高三数学高考模拟题(一)
高三数学高考模拟试题精编(一)
课标全国卷数学高考模拟试题精编(一)【说明】 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.请将第Ⅰ卷的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数z =2i1+i,z 的共轭复数为z ,则z ·z =( ) A .1-i B .2 C .1+i D .02.(理)条件甲:⎩⎨⎧ 2<x +y <40<xy <3;条件乙:⎩⎨⎧0<x <12<y <3,则甲是乙的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件(文)设α,β分别为两个不同的平面,直线l ⊂α,则“l ⊥β”是“α⊥β”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.某程序框图如图所示,该程序运行后输出的k 的值是( )A.4 B.5C.6 D.74.(理)下列说法正确的是()A.函数f(x)=1x在其定义域上是减函数B.两个三角形全等是这两个三角形面积相等的必要条件C.命题“∃x∈R,x2+x+1>0”的否定是“∀x∈R,x2+x+1<0”D.给定命题p、q,若p∧q是真命题,则綈p是假命题(文)若cos θ2=35,sinθ2=-45,则角θ的终边所在的直线为()A.7x+24y=0 B.7x-24y=0C.24x+7y=0 D.24x-7y=05.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35)、[35,40)、[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为()A.0.04 B.0.06C.0.2 D.0.36.已知等比数列{a n }的首项为1,若4a 1,2a 2,a 3成等差数列,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( ) A.3116 B .2 C.3316 D.16337.已知l ,m 是不同的两条直线,α,β是不重合的两个平面,则下列命题中为真命题的是( )A .若l ⊥α,α⊥β,则l ∥βB .若l ⊥α,α∥β,m ⊂β,则l ⊥mC .若l ⊥m ,α∥β,m ⊂β,则l ⊥αD .若l ∥α,α⊥β,则l ∥β 8.(理)在二项式⎝⎛⎭⎪⎪⎫x +12·4x n 的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( ) A.16 B.14 C.13 D.512(文)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .1 B .-1 C .-e -1 D .-e9.将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ(φ>0)个单位,再将图象上每一点横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( ) A.π8 B.3π8 C.3π4 D.π2 10.如图所示是一个几何体的三视图,其侧视图是一个边长为a 的等边三角形,俯视图是两个正三角形拼成的菱形,则该几何体的体积为( ) A .a 3B.a 32C.a 33D.a 34 11.如图所示,F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线左支的两个交点分别为A ,B ,且△F 2AB 是等边三角形,则双曲线的离心率为( ) A.2+1 B.3+1 C.2+12 D.3+1212.设定义在R 上的奇函数y =f (x ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于( ) A .-12 B .-13 C .-14 D .-15 答题栏题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分.将答案填写在题中的横线上)13.向平面区域{}(x ,y )|x 2+y 2≤1内随机投入一点,则该点落在区域⎩⎨⎧2x +y ≤1x ≥0y ≥0内的概率等于________.14.(理)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC→=________.(文)已知向量p =(1,-2),q =(x,4),且p ∥q ,则p ·q 的值为________. 15.给出下列等式:观察各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则依次类推可得a 6+b 6=________.16.已知不等式xy ≤ax 2+2y 2,若对任意x ∈[1,2],且y ∈[2,3],该不等式恒成立,则实数a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程及演算步骤)17.(本小题满分12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+2cos 2x -1(x ∈R )(1)求f (x )的单调递增区间;(2)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=12,b ,a ,c 成等差数列,且AB →·AC→=9,求a 的值.18.(理)(本小题满分12分)某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛,其中一道题是连线题,要求将4种不同的工具与它们的4种不同的用途一对一连线,规定:每连对一条得5分,连错一条得-2分.某参赛者随机用4条线把消防工具与用途一对一全部连接起来. (1)求该参赛者恰好连对一条的概率;(2)设X 为该参赛者此题的得分,求X 的分布列与数学期望. (文)(本小题满分12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学基本公式大赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.19.(理)(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.(1)证明:A1O⊥平面ABC;(2)求直线A1C与平面A1AB所成角的正弦值;(3)在BC1上是否存在一点E,使得OE∥平面A1AB?若存在,确定点E的位置;若不存在,说明理由.(文)(本小题满分12分)如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,AB=1,AA1=62,∠ABC=60°.(1)求证:AC ⊥BD 1;(2)求四面体D 1-AB 1C 的体积. 20.(本小题满分12分)如图F 1、F 2为椭圆C :x 2a 2+y 2b 2=1的左、右焦点,D 、E 是椭圆的两个顶点,椭圆的离心率e =32,S △DEF 2=1-32.若点M (x 0,y 0)在椭圆C 上,则点N ⎝ ⎛⎭⎪⎫x 0a ,y 0b 称为点M 的一个“椭点”,直线l 与椭圆交于A 、B 两点,A 、B 两点的“椭点”分别为P 、Q . (1)求椭圆C 的标准方程;(2)问是否存在过左焦点F 1 的直线l ,使得以PQ 为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.21.(理)(本小题满分12分)已知函数f (x )=e x (ax 2-2x -2),a ∈R 且a ≠0. (1)若曲线y =f (x )在点P (2,f (2))处的切线垂直于y 轴,求实数a 的值; (2)当a >0时,求函数f (|sin x |)的最小值;(3)在(1)的条件下,若y =kx 与y =f (x )的图象存在三个交点,求k 的取值范围. (文)(本小题满分12分)已知函数f (x )=ln x 与g (x )=kx +b (k ,b ∈R )的图象交于P ,Q 两点,曲线y =f (x )在P ,Q 两点处的切线交于点A .(1)当k =e ,b =-3时,求函数h (x )=f (x )-g (x )的单调区间;(e 为自然常数) (2)若A ⎝ ⎛⎭⎪⎫ee -1,1e -1,求实数k ,b 的值.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆O 交于点C 、F ,连接CF 并延长交AB 于点E . (1)求证:E 是AB 的中点; (2)求线段BF 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数),以原点O为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=4 2.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x +1|+|x +2|-a . (1)当a =5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.课标全国卷数学高考模拟试题精编(一)参考答案1.B z =2i1+i =2i (1-i )(1+i )(1-i )=1+i ,所以z ·z =(1+i)(1-i)=2.2.(理)C 当⎩⎪⎨⎪⎧ 0<x <12<y <3能得到⎩⎪⎨⎪⎧ 2<x +y <40<xy <3,但当⎩⎪⎨⎪⎧2<x +y <40<xy <3时,不妨取x=2,y =1满足⎩⎪⎨⎪⎧ 2<x +y <40<xy <3,但⎩⎪⎨⎪⎧0<x <12<y <3不满足,所以甲是乙的必要而不充分条件,选C.(文)A 依题意,由l ⊥β,l ⊂α可以推出α⊥β;反过来,由α⊥β,l ⊂α不能推出l ⊥β.因此“l ⊥β”是“α⊥β”成立的充分不必要条件,选A.3.A 第一次循环为S =0,S =0+20=1,k =1;第二次循环为S =1,S =1+21=3,k =2;第三次循环为S =3,S =3+23=11,k =3;第四次循环为S =11,S =11+211>100,k =4;第五次循环,不满足条件,输出k =4.选A.4.(理)D A .函数f (x )=1x 在其定义域上是减函数,这种说法是错误的,应该说:函数f (x )=1x 在(-∞,0)和(0,+∞)内是减函数;B .两个三角形全等是这两个三角形面积相等的必要条件,错误。
广东省2024届高三春季高考模拟卷(1)数学试题含解析
2024年第一次广东省普通高中学业水平合格性考试数学冲刺卷(一)答案解析一、选择题:本大题共12小题,每小题6分,共72分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2,0,1,2A =-,{}21B x x =-≤≤∣,则A B = ()A.{}2- B.{}1 C.{}2,0,1- D.{}0,1,2【答案】C 【解析】【分析】根据集合交集运算求解即可.【详解】解:因为{}2,0,1,2A =-,{}21B xx =-≤≤∣,所以A B = {}2,0,1-故选:C2.已知角α的终边过点()1,2P -,则tan α等于()A.2 B.2- C.12-D.12【答案】B 【解析】【分析】由正切函数的定义计算.【详解】由题意2tan 21α==--.故选:B .3.下列函数中是减函数且值域为R 的是()A.1()f x x= B.1()f x x x=-C.()ln f x x= D.3()f x x=-【答案】D 【解析】【分析】由幂函数及对数函数的图象与性质即可求解.【详解】解:对A :函数()f x 的值域为()(),00,-∞⋃+∞,故选项A 错误;对B :函数()f x 为(),0∞-和()0,∞+上的增函数,故选项B 错误;对C :函数()ln ,0()ln ln ,0x x f x x x x >⎧==⎨-<⎩,所以()f x 在()0,∞+上单调递增,在(),0∞-上单调递减,故选项C 错误;对D :由幂函数的性质知()f x 为减函数且值域为R ,故选项D 正确;故选:D.4.不等式22150x x -++≤的解集为()A .532x x ⎧⎫-≤≤⎨⎬⎩⎭B.52x x ⎧≤-⎨⎩或}3x ≥C.532x x ⎧⎫-≤≤⎨⎬⎩⎭D.{3x x ≤-或52x ⎫≥⎬⎭【答案】B 【解析】【分析】将式子变形再因式分解,即可求出不等式的解集;【详解】解:依题意可得22150x x --≥,故()()2530x x +-≥,解得52x ≤-或3x ≥,所以不等式的解集为52x x ⎧≤-⎨⎩或}3x ≥故选:B .5.化简:AB OC OB +-=()A.BAB.CAC.CBD.AC【答案】D 【解析】【分析】根据向量的线性运算法则,准确运算,即可求解.【详解】根据向量的线性运算法则,可得()AB OC OB AB OC OB AB BC AC +-=+-=+=.故选:D.6.方程()234xf x x =+-的零点所在的区间为()A.()1,0- B.10,2⎛⎫ ⎪⎝⎭C.1,12⎛⎫ ⎪⎝⎭D.41,3⎛⎫⎪⎝⎭【答案】C 【解析】【分析】分析函数()f x 的单调性,利用零点存在定理可得出结论.【详解】因为函数2x y =、34y x =-均为R 上的增函数,故函数()f x 在R 上也为增函数,因为()10f -<,()00f <,15022f ⎛⎫=<⎪⎝⎭,()110f =>,由零点存在定理可知,函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:C.7.已知扇形的半径为1,圆心角为60 ,则这个扇形的弧长为()A.π6B.π3C.2π3D.60【答案】B 【解析】【分析】根据扇形的弧长公式计算即可.【详解】易知π603=,由扇形弧长公式可得ππ133l =⨯=.故选:B8.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件【答案】B 【解析】【分析】根据题意,分析可得“甲分得红牌”与“乙分得红牌”不会同时发生,但除了这2个事件外,还有事件“丙分得红牌”,由对立事件与互斥事件的概念,可得答案.【详解】根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,则两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,则两者不是对立事件,则事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件;故选:B .【点睛】本题考查对立事件与互斥事件的概念,要注意对立一定互斥,但互斥不一定对立,属于基础题.9.要得到函数4y sinx =-(3π)的图象,只需要将函数4y sin x =的图象A.向左平移12π个单位B.向右平移12π个单位C.向左平移3π个单位D .向右平移3π个单位【答案】B 【解析】【详解】因为函数sin 4sin[4()]312y x x ππ⎛⎫=-=- ⎪⎝⎭,要得到函数43y sin x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数4y sin x =的图象向右平移12π个单位.本题选择B 选项.点睛:三角函数图象进行平移变换时注意提取x 的系数,进行周期变换时,需要将x 的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.10.已知两条直线l ,m 与两个平面α,β,下列命题正确的是()A.若//l α,l m ⊥,则m α⊥B.若//αβ,//m α,则//m βC.若//l α,//m α,则//l mD.若l α⊥,l //β,则αβ⊥【答案】D 【解析】【分析】A.利用线面的位置关系判断;B.利用线面的位置关系判断;C.利用直线与直线的位置关系判断;D.由l //β,过l 作平面γ,有m γβ= ,利用线面平行的性质定理得到得到//l m ,再利用面面垂直的判定定理判断.【详解】A.若//l α,l m ⊥,则//,m m αα⊂或,m α相交,故错误;B.若//αβ,//m α,则//m β或m β⊂,故错误;C.若//l α,//m α,则//l m ,l ,m 相交或异面,故错误;D.若l //β,过l 作平面γ,有m γβ= ,则//l m ,因为l α⊥,所以m α⊥,又m β⊂,则αβ⊥,故正确.故选:D11.已知函数()122,0,log ,0,x x f x x x ⎧≤⎪=⎨>⎪⎩则()()2f f -=()A.-2B.-1C.1D.2【答案】D 【解析】【分析】先根据分段函数求出()2f -,再根据分段函数,即可求出结果.【详解】因为()21224f --==,所以()()12112log 244f f f ⎛⎫-=== ⎪⎝⎭.故选:D.12.已知37log 2a =,1314b ⎛⎫= ⎪⎝⎭,135log c =,则a 、b 、c 的大小关系为()A.a b c >> B.a c b>> C.b a c>> D.c b a>>【答案】A 【解析】【分析】利用对数函数、指数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为337log log 312a =>=,13110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,1133log 5log 10c =<=,因此,a b c >>.故选:A.二、填空题:本大题共6小题,每小题6分,共36分.13.已知i 是虚数单位,则复数4i1i-+的虚部为__________.【答案】2-【解析】【分析】先把复数化简为22i --,再根据虚部定义得出即可.【详解】()()()()224i 1i 4i 1i 4i4i 4i =22i 1i 1i 1i 1i 2------===--++--,则复数的虚部为2-.故答案为:2-.14.函数51x y a -=+且((0a >且1a ≠)的图象必经过定点______________.【答案】(5,2)【解析】【分析】由指数函数的性质分析定点【详解】令50x -=,得5x =,此时2y =故过定点(5,2)15.