可能平行、相交或异面,故B错误;若两个平面相交,则一个平面内与交线平行的直线一定和另一个平面平行,故D错误;若两条直线垂直于同一个平面,则这两条直线平行,所以若两条直线不平行,则它们不可能垂直于同一个平面,故C正确.9.在直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于( )A.30° B.45°C.60° D.90°答案 C解析本题可借助正方体模型求解,如图,BA1与AC1所成的角即为BA1与BD1所成的角.在△A1BD1中,A1B=A1D1=BD1,所以BA1与BD1所成的角为60°.10.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为( )A.12B.13C.33D.23答案 C解析 如图,取AC 的中点E ,CD 的中点F ,连接EF ,BF ,BE . ∵AC =2,其余各棱长都为1, ∴BF ⊥CD ,AD ⊥CD ,∴EF ⊥CD . ∴∠BFE 是二面角A -CD -B 的平面角. ∵EF =12,BE =22,BF =32,∴EF 2+BE 2=BF 2.∴∠BEF =90°,∴cos ∠BFE =EFBF =33. 11.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )答案 A解析解法一:对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.解法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,故选A.12.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,D,E分别是棱BC,AB的中点,点F 在棱CC1上,AB=BC=CA=CF=2,AA1=3,则下列说法正确的是( )A.设平面ADF与平面BEC1的交线为l,则直线C1E与l相交B.在棱A1C1上存在点N,使得三棱锥N-ADF的体积为3 7C.设点M在BB1上,当BM=1时,平面CAM⊥平面ADFD.在棱A1B1上存在点P,使得C1P⊥AF答案 C解析连接CE交AD于点O,则O为△ABC的重心,连接OF.由已知得OF∥EC1,则EC1∥l,故A错误;若在A1C1上存在点N,则V N-ADF=V D-AFN,当N与C1重合时,V D-AFN取最小值为36,故B错误;当BM=1时,可证得△CBM≌△FCD,则∠BCM+∠CDF=90°,即CM⊥DF.又AD⊥平面CB1,CM⊂平面CB1,∴AD⊥CM.∵DF∩AD=D,∴CM⊥平面ADF.∵CM⊂平面CAM,∴平面CAM⊥平面ADF,故C正确.过C1作C1G∥FA交AA1于点G.若在A1B1上存在点P,使得C1P⊥AF,则C1P⊥C1G.又C1P⊥GA1,C1G∩GA1=G,∴C1P⊥平面A1C1G.∵A1C1⊂平面A1GC1,∴C1P⊥A1C1,矛盾,故D错误.故选C.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.如图,α∩β=CD,α∩γ=EF,β∩γ=AB,AB∥α,则CD与EF的位置关系为________.答案CD∥EF解析因为AB∥α,AB⊂β,α∩β=CD,所以AB∥CD.同理可证AB∥EF,所以CD∥EF.14.已知α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________.答案 ①③④⇒②(或②③④⇒①)解析 ∵α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同的直线,若①m ⊥n ,③n ⊥β,则m ∥β.又④m ⊥α,∴②α⊥β.即①③④⇒②.若②α⊥β,③n ⊥β,则n ∥α,又④m ⊥α,∴①m ⊥n .即②③④⇒①.15.若一个圆台的轴截面是腰长为a 的等腰梯形,下底边长为2a ,对角线长为3a ,则这个圆台的体积为________.答案7324πa 3解析 圆台的轴截面如图,由AD =a ,AB =2a ,BD =3a ,可知∠ADB =90°,∠DAB =60°.分别过点D ,C 作DH ⊥AB ,CG ⊥AB ,则DH =32a ,所以HB =BD 2-DH 2=3a 2-34a 2=32a ,所以DC =HG =a ,所以圆台的体积为V =π3·⎝ ⎛⎭⎪⎫14a 2+12a 2+a 2·32a =7324πa 3. 16.把由折线y =|x |和y =2围成的图形绕x 轴旋转360°,所得旋转体的体积为________. 答案32π3解析 由题意,y =|x |和y =2围成图中阴影部分的图形,旋转体为一个圆柱挖去两个共顶点的圆锥.∵V圆柱=π×22×4=16π,2V圆锥=2×π3×22×2=16π3,∴所求几何体的体积为16π-16π3=32π3.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示是一个圆台形的纸篓(有底无盖),它的母线长为50 cm ,两底面直径分别为40 cm 和30 cm.现有制作这种纸篓的塑料制品50 m 2,问最多可以做这种纸篓多少个?解 根据题意可知,纸篓底面圆的半径r ′=15 cm ,上口的半径r =20 cm ,母线长l =50 cm ,则纸篓的表面积S =πr ′2+(2πr ′+2πr )l 2=π(r ′2+r ′l +rl )=π(152+15×50+20×50)=1975π(cm 2).因为50 m 2=500000 cm 2,故最多可以制作这种纸篓的个数n =500000S≈80.18.(本小题满分12分)已知正三棱锥(底面为正三角形,顶点在底面内的正投影为底面的中心)S -ABC ,一个正三棱柱的一个底面的三个顶点在正三棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为15 cm ,底面边长为12 cm ,内接正三棱柱的侧面积为120 cm 2.(1)求三棱柱的高;(2)求棱柱上底面截棱锥所得的小棱锥与原棱锥的侧面积之比. 解 (1)设正三棱柱的高为h cm ,底面边长为x cm ,如图,则15-h 15=x12, ∴x =45(15-h ).①又S 三棱柱侧=3x ·h =120, ∴xh =40.②解①②得⎩⎪⎨⎪⎧x =4,h =10或⎩⎪⎨⎪⎧x =8,h =5.故正三棱柱的高为10 cm 或5 cm. (2)由棱锥的性质,得S 三棱锥S -A 1B 1C 1侧S 三棱锥S -ABC 侧=⎝ ⎛⎭⎪⎫15-10152=19或S 三棱锥S -A 1B 1C 1侧S 三棱锥S -ABC 侧=⎝ ⎛⎭⎪⎫15-5152=49.19.(本小题满分12分)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M 在AD 1上移动,点N 在BD 上移动,D 1M =DN =a (0<a <2),连接MN .(1)证明:对任意a ∈(0,2),总有MN ∥平面DCC 1D 1;(2)当a 为何值时,MN 的长度最小?解 (1)证明:如图,作MP ∥AD ,交DD 1于点P ,作NQ ∥BC ,交DC 于点Q ,连接PQ .由题意得MP ∥NQ ,且MP =NQ ,则四边形MNQP 为平行四边形.∴MN ∥PQ . 又PQ ⊂平面DCC 1D 1,MN ⊄平面DCC 1D 1,∴MN ∥平面DCC 1D 1.(2)由(1)知四边形MNQP 为平行四边形,∴MN =PQ .∵DD 1=AD =DC =BC =1,∴AD 1=BD = 2.