如果函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为2π,则ω的值为______________.【答案】4【解析】【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】2T πω=,∴2242Tππωπ===.故答案为:4.16.已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为_____.【答案】48π.【解析】【分析】先由球的表面积为48π求出球的半径,然后由圆柱的侧面积公式算出即可【详解】因为球的表面积24π48πS R ==所以R所以圆柱的底面直径与高都为所以圆柱的侧面积:2π⨯故答案为:48π【点睛】本题考查的是空间几何体表面积的算法,较简单.17.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】18【解析】【详解】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .18.已知()f x 是定义在R 上的偶函数,当x ≥0时,()22xf x =-,则不等式()2f x ≤的解集是_______;【答案】[]22-,【解析】【分析】判断函数当0x ≥时的单调性,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.【详解】∵当x ≥0时,()22xf x =-,∴偶函数()f x 在[0,+∞)上单调递增,且()2=2f ,所以()2f x ≤,即()()2fx f ≤,∴2x ≤,解得22x -≤≤.故答案为:[]22-,.三、解答题:本大题共4小题,第19~21题各10分,第22题12分,共42分.解答需写出文字说明,证明过程和演算步骤.19.在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,已知46,5,cos 5a b A ===-(1)求角B 的大小;(2)求三角形ABC 的面积.【答案】(1)B=300(2)93122ABC S ∆-=【解析】【详解】分析:(1)由同角三角函数关系先求3sin 5A =,由正弦定理可求sinB 的值,从而可求B 的值;(2)先求得()()sin 30C sin A B sin A =+=+的值,代入三角函数面积公式即可得结果.详解:(1)由正弦定理又∴B 为锐角sinA=35,由正弦定理B=300(2)()()sin 30C sin A B sin A =+=+,∴19312bsin 22ABC S a C -==点睛:以三角形和为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用比例分配的分层随机抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)20,30,[)30,40,⋅⋅⋅,[]80,90,并整理得到如下频率分布直方图:(1)根据频率分布直方图估计分数的样本数据的70%分位数;(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中女生的人数.【答案】(1)77.5;(2)160(人).【解析】【分析】(1)根据分位数的概念,结合题给频率分布直方图计算得出结果即可;(2)根据频率分布直方图计算出样本中分数不小于70的人数,进而计算出样本中男生及女生的人数,最后求出总体中女生的人数.【详解】(1)由频率分布直方图可知,样本中分数不小于70的频率为()0.020.04100.6+⨯=,从而有:样本中分数小于70的频率为10.60.4-=,又由频率分布直方图可得:样本中分数小于80的频率为0.8,所以样本数据的70%分位数必定位于[)70,80之间.计算为:0.70.4701077.50.80.4-+⨯=-所以其分数的样本数据的70%分位数估计值为77.5.(2)由题知,样本中分数不小于70的学生人数为()0.020.041010060+⨯⨯=,从而有,样本中分数不小于70的男生人数为160302⨯=,进而得,样本中的男生人数为30260⨯=,女生人数为1006040-=,所以总体中女生人数为40400160100⨯=(人).21.某市出租车的票价按以下规则制定:起步公里为2.6公里,收费10元;若超过2.6公里的,每公里按2.4元收费.(1)设A 地到B 地的路程为4.1公里,若搭乘出租车从A 地到B 地,需要付费多少?(2)若某乘客搭乘出租车共付费16元,则该出租车共行驶了多少公里?【答案】(1)13.6元(2)5.1公里【解析】【分析】(1)设出租车行驶x 公里,根据题设写出付费额()f x 的分段函数形式,进而求从A 地到B 地需要的付费;(2)由题意出租车行驶公里数 2.6x >,结合解析式列方程求该出租车共行驶的公里数.【小问1详解】设出租车行驶x 公里,则付费额10,0 2.6()10 2.4( 2.6), 2.6x f x x x <≤⎧=⎨+->⎩,所以(4.1)10 2.4(4.1 2.6)13.6f =+⨯-=元.【小问2详解】由题意,出租车行驶公里数 2.6x >,令10 2.4( 2.6)16x +-=,则 5.1x =公里.22.如图,在三棱锥V-ABC 中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC BC ⊥,且AC=BC=,O,M分别为AB,VA 的中点.(1)求证:VB //平面MOC ;(2)求三棱锥V-ABC 的体积.【答案】(1)证明见解析;(2)33.【解析】【详解】试题分析:(1)要证明线面平行,就是要证线线平行,题中有中点,由中位线定理易得线线平行,注意得出线面平行结论时,必须把判定定理的条件写全;(2)要求三棱锥的体积,首先要确定高,本题中有面面垂直,由此易得VO 与底面ABC 垂直,因此VO 就是高,求出其长,及ABC 面积,可得体积.试题解析:(1)证明: 点O,M 分别为AB,VA 的中点//OM VB ∴又,OM MOC VB MOC ⊂⊄平面平面//VB MOC∴平面(2)解:连接VO ,则由题知VO ⊥平面AB C,∴VO 为三棱锥V-ABC 的高.又112ABC S VO === ,11.1333V ABC ABC V S VO -∴==⨯=考点:线面平行的判断,体积.。
2023届四川省南充市高三下学期高考考前数学(理)模拟训练(一)【含答案】
2023届四川省南充市高三下学期高考考前数学(理)模拟训练(一)一、单选题1.若集合,则( ){}10,lg 01x A x B x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣A B = A .B .C .D .[)1,1-(]0,1[)0,1()0,1【答案】D【分析】先化简集合A ,B ,再利用交集运算求解.【详解】解:由题意得,{11},{01}A xx B x x =-≤<=<≤∣∣,()0,1A B ∴= 故选:D.2.( )sin2023cos17cos2023sin17+=A .B .C .D 1212-【答案】C【分析】根据诱导公式和正弦和角公式求解即可.【详解】解:因为3605182334020=⨯++所以,,()()4s 1in 8202n 3s 3605043sin 18s i 03i 4n 3=⨯++=+=-()()4c 1os 8202s 3c 3605043cos 18c o 03o 4s 3=⨯++=+=-所以,sin2023cos17cos2023sin17+.sin43cos17cos43sin17sin60=--=-= 故选:C.3.校园环境对学生的成长是重要的,好的校园环境离不开学校的后勤部门.学校为了评估后勤部门的工作,采用随机抽样的方法调查100名学生对校园环境的认可程度(100分制),评价标准如下:中位数m85m ≥8085m ≤<7080m ≤<70m <评价优秀良好合格不合格2023年的一次调查所得的分数频率分布直方图如图所示,则这次调查后勤部门的评价是( )A .优秀B .良好C .合格D .不合格【答案】B【分析】根据频率分布直方图求解中位数即可得答案.【详解】解:由频率分布直方图可知,前3组的频率分别为,第4组的频率为0.1,0.1,0.20.4所以,中位数,即满足,对应的评价是良好.0.1801082.50.4m =+⨯=m 8085m ≤<故选:B.4.双曲线 )2222:1(0,0)x y C a b a b -=>>A .B .2y x =±y =C .D .y x =12y x=±【答案】B【分析】根据.==ce a b a =【详解】由题意知,双曲线2222:1(0,0)x y C a b a b -=>>可得,解得,==ce a 22221()3a b b a a +=+=b a =所以双曲线的渐近线方程为.C by x a =±=故选:B.5.在平面直角坐标系中,为坐标原点,已知,,则( )O ()3,4A --()5,12B -cos OAB ∠=A .B .CD .33653365-【答案】D【分析】利用计算即得结果.cos AO ABOAB AO AB⋅∠=【详解】由题设,(3,4),(8,8)AO AB ==-所以cos AO AB OAB |AO ||AB |⋅∠== 故选:D6.一个四棱台的三视图如图所示,其中正视图和侧视图均为上底长为4,下底长为2,腰长为的等腰梯形,则该四棱台的体积为()A .BC .28D .283【答案】A4,下底长为2的正四棱台求解.因为上底长为4,下底长为2,所以该棱台的高为,1h=棱台的体积,∴(128416133V =⨯+⨯=故选:.A 7.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是( )A .B .C .D .()sin x x xf -=()sin cos f x x x x=-()221f x x x =-()3sin f x x x =+【答案】B【分析】利用导数研究各函数的单调性,结合奇偶性判断函数图象,即可得答案.【详解】A :,即在定义域上递增,不符合;()1cos 0f x x '=-≥()f x B :,()cos (cos sin )sin f x x x x x x x '=--=在上,在上,在上,(2π,π)--()0f x '<(π,π)-()0f x '>(π,2π)()0f x '<所以在、上递减,上递增,符合;()f x (2π,π)--(π,2π)(π,π)-C :由且定义域为,为偶函数,222211()()()()f x x x f x x x -=--=-=-{|0}x x ≠所以题图不可能在y 轴两侧,研究上性质:,故递增,不符合;(0,)+∞32()20f x x x +'=>()f x D :由且定义域为R ,为奇函数,33()sin()()sin ()f x x x x x f x -=-+-=--=-研究上性质:,故在递增,(0,)+∞2()cos 30f x x x =+>'()f x (0,)+∞所以在R 上递增,不符合;()f x 故选:B8.将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去…,最后挖剩下的就是一条“雪花”状的Koch 曲线,如图所示已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是( )A .B .C .D .168120818271027【答案】A【分析】根据题意可知,每一次操作之后面积是上一次面积的,按照等比数列即可求得结果.23【详解】根据题意可知,每次挖去的三角形面积是被挖三角形面积的,13所以每一次操作之后所得图形的面积是上一次三角形面积的,23由此可得,第次操作之后所得图形的面积是,n 213nn S ⎛⎫=⨯ ⎪⎝⎭即经过4次操作之后所得图形的面积是.442161381S ⎛⎫=⨯=⎪⎝⎭故选:A9.将3个1和3个0随机排成一行,则3个0都不相邻的概率是( )A .B .C .D .1202151512【答案】C【分析】先求出总数,再由插空法,得到满足题意的情况,由古典概型的公式即可得出答案.【详解】先考虑总的情况,6个位置选3个放1,有种,36C 再考虑3个0都不相邻的情况,将3个0插入3个1形成的4个空中,有种,34C 可得.3436C 1C 5P ==故选:C .10.定义在上的函数满足,且为奇函数,则( )R ()f x ()()2=f x f x -()21f x +-()20231k f k ==∑A .B .C .2022D .20232023-2022-【答案】D【分析】利用抽象函数的轴对称与中心对称性的性质,得出函数的对称轴和中心对称点及周()f x 期,利用相关性质得出具体函数值,即可得出结果.【详解】∵,∴关于对称,()()2=f x f x -()f x 1x =∵为奇函数,∴由平移可得关于对称,且,()21f x +-()f x ()2,1()21f =,即(2)1(2)1f x f x ∴+-=--++(2)(2)2f x f x ++-=()()2=f x f x -(2)()2f x f x ∴++=(4)(2)2f x f x ∴+++=上两式比较可得()(4)f x f x =+∴函数是以4为周期的周期函数.,,()f x ()()()13222f f f +==()()421f f ==∴, ∴.()()()()12344f f f f +++=()()2023120244420234k f k f ==⨯-=∑故选:D.11.如图,在梯形ABCD 中,,,,将△ACD 沿AC 边折起,AB CD ∥4AB =2BC CD DA ===使得点D 翻折到点P ,若三棱锥P -ABC 的外接球表面积为,则( )20πPB=A .8B .4C .D .2【答案】C【分析】先找出两个三角形外接圆的圆心及外接球的球心,通过证明,可得12OO O M=12O M OO =四边形为平行四边形,进而证得BC ⊥面APC ,通过勾股定理可求得PB 的值.12OO MO【详解】如图所示,由题意知,,60ABC ︒∠=所以,AC =AC BC ⊥所以AB 的中点即为△ABC 外接圆的圆心,记为,2O 又因为,2PA PC ==所以,,120APC ︒∠=1PM =所以在中,取AC 的中点M ,连接PM ,则△APC 的外心必在PM 的延长线上,记为,APC △1O所以在中,因为,,所以为等边三角形,APC △160APO ︒∠=11O P O A =1APO △所以,12O P =(或由正弦定理得:)11242sin AC O P O P APC ===⇒=∠所以,11O M =在中,,,,ACB △2122O B AB ==2112O M BC ==2//O M BC 设外接球半径为R ,则,解得:,24π20πR =25R =设O 为三棱锥P -ABC 的外接球球心,则面ABC ,面APC .2OO ⊥1OO ⊥所以在中,,2Rt OO B △21OO =又因为在,,1Rt OO P△11OO ===所以,,121OO O M ==121O M OO ==所以四边形为平行四边形,12OO MO 所以,12//OO O M 又因为,2//O M BC 所以,1OO //BC又因为面APC ,1OO ⊥所以BC ⊥面APC ,所以,BC PC ⊥所以,即:22222228PB PC CB =+=+=PB =故选:C.12.设函数,其中,是自然对数的底数(…),则( )()e ln x f x ax x=-R a ∈e e 2.71828≈A .当时,B .当时,1a =()e f x x≥3e 4a =()0f x >C .当时,D .当时,1a =-()e f x x≥3e 4a =-()0f x >【答案】B【分析】令,结合,判断AC ;将不等式转化为()e ln e x ax x xg x =--()10g =()1g a'=-()0f x >,,再构造函数求解最值即可判断B ;借助特殊值判断D.324e ln e x x x x ⋅>()1,x ∈+∞10e f ⎛⎫< ⎪⎝⎭【详解】解:令,则,且,,()e ln e x ax x xg x =--()e ln ex a x a g x '=---()10g =()1g a'=-当,,∴存在一个较小的正数使得都有,1a =()110g '=-<ε()1,1x ε∀∈+()0g x <当时,,∴存在一个较小的正数使得都有,1a =-()110g '=>ε()1,1x ε∀∈-()0g x <故A ,C 都不正确,对于选项B ,当,则显然成立,当时,即证明,(]0,1x ∈()1,x ∈+∞3e e ln 04xx x ->也即证明,,324e ln e x x x x ⋅>()1,x ∈+∞令,则,12e ()x h x x =()312e()xx h x x -'=所以,时,,单调递增,时,,单调递减,()2,x ∈+∞1()0h x '>1()h x ()0,2x ∈1()0h x '<1()h x 所以,的最小值为,12e ()x h x x =()21e 24h =令,则,()2ln xh x x =()221ln x h x x -'=所以,时,,单调递减,时,,单调递增,()e,x ∈+∞2()0h x '<()2h x ()0,e x ∈2()0h x '>()2h x 所以,的最大值为,()2ln xh x x =()21e e h =所以,,()()()()21122323334e 444e 1ln 2e e e e e 4e x xh x h h h x x x ⋅=≥=⋅==≥=因为不同时取等,所以,,即选项B 正确,324e ln e x x x x ⋅>对于选项D ,当时,(成立),即1e x =11132243e e 2e 11e e e e ln e e 0e 16e 4e e 4416+⋅=-<-<⇔<⇔<,所以选项D 不正确.10e f ⎛⎫< ⎪⎝⎭故选:B .【点睛】关键点点睛:本题解题的关键在于根据不同选项,构造不同的函数,利用函数值的大小,特殊值等,实现大小比较.二、填空题13.设是虚数单位,复数的模长为__________.i 2i1i +【分析】先根据复数的除法化简,然后由模长公式可得.【详解】解:()()()2i 1i 2i 1i,1i 1i 1i -==+∴++-=.14.