∵D 1M =DN =a ,∴D 1P 1=a 2,DQ 1=a 2. 即D 1P =DQ =a2,∴MN =PQ =(1-D 1P )2+DQ 2 =⎝⎛⎭⎪⎫1-a 22+⎝ ⎛⎭⎪⎫a 22 =⎝⎛⎭⎪⎫a -222+12(0<a <2). 故当a =22时,MN 的长度有最小值,为22. 即当M ,N 分别移动到AD 1,BD 的中点时,MN 的长度最小,此时MN 的长度为22. 20.(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 上的射影为BC 的中点,D 为B 1C 1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成角的正弦值.解(1)证明:如图,设E为BC的中点,连接A1E,AE.由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.所以AE⊥平面A1BC.连接DE,由D,E分别为B1C1,BC的中点,得DE∥BB1,且DE=BB1,从而DE∥AA1,且DE=AA1,所以四边形AA1DE是平行四边形,所以A1D∥AE. 又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,所以BC⊥平面AA1DE.所以BC⊥A1F,所以平面AA1DE⊥BB1C1C,所以A1F⊥平面BB1C1C.所以∠A1BF为直线A1B与平面BB1C1C所成的角.由AB=AC=2,∠BAC=90°,得EA=EB= 2.又A1E⊥平面ABC,得A1A=A1B=4,A1E=14.由DE=BB1=4,DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin∠A1BF=78.21.(本小题满分12分)如图,△BCD内接于直角梯形A1A2A3D,若A1D=5,A1A2=4,沿△BCD三边分别将△A1BD,△A2BC,△A3CD翻折上去,恰使A1,A2,A3重合,重合后记为A.(1)求证:AB⊥CD;(2)求平面BCD与平面ACD所成二面角的正切值.解在题图中,由A1,A2,A3三点可重合知A1B=A2B=2,A1D=A3D=5,A2C=A3C.作DF⊥A2A3于点F,则FA3=3⇒A3C=A2C=4.(1)证明:折叠后的图形如图所示,∵AB⊥AD,AB⊥AC,AD∩AC=A,∴AB⊥平面ACD,∴AB⊥CD.(2)作AE⊥CD于点E,连接BE.∵AB⊥CD,AB∩AE=A,∴CD⊥平面ABE,∴CD⊥BE,则∠AEB 为平面BCD 与平面ACD 所成二面角的平面角. 在△ACD 中,AE =DF ·AC CD =161717, ∵AB ⊥平面ACD ,∴AB ⊥AE ,∴tan ∠AEB =AB AE =178. 22.(本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =2AB ,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)点D 在边A 1C 1上且C 1D =13C 1A 1,证明在线段BB 1上存在点E ,使DE ∥平面ABC 1,并求此时BE BB 1的值. 解 (1)证明:∵三棱柱ABC -A 1B 1C 1是直三棱柱, ∴四边形ACC 1A 1是矩形.∵AA 1=AC ,∴AC 1⊥A 1C .又BC 1⊥A 1C ,AC 1∩BC 1=C 1,∴A 1C ⊥平面ABC 1.∵A 1C ⊂平面A 1ACC 1,∴平面ABC 1⊥平面A 1ACC 1.(2)当BE BB 1=13时,DE ∥平面ABC 1, 如图,在A 1A 上取点F ,使AF AA 1=13, 连接EF ,FD .∵C 1D C 1A 1=AF AA 1=BE BB 1=13, ∴EF ∥AB ,DF ∥AC 1.∵AB ∩AC 1=A ,EF ∩DF =F ,∴平面EFD∥平面ABC1,∵DE⊂平面DEF,∴DE∥平面ABC1.。
高中数学第八章立体几何初步基本立体图形(精练)(必修第二册)(教师版含解析)
8.1 基本立体图形(精练)【题组一多面体】1.(2020·广西崇左市·崇左高中)下列几何体中是棱锥的有( )A.0个B.1个C.2个D.3个【答案】C【解析】由棱锥的定义可得,只有几何体⑤、⑥为棱锥.故选:C.2.(2020·广西桂林市·桂林十八中)下列命题正确的是( )A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可以都是棱柱【答案】D【解析】对于选项,A棱柱的底面也可以是三角形,五边形等,不一定是平行四边形,所以该选项错误;对于选项B,棱锥的底面不一定是三角形,也可以是四边形,五边形等,所以该选项错误;对于选项C,棱锥被平面分成的两部分可能都是棱锥,所以该选项错误;对于选项D,棱柱被平面分成的两部分可以都是棱柱,所以该选项正确.故选:D3.(2020·全国高三专题练习)一个棱锥所有的棱长都相等,则该棱锥一定不是( )A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥【答案】D【解析】因为正六变形的中心到底面顶点的距离等于边长,所以正六棱锥的侧棱必大于底面棱长,故选:D.4.(2021·江苏高一课时练习)棱台不具备的特点是( )A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点【答案】C【解析】根据棱台的定义,由平行于棱锥底面的平面截棱锥,截面与底面之间的部分叫棱台.棱台的两底面是相似多边形,A正确;侧面的上下底边平行,侧面都是梯形,B正确;侧棱延长后交于一点,D正确;由于棱锥的侧棱不一定相等,所以棱台的侧棱也不一定相等,C不一定成立,故选:C.5.(2021·河南焦作市)某几何体有6个顶点,则该几何体不可能是( )A.五棱锥B.三棱柱C.三棱台D.四棱台【答案】D【解析】四棱台有8个顶点,不符合题意.,其他都是6个顶点.故选:D.6.(2020·全国高三专题练习(文))下列说法中正确的是( )A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是梯形的几何体叫棱台D.有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥【答案】D【解析】因为有两个面平行,其余各面是相邻的公共边都相互平行的平行四边形的几何体叫棱柱,所以A、B错误;而一个平行于底面的平面截棱锥,底面与截面之间的部分叫棱台,所以棱台各侧棱的延长线交于一点,所以C错误;因为有一个面是多边形,其余各面都是有公共顶点的三角形的几何体叫棱锥,所以D正确.故选:D.7.(2020·朝阳县柳城高级中学)下列说法正确的是( )A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直D.棱台的侧棱延长后交于一点,侧面是等腰梯形【答案】C【解析】A. 棱柱的侧棱都相等,侧面是平行四边形,但不一定全等,故错误;B.用一个平面去截棱锥,当棱锥底面与截面平行时,才是棱台,故错误;C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直,如正方体共顶点的三个相邻平面,故正确;D.棱台的侧棱延长后交于一点,但侧面不一定是等腰梯形,故错误;故选:C8.(2021·江苏高一课时练习)下列说法正确的是________(填序号).①底面是正多边形的棱锥为正棱锥;②各侧棱都相等的棱锥为正棱锥;③各侧面都是等腰三角形的棱锥为正棱锥;④各侧面都是全等的等腰三角形的棱锥是正棱锥;⑤底面是正多边形且各侧面全等的棱锥为正棱锥.【答案】⑤【解析】对于①,如果棱锥的顶点在底面上的射影不是正多边形的中心,则此棱锥不是正棱锥,故①错误.对于②,如图(1),棱锥的顶点是圆锥的顶点,而底面多边形是圆锥底面圆的内接非正多边形,此时棱锥满足各侧棱都相等,但不是正棱锥,故②错误.对于③④,如图(2),侧面都是等腰三角形,且它们全等,但该三棱锥不是正棱锥,故③④错误.对于⑤,因为底面是正多边形且各侧面全等的棱锥为正棱锥,故顶点底面上的射影O为正多边形的中心,此时棱锥为正棱锥,故⑤正确.故答案为:⑤9.(2020·全国高三专题练习)给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.【答案】②③④【解析】①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体1111ABCD A B C D-中的三棱锥1C ABC-,四个面都是直角三角形.故答案为:②③④10.(2020·全国高三专题练习)下列关于棱锥、棱台的说法中,正确说法的序号是________ ①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④棱台的各侧棱延长后必交于一点;⑤棱锥被平面截成的两部分不可能都是棱锥.【答案】②③④【解析】①错,若平面不与棱锥底面平行,用这个平面去截棱锥,则棱锥底面和截面之间的部分不是棱台;②对,棱台的侧面一定是梯形,而不是平行四边形;③对,由棱锥的定义知棱锥的侧面只能是三角形;④对,棱台是由平行于棱锥底面的平面截得的,故棱台的各侧棱延长后必交于一点;⑤错,如图所示四棱锥被平面PBD截成的两部分都是棱锥.故答案为:②③④11.(2021·江苏高一课时练习)如图,下列几何体中,_______是棱柱,_______是棱锥,_______是棱台(仅填相应序号).【答案】①③④⑥⑤【解析】结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.故答案为:①③④;⑥;⑤.【题组二旋转体】1.(2020·浙江)以下空间几何体是旋转体的是( )A.圆台B.棱台C.正方体D.三棱锥【答案】A【解析】由封闭的旋转面围成的几何体叫作旋转体可知,只有A项满足题意故选:A2.(2020·东台创新高级中学高一月考)给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是( )A.①③B.②④C.①④D.②③【答案】B【解析】圆柱的母线与它的轴平行,故①错误;圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形,故②正确;在圆台的上、下两底面圆周上各取一点,则这两点的连线不一定是圆台的母线,故③错误;圆柱的任意两条母线所在的直线是互相平行的,故④正确;故选:B3.(2020·全国高一课时练习)如图所示,观察下面四个几何体,其中判断正确的是( )A.①是圆台B.②是圆台C.③是圆锥D.④是圆台【答案】C【解析】图①不是由圆锥截得的,所以①不是圆台;图②上下两个面不平行,所以②不是圆台;图④不是由圆锥截得的,所以④不是圆台;很明显③是圆锥,故选:C.4.(2032·上海市)有下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点连线的长度是母线的长度;②圆锥顶点与底面圆周上任意一点连线的长度是母线的长度;③圆柱的任意两条母线所在直线互相平行;④过球上任意两点有且只有一个大圆;其中正确命题的序号是_____【答案】②③【解析】①若上下顶面两点连线不垂直于底面,则两点连线长度不是母线的长度,①错误;②由圆锥的特点可知,圆锥顶点到底面圆周上任意一点长度相等,均为母线长度,②正确;③圆柱的母线均垂直于底面,所以任意两条母线所在直线互相平行,③正确;④若两点连线为球的直径,则过两点有两个大圆,④错误.故答案为②③【题组三组合体】1.(2020·全国高一课时练习)说出图中物体的主要结构特征.【答案】详见解析【解析】(1)一个圆柱与一个圆锥的组合体,上部分为圆锥,下部分为圆柱;(2)一个六棱柱里面挖去了一个圆柱.2.(2020·全国高一课时练习)如图,以直角梯形ABCD的下底AB所在直线为轴,其余三边旋转一周形成的面围成一个几何体,说出这个几何体的结构特征.【答案】详见解析【解析】几何体如图(2)所示,其中DE AB,垂足为E.这个几何体是由圆柱BE和圆锥AE组合而成的.其中圆柱BE的底面分别是B和E,侧面是由梯形的上底CD绕轴AB旋转形成的;圆锥AE的底面是E,侧面是由梯形的边AD绕轴AB旋转而成的. 3.(2020·全国高一课时练习)如图,说出图中两个几何体的结构特征.【答案】(1)由圆锥和圆台组合而成的简单组合体.(2)由四梭柱和四棱锥组合而成的简单组合体.【解析】几何体(1)是圆台上拼接了一个与圆台上底同底的圆锥;几何体(2)是长方体上拼接了一个同底的四棱锥;4.(2020·全国高一课时练习)试指出图中组成各几何体的基本元素.【答案】(1)几何体由6个顶点、12条棱和8个面组成(2)几何体由6个顶点、10条棱和6个面组成【解析】(1) 是由两个四棱锥组成的,有6个顶点、12条棱和8个面组成.(2)是由两个锥体组合而成,有6个顶点、10条棱和6个面组成.【题组四截面问题】1.(2020·江西吉安市·高三其他模拟(文))如图是一个正方体的表面展开图,则图中“0”在正方体中所在的面的对面上的是( )A.2 B.1 C.高D.考【答案】C【解析】将展开图还原成正方体可知,“0”在正方体中所在的面的对面上的是“高”,故选:C.2.(2021·江苏高一课时练习)如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是( )A.三棱锥B.四棱锥C.三棱柱D.组合体【答案】B【解析】根据棱锥的结构特征可判断,余下部分是四棱锥A′-BCC′B′.故选:B.3.(2020·唐山市第十一中学高二期中)用一个平面去截一个几何体,得到的截面是三角形面,这个几何体不可能是( )A.棱锥B.圆锥C.圆柱D.正方体【答案】C【解析】圆柱的截面的图形只有矩形或圆形,如果截面是三角形,那么这个几何体不可能是圆柱.故选:C4.(2021·江苏高一课时练习)如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )A.①②B.①③C.①④D.①⑤【答案】D【解析】一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,当截面经过圆柱上下底面的圆心时,圆锥的截面为三角形除去一条边,所以①正确;当截面不经过圆柱上下底面的圆心时,圆锥的截面为抛物线的一部分,所以⑤正确;故选:D。
2020-2021学年高一数学必修第二册第八章《立体几何初步》测试卷及答案解析