某班有48名学生,一次考试的数学成绩X (单位:分)服从正态分布,且成绩在()280,N σ上的学生人数为16,则成绩在90分以上的学生人数为____________.[]80,90【答案】8【分析】根据正态分布的对称性即可求解.【详解】由X (单位:分)服从正态分布,知正态密度曲线的对称轴为,成绩在()280,N σ80x=上的学生人数为16,[]80,90由对称性知成绩在80分上的学生人数为24人,所以90分以上的学生人数为.24168-=故答案为:815.如图,在中,.延长到点,使得,则ABCπ3AC ACB ∠==BA Dπ2,6AD CDA ∠==的面积为__________.ABC 【分析】根据正弦定理和面积公式求解即可.【详解】解:因为在中,,,ADC △π3AC ACB ∠==π2,6AD CDA ∠==所以,由正弦定理得,sin sin AD AC ACD CDA ∠∠=sin ACD ∠=π4ACD ∠=所以,,5ππ,124CAB ABC ∠∠==在中,由正弦定理可得ABC sin sin AB ACACB CBA ∠∠=AB =因为ππππππsin sin sin cos cos sin 464646CAB ⎛⎫∠=+=+=⎪⎝⎭所以,1sin 2ABC S AB AC CAB ∠=⨯⨯⨯=16.《九章算术》中记载了我国古代数学家祖暅在计算球的体积时使用的一个原理:“幂势既同,则积不容异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.已知双曲线的右焦点到渐近线的距离记为,双曲线()2222:10,0x y C a b a b -=>>d 的两条渐近线与直线,以及双曲线的右支围成的图形(如图中阴影部分所示)绕C 1y =1y =-C(其中),则双曲线的离心率为______.yπ222c a b =+C 【分析】先利用条件求出,直线与渐近线及双曲线的交点,从而求出截面积,再利题设所给d 1y =信息建立等量关系,从而求出结果.【详解】由题意知渐近线方程为,右焦点为,所以,by xa =±(),0F c 22bc d b a b ==+由,得,1y b y x a =⎧⎪⎨=⎪⎩a xb =由,得()2222110y x y x a b =⎧⎪⎨-=>⎪⎩x ==所以截面面积为,()2222221ππa b a a b b ⎛⎫+ ⎪-= ⎪⎝⎭由题知,阴影部分绕y 轴转一周所得几何体的体积等于底面积与截面面积相等,高为2的圆柱的体积,∴,22πππV a ===2bc =所以,即,()4222226a b c c a c ==-44226a c a c =-∴,解得,所以42e e 60--=2e 3=e =三、解答题17.据世界田联官方网站消息,原定于2023年5月日在中国广州举办的世界田联接力赛延期1314、至2025年4月至5月举行.据了解,甲、乙、丙三支队伍将会参加2025年4月至5月在广州举行的米接力的角逐.接力赛分为预赛、半决赛和决赛,只有预赛、半决赛都获胜才能进入决赛.已知4400⨯甲队在预赛和半决赛中获胜的概率分别为和;乙队在预赛和半决赛中获胜的概率分别为和;23343445丙队在预赛和半决赛中获胜的概率分别为和.2356(1)甲、乙、丙三队中,谁进入决赛的可能性最大;(2)设甲、乙、丙三队中进入决赛的队伍数为,求的分布列.ξξ【答案】(1)乙进入决赛的可能性最大(2)答案见解析【分析】(1)根据相互独立事件同时发生的概率公式计算得解;(2)根据(1)及相互独立事件同时发生的概率公式计算,列出分布列.【详解】(1)甲队进入决赛的概率为,231342⨯=乙队进入决赛的概率为,343455⨯=丙队进入决赛的概率为,255369⨯=显然乙队进入决赛的概率最大,所以乙进入决赛的可能性最大.(2)由(1)可知:甲、乙、丙三队进入决赛的概率分别为,135,,259的可能取值为,ξ0,1,2,3,()1354011125945P ξ⎛⎫⎛⎫⎛⎫==---=⎪⎪⎪⎝⎭⎝⎭⎝⎭,()135********2(1(1)(1)25952995290P ξ==-⨯⨯+-⨯⨯+-⨯⨯=,()135132596P ξ==⨯⨯=,()()()()43711110231459063P P P P ξξξξ==-=-=-==---=所以的分布列为:ξξ0123P4451337901618.已知分别为三个内角的对边,且.,,a b c ABC ,,A B C ()sin 2sin A B C-=(1)证明:;2222a b c =+(2)若,,,求AM 的长度.2π3A =3a =3BC BM =【答案】(1)证明见解析(2)1AM =【分析】(1)先利用三角形的内角和定理结合两角和差的正弦公式化简,再利用正弦定理和余弦定理化角为边,整理即可得证;(2)在中,由(1)结合余弦定理求出,再在中,利用余弦定理即可得解.ABC ,b c ABM 【详解】(1)由,()()sin 2sin 2sin A B C A B -==+得,sin cos cos sin 2sin cos 2cos sin A B A B A B A B -=+则,sin cos 3cos sin 0A B A B +=由正弦定理和余弦定理得,2222223022a c b b c a a b ac bc +-+-⋅+⋅=化简得;2222a b c =+(2)在中,,ABC 2229a b c bc =++=又因为,所以,所以2222a b c =+222229b c b c bc +=++=b c ==所以,π6B C ==由,得,3BC BM = 13a BM ==在中,,ABM 2222cos 313133a a AM c c B ⎛⎫=+-⨯⋅=+-= ⎪⎝⎭19.如图,正三棱柱的体积为P 是面内不同于顶点的一点,111ABC A B C -AB =111A B C 且.PAB PAC ∠=∠(1)求证:;⊥AP BC (2)经过BC 且与AP 垂直的平面交AP 于点E ,当三棱锥E -ABC 的体积最大时,求二面角平面角的余弦值.1P BC B --【答案】(1)证明见解析.【分析】(1)由线面垂直的判定定理即可证明;(2)由分析知,三棱锥E -ABC 的体积最大,等价于点E 到面ABC 的距离最大,由分析知,∠PFD为二面角的平面角,以F 为原点建立空间直角坐标系,分别求出平面和,代入1P BC B --FP FD即可得出答案.【详解】(1)设线段BC 的中点为F ,则,AF BC ⊥∵,,AP 为公共边,AB AC =PAB PAC ∠=∠∴,PAB PAC △△≌∴,PB PC =∴,又,面APF ,PF BC ⊥AF PF F = ,AF PF ⊂∴BC ⊥面APF ,面APFAP ⊂(2)设线段的中点为D ,由题意,点P 在线段上,11B C 1A D由,111ABC A B C V -=AB =12AA =∴三棱锥E -ABC 的体积最大,等价于点E 到面ABC 的距离最大,∵AP ⊥面BCE ,面BCE ,∴,EF ⊂AP EF ⊥∴点E 在以AF 为直径的圆上,如图,易知,3AF =从而,45EAF EFA ∠=∠=︒由(1)知PF ⊥BC ,DF ⊥BC ,平面,DF 平面,PF ⊂PBC ⊂1BCB 平面平面,PBC1BCB BC =∴∠PFD 为二面角的平面角,1P BC B --如图,以F 为原点建立空间直角坐标系,则,,,,()0,0,0F 330,,22E ⎛⎫⎪⎝⎭()B ()0,1,2P ,()0,0,2D于是,,从而,()0,1,2FP =()0,0,2FD =cos ,FP FD <>==∴二面角.1P BC B --20.已知,两点分别在x 轴和y 轴上运动,且,若动点G 满足()0,0M x ()00,N y 1MN =,动点G 的轨迹为E .2OG OM ON =+(1)求E 的方程;(2)已知不垂直于x 轴的直线l 与轨迹E 交于不同的A 、B 两点,总满足,Q ⎫⎪⎪⎭AQO BQO ∠=∠证明:直线l 过定点.【答案】(1);2214x y +=(2)证明见解析.【分析】(1)根据平面向量的坐标运算可得,结合和两点坐标求距离公式可得002xx y y ==、1MN =,将代入计算即可;22001x y +=002x x y y ==、(2)设直线l 的方程为:、,联立椭圆方程并消去y ,根据韦达定理表y kx m =+()()1122A x y B x y ,、,示出,利用两点求斜率公式求出,结合题意可得,列出关于k 和m1212+、x x x x AQ BQk k 、AQ BQk k =-的方程,化简计算即可.【详解】(1)因为,即,2OG OM ON =+0000(,)2(,0)(0,)(2,)x y x y x y =+=所以,则,002x x y y ==,002xx y y ==又,得,即,1MN =22001x y +=22()12x y +=所以动点G 的轨迹方程E 为:;2214x y +=(2)由题意知,设直线l 的方程为:,,y kx m =+()()1122A x y B x y ,,,则,1122y kx m y kx m=+=+,,消去y ,得,2214x y y kx m ⎧+=⎪⎨⎪=+⎩222(41)8440k x kmx m +++-=由,得,22226416(41)(1)0k m k m ∆=-+->2241m k <+,21212228444141km m x x x x k k --+==++,直线的斜率为,直线的斜率为,AQAQ k =BQ BQ k =又,所以AQO BQO ∠=AQk =BQk-=整理,得,1212120y x x y y y +=12122()()0kx x m x x ++=,2222228(1)80414141km km k mk k k --+=+++由,化简得,2410k +≠m =所以,(y kx k x ==故直线过定点.21.已知函数为的导函数.1()ln (0,0),()f x kx a x x a f x x ->'=-+>()f x (1)当时,求函数的极值;1,2a k ==()f x (2)已知,若存在,使得成立,求证:()1212,(0,)x x x x ∈+∞≠k ∈R ()()12f x f x =.()()120f x f x ''+>【答案】(1)极大值为,无极小值.3-(2)证明见解析【分析】(1),求导,利用函数的单调性及极值的定义求解;1()2ln f x x xx =--+(2)不妨设,因为,所以,结合12x x >()()12f x f x =121212ln 1x x a kx x x x +=-,得()()1222121211112f x f x a k x x x x ⎛⎫''+=+++- ⎪⎝⎭,设, 构造函数()()()2121211222121221212ln x x x x x f x f x ax xx x x x x -⎛⎫''+=+-- ⎪-⎝⎭12(1,)x t x =∈+∞,结合函数的单调性,可证得结论.1()2ln (1)t t t t tϕ=-->【详解】(1)当时,此时,1,2a k ==1()2ln f x x xx =--+则,2211(21)(1)()2x x f x x x x +-'=-+=-当时,,则在单调递增;01x <<()0f x '>()f x (0,1)当时,,则在单调递减;1x >()0f x '<()f x (1,)+∞所以的极大值为,无极小值.()f x (1)3f =-(2)不妨设,因为,12x x >()()12f x f x =则,11221211ln ln kx a x kx a x x x --+=--+即,所以,()12112122ln x x x a k x x x x x -+=-121212ln1x x a k x x x x +=-由,则,21()a f x k x x '=+-()()1222121211112f x f x a k x x x x ⎛⎫''+=+++- ⎪⎝⎭,()()12122212121212ln111112x x f x f x a ax x x x x x x x ⎛⎫ ⎪⎛⎫ ⎪''+=+++-+ ⎪- ⎪⎝⎭ ⎪⎝⎭即,()()12122212121212ln 112112x x f x f x a x x x x x x x x ⎛⎫ ⎪ ⎪''+=+-++-- ⎪ ⎪⎝⎭所以()()()222121211222121212212ln x x x x x f x f x a x x x x x x x -⎛⎫-''+=+-⎪-⎝⎭即,()()()2121211222121221212ln x x x x x f x f x ax x x x x x x -⎛⎫''+=+-- ⎪-⎝⎭设, 构造函数,12(1,)x t x =∈+∞1()2ln (1)t t t t t ϕ=-->则,2221221()10t t t t t t ϕ-+'=+-=>所以在上为增函数,()t ϕ(1,)+∞所以,()(1)0t ϕϕ>=因为,()21222121210,0,0x x a x x x x ->>>-所以.()()120f x f x ''+>【点睛】方法点睛:利用导数证明不等式常见解题策略:(1)构造差函数,根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将问题逐步转化,或利用放缩、等量代换将多元函数转化为一元函数,再通过导数研究函数的性质进行证明.22.“太极图”是关于太极思想的图示,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.在平面直角坐标系中,“太极图”是一个圆心为坐标原点,半径为的圆,其中黑、白区域xOy 4分界线,为两个圆心在轴上的半圆,在太极图内,以坐标原点为极点,轴非负半1C 2C y (2,2)P -x轴为极轴建立极坐标系.(1)求点的一个极坐标和分界线的极坐标方程;P 1C (2)过原点的直线与分界线,分别交于,两点,求面积的最大值.l 1C 2C M N PMN 【答案】(1),:3π4P ⎛⎫ ⎪⎝⎭1C 24sin 0ρρθ-=(2)4【分析】(1)由直角坐标和极坐标的互化公式转化即可;(2)由图形对称性知,,在极坐标系中,求,并求其最大值即可.2PMN POM S S = POM S 【详解】(1)设点的一个极坐标为,,,P (),P P P ρθ0P ρ>[)0,2πP θ∈则,P ρ===2tan 12P P P y x θ===--∵点在第三象限,∴,∴点的一个极坐标为.P 3π4P θ=P 3π4P ⎛⎫ ⎪⎝⎭∵“太极图”是一个圆心为坐标原点,半径为的圆,4∴分界线的圆心直角坐标为,半径为,1C ()10,2C 2r =∴的直角坐标方程为(),即(),1C ()2224x y +-=0x ≥2240x y y +-=0x ≥将,,代入上式,得,,cos x ρθ=sin y ρθ=222x y ρ+=24sin 0ρρθ-=π0,2θ⎡⎤∈⎢⎥⎣⎦化简,得分界线的极坐标方程为,.1C 4sin ρθ=π0,2θ⎡⎤∈⎢⎥⎣⎦(2)∵在上,∴设点的极坐标为,则,,M 1C M (),M M M ρθ4sin MM ρθ=π0,2M θ⎡⎤∈⎢⎥⎣⎦∴的面积POM ()11sin sin 22POM P M P M S OP OM POM ρρθθ=⋅⋅∠=⋅⋅- 13π4sin sin 24M M θθ⎛⎫=⋅- ⎪⎝⎭24sin cos 4sin M M Mθθθ=+()2sin 221cos 2M M θθ=+-2sin 22cos 22M M θθ=-+π224M θ⎛⎫=-+ ⎪⎝⎭∵,∴,π0,2M θ⎡⎤∈⎢⎥⎣⎦ππ3π2,444M θ⎡⎤-∈-⎢⎥⎣⎦∴当,即时,的面积的最大值为.ππ242M θ-=3π8M θ=POM ()max 2POM S = ∵直线过原点分别与,交于点,,∴由图形的对称性易知,,l 1C 2C M N OM ON =∴面积,PMN 2PMN POM S S =∴面积的最大值为.PMN ()()max max 24PMN POM S S == 23.已知,且,证明:0,0,1a b c >>>222422a b c c ++-=(1);24a b c ++≤(2)若,则.2a b =1131b c +≥-【答案】(1)证明见解析(2)证明见解析【分析】(1)由柯西不等式即可证明;(2)由均值的不等式可得,由(1)可得()()11112141911a b c b c b c b c ⎛⎫⎛⎫⎡⎤+++-=++-≥ ⎪ ⎪⎣⎦--⎝⎭⎝⎭,即可证明.11213a b c ≥++-1131b c +≥-【详解】(1)由,得,222422a b c c ++-=2224(1)3a b c ++-=由柯西不等式有,()2222222(2)(1)111(21)a b c a b c ⎡⎤++-++≥++-⎣⎦,当且仅当时等号成立,213a b c ∴++-≤211a b c ==-=,当且仅当时等号成立;24a b c ∴++≤11,,22a b c ===(2)由可得2a b =,()()1111412141559111b c a b c b c b c b c c b -⎛⎫⎛⎫⎡⎤+++-=++-=++≥+= ⎪ ⎪⎣⎦---⎝⎭⎝⎭当且仅当时取等,12c b -=由(1)可得,当且仅当时等号成立,11213a b c ≥++-11,,22a b c ===从而,当且仅当时等号成立.11193121b c a b c +≥⋅≥-++-11,,22a b c ===。
2023高考数学模拟卷(一)(含答案解析)
9.已知抛物线 的焦点为 ,准线为 , 是 上一点,直线 与抛物线交于 两点,若 ,则
A B.8C.16D.
10.已知函数 的图象过点 ,且在 上单调,同时 的图象向左平移 个单位之后与原来的图象重合,当 ,且 时, ,则
A. B.-1C.1D.
11.下图是某四棱锥的三视图,网格纸上小正方形的边长为1,则该四棱锥的外接球的表面积为
20.已知椭圆 的一个焦点为 ,离心率为 .不过原点的直线 与椭圆 相交于 两点,设直线 ,直线 ,直线 的斜率分别为 ,且 成等比数列.
(1)求 的值;
(2)若点 在椭圆 上,满足 直线 是否存在?若存在,求出直线 的方程;若不存在,请说明理由.
21.已程 的两个实数根为 ,求证: ;
设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,
由抛物线的定义可知|MF|=dM=x1+1,|NF|=dN=x2+1,于是|MN|=|MF|+|NF|=x1+x2+2.
∵ ,
∴ ,即 ,∴ .