2020-2021学年高一数学必修第二册第八章《立体几何初步》测试卷一.单项选择题(共8小题,每小题5分,共40分)1.如图,在三棱锥P﹣ABC中,P A⊥AB,P A⊥AC,D、E、F分别是所在棱的中点.则下列说法错误的是()A.面DEF∥面PBC B.面P AB⊥面ABCC.P A⊥BC D.DE∥PC【解答】解:∵D、E分别是P A,AB的中点,∴DE∥PB,又DE⊄平面PBC,PB⊂平面PBC,∴DE∥平面PBC,同理可得DF∥平面PBC,又DE∩DF=D,∴平面DEF∥平面PBC,故A正确;∵P A⊥AB,P A⊥AC,AB∩AC=A,∴P A∩平面ABC,∴P A⊥BC,故C正确,又P A⊂平面P AB,∴平面P AB⊥平面ABC,故B正确;假设DE∥PC,又DE∥PB,∴PB∥PC,与PB∩PC=P矛盾,故DE与PC不平行,故D错误,故选:D.2.体积为a3的正方体外接球的表面积为()A.πa2B.2πa2C.3πa2D.4πa2【解答】解:根据正方体的体积为a3,可得正方体的边长为a,正方体的体对角线的长度,就是它的外接球的直径,即√3a=2R,即R=√3 2a球的表面积为4πR2=3πa2.故选:C.3.如图所示的组合体,其结构特征是()A.由两个圆锥组合成的B.由两个圆柱组合成的C.由一个棱锥和一个棱柱组合成的D.由一个圆锥和一个圆柱组合成的【解答】解:由图形知,该几何体由一个圆锥和一个圆柱组成的简单组合体.故选:D.4.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为12cm,体积为72πcm3的细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此锥形沙堆的高度为()A.3cm B.6cm C.8cm D.9cm【解答】解:细沙漏入下部后,圆锥形沙堆的底面半径为6,设高为h,则沙堆的体积为V=13Sℎ=13π×62×ℎ=72π,解得h=6.故选:B.5.已知平面α∥平面β,m⊂α,n⊂β,那么下列结论正确的是()A .m ,n 是平行直线B .m ,n 是异面直线C .m ,n 是共面直线D .m ,n 是不相交直线【解答】解:若平面α∥平面β,m ⊂α,n ⊂β,则m 与n 的位置关系可以是平行、异面,但一定不相交. 故选:D .6.一球的体积为288π,则其表面积为( ) A .72πB .64πC .144πD .108π【解答】解:设球的半径为R ,则V 球=43πR 3=288π,解得R =6, 所以球的表面积为S =4πR 2=4π•62=144π, 故选:C .7.已知圆锥的底面半径为1,母线长为3,则该圆锥的侧面积为( ) A .3πB .3π2C .2πD .π【解答】解:圆锥的底面半径为1,母线长为3, 则该圆锥的侧面积为 S 侧面积=πrl =π•1•3=3π. 故选:A .8.我国古代数学名著《九章算术》中有如下问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?术曰:以七周乘三尺为股,木长为勾,为之求弦.弦者,葛之长”.意思是:今有2丈长木,其横截面周长3尺,葛藤从木底端绕木7周至顶端,问葛藤有多长?(注:1丈=10尺)( ) A .21尺B .23尺C .27尺D .29尺【解答】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),因此葛藤长 √202+212=29 (尺),故选:D .二.多项选择题(共4小题,每小题5分,共20分)9.三个平面α,β,γ两两均相交,则这三个平面的交线总共可能有( )条. A .1B .2C .3D .4【解答】解:当三个平面交于一条直线时,交线的条数是1, 当三个平面两两相交,交线不重合时,有3条交线, 综上:可知空间中三个平面两两相交交线的条数是1或3, 故选:AC .10.两个不同的平面α、β,它们的交点个数可以为( ) A .0个B .1个C .2个D .无数个【解答】解;根据平面的基本性质中的公理2:如果两个平面有一个公共点, 那么它们还有其他的公共点,这些公共点的集合是经过这个公共点的一条直线. 则两个平面有公共点,则公共点的个数是无数个; 若两平面平行,故它们公共点的个数是0个. 故选:AD .11.已知一个等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为( ) A .√2πB .(1+√2)πC .2√2πD .(2+√2)π【解答】解:若绕直角边旋转,则得到的几何体为底面半径为1,高为1的圆锥,母线长为√2,故圆锥的表面积为π×12+π×1×√2=(1+√2)π,若绕斜边旋转,则得到的几何体为同底的两个圆锥的组合体,每个圆锥的底面半径和高都是√22,母线长为1, 故组合体的表面积为π×√22×1×2=√2π,故选:AB .12.以下命题中假命题的序号是( )A .若棱柱被一平面所截,则分成的两部分不一定是棱柱B .有两个面平行,其余各面都是梯形的几何体叫棱台C .用一个平面去截圆锥,底面和截面之间的部分组成的几何体叫圆台D.有两个面平行,其余各面都是平行四边形的几何体叫棱柱【解答】解:在A中,若斜棱柱被一垂直于底面的平面所截,则分成的两部分不一定是棱柱,故A正确;在B中,有两个面平行,其余各面都是梯形,且侧棱的延长线交于一点的几何体叫棱台,故B错误;在C中,用一个平面去截圆锥,底面和截面之间的部分组成的几何体叫圆台,不正确,当平面与底面平行时,底面和截面之间的部分组成的几何体叫圆台.故C错误;在D中,棱柱的概念知:有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D错误.故选:BCD.三.填空题(共4小题,每小题5分,共20分)13.已知a∥α,P∈α,那么过点P且平行于直线a的直线C.A.只有1条,不在平面α内B.有无数条,不一定在平面α内C.只有1条,且在平面α内D.有无数条,一定在平面α内【解答】解:过a与P作一平面β,平面α与平面β的交线为b,因为直线a∥平面α,所以a∥b,在同一个平面内,过点作已知直线的平行线有且只有一条,所以选项C正确.故选:C.14.三条直线相交于一点,则它们最多能确定3个平面.【解答】解:当三条直线共面时,显然这三条直线只确定1个平面,当三条直线不共面时,以三棱锥的三条侧棱为例,任意两条侧棱都确定一个侧面,而三棱锥有三个侧面,故相交于一点的三条直线最多可确定3个平面,故答案为:3.15.正方体外接球的表面积为16π,则该正方体的表面积为32.【解答】解:设正方体的棱长为a,则正方体的体对角线的长就是外接球的直径,∴ 外接球的半径为:√32a , ∵正方体外接球表面积是16 π, ∴4π(√32a)2=16π, 解得 a =4√33,所以正方体的表面积为6a 2=32, 故答案为:32.16.已知正六棱锥的底面边长为2,高为1,则此正六棱锥的侧面积为 12 . 【解答】解:设正六棱锥S ﹣ABCDEF 的底面中心为O , 则△OAB 为边长为2的等边三角形,设M 为AB 的中点, 则SM ⊥AB ,且OM =√3, ∴SM =√SO 2+OM 2=2, ∴正六棱锥的侧面积为S =12×2×2×6=12. 故答案为:12.四.解答题(共6小题,第17题10分,18-22每小题12分,共70分) 17.如图,正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别为C 1D 1,B 1C 1的中点. (1)求证:E ,F ,B ,D 四点共面;(2)若AC ∩BD =P ,A 1C 1∩EF =Q ,AC 1与平面EFBD 交于点R ,求证:P ,Q ,R 三点共线.【解答】证明:(1)连接B1D1,在正方体ABCD﹣A1B1C1D1中,∵E,F分别为C1D1,B1C1的中点,∴EF是△B1C1D1的中位线,∴EF∥B1D1,又因为B1D1∥BD,∴EF∥BD∴四边形BDEF为梯形,即B,D,E,F四点共面.(2)在正方体ABCD﹣A1B1C1D1中,AC∩BD=P,A1C1∩EF=Q,∴PQ是平面AA1C1C与平面BDEF的交线,又因为AC1交平面BDEF于点R,∴R是平面AA1C1C与平面BDEF的一个公共点.因为两平面相交的所有公共点都在这两个平面的交线上,∴P,Q,R三点共线.18.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,F为对角线AC与BD的交点,E为棱PD的中点.(Ⅰ)证明:EF∥平面PBC;(Ⅱ)证明:AC⊥PB.【解答】证明:(I)∵四边形ABCD是正方形,F为对角线AC与BD的交点,∴F是BD的中点,又E是PD的中点,∴EF∥PB,又EF⊄平面PBC,PB⊂平面PBC,∴EF∥平面PBC.(II)∵四边形ABCD是正方形,∴AC⊥BD,∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD,又BD⊂平面PBD,PD⊂平面PBD,BD∩PD=D,∴AC⊥平面PBD,又PB⊂平面PBD,∴AC⊥PB.19.如图所示,在直三棱柱ABC﹣A1B1C1中,侧面AA1C1C和侧面AA1B1B都是正方形且互相垂直,M为AA1的中点,N为BC1的中点.求证:(1)MN∥平面A1B1C1;(2)平面MBC1⊥平面BB1C1C.【解答】证明:由题意知AA1,AB,AC两两垂直,以A为坐标原点,分别以AA1,AB,AC所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1), (1)由题意知AA 1⊥A 1B 1,AA 1⊥A 1C 1, 又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AA 1⊥平面A 1B 1C 1,因为AA 1→=(2,0,0),MN →=(0,1,1), 所以MN →⋅AA 1→=0,即MN →⊥AA 1→. 又MN ⊄平面A 1B 1C 1, 故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为n 1→=(x 1,y 1,z 1),n 2→=(x 2,y 2,z 2),因为MB →=(﹣1,2,0),MC 1→=(1,0,2),则{n 1→⋅MB →=−x 1+2y 1=0n 1→⋅MC 1→=x 1+2z 1=0, 所以令x 1=2,则平面MBC 1的一个法向量为n 1→=(2,1,−1), 同理可得平面BB 1C 1C 的一个法向量为n 2→=(0,1,1), 因为n 1→⋅n 2→=2×0+1×1+(−1)×1=0, 所以n 1→⊥n 2→,所以平面MBC 1⊥平面BB 1C 1C .20.如图,在三棱锥A ﹣BCD 中,E 为CD 的中点,O 为BD 上一点,且BC ∥平面AOE . (1)求证:O 是BD 的中点;(2)若AB =AD ,BC ⊥BD ,求证:平面ABD ⊥平面AOE .【解答】证明:(1)∵BC∥平面AOE,BC在平面BCD内,平面BCD∩平面AOE=OE,∴BC∥OE,∵E为CD的中点,∴O为BD的中点;(2)∵OE∥BC,BC⊥BD,∴OE⊥BD,∵AB=AD,O为BD的中点,∴OA⊥BD,∵OE∩OA=O,且都在平面AOE内,∴BD⊥平面AOE,∵BD在平面ABD内,∴平面ABD⊥平面AOE.21.将正方体ABCD﹣A1B1C1D1沿三角形A1BC1所在平面削去一角可得到如图所示的几何体.(1)连结BD,BD1,证明:平面BDD1⊥平面A1BC1;(2)已知P,Q,R分别是正方形ABCD、CDD1C1、ADD1A1的中心(即对角线交点),证明:平面PQR∥平面A1BC1.【解答】证明:(1)连接AC,∵正方体ABCD﹣A1B1C1D1,∴AA1∥CC1,∴A,A1,C,C1共面,∵正方体ABCD﹣A1B1C1D1,∴DD1⊥平面A1C1D1,∵A1C1在平面A1C1D1内,∴DD1⊥A1C1,∵正方体ABCD﹣A1B1C1D1,∴四边形ABCD为正方形,∴AC⊥BD,∵正方体ABCD﹣A1B1C1D1,∴AA1⊥平面ABCD,∵BD在平面A1C1D1内,∴AA1⊥BD,∵AC∩AA1=A且都在平面AA1C1C捏,∴BD⊥平面AA1C1C,∵A1C1在平面AA1C1C内,∴BD⊥A1C1,∵BD∩DD1=D,且都在平面BDD1内,∴A1C1⊥平面BDD1,∵A1C1在平面A1BC1内,∴平面BDD1⊥平面A1BC1;(2)连接A1D,BD,C1D,∵P,Q,R分别是正方形ABCD,CDD1C1,ADD1A1的中心,∴P,Q,R分别是BD,C1D,A1D的中点,∴PQ∥BC1,∵BC1在平面A1BC1内,PQ不在平面A1BC1内,∴PQ∥平面A1BC1,同理可得PR∥平面A1BC1,又PQ∩PR=P且都在平面PQR内,∴平面PQR∥平面A1BC1.22.如图,在平行六面体ABCD﹣A1B1C1D1中,底面ABCD为菱形,AC1和BD1相交于点O,E为CC1的中点.(Ⅰ)求证:OE∥平面ABCD;(Ⅱ)若平面BDD1B1⊥平面ABCD,求证:D1E=BE.【解答】解:(Ⅰ)如图,连接AC.因为AB∥C1D1,AB=C1D1,所以AC1,BD1相互平分,所以O为BD1和AC1的中点.又因为E为CC1的中点,所以OE为△ACC1的中位线,所以OE∥AC.又因为OE⊄平面ABCD,AC⊂平面ABCD,所以OE∥平面ABCD.(Ⅱ)因为四边形ABCD为菱形,所以AC⊥BD.因为平面BDD1B1⊥平面ABCD,平面BDD1B1∩平面ABCD=BD,AC⊂平面ABCD,所以AC⊥平面BDD1B1.因为BD1⊂平面BDD1B1,所以AC⊥BD1.又因OE∥AC,所以OE⊥BD1.因为OB=OD1,所以D1E=BE.。
2019-2020学年新教材人教A版必修第二册 第8章 立体几何初步 单元测试
章末综合测评(三)立体几何初步(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是()A.球体B.圆柱C.圆台D.两个共底面的圆锥组成的组合体D[以等腰三角形底边所在直线为旋转轴,所得几何体是两个共底面圆锥.] 2.下列推理错误的是()A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈αC[若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.]3.下面给出了四个条件:①空间三个点;②一条直线和一个点;③和直线a都相交的两条直线;④两两相交的三条直线.其中,能确定一个平面的条件有()A.3个B.2个C.1个D.0个D[①当空间三点共线时不能确定一个平面;②点在直线上时不能确定一个平面;③两直线若不平行也不相交时不能确定一个平面;④三条直线交于一点且不共面时不能确定一个平面. 故以上4个条件都不能确定一个平面.] 4.在长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°D[由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.]5.已知a,b,c是直线,则下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等.其中真命题的个数为()A.0 B.3 C.2 D.1D[异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确.]6.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为()A.24 cm2B.36 cm2C.72 cm2D.84 cm2C[棱柱的侧面积S侧=3×6×4=72(cm2).]7.