∴ ,∴直线AB的斜率为 ,
∵F(1,0),∴直线PF的方程为y= (x﹣1),
将y= (x﹣1),代入方程y2=4x,得3(x﹣1)2=4x,化简得3x2﹣10x+3=0,
A. B. C. D.
6.已知 展开式中 的系数为0,则正实数
A.1B. C. D.2
7.已知数列 的前 项和 ,若 ,则
A. B.
C. D.
8.如图是正四面体的平面展开图, 分别是 的中点,在这个正四面体中:① 与 平行;② 与 为异面直线;③ 与 成60°角;④ 与 垂直.以上四个命题中,正确命题的个数是()
贵州省2024年高三下学期高考模拟信息卷数学试题(一)
贵州省2024年高三下学期高考模拟信息卷数学试题(一)学校:___________姓名:___________班级:___________考号:___________二、多选题9.已知01a b <<<,1m >,则( )A .m ma b <B .a bm m >C .log log m ma b>D .log log a bm m>10.在正方体1111ABCD A B C D -中,,,,,M N E F G 分别为11A D ,BC ,11AB ,1BB ,1DD 的中点,则( )A .//MN 平面EFGB .1AC ^平面EFGC .平面1//MGC 平面AFN D .平面EFG ^平面AFN11.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过点F 的直线与C 交于,P Q 两点,点M 为点P 在l 上的射影,线段MF 与y 轴的交点为G ,PG 的延长线交l 于点T ,则( )A .PG MF ^B .TF PQ ^C .||||TM TQ =D .直线PG 与C 相切四、解答题15.如图,在三棱台111ABC A B C -中,1CC ^平面ABC ,AC BC ^,4BC =,111112AC B C CC ===.10.ABC【分析】利用正方体的性质,结合线面面面的相关定理逐一分析判断即可得解.【详解】对于A ,连接1A B ,如图,因为,E F 是11A B ,1BB 的中点,所以1//EF A B ,易知四边形11A BCD 是平行四形边,又,M N 是11A D ,BC 的中点,所以1//MN A B ,故//MN EF ,又MN Ë平面EFG ,EF Ì平面EFG ,所以//MN 平面EFG ,故A 正确;对于B ,连接,AC BD ,如图,在正方体1111ABCD A B C D -中,易知1,BD CC BD AC ^^,又11,,AC CC C AC CC =ÌI 平面1ACC ,所以BD ^平面1ACC ,因为1AC Ì平面1ACC ,故1BD AC ^,又易知//BD GF ,所以1GF AC ^,同理:11A B AC ^,则1EF AC ^,因为GF EF F Ç=,,GF EF Ì平面EFG ,所以1AC ^平面EFG ,对于C ,连接11,A D B C ,所以()h x 在区间(1,2)上单调递减,所以()(1)0h x h <=,即当12x <<时,()(2)g x g x <-.所以()()222g x g x <-,即122x x +<成立.【点睛】极值点偏移问题,通常会构造差函数来进行求解,若等式中含有参数,则先消去参数.。
高三数学-2024年全国普通高中九省联考仿真模拟数学试题(一)(解析版)
2024年高考仿真模拟数试题(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ()A.4B.5C.6D.7【答案】C 【解析】【分析】根据百分位数的定义求解即可.【详解】这组数据为:1,1,,4,5,5,6,7a ,但a 大小不定,因为80.756⨯=,所以这组数据的75%分位数为从小到大的顺序的第6个数和第7个数的平均数,经检验,只有6a =符合.故选:C .2.已知椭圆E :()222210x y a b a b+=>>的长轴长是短轴长的3倍,则E 的离心率为()A.3B.223C.33D.233【答案】B 【解析】【分析】根据题意可得26a b =,再根据离心率公式即可得解.【详解】由题意,26a b =,所以13b a =,则离心率3c e a ====.故选:B .3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =()A.150B.120C.75D.68【答案】D 【解析】【分析】由等差数列的性质及求和公式计算即可得解.【详解】由等差数列的性质可知78910911205a a a a a a ++++==,所以94a =,()1171791717682a a S a +===,故选:D.4.已知空间中,l 、m 、n 是互不相同直线,α、β是不重合的平面,则下列命题为真命题的是()A.若//αβ,l ⊂α,n β⊂,则//l nB.若//l α,//l β,则//αβC.若//m β,//n β,m α⊂,n ⊂α,则//αβD.若l α⊥,//l β,则αβ⊥【答案】D 【解析】【分析】对A 、B 、C 选项,可通过找反例排除,对D 选项,可结合线面平行的性质及面面垂直的判定定理得到.【详解】对A 选项:若//αβ,l ⊂α,n β⊂,则l 可能与n 平行或异面,故A 错误;对B 选项:若//l α,//l β,则α与β可能平行或相交,故B 错误;对C 选项:若//m β,//n β,m α⊂,n ⊂α,可能//m n ,此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p ,又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选:D.5.7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有()种站排方式.A.672 B.864 C.936 D.1056【答案】D 【解析】【分析】分甲站在每一排的两端和甲不站在每一排的两端这两种情况解答即可.【详解】当甲站在每一排的两端时,有4种站法,此时乙的位置确定,剩下的人随便排,有554A 480=种站排方式;当甲不站在每一排的两端时,有3种站法,此时乙和甲相邻有两个位置可选,丙和甲不相邻有四个位置可选,剩下的人随便站,有1142443C C A 576=种站排方式;故总共有4805761056+=种站排方式.故选:D .6.在平面直角坐标系xOy 中,已知()1,0A ,()0,3B ,动点P 满足OP xOA yOB =+,且1x y +=,则下列说法正确的是()A.P 的轨迹为圆B.P 到原点最短距离为1C.P 点轨迹是一个菱形D.点P 的轨迹所围成的图形面积为4【答案】C 【解析】【分析】由题意得3x ab y =⎧⎪⎨=⎪⎩,结合1x y +=可知33a b +=,画出图形可知P 点轨迹是一个菱形,故C错误A 正确;由点到直线的距离即可验证B ;转换成ABC 面积的两倍来求即可.【详解】设P 点坐标为(),a b ,则由已知条件OP xOA yOB =+ 可得3a x b y =⎧⎨=⎩,整理得3x a b y =⎧⎪⎨=⎪⎩.又因为1x y +=,所以P 点坐标对应轨迹方程为33a b +=.0a ≥,且0b ≥时,方程为33a b +=;0a ≥,且0b <时,方程为33b a =-;a<0,且0b ≥时,方程为33b a =+;a<0,且0b <时,方程为33a b +=-.P 点对应的轨迹如图所示:3AB CD k k ==-,且AB BC CD DA ====P 点的轨迹为菱形.A 错误,C 正确;原点到AB :330a b +-=1.10=<B 错误;轨迹图形是平行四边形,面积为122362⨯⨯⨯=,D 错误.故选:C .7.已知函数()3sin 44sin 436f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,设()00,,()x x f x f x ∀∈∃∈≤R R ,则02tan 43x π⎛⎫-⎪⎝⎭等于()A.43-B.34-C.34D.43【答案】B 【解析】【分析】根据诱导公式得到()f x 最大值,即得到关于0x 的关系式,代入02tan 43x π⎛⎫-⎪⎝⎭利用诱导公式即可.【详解】()3sin 44sin 43sin(4)4sin(4)36323f x x x x x πππππ⎛⎫⎛⎫=++-=++-++ ⎪ ⎪⎝⎭⎝⎭,()3sin(4)4cos(433f x x x ππ∴=+++,4()5sin(4)(tan 33f x x πϕϕ∴=++=,max 5()f x =∴,()00,,()x x f x f x ∀∈∃∈≤R R ,0234(Z)2k k x πππϕ+=+∈+∴,0213tan 4tan(2)32tan 4x k πππϕϕ⎛⎫∴-=-+-=-=- ⎪⎝⎭.故选:B.8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,离心率为e ,直线(0)y kx k =≠分别与C 的左、右两支交于点M ,N .若1MF N 的面积为160MF N ∠=︒,则22e 3a +的最小值为()A.2B.3C.6D.7【答案】D 【解析】【分析】作出辅助线,121F NF MF N S S == 124NF NF ⋅=,利用双曲线定义和余弦定理求出21243b F N F N ⋅=,求出23b =,进而求出22223e 31317a a a +=++≥+=.【详解】连接22,NF MF ,有对称性可知:四边形12MF NF 为平行四边形,故2112,NF MF NF MF ==,12120FNF ∠=︒,121F NFMF N S S ==由面积公式得:121sin1202NF NF ⋅︒=124NF NF ⋅=,由双曲线定义可知:122F N F N a -=,在三角形12F NF 中,由余弦定理得:()222221212121212244cos12022F N F N F N F N cF N F N c F N F N F N F N-+⋅-+-︒==⋅⋅2121224122F N F N b F N F N ⋅-==-⋅,解得:21243b F N F N ⋅=,所以2443b =,解得:23b =,故22223e 31317a a a +=++≥+=,当且仅当2233a a=,即21a =时,等号成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()2sin sin 2f x x x=-,则下列结论正确的有()A.()f x 为奇函数B.()f x 是以π为周期的函数C.()f x 的图象关于直线π2x =对称 D.π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x的最大值为22-【答案】AD 【解析】【分析】对于A ,由正弦函数的奇偶性即可判断;对于B ,判断()()πf x f x +=是否成立即可;对于C ,判断ππ22f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭是否成立即可;对于D ,可得π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,由此即可得解.【详解】对于A ,()2sin sin 2f x x x =-的定义域为()π,2k x k ≠∈Z (关于原点对称),且()()()()22sin sin sin 2sin 2f x x x f x x x ⎛⎫-=--=--= ⎪-⎝⎭,对于B ,()()()()22πsin πsin sin 2sin 2πf x x x f x x x +=+-=--≠⎡⎤+⎣⎦,故B 错误;对于C ,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫+=+-=+⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭+ ⎪⎢⎥⎝⎭⎣⎦,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫-=--=-⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭- ⎪⎢⎥⎝⎭⎣⎦,但ππ22f x f x ⎛⎫⎛⎫+≠-⎪ ⎪⎝⎭⎝⎭,即()f x 的图象不关于直线π2x =对称,故C 错误;对于D ,π0,4x ⎛⎤∈ ⎥⎝⎦时,sin ,sin 2y x y x ==均单调递增,所以此时2sin 2y x=-也单调递增,所以π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,其最大值为π2242f ⎛⎫=- ⎪⎝⎭.故选:AD.10.已知复数1z ,2z ,则下列命题成立的有()A.若1212z z z z +=-,则120z z = B.11,Z nnz z n =∈C.若22120z z +=,则12=z z D.1212z z z z ⋅=⋅【答案】BCD 【解析】【分析】举例说明判断A ;利用复数的三角形式计算判断B ;利用复数的代数形式,结合模及共轭复数的意义计算判断CD.【详解】对于A ,当121i,1i =+=-z z 时,12122z z z z +==-,而1220z z =≠,A 错误;对于B ,令1(cos isin ),0,R z r r θθθ=+≥∈,则1(cos isin )n nz r n n θθ=+,于是1|||cos isin |nnnz r n n r θθ=+=,而1||z r =,即有1||nnz r =,因此11nnz z =成立,B 正确;设复数1i(,R)z a b a b =+∈,2i(,)z c d c d =+∈R ,对于C ,由22120z z +=,得2222()(22)i 0a b c d ab cd -+-++=,则22220220a b c d ab cd ⎧-+-=⎨+=⎩,2222120z z -=-=,因此12=z z ,C 正确;对于D ,21(i)(i)()()i z a b c d ac bd c z ad b ⋅=++=-++,则21()()i z ac bd a b z d c ⋅=--+,12(i)(i)()()i z z a b c d ac bd ad bc ⋅=--=--+,因此1212z z z z ⋅=⋅,D 正确.故选:BCD11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则()()f x f y ≠.则()A.()0f 的值为2B.()()4f x f x +-≥C.若()13f =,则()39f = D.若()410f =,则()24f -=【答案】ABC 【解析】【分析】对于A ,令0x y ==,结合“若x y ≠,则()()f x f y ≠”即可判断;对于B ,由基本不等式相关推理结合()2040f =>即可判断;对于C ,令1y =得,()()()1332f x f x f x +++=+,由此即可判断;对于D ,令()1xf x =+,即可判断.【详解】对于A ,令0x y ==,得()()23002f f =+⎡⎤⎣⎦,解得()01f =或()02f =,若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,但这与②若x y ≠,则()()f x f y ≠矛盾,所以只能()02f =,故A 正确;对于B ,令y x =-,结合()02f =得,()()()()()()22f x f x f x f x f x f x ⎛⎫+-+-=⋅-≤ ⎪⎝⎭,解得()()4f x f x +-≥或()()0f x f x +-≤,又()02f =,所以()2040f =>,所以只能()()4f x f x +-≥,故B 正确;对于C ,若()13f =,令1y =得,()()()1332f x f x f x +++=+,所以()()121f x f x +=-,所以()()2161521f f =-=-=,所以()()21101932f f =-=-=,故C 正确;对于D ,取()1xf x =+,则()()11232xyx yx yf x f y +⎡⎤⎡⎤+++=+++⎢⎥⎢⎥⎣⋅=⎣+⎦⎦()()()f x y f x f y +++=且()1xf x =+单调递增,满足()410f =,但()423f -=,故D 错误.故选:ABC.【点睛】关键点睛:判断D 选项的关键是构造()1xf x =+,由此即可证伪.三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}2,0,1M =-,{}1N x x a =-<,若M N ⋂的真子集的个数是1,则正实数a 的取值范围为______.【答案】()()0,11,3 【解析】【分析】分{}0M N = 和{}2M N = 讨论即可.【详解】{}1N x x a =-<,则11x a -<-<,解得11a x a -+<<+,若M N ⋂的真子集的个数是1,则M N ⋂中只含有一个元素,因为a 为正实数,则11a +>,11a -+>-,若{}0M N = ,则10120a a a -+<⎧⎪+≤⎨⎪>⎩,解得01a <<,若{}2M N = ,则012120a a a ≤-+<⎧⎪+>⎨⎪>⎩,解得13a <<,综上所述,a 的取值范围为()()0,11,3 .故答案为:()()0,11,3 .13.已知正四棱台1111ABCD A B C D -的上、下底面边长分别为4、6,则正四棱台1111ABCD A B C D -的体积为______,外接球的半径为______.【答案】①.3②.【解析】【分析】利用棱台的体积公式计算即可得第一空,根据棱台与球的特征结合勾股定理计算即可得第二空.【详解】根据题意易知该棱台的上、下底面积分别为:2212416,636S S ====,所以正四棱台1111ABCD A B C D -的体积为()12176233V S S =++=;连接AC ,BD 交于点2O ,连接11A C ,11B D 交于点1O,如图所示:当外接球的球心O 在线段12O O 延长线上,设1OO h =,外接球半径为R,则(222O O h =-,因为12=O O ,上、下底面边长分别为4、6,则111112==D O B D 212DO BD ==,所以(22222112R D O h DO h h R =+=+-⇒==当外接球的球心O 在线段21O O 延长线上,显然不合题意;当球心O 在线段12O O 之间时,则)222O O h =,同上可得,h =故答案为:3.14.若sin 0αβγ+-=+-的最大值为______.【答案】【解析】≤=消去α、β求最大值即可,再应用三角函数的单调性即可得.【详解】由题意得:0sin 1αβγ≤+=≤,0α≥,0β≥,则()22αβαβαβαβ=+++++=+,当且仅当αβ=时等号成立,+≤=≤,则有0sin 10cos 1γγ≤≤⎧⎨≤≤⎩,则π2π2π2k k γ≤≤+,Z k ∈,有sin γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,单调递增,cos γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递减,π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递增,则当π2π2k γ=+时,即sin 1γ=、cos 0γ=时,,+-的最大值为..【点睛】本题关键在于如何将多变量求最值问题中的多变量消去,结合基本不等式与题目条件可将α、β消去,再结合三角函数的值域与单调性即可求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.函数()e 2xf x ax a =--.(1)讨论函数的极值;(2)当0a >时,求函数()f x 的零点个数.【答案】(1)答案见解析(2)答案见解析【解析】【分析】(1)求导后,分别在0a ≤和0a >的情况下得到()f x '正负,进而得到()f x 单调性,由极值定义可求得结果;(2)由(1)可知()f x 单调性,分别讨论极小值大于零、等于零和小于零的情况,结合零点存在定理可得结论.【小问1详解】由题意得:()e 2xf x a '=-;当20a ≤,即0a ≤时,()0f x ¢>恒成立,()f x \在R 上单调递增,无极值;当20a >,即0a >时,令()0f x '=,解得:ln 2x a =,∴当(),ln 2x a ∈-∞时,()0f x '<;当()ln 2,x a ∈+∞时,()0f x ¢>;()f x \在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增,()f x \的极小值为()ln 22ln 2f a a a a =-,无极大值;综上所述:当0a ≤时,()f x 无极值;当0a >时,()f x 极小值为2ln 2a a a -,无极大值.【小问2详解】由(1)知:当0a >时,()f x 在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增;当02a <<时,()ln 22ln 20f a a a a =->,()0f x ∴>恒成立,()f x 无零点;当a =时,()ln 22ln 20f a a a a =-=,()f x 有唯一零点ln 2x a =;当2a >时,()ln 22ln 20f a a a a =-<,又()010f a =->,当x 趋近于正无穷大时,()f x 也趋近于正无穷大,()f x \在()0,ln 2a 和()ln 2,a +∞上各存在一个零点,即()f x 有两个零点;综上所述:当e 02a <<时,()f x 无零点;当2a =时,()f x 有且仅有一个零点;当e 2a >时,()f x 有两个不同的零点.16.已知n 把相同的椅子围成一个圆环;两个人分别从中随机选择一把椅子坐下.(1)当12n =时,设两个人座位之间空了X 把椅子(以相隔位子少的情况计数),求X 的分布列及数学期望;(2)若另有m 把相同的椅子也围成一个圆环,两个人从上述两个圆环中等可能选择一个,并从中选择一把椅子坐下,若两人选择相邻座位的概率为114,求整数(),3,3m n m n >>的所有可能取值.【答案】(1)分布列见解析,数学期望为2511(2)9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩【解析】【分析】(1)根据题意得到随机变量X 可以取0,1,2,3,4,5,并计算出相应的概率,列出分布列,利于期望公式计算即可;(2)利于概率求得两人选择相邻座位的概率,建立方程后依据条件可求得整数解即可.【小问1详解】由题意,得随机变量X 可以取0,1,2,3,4,5,其中()()21212220,1,2,3,4A 11P X i i ⨯====,()21212115A 11P X ⨯===,所以随机变量X 的分布列为:X012345P 211211************故()2222212501234511111111111111E X =⨯+⨯+⨯+⨯+⨯+⨯=.【小问2详解】记“两人选择n 把相同的椅子围成的圆环”为事件A ,“两人选择m 把相同的椅子围成的圆环”为事件B ,“两人选择相邻座位”为事件C .因为两个人从上述两个圆环中等可能选择一个,所以()()1111,2244P A P B =⨯==,()()()()()()()P C P AC P BC P A P C A P B P C B =+=+()()12121114141211n m n n m m n m ⨯⨯⎛⎫=⨯+⨯=+ ⎪----⎝⎭.因为()114P C =,所以111117n m +=--.化简,得4988n m =+-.因为*3,3,m n n >>∈N ,所以498m ∈-Z ,且4958m >--.所以81,7,49m -=,即9,15,57m =,此时9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩所以,m n 的所有可能取值为9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩17.