在正方体ABCD-A1B1C1D1中,动点E在棱BB1上,动点F在线段A1C1上,O为底面ABCD的中心,若BE=x,A1F=y,则四面体O-AEF的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关B[因为V O-AEF=V E-OAF,考察△AOF的面积和点E到平面AOF的距离的值,因为BB1∥平面ACC1A1,所以点E到平面AOF的距离为定值,又AO∥A1C1,所以OA 为定值,点F 到直线AO 的距离也为定值,即△AOF 的面积是定值,所以四面体O -AEF 的体积与x ,y 都无关,故选B.]8.如图,点S 在平面ABC 外,SB ⊥AC ,SB =AC =2,E ,F 分别是SC 和AB 的中点, 则EF 的长是( )A .1 B. 2 C.22 D.12B [取CB 的中点D ,连接ED ,DF ,则∠EDF (或其补角)为异面直线SB 与AC 所成的角,即∠EDF =90°.在△EDF 中,ED =12SB =1,DF =12AC =1,所以EF =ED 2+DF 2= 2.]9.在四面体ABCD 中,已知棱AC 的长为2,其余各棱长都为1,则二面角A -CD -B 的余弦值为( )A.12B.13C.33D.23C [取AC 的中点E ,CD 的中点F ,连接BE ,EF ,BF ,则EF =12,BE =22,BF =32,因为EF 2+BE 2=BF 2,所以△BEF 为直角三角形,cos θ=EF BF =33.]10.如图,在多面体ACBDE 中,BD ∥AE ,且BD =2,AE =1,F 在CD 上,要使AC ∥平面EFB ,则DF FC 的值为( )A .3B .2C .1 D.12B [连接AD 交BE 于点O ,连接OF , 因为AC ∥平面EFB ,平面ACD ∩平面EFB =OF ,所以AC ∥OF . 所以OD OA =DF FC . 又因为BD ∥AE ,所以△EOA ∽△BOD ,所以OD OA =DB EA =2. 故DF FC =2.]11.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π6B [如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334,VABC -A 1B 1C 1=S ×PO =94,∴PO = 3. 又AO =33×3=1,∴tan ∠P AO =PO AO =3,∴∠P AO =π3.]12.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256πC [如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O -ABC的体积最大,设球O 的半径为R ,此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π,故选C.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.底面直径和高都是4 cm 的圆柱的侧面面积为 cm 2.16π [圆柱的底面半径为r =12×4=2,故S 侧=2π×2×4=16π.]14.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶3,则对角线AC 与平面DEF 的位置关系是 .平行 [因为AE ∶EB =CF ∶FB =1∶3,所以EF ∥AC . 又因为AC ⊄平面DEF ,EF ⊂平面DEF ,所以AC ∥平面DEF .]15.如图, 在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=.1∶24 [因为D ,E 分别是AB ,AC 的中点,所以S △ADE ∶S △ABC =1∶4. 又F 是AA 1的中点,所以A 1到底面的距离H 为F 到底面距离h 的2倍,即三棱柱A 1B 1C 1-ABC的高是三棱锥F -ADE 高的2倍, 所以V 1∶V 2=13S △ADE ·h S △ABC ·H=124=1∶24.] 16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为 .36π [如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC ,知OA ⊥平面SCB .设球O 的半径为r ,则OA =OB =r ,SC =2r ,∴三棱锥S -ABC 的体积V =13×⎝ ⎛⎭⎪⎫12SC ·OB ·OA =r 33, 即r 33=9,∴r =3,∴S 球表=4πr 2=36π.]三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长为10 cm ,求圆锥的母线长 .[解] 如图,设圆锥的母线长为l ,圆台上、下底面的半径分别为r 、R .因为l -10l =r R ,所以l -10l =14,所以l =403 cm.即圆锥的母线长为403cm.18.(本小题满分12分)如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC =9,BC=12,AB=15,AA1=12,点D是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.[证明](1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于点O,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)如图,已知三棱锥P-ABC,P A⊥平面ABC,∠ACB =90°,∠BAC=60°,P A=AC,M为PB的中点.(1)求证:PC⊥BC;(2)求二面角M-AC-B的大小.[解](1)证明:由P A⊥平面ABC,所以P A⊥BC,又因为∠ACB=90°,即BC⊥AC,P A∩AC=A,所以BC⊥平面P AC,所以PC⊥BC.(2)取AB中点O,连接MO,过O作HO⊥AC于H,连接MH,因为M是BP的中点,所以MO∥P A,又因为P A⊥平面ABC,所以MO⊥平面ABC,所以∠MHO为二面角M-AC-B的平面角,设AC=2,则BC=23,MO=1,OH=3,在Rt△MHO中,tan∠MHO=MOHO=33,所以二面角M-AC-B的大小为30°.20.(本小题满分12分)已知一个圆锥的底面半径为R,高为H, 在其中有一个高为x的内接圆柱.(1)求圆柱的侧面积;(2)x为何值时,圆柱的侧面积最大?[解] (1)设圆柱的底面半径为r, 则它的侧面积为S =2πrx, r R =H -x H ,解得r=R -R H x ,所以S 圆柱侧=2πRx -2πR H x 2.(2)由(1)知S 圆柱侧=2πRx -2πR H x 2,在此表达式中, S 圆柱侧为x 的二次函数,因此,当x =H 2时, 圆柱的侧面积最大.21.(本小题满分12分)如图,在四棱锥P -ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =4,PD =2.(1)求异面直线AP 与BC 所成角的余弦值;(2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.[解] (1)如图,由已知AD ∥BC ,故∠DAP 或其补角即异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得AP =AD 2+PD 2=5,所以cos ∠DAP =AD AP =55.所以异面直线AP 与BC 所成角的余弦值为55.