如图,在多面体ABCDEF 中,底面ABCD 为平行四边形,//EF 平面AB CD -,EAB 为等边三角形,22,60BC CE AB EF ABC ===∠=︒.(1)求证:平面EAB ⊥平面ABCD ;(2)求平面ECD 与平面FCD 夹角的余弦值.【答案】(1)证明见解析(2)31010【解析】【分析】(1)根据面面垂直的判定定理证明即可;(2)建立空间直角坐标系,利用向量的方法即可求得平面平面ECD 与平面FCD 的夹角的余弦值.【小问1详解】不妨设1AB =,则2BC CE ==,在平行四边形ABCD 中,2BC = ,1AB =,60ABC ∠=︒,连接AC ,由余弦定理得22212211cos 603AC =+-⨯⨯⨯︒=,即3AC =,222AC AB BC += ,AC AB ∴⊥.又 222AC AE CE +=,AC AE ∴⊥,AB AE A = ,AC ⊥平面EAB ,又 AC ⊂平面ABCD .∴平面EAB ⊥平面ABCD .【小问2详解】取AB 中点G ,连接EG ,EA EB = ,EG AB ∴⊥,由(1)易知EG ⊥平面ABCD ,且32EG =.如图,以A 为原点,分别以射线,AB AC 所在直线为,x y 轴,竖直向上为z 轴,建立空间直角坐标系A xyz -,则1,0,22E ⎛⎫ ⎪ ⎪⎝⎭,0,,22F ⎛⎫ ⎪ ⎪⎝⎭,()C,()D -,()12,B -,(11,C -,()1,0,0CD =- ,330,,22FC ⎛⎫=- ⎪ ⎪⎝⎭,1322EC ⎛⎫=-- ⎪ ⎪⎝⎭ ,设平面FCD 的法向量为(),,n x y z = ,则00n CD n FC ⎧⋅=⎪⎨⋅=⎪⎩ ,得0022x y z -=⎧-=⎩,令1y =,得()0,1,1n = ,设平面ECD 的法向量为()111,,m x y z = ,则00m CD m EC ⎧⋅=⎪⎨⋅=⎪⎩ ,得1111013022x x z -=⎧⎪⎨-+-=⎪⎩,令11y =,得()0,1,2m =,310cos ,10m n m n m n ⋅===⋅ ,所以平面ECD 与平面FCD 夹角的余弦值31010.18.已知抛物线C :22y px =(05p <<)上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程;(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若12344S S S S =,求直线AB 的方程.【答案】(1)22y x=(2)10x -=【解析】【分析】(1)结合抛物线定义即可.(2)设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程联立得12y y +,12y y .将每条直线表达出来,1S 、2S 、3S 、4S 表达出来,再由12344S S S S =得出m 即可.【小问1详解】设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.【小问2详解】如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y==,∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==.又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,∴12342242S S S S m =+=,得m =,∴直线AB的方程为1x =+即10x ±-=.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.【答案】(1)(5){478}A =,,,(5)=3s .(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到(5)A 及(5)s ;(2)先得到11()i s a ≤,故12111()()()n n s a s a s a +++≤ ,再由12111()()()n n s a s a s a +++= 得到()1i s a =,从而证明出结论;(3)由题意得i j i a a +=或i j j a a +=,令1j =,得到32a a =或31a a =,当a b =时得到12n a a a na +++= ,当a b ¹时,考虑3a a =或3a b =两种情况,求出答案.【小问1详解】因为4785a a a ===,所以{}(5)4,7,8A =,则(5)=3s ;【小问2详解】依题意()1,12i s a i n ≥=,,, ,则有11()i s a ≤,因此12111()()()n n s a s a s a +++≤ ,又因为12111()()()n n s a s a s a +++= ,所以()1i s a =所以12,,,n a a a 互不相同.【小问3详解】依题意12,.a a ab ==由()i i j A a +∈或()j i j A a +∈,知i j i a a +=或i j j a a +=.令1j =,可得1i i a a +=或11i a a +=,对于2,3,...1i n =-成立,故32a a =或31a a =.①当a b =时,34n a a a a ==== ,所以12n a a a na +++= .②当a b ¹时,3a a =或3a b =.当3a a =时,由43a a =或41a a =,有4a a =,同理56n a a a a ==== ,所以12(1)n a a a n a b +++=-+ .当3a b =时,此时有23a a b ==,令13i j ==,,可得4()A a ∈或4()A b ∈,即4a a =或4a b =.令14i j ==,,可得5()A a ∈或5()A b ∈.令23i j ==,,可得5()A b ∈.所以5a b =.若4a a =,则令14i j ==,,可得5a a =,与5a b =矛盾.所以有4a b =.不妨设23(5)k a a a b k ====≥ ,令1(2,3,,1)i t j k t t k ==+-=-, ,可得1()k A b +∈,因此1k a b +=.令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=.所以12(1)n a a a n b a +++=-+ .综上,a b =时,12n a a a na +++= .3a a b =≠时,12(1)n a a a n a b +++=-+ .3a b a =≠时,12(1)n a a a n b a +++=-+ .【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。
高三数学模拟题
高三数学模拟题数学仿真模拟试卷(一)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 1.已知直线x =k(k>0)和圆(x -1)2+y 2=4相切,那么k 的值是 ( )A .5B .4C .3D .22.函数)22cos(π+=x y 的图象的一条对称轴方程是( )A .x =2π-B .x =4π-C .x =8πD .x =π3.向量a =(1,2),b =(x ,1), u =a +2b ,u b a v 且,2-=∥v ,则x 的值是 ( ) A .21B .21-C .61D .61-4.已知x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z=x+2y 的最小值为( )A .-3B .3C .-5D .5 5.椭圆5x 2+ky 2=5的一个焦点是(0,2),则k 等于 ( ) A 、-1 B 、1 C 、5 D 、5- 6.不等式0|)|1)(1(>-+x x 的解集是 ( )A 、{x|0≤x<1}B 、{x|x<0且x ≠-1}C 、{x|-1<x<1}D 、{x|x<1且x ≠-1} 7.,1010221010.....)2(x a x a x a a x ++++=-则293121020)....()....(a a a a a a +++-+++的值为 ( )A 、0B 、-1C 、1D 、10)12(-8.已知m ,l 是异面直线,给出下列四个命题:①必存在平面α,过m 且与l 都平行;②必存在平面 β,过m 且与l 垂直;③必存在平面r ,与m ,l 都垂直;④必存在平面w, 与m ,l的距离都相等。
其中正确的结论是 ( )A .①②B .①③C .②③D .①④9.过圆x y x 1022=+内一点(5,3)有k 条长度成等差数列的弦,且最小弦长为首项1a ,最大弦长为末项n a ,若公差d 满足d ]21,31[∈,则k 的取值不可能是( ) A.4 B.5 C.6 710.关于x 的函数c bx ax x y +++=23有与y 轴垂直的切线,则b a ,的关系是( )A.b a 32< B.b a 32≥ C.23b a > D.23b a ≤ 11.正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则那个棱柱的侧面对角线E 1D 与BC 1所成的角是 ( )A 、900B 、600C 、450D 、300 12.设函数f(x)是定义在R 上的以3为周期的奇函数,若f(x)>1,f(2)=132+-a a ,则( ) A. a<32 B. a<132-≠a 且 C. a>132-<a 或 D. -1<a<32二、填空题 (本大题共4小题,每小题4分,共16分。
2024届广东省新改革高三模拟高考预测卷一(九省联考题型)数学试卷(1)
一、单选题二、多选题1.下列函数中,在上单调递增的是( )A.B.C.D.2. 设全集,,集合,则集合( )A.B.C.D.3. 与直线和圆都相切的半径最小的圆的方程是A.B.C.D.4. 函数的定义域为( )A.B.C.D.5. 已知某圆锥的母线长为3,则当该圆锥的体积最大时,其侧面展开图的圆心角的弧度数为( )A.B.C.D.6. 已知,,若,则向量的夹角的余弦值为( )A.B.C.D.7. 设全集,集合,集合,则图中阴影部分所示的集合是()A.B.C.D.8.某车间生产一种圆台型纸杯,其杯底直径为,杯口直径为,高为ℎ,将该纸杯装满水(水面与杯口齐平),现将一直径为的小铁球缓慢放入杯中,待小铁球完全沉入水中并静止后,从杯口溢出水的体积为纸杯容积的,则( )A.B.C.D.9.在的展开式中,则( )A .二项式系数最大的项为第3项和第4项B .所有项的系数和为0C.常数项为D .所有项的二项式系数和为6410.已知正方体的棱长为分别是棱的中点,是棱上的一动点,则( )A .存在点,使得B.对任意的点C.存在点,使得直线与平面所成角的大小是D .对任意的点,三棱锥的体积是定值11.已知正项数列的前n 项和为,且有,则下列结论正确的是( ).2024届广东省新改革高三模拟高考预测卷一(九省联考题型)数学试卷(1)2024届广东省新改革高三模拟高考预测卷一(九省联考题型)数学试卷(1)三、填空题四、解答题A.B .数列为等差数列C.D.12. 已知曲线的方程为,则下列结论正确的是( )A .当时,曲线为椭圆,其焦距为B .当时,曲线为双曲线,其离心率为C .存在实数使得曲线为焦点在轴上的双曲线D .当时,曲线为双曲线,其渐近线与圆相切13. 已知平面向量,,若,则___________.14.已知函数,则不等式的解集为____15.在中,角,,的对边分别为,,,已知,,则_______________.16. 某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:cm ).经统计,高度均在区间[20,50]内,将其按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50]分成6组,制成如图所示的频率分布直方图,其中高度不低于40cm的树苗为优质树苗.(1)已知所抽取的这100棵树苗来自甲、乙两个地区,部分数据如下2×2列联表所示,将列联表补充完整,并根据列联表判断是否有99.9%的把握认为优质树苗与地区有关?(2)用样本估计总体的方式,从这批树苗中随机抽取4棵,期中优质树苗的棵数记为X ,求X 的分布列和数学期望.甲地区乙地区合计优质树苗5非优质树苗25合计附:K 2=,其中n =a +b +c +dP (K 2≥k 0)0.0250.0100.0050.001k 05.0246.6357.87910.82817. 已知函数在处取得极值,其中.(Ⅰ)求的值;(Ⅱ)当时,求的最大值.18. 如图,在三棱锥中,平面平面,为等腰直角三角形,其中,为中点.(1)证明:平面平面;(2)已知,二面角的大小为,求三棱锥的体积.19. 已知数列满足.(1)求的通项公式;(2)在和之间插入n个数,使这个数构成等差数列,记这个等差数列的公差为,求数列的前n项和.20. 设函数,.(1)若函数在上单调递增,求的取值范围;(2)设函数,若对任意的,都有,求的取值范围;(3)设,点是函数与的一个交点,且函数与在点处的切线互相垂直,求证:存在唯一的满足题意,且.21. 已知函数.(1)求的定义域;(2)设是锐角,且,求的值.。
高三数学模拟题(含答案)
数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.注意事项:1.答卷前,考生务必用2B铅笔和0.5毫米黑色签字笔(中性笔)将XX、XX号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.参考公式:球的表面积为: 2S4R,其中R为球的半径.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i是虚数单位,复数2i1i的实部为A.2B.2C.1D.12.设全集UR,集合 2Mx|ylg(x1),Nx|0x2,则N(e U M)A.x|2x1B.x|0x1C.x|1x1D.x|x13.下列函数中周期为且为偶函数的是A.ysin(2x)B.ycos(2x)C.ysin(x)D.ycos(x)22224.设S n是等差数列a n的前n项和,a12,a53a3,则S9A.90B.54C.54D.725.已知m、n为两条不同的直线,、为两个不同的平面,则下列命题中正确的是A.若lm,ln,且m,n,则lB.若平面内有不共线的三点到平面的距离相等,则//正视图左视图-1-俯视图C.若m,mn,则n//D.若m//n,n,则m6.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是A.16B.14C.12D. 87.已知抛物线错误!未找到引用源。
的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,错误!未找到引用源。
高考数学模拟复习试卷试题模拟卷第1课时等差数列的前n项和2 14
高考模拟复习试卷试题模拟卷第1课时等差数列的前n项和课后篇巩固探究A组1.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设Sn是等差数列{an}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{an}的通项公式为an=2n37,则Sn取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{an}的前n项和为Sn(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{an},{bn}的前n项和分别为An与Bn,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{an}是等差数列,Sn为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{an}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=2,a1=20,∴S10=10a1+d=0=110.答案:1107.在等差数列{an}中,前n项和为Sn,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶S奇=3015=15,于是d=3.答案:39.若等差数列{an}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{an}的首项a1和公差d;(2)求数列{an}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=2.(2)S10=10×a1+d=10.10.导学号33194010已知数列{an}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为Sn,求Sn的最大值;(3)当Sn是正数时,求n的最大值.解(1)∵数列{an}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得<d<,又d∈Z,∴d=4.(2)∵d<0,∴{an}是递减数列.又a6>0,a7<0,∴当n=6时,Sn取得最大值,即S6=6×23+×(4)=78.(3)Sn=23n+×(4)>0,整理得n(252n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{an}为等差数列,公差d=2,Sn为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11S10=a11=0,a11=a1+10d=a1+10×(2)=0,所以a1=20.答案:B2.(全国1高考)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3②,得(2115)d=24,即6d=24,所以d=4.答案:C3.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{an}的通项公式是an=12n,其前n项和为Sn,则数列的前11项和为()A.45B.50C.55D.66解析:∵Sn=,∴=n,∴的前11项和为(1+2+3+…+11)=66.故选D.答案:D5.已知等差数列{an}前9项的和等于前4项的和.若a1=1,ak+a4=0,则k=.解析:设等差数列{an}的公差为d,则an=1+(n1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=.又a4=1+3×,ak=1+(k1)d,由ak+a4=0,得+1+(k1)d=0,将d=代入,可得k=10.答案:106.已知数列{an}为等差数列,其前n项和为Sn,且1+<0.若Sn存在最大值,则满足Sn>0的n的最大值为.解析:因为Sn有最大值,所以数列{an}单调递减,又<1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足Sn>0的n的最大值为19.答案:197.导学号33194012在等差数列{an}中,a1=60,a17=12,求数列{|an|}的前n项和.解数列{an}的公差d==3,∴an=a1+(n1)d=60+(n1)×3=3n63.由an<0得3n63<0,解得n<21.∴数列{an}的前20项是负数,第20项以后的项都为非负数.设Sn,Sn'分别表示数列{an}和{|an|}的前n项和,当n≤20时,Sn'=Sn==n2+n;当n>20时,Sn'=S20+(SnS20)=Sn2S20=60n+×32×n2n+1260.∴数列{|an|}的前n项和Sn'=8.导学号33194013设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.(1)求数列{an}的通项公式及前n项和公式;(2)设数列{bn}的通项公式为bn=,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{an}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以an=1+(n1)×2=2n1,Sn=n×1+×2=n2.(2)由(1)知bn=,所以b1=,b2=,bm=.若b1,b2,bm(m≥3,m∈N)成等差数列,则2b2=b1+bm,所以,即6(1+t)(2m1+t)=(3+t)(2m1+t)+(2m1)(1+t)(3+t),整理得(m3)t2(m+1)t=0,因为t是正整数,所以(m3)t(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
安徽省滁州市部分高中2024届高三5月高考模拟题(一)数学试题
安徽省滁州市部分高中2024届高三5月高考模拟题(一)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 作圆222x y a +=的切线,与双曲线的左、右两支分别交于点,P Q ,若2||QF PQ =,则双曲线渐近线的斜率为( ) A .±1B .()31±-C .()31±+D .5±2.若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ). A .21B .63C .13D .843.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为 A .171.25cm B .172.75cm C .173.75cmD .175cm4.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )A .6.25%B .7.5%C .10.25%D .31.25%5.函数()()241xf x x x e =-+⋅的大致图象是( )A .B .C .D .6.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .17.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( ) A .4711B .4712C .4713D .47158.已知复数z 满足()125z i ⋅+=(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9.已知3sin 2cos 1,(,)2παααπ-=∈,则1tan21tan 2αα-=+( ) A .12-B .2-C .12D .210.若直线不平行于平面,且,则( )A .内所有直线与异面B .内只存在有限条直线与共面C .内存在唯一的直线与平行D .内存在无数条直线与相交11.已知函数()(2)3,(ln 2)()32,(ln 2)xx x e x f x x x ⎧--+≥⎪=⎨-<⎪⎩,当[,)x m ∈+∞时,()f x 的取值范围为(,2]e -∞+,则实数m的取值范围是( ) A .1,2e -⎛⎤-∞ ⎥⎝⎦B .(,1]-∞C .1,12e -⎡⎤⎢⎥⎣⎦D .[ln 2,1]12.已知变量x ,y 间存在线性相关关系,其数据如下表,回归直线方程为 2.10.5ˆ8y x =+,则表中数据m 的值为( )A .0.9B .0.85C .0.75D .0.5二、填空题:本题共4小题,每小题5分,共20分。
辽宁省部分高中2023届高三下学期普通高考模拟考试(一)数学试题
f
x
f
y
f
xy
1
xy
,且
f
1 2
1
.当
x 0,1 时, f x 0 ,则( )
A. f 0 0
B. f x 是偶函数
C. f x 为增函数
D.当
xn
0 ,且
xn1
2 xn2
xn
1
,
x1
1 2
时,
f
xn
2n1
三、填空题 13.为了比较甲、乙、丙、丁四组数据的线性相关性的强弱,小明分别计算了甲、乙、
设点 D 为 AC 的中点,连接 BD , BC .则
|
AD |
T
1,|
BD
|
2
| OA |
2a sin(0
π )
3a .