(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.(3)过点D作AB的平行线交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF与平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC-BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得DF=CD2+CF2=25,在Rt△DPF中,可得sin∠DFP=PDDF=55.所以直线AB与平面PBC所成角的正弦值为5 5.22.(本小题满分12分)如图①,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图②.①②(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC.而A1F⊂平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE⊂平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C⊂平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(中点),使得A1C⊥平面DEQ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年必修第一册第一章双基训练金卷集合与常用逻辑用语(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,集合,,则( )A .B .C .D .2.命题“,都有”的否定是( ) A .,使得 B .,使得 C .,都有D .,都有3.已知集合,,若,则实数的取值范围是( ) A . B . C .D .4.“”是“”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知集合,若,则实数的取值范围是( ) A . B . C .D .6.设,,若,求实数组成的集合的子集个数有( ) A .2 B .3 C .4D .87.已知,,若集合,则的值为( ) A .B .C .D .8.已知集合,且若下列三个关系:①;②;③,有且只有一个正确,则( )A .12B .21C .102D .2019.已知集合,.若, 则实数的取值范围为( ) A .B .C .D .10.集合中的元素都是正整数,且若,则,则所有满足条件的集合共有( ) A .6个B .7个C .8个D .9个11.已知集合,集合, {}1,0,1,2,3U =-{}0,1,2A ={}1,0,1B =-()U A B =I ð{}0,1{}1-{}1,2,3-{}1,0,1,3-0x ∀>20x x -≤0x ∃>20x x -≤0x ∃>20x x ->0x ∀>20x x ->0x ∀≤20x x ->{}2|340A x x x =--<[]{}()(2)0B x x m x m =--+>A B =R U m 1m -<2m <12m -<<12m -≤≤0x >20x x +>2{|10}A x x mx =++=A =∅R I m 4m <4m >04m <<04m ≤<2{|8150}A x x x =-+={|10}B x ax =-=A B B =I {}2,,1,0,b a a a b a ⎧⎫=-⎨⎬⎩⎭20192019a b +{,,}{0,1,2}a b c =2a ≠2b =0c ≠10010a b c ++={}25A x x =-≤≤{}121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤π,44πk M x x k ⎧⎫==+∈⎨⎬⎩⎭Z π,84πk N x x k ⎧⎫==-∈⎨⎬⎩⎭Z 此卷只装订不密封班级 姓名 准考证号 考场号 座位号则( ) A . B .C .D .12.已知集合,,,若,,则有( )A .B .C .D .,,第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.设,,,则__________,__________.14.已知集合,,且,则实数的取值范围是_________.15.若命题“使”是假命题,则实数的取值范围为___________.16.设为全集,对集合、,定义运算“*”,.对于 集合,,,,则___________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)不等式的解集记为p ,关于x 的不等式的解集记为q ,若p 是q 的充分不必要条件,求实数a 的取值范围.18.(12分)设全集为,集合,.(1)求:,,;(2)若集合,满足,求实数的取值范围.M N =∅I {}2,A x x a a ==∈Z {}21,B x x b b ==+∈Z {}41,C x x c c ==+∈Z {}5225,U x x x x =-≤<-<≤∈Z 或{}22150A x x x =--={}3,3,4B =-U A =ðU B =ð()(){}250A x x x =+->{}1B x m x m =≤<+()B A ⊆R ðm x ∃∈R ()2110x a x +-+<a U X Y ()U X Y X Y *=I ð{}1,2,3,4,5,6,7,8U ={}1,2,3X ={}3,4,5Y ={}2,4,7Z =()X Y Z **=2320x x +>-()210x a x a +-->R 13{|}A x x =-≤<{}2B x x =≤A B U A B I ()A B R I ð{|20}C x x a =->B C C =U a19.(12分)已知全集,集合,,.(1)求;(2)若,求实数的取值范围.20.(12分)已知集合,.(1)当时,求,;(2)若,求实数的取值范围.21.(12分)已知不等式的解集为.U =R {}32A x x =-<<{}16B x x =≤≤{}121C x a x a =-≤≤+()U A B I ð()C A B ⊆U a {}22A x a x a =-≤≤+{}2540B x x x =-+≥3a =A B I A B R U ()ðA B =∅I a ()210x a x a -++≤A(1)若,求集合;(2)若集合是集合的子集,求实数的取值范围.22.(12分)已知集合,集合.(1)当时,求;(2)设,若“”是“”的必要不充分条件,求实数的取值 范围.2a =A A {}41x x -≤≤a {}22430A x x ax a =-+<()(){}320B x x x =--≥1a =A B A B I U ,0a >x A ∈x B ∈a2019-2020学年必修第一册第一章双基训练金卷集合与常用逻辑用语(二)答 案第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】,所以,故选B . 2.【答案】B【解析】全称命题的否定为特称命题,据此可得:命题“,都有”的否定是,使得. 本题选择B 选项. 3.【答案】C【解析】集合, 集合,若,则,解得,故选C .4.【答案】A【解析】,所以“”是“”的充分不必要条件,故选A . 5.【答案】D【解析】由题意可得,m 为被开方数,则, 关于实数x 的方程没有实数根, 则,解得,综上可得:实数的取值范围是,本题选择D 选项. 6.