2
3
因为 VABC 是等腰直角三角形,
所以 | AD || BD | ,
所以 a 3 3
故选:C.
7.D
【分析】设 A(x0 , y0 ) , B x1, y1 ,则 D x1, y1 ,将点 A, B 的坐标代入椭圆方程作差得到
为
1 4
,求点
B
到平面
AB1E
的距离.
21.已知双曲线 C :
x2 a2
y2 b2
1,a
0,b
0 的一条渐近线方程是 x 2 y
0 ,坐标原点
试卷第 4 页,共 5 页
到直线 AB 的距离为 2 5 ,其中 Aa, 0 , B 0, b . 5
(1)求双曲线 C 的标准方程;
(2)过点 D 2,1 直线 l 与双曲线 C 交于 M,N 两个不同的点,过 M 作 x 轴的垂线分别交
高三数学高考模拟考试卷一试题
2021届中学高三数学高考模拟考试卷一创 作人:历恰面 日 期: 2020年1月1日一、选择题:〔本大题一一共10小题,每一小题5分,一共计50分〕1、集合},159|),{(},4)},{(2222=+==+=y x y x N y x y x M 那么有 〔 〕 A .N M ⊆ B .N M ⊇ C .Φ=⋂N M D .M N M =⋂ 2、圆C 与圆22(1)1x y +-=关于直线1x y +=对称,那么圆C 的方程为〔 〕A . 22(1)1x y ++= B . 22(1)1x y ++= C . 22(1)1x y -+= D. .22(1)1x y +-= 3、给出下面四个命题:①“直线a 、b 为异面直线〞的充分非必要条件是:直线a 、b 不相交; ②“直线l 垂直于平面α内所有直线〞的充要条件是:l ⊥平面α; ③“直线a ⊥b 〞的充分非必要条件是“a 垂直于b 在平面α内的射影〞;④“直线a ∥平面β〞的必要非充分条件是“直线a 至少平行于平面β内的一条直线〞. 其中正确命题的个数是〔 〕A .1个B .2个C .3个D .4个4、设)(x f 、)(x g 在[a ,b]上存在导数,且)()(x g x f '>',那么当b x a <<时,有〔 〕 A .)()(x g x f >B .)()(x g x f <C .)()()()(a f x g a g x f +>+D .)()()()(b f x g b g x f +>+5、两位同学去某大学参加自主招生考试,根据右图负责人与他们两人的对话,可推断出参加考试的人数为 〔 〕A .19B .20C .21D .226、定义在R上的周期函数()f x ,其周期T=2,直线2x =是它的图象的一条对称轴,且()[]3,2f x --在上是减函数.假如A、B是锐角三角形的两个内角,那么〔 〕A.()()sin cos f A f B > B.()()cos sin f B f A > C.()()sin sin f A f B > D.()()cos cos f B f A >7、数列{}n a 是各项为正数的等比数列,{}n b 是等差数列,且67a b =,那么〔 〕 A .39410a a b b +≤+ B .39410a a b b +≥+C .39410a a b b +≠+D .39a a +与410b b +的大小不确定。
2023年高考数学全真模拟试卷01(新高考专用)(解析版)
2023年高考数学全真模拟试卷01(新高考专用)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅰ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.(2022秋·天津南开·高三南开翔宇学校校考期末)设全集为{}270U x N x x =∈-<,{}2,3,5UA =,{}2,5,6B =,则()UAB =( )A .{}1,4B .{}2,5C .{}6D .{}1,3,4,6 【答案】A【分析】把{}270U x N x x =∈-<化简,分别求出集合A ,UB ,然后求解()U A B ∩.【解析】{}{}{}270071,2,3,4,5,6U x N x x U x N x =∈-<∴=∈<<=又{}{}2,3,51,4,6U A A =∴=,又{}{}2,5,61,3,4U B B =∴=(){}1,4UAB ∴=,故选:A2.(2023秋·河北·高三统考阶段练习)复数()()231i 1i --在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【分析】根据复数的四则运算法则化简后,即可确定复数()()231i 1i --在复平面内对应的点的坐标,进而判断其所在象限.【解析】()()()()()232221i 1i 1i i 12i i 2i 1i 2i 2i 2i 2----==-⋅=+=+---,则复数()()231i 1i --在复平面内对应的点的坐标为()2,2-,位于第四象限,故选:D.3.(2023秋·黑龙江牡丹江·高三牡丹江市第三高级中学校考阶段练习)已知向量a ,b 满足1a =,2b =,且3a b +=,则a 与b 的夹角为( )A .π6B .2π3C .5π6 D .π3【答案】B【分析】先求得数量积1a b ⋅=-,再利用向量夹角公式即可求得a 与b 的夹角. 【解析】因为3a b +=,所以()22222523a b a ba b a b a b +=+=++⋅=+⋅=,则1a b ⋅=-.则11cos ,122a b a b a b⋅-===-⨯⋅. 又因为[],0,π∈a b ,所以2,π3a b =,即a 与b 的夹角为2π3.故选:B. 4.(2023秋·天津南开·高三崇化中学校考期末)我国著名数学家华罗庚曾说过:“数无形时少直观,形无数时难入微;数形结合百般好,隔离分家万事休”.函数()32sin22xx x f x +=的部分图像大致为( ) A . B . C .D .【答案】A【分析】根据函数的奇偶性和特殊点的函数值,即可得解. 【解析】∵()32sin22xx xf x += ,x ∈R , 33||||()2sin(2)2sin 2()()22x x x x x xf x f x --+-+-==-=- ,则()f x 是奇函数,其图像关于原点对称,排除选项B 、D ; 对12sin 2(1)02f +=> 故可排除选项C .故选:A . 5.(2022秋·宁夏吴忠·高三青铜峡市高级中学校考期末)已知等差数列{}n a 前9项的和为1027,8a =,则90a =( ) A .87 B .89C .88D .90【答案】C【分析】根据已知条件求得公差d ,从而求得正确答案. 【解析】设等差数列{}n a 的公差为d ,因为()199195927,22a a S aa a +⨯==+=,所以53a =.又因为108a =,所以1051105a a d -==-. 故()90109010188a a =+-⨯=.故选:C6.(2023秋·山西吕梁·高三统考期末)已知3ππ,2α⎛⎫∈ ⎪⎝⎭,若22sin 291cos 2αα+=-,则cos sin cos sin αααα+=-( )A .3-B .3C .97D .97-【答案】B【分析】由题知sin 0,cos 0αα<<,进而结合二倍角公式整理得sin cos 3sin ααα+=,即2sin cos αα=,再代入求解即可.【解析】因为3ππ,2α⎛⎫∈ ⎪⎝⎭,sin 0,cos 0αα<<,()()()()222221sin 2212sin cos sin cos 22sin 291cos 22sin sin 112sin αααααααααα++++====---,所以sin cos 3sin ααα+=,即2sin cos αα=所以cos sin 2sin sin 3cos sin 2sin sin αααααααα++==--.故选:B 7.(2023·全国·郑州中学校考模拟预测)设120231e 2023a =,2024ln2023b =,sin(0.2023)c =︒,则( )A .c b a >>B .a b c >>C .b a c >>D .c a b >>【答案】D【分析】构造函数()()()e ln 1,0,1xf x x x x =-+∈,利用导数确定函数的单调性可得()12023111e ln 100202320232023f f ⎛⎫⎛⎫=-+>= ⎪ ⎪⎝⎭⎝⎭,即可判断,a b 大小关系;估计实数12023与0.2023π0.2023180︒=的大小关系及大致倍数关系,构造函数()1e sin 6,0,1000xh x x x x ⎛⎫=-∈ ⎪⎝⎭,利用导数确定单调性可得()12023111e sin 600202320232023h h ⎛⎫⎛⎫=-⨯<= ⎪ ⎪⎝⎭⎝⎭,从而结合正弦函数的单调性可比较,a c 大小,即可得结论.【解析】设()()()e ln 1,0,1x f x x x x =-+∈,则()()11e 1xf x x x =+-+', 设()()()11e 1x g x f x x x==+-+',则()()()212e 01x g x x x =++>+'恒成立, 所以()f x '在()0,1上单调递增,所以()()00f x f ''>=恒成立,则()f x 在()0,1上单调递增,故()12023111e ln 100202320232023f f ⎛⎫⎛⎫=-+>= ⎪ ⎪⎝⎭⎝⎭,即12023112024e ln 1ln 202320232023⎛⎫>+= ⎪⎝⎭,所以a b >; 因为10.000494322023≈,0.2023π0.20230.0035308160.00049432180︒=≈>⨯, 则10.202362023︒>⨯,设()1e sin 6,0,1000x h x x x x ⎛⎫=-∈ ⎪⎝⎭,则()()1e 6cos6xh x x x '=+-,又设()()()1e 6cos6xm x h x x x ==-'+,故()()2e 12sin60xm x x x =++>'恒成立,所以()h x '在10,1000x ⎛⎫∈ ⎪⎝⎭上单调递增,所以()110001111e 6cos 0100010001000h x h ⎛⎫⎛⎫<=+-< ⎪ ⎪⎝'⎭⎝⎭'恒成立,则()h x 在10,1000⎛⎫ ⎪⎝⎭上单调递减,则()12023111e sin 600202320232023h h ⎛⎫⎛⎫=-⨯<= ⎪ ⎪⎝⎭⎝⎭,1202311e sin 620232023⎛⎫<⨯ ⎪⎝⎭ 又()1sin 6sin 0.20232023⎛⎫⨯<︒ ⎪⎝⎭,则()120231e sin 0.20232023<︒,即c a >; 综上,c a b >>.故选:D .8.(2022·全国·统考高考真题)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A .13B .12C D 【答案】C【分析】方法一:先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值. 【解析】[方法一]:【最优解】基本不等式设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅=(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r又设四棱锥的高为h ,则22r h 1+=,2123O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立.故选:C[方法二]:统一变量+基本不等式由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a ,底面所在圆的半径为r则r =,所以该四棱锥的高h =13V a = (当且仅当22142a a =-,即243a =时,等号成立)所以该四棱锥的体积最大时,其高h ==.故选:C .[方法三]:利用导数求最值由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a ,底面所在圆的半径为r则r =,所以该四棱锥的高h =13V a =令2(02)a t t =<<,V ()322t t f t =-,则()2322t f t t -'=, 403t <<,()0f t '>,单调递增, 423t <<,()0f t '<,单调递减,所以当43t =时,V最大,此时h =.故选:C.【整体点评】方法一:思维严谨,利用基本不等式求最值,模型熟悉,是该题的最优解;方法二:消元,实现变量统一,再利用基本不等式求最值;方法三:消元,实现变量统一,利用导数求最值,是最值问题的常用解法,操作简便,是通性通法.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2023秋·山西吕梁·高三统考期末)近年来、新冠疫情波及到千家万户,人们的生活方式和习惯不得不发生转变,短视频成了观众空闲时娱乐活动的首选.某电影艺术中心为了解短视频平台的观众年龄分布情况,向各大短视频平台的观众发放了线上调查问卷,共回收有效样本4000份,根据所得信息制作了如图所示的频率分布直方图,则下列说法正确的是( )A .图中0.028a =B .在4000份有效样本中,短视频观众年龄在10~20岁的有1320人C .估计短视频观众的平均年龄为32岁D .估计短视频观众年龄的75%分位数为39岁 【答案】CD【分析】根据频率和为1可构造方程求得a ,知A 错误;由频率和频数的关系可求得观众年龄在10~20岁的人数,知B 正确;由平均数和百分位数的估计方法可验证知CD 正确. 【解析】对于A ,()0.0150.0330.0110.011101a ++++⨯=,0.03a ∴=,A 错误;对于B ,由频率分布直方图知:短视频观众年龄在10~20岁的人对应频率为0.15,∴短视频观众年龄在10~20岁的有40000.15600⨯=人,B 错误;对于C ,平均年龄()0.015150.033250.03350.011450.011551032x =⨯+⨯+⨯+⨯+⨯⨯=,C 正确;对于D ,设75%分位数为x ,则()0.015100.03310300.030.75x ⨯+⨯+-⨯=, 解得:39x =,D 正确.故选:CD.10.(2023·全国·高三专题练习)(多选题)如图,在正方体1111ABCD A B C D -中,点P 在线段1BC 上运动,给出下列判断正确的是( )A .直线1B D ⊥平面1ACD ; B .1A P ∥平面1ACD ;C .异面直线1A P 与1AD 所成角的范围是π0,3⎛⎤⎥⎝⎦;D .三棱锥1D APC -的体积不变 【答案】ABD【分析】对于A ,利用线面垂直的判定定理证明判断; 对于B ,利用线面平行和面面平行的判定定理证明判断;对于C ,分P 与线段1BC 的B 端和1C 端以及线段1BC 的中点重合判断;对于D ,由11D APC P ACD V V --=,结合1BC ∥平面1AD C 判断. 【解析】对于A ,如图所示:连接BD ,根据正方体的性质,∵1BB ⊥平面ABCD ,且AC ⊂面ABCD ,∴1BB AC ⊥,又∵BD AC ⊥,且1BD BB B ⋂=,∴AC ⊥面1BB D , ∴1AC B D ⊥,连接1A D ,根据正方体的性质,∵11A B ⊥平面11A D DA ,且1AD ⊂面11A D DA ,∴111A B AD ⊥; 又∵11AD A D ⊥,且1111A B A D A =,∴1AD ⊥面11A B D , ∴11AD B D ⊥,且1ACAD A =,∴直线1B D ⊥平面1ACD ,故A 正确 对于B ,如图所示:连接111,A B A C ,在正方体中,∵AC ∥11A C , 且AC ⊂平面1ACD ,11AC ⊂/平面1ACD ,∴11A C ∥平面1ACD ,同理可证1BC ∥平面1ACD , 又∵11A C 、1BC ⊂平面11BA C ,且1111=AC BC C ,∴平面11//BA C 平面1ACD ,又∵1A P ⊂平面11BA C ,∴1//A P 平面1ACD ,故B 正确;对于C ,当P 与线段1BC 的B 端重合时,异面直线1A P 与1AD 所成角为11A BC ∠,∵11A BC 为等边三角形,∴11π3BC A =∠; 当P 与线段1BC 的1C 端重合时,异面直线1A P 与1AD 所成角为11AC B ∠,∵11A BC 为等边三角形,∴11π3AC B ∠=; ∴当P 与线段1BC 的中点重合时,1A P 与1AD 所成角取最大值,∴11A PC ∠为异面直线1A P 与1AD 所成角,又∵111A B AC =, 且P 为线段1BC 的中点,∴11π2A PC ∠=,故1A P 与1AD 所成角的范围是ππ,32⎡⎤⎢⎥⎣⎦,故C 错误;对于D ,11D APC P ACD V V --=,∵1BC ∥1AD , 且1BC ⊂/平面1AD C ,1AD ⊂平面1AD C ,∴1BC ∥平面1AD C ,∴点P 到平面1ACD 的距离不变,且1ACD △的面积不变, 所以三棱锥1P ACD -的体积不变,故D 正确;故选:ABD.11.(2023秋·河北·高三统考阶段练习)已知函数21e 1()e x x f x +-=,()f x '为()f x 的导函数,则( )A .方程()f x x =只有一个实根B .()f x '的最小值为2eC .函数()()()f x G x f x '=的值域为(1,1)- D .函数()()()F x f x f x '=⋅为偶函数【答案】BC【分析】由零点存在定理可知方程()f x x =不止一个实根;利用()f x ''的正负,求出()f x '的单调性,进而求得()f x '的最小值;利用分离常数法,求得2()1e 21x G x =+-,根据指数函数及不等式的性质即可求出函数的值域;2222()e e x x F x ---=-,而()()F x F x -=-不符合偶函数的定义.【解析】对于A ,方程()f x x =,即2111e 1e e 0ex x x x x x ---+---==-,显然0x =是方程的一个根,令()11ee x x x g x ---=--,由于()0201e e 1g --=-<,()1302e e 2g --=->,根据零点存在定理可知,函数()g x 在()1,2上有一个零点, 因此方程()f x x =不只有一个实根,A 选项错误;对于B ,2111e 1()e e ex x x x f x ---+-=-=,则()1111()e e e 1e 1+x x x x f x ------'⋅-⋅=-=,()1111()e 11e e e x x x x f x ------'==-'⋅+⋅-,令()0f x ''=,即110e e x x ----=,解得0x =,当0x <时,()0f x ''<,所以()f x '在(),0∞-上单调递减, 当0x >时,()0f x ''>,所以()f x '在()0,∞+上单调递增,因此()f x '的最小值为112+e(0)e e f --'==,B 选项正确; 对于C ,1122112221122+111()e e e e ()1()e e e e e x x x x x x x x x f x G x f x --------+-'====+-++=, 22222122011010220e 11e e e e 1x x x x x >⇒+>⇒<<⇒<<⇒-<-<+++, 则2111e 21x -<-<+,所以函数()G x 的值域为(1,1)-,C 选项正确; 对于D ,()()11112222()()()e e e e ee +x x x x x x F xf x f x ---------'-==-⋅= 而()22222222()ee e e ()x x x x F x F x ------=-==----,所以函数()()()F x f x f x '=⋅不是偶函数,D 选项错误;故选:BC.12.(2023·湖南岳阳·统考一模)已知抛物线23y x =上的两点()00,A x y ,()()000,0B x y x -≠及抛物线上的动点(),P x y ,直线PA ,PB 的斜率分别为1k ,2k ,坐标轴原点记为O ,下列结论正确的是( )A .抛物线的准线方程为32x =-B .三角形AOB为正三角形时,它的面积为C .当0y 为定值时,1211k k -为定值D .过三点()000,A y ,()000,B y -,()()000,00C x x ≠的圆的周长大于3π 【答案】BCD【分析】由抛物线方程判断A ,根据正三角形求出直线OA 斜率,联立抛物线求点A 坐标即可判断B ,直接计算1211k k -结合,A P 在抛物线方程上化简可判断C ,根据题意及圆的性质求出半径,结合点A 在抛物线上可得出半径范围,即可判断D.【解析】对A ,由抛物线23y x =知准线方程为34x =-,故A 错误;对B ,当三角形AOB 为正三角形时,不妨设A 在第一象限,则π6AOx ∠=,直线AO方程为y =,联立23y x =,可得009,x y ==故0||22AB y ==⨯=2||AOB S AB ==△B 正确; 对C ,001200,y y y y k k x x x x -+==--,当0y 为定值时 00000000022000020103((122)2)2)()()()331(x x x x y y x x y x x y x x y y y y k y y y y y k y x x -----===-+-+---=-=为定值,故C 正确;对D ,因为圆过三点()000,A y ,()000,B y -,()()000,00C x x ≠,所以可设圆心为(,0)a ,则0R x a =-=22000()()2y x ax =-,故20003()2x x ax =-,因为00x ≠,所以0230x a =+>,即32a >-,故0332R x a a =-=+>,所以圆的周长32π2π3π2R >⨯=,故D 正确.故选:BCD第Ⅰ卷三、填空题:本题共4小题,每小题5分,共20分13.(2023秋·广东·高三校联考阶段练习)()8111x x ⎛⎫-+ ⎪⎝⎭的展开式中2x 项的系数为___.(用数字作答)【答案】28-【分析】由二项式展开式的通项公式求解即可 【解析】()81x +的展开式通项为818C rrr T x-+=,所以22867C 28T x x ==,53368C 56T x x ==.故所求2x 的系数为1285628⨯-=-.14.(2023·广西梧州·统考一模)直线:l y x =与圆()()()222:120C x y a a -+-=>交A ,B 两点,若ABC 为等边三角形,则a 的值为______.【分析】结合几何关系和点到直线的距离即可求解.【解析】由条件和几何关系可得圆心C 到直线:l y x =a =. 15.(2022秋·宁夏吴忠·高三青铜峡市高级中学校考期末)已知()2e e x xmf x -=满足()()0f x f x -+=,且()f x 在()(),n f n 处的切线与21y x =+平行,则m n +=__________.【答案】1【分析】根据()()0f x f x -+=,可得函数()f x 是R 上的奇函数,从而可求得m ,再根据导数的几何意义可得()2f n '=,从而可求得n ,即可得出答案.【解析】函数()2e e x xmf x -=的定义域为R ,因为()()0f x f x -+=,所以函数()f x 是R 上的奇函数,所以()010f m =-=,解得1m =,经检验成立所以()2e 1e x xf x -=,则()()22222e e e 1e e 1e e x x x xx xxf x ⋅--+'==, 因为()f x 在()(),n f n 处的切线与21y x =+平行,所以()2e 12e n nf n +'==,解得0n =,所以1m n +=.16.(2022秋·江苏徐州·高三期末)已知椭圆C :()222210x y a b a b+=>>,经过原点O 的直线交C 于A ,B 两点.P 是C 上一点(异于点A ,B ),直线BP 交x 轴于点D .若直线AB ,AP 的斜率之积为49,且BDO BOD ∠=∠,则椭圆C 的离心率为______.【分析】设点的坐标,求斜率,由题知220022222211x y a b m n a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,化简得22AP BP b k k a ⋅=-,结合BDO BOD ∠=∠,知2249AP ABb k k a ⋅==,再利用222c a b =-及离心率公式即可求解. 【解析】设()00,P x y ,(),A m n ,(),B m n --,则直线AP 的斜率为00y n x m --,BP 的斜率为00y nx m++,由题知220022222211x y a b m n a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22220022x m y n a b --=-, 即200200x m y n a y n b x m +-=-⨯+-,即221AP BP a k k b =-⨯,即22AP BP b k k a⋅=-, 又BDO BOD ∠=∠,则AB BP k k =-,即22AP ABb k k a⋅=, 即2249b a =,则2249b a =,所以2222224599c a b a a a =-=-=,即2259c a =,则椭圆C的离心率为c a =四、解答题:本小题共6小题,共70分。
高三数学高考模拟试题及答案
高三数学高考模拟试题及答案第一部分选择题1. 已知函数 $f(x) = \dfrac{x^2 - 4}{x - 2}$,则 $f(x)$ 的极限为()A. $\dfrac{1}{2}$B. $-2$C. $+\infty$D. $-\infty$2. 如图,对数函数 $y=\log_{\frac{1}{2}}(x-1)$ 的图像经过两点 $P(4,3)$,$Q(8,y)$。
则 $y=$()A. 3B. 5C. 6D. 73. 在 $\triangle ABC$ 中,$AB=3$,$BC=\dfrac{5}{2}$,$\angle C=90^\circ$,$D$ 为 $BC$ 的中点,$E$ 为 $AC$ 上一点,$BE$ 延长线交 $AD$ 于点 $F$。
则 $EF=$()A. $\dfrac{5}{3}$B. $\dfrac{25}{24}$C. $\dfrac{7}{4}$D. $\dfrac{17}{8}$4. 已知函数 $f(x)=\dfrac{2\sin x+\cos x}{\sin x-2\cos x}$,则$f\left(\dfrac{\pi}{2}+x\right)=$()A. $1+f(x)$B. $1-f(x)$C. $f(x)-1$D. $-1-f(x)$5. 已知 $x>2$,$\log_2{(2x-3)}+\log_2{(x+1)}=4$,则 $x=$()A. 3B. 5C. 7D. 9答案:1. D2. B3. B4. A5. C第二部分简答题1. 证明 $x+y\geqslant 2\sqrt{xy}$ 为二次函数 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$ 的非负性。
2. 已知 $a^2+b^2=1$,求 $\dfrac{5a+12b}{13}$ 的最大值。
3. 在动态规划中,解决问题的一般步骤是什么?4. 概率统计中,什么是贝叶斯公式?其应用场景有哪些?5. 对于某个事件的先验概率为 $p(A)$,我们观测到了该事件发生,且得到了一个新的条件概率,那么它的后验概率为什么?答案:1. 将二次函数化为顶点式 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$,则$y\geqslant 0$。
2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)含解析
2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)一、单选题1.已知集合{}220|A x x x =-<,集合{}210|2x B x -=-≤,则A B ⋃=()A .{}|02x x <<B .{}2|0x x <≤C .{}|2x x <D .{}2|x x ≤【正确答案】D【分析】根据一元二次不等式以及指数不等式化简集合,A B ,由集合的并运算即可求解.【详解】由于22021022202x x x x ---≤⇒≤⇒-≤⇒≤所以{}|02A x x =<<,{}|2B x x =≤,所以{}|2A B x x ⋃=≤.故选:D.2.已知复数1z ,2z ,“21z z >”是“211z z >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】D【分析】根据充分条件和必要条件的定义求解.【详解】若21z z >,可得复数1z ,2z 都为实数,当120z z <<时,211z z <,充分性不成立;反之,若211z z >取复数11i z =+,222i z =+,满足2121z z =>,但此时复数1z ,2z 均为虚数,不能比较大小,必要性不成立,所以“21z z >”是“211z z >”的既不充分也不必要条件;故选:D.3.若函数923log ,14()1,123x x f x x x x ⎧->⎪⎪=⎨⎪≤⎪++⎩,则523f f ⎡⎤=⎪⎢⎥⎢⎣⎛ ⎝⎦⎭⎥⎫()A .517B .175C .417D .174【正确答案】C【分析】根据自变量的取值,即可代入到分段函数中,计算即可.【详解】由于5231>,所以5522935313log 34442f ⎛⎫=-=-= ⎪⎝⎭,故5211431217134f f f ⎡⎤⎛⎫==⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+⎪⎭+⎛⎫ ⎝=,故选C.4.2021年5月22日上午10点40分,祝融号火星车安全驶离着陆平台,到达火星表面,开始巡视探测.为了帮助同学们深入了解祝融号的相关知识,某学校进行了一次航天知识讲座,讲座结束之后,学校进行了一次相关知识测试(满分100分),学生得分都在[]50,100内,其频率分布直方图如下,若各组分数用该组的中间值代替,估计这些学生得分的平均数为()A .70.2B .72.6C .75.4D .82.2【正确答案】C【分析】根据题意,由频率之和为1,可得m 的值,然后结合平均数的计算公式,代入计算,即可得到结果.【详解】由条件可得()0.0040.0540.0120.010101m ++++⨯=,则0.020m =,故得分的平均数为.()0.004550.020650.054750.012850.010951075.4⨯+⨯+⨯+⨯+⨯⨯=故选:C5.中国国家大剧院的外观被设计成了半椭球面的形状.如图,若以椭球的中心为原点建立空间直角坐标系,半椭球面的方程为2222221x y z a b c++=(0,z ≥,,,0a b c >,且a ,b ,c 不全相等).若该建筑的室内地面是面积为2(0)m m π>的圆,给出下列结论:①a b =;②c m =;③2ac m =;④若ac m >,则1c >,其中正确命题的个数为()A .1B .2C .3D .4【正确答案】B【分析】根据已知得a b m ==,结合题设判断各项正误即可.【详解】在2222221x y z a b c ++=中,令0z =可得该建筑室内地面对应的曲线方程为22221x y a b+=,由室内地面是面积为2πm (0)m >的圆,故a b =,①对;且22ππa m =,则a b m ==,又,,a b c 不全相等,故c m ≠,②错;若2ac m =,则2mc m =,可得c m =,与,,a b c 不全相等矛盾,③错;若ac m >,则0mc m >>,故1c >,④对.故选:B.6.已知α是第三象限角,3cos 2sin 2αα+=,则tan α=()A .24B 33C 3D .22【正确答案】A【分析】根据α是第三象限角,3cos 2sin 2αα+=,利用二倍角公式整理得26sin sin 10αα--=,求得sin α,再利用基本关系求解.【详解】∵α是第三象限角,3cos 2sin 2αα+=,∴()2312sin sin 2αα-+=,∴26sin sin 10αα--=,解得1sin 3α=-或1sin 2α=(舍去),∴22cos 1sin 3αα=--=-,∴2tan 4α=,故选:A.7.直线:40l ax by +-=与圆22:4O x y +=相切,则22(3)(4)a b -+-的最大值为()A .16B .25C .49D .81【正确答案】C【分析】利用圆与直线的位置关系得出,a b 的方程,根据方程分析利用22(3)(4)a b -+-表示的几何意义求解即可.【详解】由直线l 与圆O 相切可得:圆心()0,0O 到直线l 的距离等于圆的半径,2=,故224a b +=,即点(,)a b 在圆O 上,22(3)(4)a b -+-的几何意义为圆上的点(,)a b 与点(3,4)之间距离的平方,由224a b +=圆心为()0,0,因为22344+>,所以点(3,4)在圆224a b +=外,所以点(,)a b 到点(3,4)的距离的最大值为圆心到(3,4)的距离与圆半径之和,即27d r +=,所以22(3)(4)a b -+-的最大值为2749=.故选:C.8.为了提高同学们对数学的学习兴趣,某高中数学老师把《周髀算经》、《九章算术》、《孙子算经》、《海岛算经》这4本数学著作推荐给学生进行课外阅读,若该班A ,B ,C 三名同学有2名同学阅读其中的2本,另外一名同学阅读其中的1本,若4本图书都有同学阅读(不同的同学可以阅读相同的图书),则这三名同学选取图书的不同情况有()A .144种B .162种C .216种D .288种【正确答案】A【分析】利用排列组合公式进行合理分类讨论即可.