【答案】D【解析】,{}1,3U A =-ð(){}1U A B =-I ð0x ∀>20x x -≤0x ∃>20x x ->{}2|340{|14}A x x x x x =--<=-<<()[]{}{}(2)02B x x m x m x x m x m =--+>=<>+或A B =R U 124m m >-⎧⎨+<⎩12m -<<2001x x x x +>⇒><-或0x >20x x +>0m ≥210x mx ++=()24110Δm=-⨯⨯<4m <m 04m ≤<{}{}2|81503,5A x x x =-+==因为,所以,因此,对应实数的值为,,, 其组成的集合的子集个数有,故选D . 7.【答案】B 【解析】由于分式有意义,则,,,,,得, 因此,故选B .8.【答案】D【解析】由,得的取值情况如下: 当时,,或,,此时不满足条件; 当时,,或,此时不满足条件; 当时,,此时不满足条件; 当时,,此时满足条件;综上得:,,代入. 9.【答案】D【解析】, 当为空集时:成立;当不为空集时:,综上所述:,故答案选D . 10.【答案】B【解析】满足条件的集合有:{1,5},{2,4},{3},{1,5,2,4},{1,5,3}, {2,4,3},{1,5,2,4,3},共7个集合.故选B . 11.【答案】BA B B =I B A ⊂{}{}35B =∅,,01315328=b a 0a ≠{}2,,1,0,b a a a b a ⎧⎫=-⎨⎬⎩⎭Q 00b b a ∴=⇒={}{}2010a a a ∴=,,,,211a a ⎧=∴⎨≠⎩1a =-()2019201920192019101a b +=-+=-{,,}{0,1,2}a b c =,,a b c 0a =1b =2c =2b =1c =1a =0b =2c =2b =0c =2a =1b =0c =2a =0b =1c =2a =0b =1c =100102001201a b c ++=+={}121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤【解析】由题意可知,,,所以,故选B .12.【答案】B【解析】由已知可得集合A 属于偶数集,集合B 为奇数集, ∵,,∴m 为偶数,n 为奇数,∴为奇数.故,故选B .第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】;【解析】因为, 所以,. 14.【答案】【解析】由题意可得,据此结合题意可得,即,即实数的取值范围是. 15.【答案】【解析】由题意得若命题“”是假命题,则命题“,”是真命题,则需,故本题正确答案为. 16.【答案】.【解析】由于,,,,则()24π2π,,84π84πk n M x x k x x n ⎧⎫+⎧⎫⎪⎪==-∈==-∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ()21π2π,8484ππk k N x x x k ⎧⎫-⎪⎪==-=-∈⎨⎬⎪⎪⎩⎭Z 或{}5,4,3,4--{}5,4,5--{}{}5,4,3,53,4,5225,U x x x x =-≤<-<=--≤∈-Z 或{}5,4,3,4U A --=ð{}5,4,5U B =--ð24m -≤≤()(){}{}250|25A x x x x x =+-≤=-≤≤R ð215m m ≥-⎧⎨+≤⎩24m m ≥-⎧⎨≤⎩m 24m -≤≤13a -≤≤2R,(1)10x x a x ∃∈+-+<2R,(1)10x x a x ∀∈+-+≥()2014013Δa a ≤⇒--≤⇒-≤≤13a -≤≤{}1,3,5,6,8{}1,2,3,4,5,6,7,8U ={}1,2,3X ={}3,4,5Y ={}2,4,7Z =,由题中定义可得, 则, 因此,故答案为.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】.【解析】由不等式,得或, 不等式等价为, ①当,即时,不等式的解是或, ∵p 是q 的充分不必要条件,∴,即; ②若,即时,不等式的解是或, ∵p 是q 的充分不必要条件,∴,即, 综上.18.【答案】(1)见解析;(2).【解析】(1)∵全集,集合,,∴,,.(2)∵,由, ∴,∴,解得,故实数的取值范围. 19.【答案】(1);(2). 【解析】(1)∵,, ∴.{}3X Y =I (){}1,2,4,5,6,7,8U X Y X Y *==I ð(){}2,4,7U X Y Z =I I ð()(){}1,3,5,6,8U UX Y Z X Y Z **==⎡⎤⎣⎦I I痧{}1,3,5,6,812-≤<-a 2320x x +>-2x >1x <()210x a x a +-->()()10x x a -+>1≤-a 1-≥a 1>x a x -<1≥-a 1-=a 1>-a 1-<a a x ->1<x 2<-a 12-<<-a 12-≤<-a 4a <-U =R {|13}A x x =-≤<{|2}{|22}B x x x x =≤=-≤≤{|23}A B x x =-≤<U {|12}A B x x =-≤≤I (){}12A B x x x =<->R I 或ð{}|20|2a C x x a x x ⎧⎫=->=>⎨⎬⎩⎭B C C =U B C ⊆22a<-4a <-a 4a <-{}31U A B x x =-<<I ð5222a a <--<≤或{}16U B x x x =<>或ð{}32A x x =-<<{}31U A B x x =-<<I ð(2),①当即时,;②当,即时,要使,有,∴,又,∴,∴的取值范围是. 20.【答案】(1)见解析;(2). 【解析】(1)当时,,,,∴,.(2)因为,所以或,解得或, 所以的取值范围是.21.【答案】(1);(2).【解析】(1)当时,由,得, 解得,所以.(2)因为,可得,又因为集合是集合的子集,所以可得,(当时不符合题意,舍去),所以, 综上所述.22.【答案】(1)见解析;(2).【解析】(1)当时,, 集合{}23B x x =≤≤,{}36A B x x =-<≤U 211a a +<-2a <-()C A B =∅⊆U 211a a +≥-2a ≥-()C A B ⊆U 13216a a ->-⎧⎨+≤⎩252a a >-⎧⎪⎨≤⎪⎩2a ≥-522a -<≤a 5222a a <--<≤或1<a 3a ={}15A x x =-≤≤{}{}2540|14B x x x x x x =-+≥=≤≥或{}14B x x =<<R ð{}1145A B x x x =-≤≤≤≤I 或(){}15A B x x =-≤≤R U ðA B =∅I ⎪⎩⎪⎨⎧+≤-<+>-a a a a 22421222a a ->+01a ≤<0a <a 1<a {}12A x x =≤≤41a -≤≤2a =2320x x -+≤()()120x x --≤12x ≤≤{}12A x x =≤≤()210x a x a -++≤()()10x x a --≤A {}41x x -≤≤1a ≤1a >{}1A x a x =≤≤41a -≤≤12a <<1a ={}{}2|430|13A x x x x x =-+<=<<所以,.(2)因为,所以,, 因为“”是“”的必要不充分条件,所以,所以,解得.{}23A B x x =≤<I {}13A B x x =<≤U 0a >{}|3A x a x a =<<{}23B x x =≤≤x A ∈x B ∈B ⊂≠A 233a a <>⎧⎨⎩12a <<。