【详解】分两种情况:第一种情况,先从4本里选其中2本,作为一组,有24C 种,第二组从第一组所选书籍中选1本,再从另外2本中选取1本作为一组,剩余一本作为一组,再分给3名同学,共有211342231C C C A 2方法;第二种情况:从4本里任选2本作为一组,剩余的两本作为一组,有224222C C A 种分法,分给3名同学中的2名同学,有23A 种分法,剩余1名同学,从这4本中任选一本阅读,有14C 种分法,共有2221423422C C A C A ⋅种方法.故这三名同学选取图书的不同情况有222113214242233422C C 1C C C A A C 1442A +⋅=种.故选:A.二、多选题9.已知函数()sin cos (0)f x x x ωωω=+>的最小正周期为π2,若12()()2f x f x =-,则()A .()f x 关于直线1x x =对称B .()f x 关于点2(,0)x 对称C .12x x +的最大值为π2D .12x x +的最小值为π8【正确答案】AD【分析】根据辅助角公式化简()f x ,利用周期的公式求解4ω=,进而根据12()()2f x f x =-可判断12,x x x x ==为()f x 的对称轴,即可判断AB,利用对称中心可求解DC.【详解】由π()sin cos cos )4f x x x x ω=+=+的最小正周期为π2可得2ππ2ω=,即4ω=,故π())4f x x =+,由12()()2f x f x =-可得1()f x ,2()f x 分别为()f x 的最大值和最小值,故()f x 关于直线1x x =对称,不关于点2(,0)x 对称,故A 正确,B 错误;由()π4πZ 4x k k +=∈可得()1πZ 416x kx k =-∈,故()f x 的对称中心()1ππ,0Z 416k k ⎛⎫-∈ ⎪⎝⎭,则121π1π2ππ,Z 41628x x n n n +=-=-∈,当0n =时,12x x +取得最小值π8,没有最大值,故C 错误,D 正确.故选:AD10.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长为2,过C 上点P 的直线l 与C 的渐近线分别交于点A ,B ,且点P 为AB 的中点,则下列正确的是()A .若(,)P m n 且直线l 的斜率存在,直线l 的方程为21mynx a -=B .若(2,1)P ,直线l 的斜率为1C.若离心率e =2OAB S=△D .若直线l 的斜率不存在,2AB =【正确答案】BCD【分析】根据点差法可得直线的斜率,进而可判断A ,利用A 选项的求解可判断B ,利用离心率可得渐近线方程,进而联立直线AB 与渐近线方程得交点坐标,利用三角形面积公式以及双曲线方程可判断C ,根据顶点和渐近线方程可求解D.【详解】由题意1b =,双曲线222:1x C y a-=.对于A ,若(,)P m n ,则2221m n a-=,即2222m a n a -=.设11(,)A x y ,22(,)B x y ,则221120x y a -=,222220x y a -=,利用点差法可得121222212122()2ABy y x x m m k x x a y y a n a n-+===-+=,所以直线l 的方程为y n -=2()mx m a n-,即2222a ny a n mx m -=-,所以22222mx a ny m a n a -=-=,即21mxny a -=,故A 错误;对于B ,若(2,1)P ,可得222211a -=,则a =l 的斜率为22121m a n ==⨯,即B 正确;对于C,若离心率222,2c e c a b a==+,可得2a =.则双曲线22:14x C y -=,其渐近线方程为2xy =±,设11(,)2x A x ,22(,2xB x -,直线()()121112:22x x x AB y x x x x +=-+-,令121220,x xy x x x ==+,则121221122212221OAB x x x x x x S x x +=+=△,由A 知AB 方程为14mxny -=,联立方程142mxny x y ⎧-=⎪⎪⎨⎪=⎪⎩可得142x m n =-,同理可得242x m n =+,所以1211442222OAB S x x m n m n ==⨯-+△2288244m n ===-,故C 正确;对于D ,若直线l 的斜率不存在,则直线l 过双曲线的顶点,所以(,0)P a ±,双曲线的渐近线方程为1y x a=±,当x a =±时,代入渐近线方程易得A ,B 两点的纵坐标为1±,所以2AB =,故D 正确;故选:BCD.11.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,点P ,Q ,M 分别为11A D ,11C D ,BC 的中点,下列结论正确的有()A .//AC 平面PQMB .该四棱柱有外接球,则四边形ABCD 为正方形C .BC 与平面PQM 不可能垂直D .BD QM⊥【正确答案】ABC【分析】根据线线平行即可判断A ,利用外接圆的对角互补,则可判断B ,利用反证法,结合线面垂直的性质定理可判断C,D.【详解】对A ,连接11AC ,由点P ,Q ,分别为11A D ,11C D 可得11//ACPQ ,11111////.AA BB CC AA BB CC == ,所以四边形11A ACC 为平行四边形,则11//AC AC ,故//AC PQ ,AC ⊄平面PQM ,PQ ⊂平面PQM ,则//AC 平面PQM ,即A 正确;对B ,若四棱柱有外接球,则四边形ABCD 有外接圆,则ABCD 对角互补,则ABCD 为正方形,即B 正确;对C ,若BC ⊥平面PQM ,PQ ⊂平面PQM ,则BC PQ ⊥,由//PQ AC 可得BC AC ⊥,与条件矛盾,故BC 与平面PQM 不可能垂直,即C 正确;对D ,取CD 的中点N ,连接MN ,QN ,则//MN BD ,1//QN CC ,1CC ⊥ 平面ABCD ,QN ∴⊥平面ABCD ,MN ⊂ 平面ABCD ,QN MN ∴⊥,90QNM ∴∠=︒,则90QMN ∠<︒,故BD 与QM 不垂直,即D 错误.故选:ABC.12.设()f x 是定义在R 上的偶函数,其图象关于直线2x =对称,当[0,2]x ∈时,2()f x x =,若方程()4log (5)(0,1)a f x x a a >=+≠在[]4,6-上恰有5个实数解,则()A .()f x 的周期为4B .()f x 在[]8,10上单调递减C .()f x 的值域为[]0,2D .711a <<【正确答案】AD【分析】由对称性与奇偶性得到函数的周期性,即可判断A 、B ,结合所给函数解析式求出函数的值域,即可判断C ,画出函数()y f x =与4log (5)(1)a y x a =+>的图象,数形结合,即可判断D.【详解】由()f x 的图象关于2x =对称可得(4)()f x f x +=-,再由()f x 为偶函数可得()()f x f x -=,故()(4)f x f x =+,即()f x 的周期为4,即A 正确;当[0,2]x ∈时,由2()f x x =,可得()f x 在[0,2]上单调递增,故()f x 在[]8,10上单调递增,即B 错误;又(0)0f =,(2)4f =,故()f x 的值域为[]0,4,即C 错误;在同一坐标系下画出函数()y f x =与4log (5)(1)a y x a =+>的图象如图所示.由图可知,要使()y f x =与()4log (5)b g x x =+在[]4,6-上恰有5个不同交点,只需()()24641g g a ⎧<⎪>⎨⎪>⎩,即log 71log 1111a a a <⎧⎪<⎨⎪>⎩,解得711a <<,即a 的取值范围为()7,11,故D 正确.故选:AD三、填空题13.已知O 为ABC 的外心,若2OA =,且75BAC ∠=︒,则OB OC ⋅=__________.【正确答案】23-【分析】由平面向量数量积公式进行求解.【详解】由圆的性质可得2150BOC BAC ∠=∠=︒,2OA OB OC ===,故cos 22cos15023OB OC OB OC BAC ⋅=⋅∠=⨯⨯︒= 故23-14.若函数4()ln 42mxf x x-=-的图象关于原点对称,则实数m 的值为__________.【正确答案】2-【分析】根据奇函数的性质根据()()f x f x -=-,即可求解.【详解】依题意,()()f x f x -=-,即44ln ln 4242mx mxx x-+=-+,所以442424mx x x mx +-=+-,解得2m =±,当2m =时,42()ln42xf x x-=-,定义域{}2x x ≠不关于原点对称,故舍去,当2m =-时,42()ln 42xf x x+=-,定义域为{}22x x -<<,符合要求,故2m =-,故2-15.函数33()sincos sin cos 2222x x x xf x =-的最小值为__________.【正确答案】14-/0.25-【分析】根据二倍角公式化简()1sin 24f x x =-,即可求解最值.【详解】因为33()sin cos sin cos 2222x x x x f x =-22sin cos sin cos 2222x x x x ⎛⎫=-= ⎪⎝⎭1sin cos 2x x -1sin 24x =-,所以当π22π,Z 2x k k =+∈时,sin 21x =,此时()f x 的最小值为14-.故14-四、双空题16.如图,在三棱锥A BCD -中,AB CD ⊥,AD BC ⊥,且3BD AC =,点E ,F 分别为AD ,BC 的中点,则异面直线AC 与BD 所成角的大小为__________,AC 与EF 所成角的余弦值为__________.【正确答案】90︒10【分析】根据异面直线夹角的定义作辅助线,构造三角形.【详解】取AB 的中点G ,连接EG ,FG ,则//FG AC ,//EG BD ,故EFG ∠或其补角为异面直线AC 与EF 所成的角,过A 作AO ⊥平面BCD 于点O ,连接BO ,CO ,DO ,则AO CD ⊥,又AB CD ⊥,且AB AO A = ,故CD ⊥平面AOB ,故BO CD ⊥,同理可得DO BC ⊥,即O 为BCD △的垂心,故BD CO ⊥,又AO BD ⊥,AO CO O = ,AO ⊂平面AOC ,CO ⊂平面AOC ,故BD ⊥平面AOC ,故AC BD ⊥,即AC 与BD 所成角为90︒;所以90EGF ∠=︒,由3BD AC =可得3EG FG =,故cos FG EFG EF ∠==即异面直线AC 与EF故①90︒,②10.五、解答题17.已知n S 是公差不为0的等差数列{}n a 的前n 项和,2a 是1a ,4a 的等比中项,1278S =.(1)求数列{}n a 的通项公式;(2)已知1213n a n n b a --=⋅,求数列{}n b 的前n 项和n T .【正确答案】(1)n a n=(2)(1)31nn T n =-⨯+【分析】(1)根据题意列式求解1,a d ,即可得结果;(2)由(1)可得:1(21)3n n b n -=-⨯,利用错位相减法求和.【详解】(1)设数列{}n a 的公差为d ,因为2a 是1a ,4a 的等比中项,则2214a a a =,即2111()(3)a d a a d +=+,且0d ≠,整理得1d a =①,又因为121121211782dS a =+⨯⨯=,整理得163339a d +=②由①②解得,11a =,1d =,所以()11n a n n =+-=.(2)由(1)知,()11213213n n n n b a n ---=⨯=-⨯,则021133353(21)3n n T n -=⨯+⨯+⨯+⋅⋅⋅+-⨯,可得12313133353(23)3(21)3n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得0123121323232323(21)3n nn T n --=⨯+⨯+⨯+⨯+⋅⋅⋅+⨯--⨯16(13)1(21)313n n n --=+--⨯-(22)32n n =-⨯-,所以(1)31nn T n =-⨯+.18.为了了解大家对养宠物的看法,某单位对本单位450名员工(其中女职工有150人)进行了调查,发现女职工中支持养宠物的职工占13,若从男职工与女职工中各随机选取一名,至少有1名职工支持养宠物的概率为12.(1)求该单位男职工支持养宠物的人数,并填写下列22⨯列联表;支持养宠物不支持养宠物合计男职工女职工合计450(2)依据小概率值0.05α=的独立性检验,能否认为该单位职工是否支持养宠物与性别有关?附:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.α0.100.050.0100.001x α2.7063.8416.63510.828【正确答案】(1)表格见解析(2)不能认为该单位职工是否支持养宠物与性别有关【分析】(1)运用对立事件列方程求出男职工支持养宠物的概率p ,再求出男职工中支持养宠物的人数;(2)根据卡方公式求解.【详解】(1)从男职工中随机选取1人,设支持养宠物的概率为p ,则2人中至少有一名支持养宠物是都不支持养宠物的对立事件,∴111(1)(1)32p ---=,解得14p =,则男职工中支持养宠物的人数为1300745⨯=,22⨯列联表如下:支持养宠物不支持养宠物合计男职工75225300女职工50100150合计125325450(2)零假设为:0H :性别与态度无关联;由于22450(7510022550) 3.462 3.841125325300150χ<⨯-⨯=≈⨯⨯⨯,∴不能认为该单位职工是否支持养宠物与性别有关;综上,男职工中支持养宠物的人数为75;不能认为该单位职工是否支持养宠物与性别有关.19.在ABC 中,4AB =,AC =点D 为BC 的中点,连接AD 并延长到点E ,使3AE DE =.(1)若1DE =,求BAC ∠的余弦值;(2)若π4ABC ∠=,求线段BE 的长.【正确答案】(1)4-2【分析】(1)设BD DC x ==,由cos cos 0ADB ADC ∠+∠=结合余弦定理求解即可求出x =ABC 中,由余弦定理即可求出答案.(2)在ABC 中,由余弦定理求出BC =ABD △中,由余弦定理求出AD =,连接BE ,在ABE 中,由余弦定理即可求出线段BE 的长.【详解】(1)因为1DE =,3AE DE =,所以2AD =,因为πADB ADC ∠+∠=,所以cos cos 0ADB ADC ∠+∠=,设BD DC x ==,则222222022BD AD AB CD AD AC BD AD CD AD+-+-+=⋅⋅,即224164802222x x x x +-+-+=⋅⋅⋅⋅,解得x =2BC BD ==在ABC 中,由余弦定理知,222cos2AB AC BC BAC AB AC +-∠==-⋅(2)在ABC 中,由余弦定理知,2222cos AC AB BC AB BC ABC =+-⋅⋅∠,所以2816242BC BC =+-⋅⋅⋅,化简得280BC -+=,解得BC =因为D 是BC 的中点,所以12BD BC ==在ABD △中,由余弦定理知,2222cos AD AB BD AB BD ABC =+-⋅⋅∠16224102=+-⨯=,所以AD =,因为3AE DE =,所以32AE AD ==在ABD △中,由余弦定理知,222cos2AB AD BD BAE AB AD +-∠=⋅连接BE ,在ABE 中,由余弦定理知,2222cos BE AB AE AB AE BAE =+-⋅⋅∠=351624222⎛⎫+-⨯⨯= ⎪ ⎪⎝⎭,所以BE =20.如图,在三棱锥-P ABC 中,平面PAC ⊥平面ABC ,若PAC △为等边三角形,ABC 为等腰直角三角形,且AC BC =,点E 为AC 的中点,点D 在线段AB 上,且4AB AD =.(1)证明:AB ⊥平面PDE ;(2)求平面PDE 与平面PBC 所成锐二面角的余弦值.【正确答案】(1)证明见解析4【分析】(1)作出辅助线,得到DE AB ⊥,由三线合一得到PE AC ⊥,从而得到线面垂直,面面垂直,从而证明出结论;(2)建立空间直角坐标线,利用空间向量求解二面角的余弦值.【详解】(1)如图,取AB 的中点G ,由AC BC =可得CG AB ⊥,由4AB AD =可得D 为AG 的中点,由E 为AC 的中点可得DE 为ACG 的中位线,∴DE CG ∥,∴DE AB ⊥,∵E 为AC 的中点,PA PC =,∴PE AC ⊥,∵平面PAC ⊥平面ABC ,且平面PAC 平面ABC AC =,PE 在面PAC 内,∴PE ⊥平面ABC ,而AB ⊂平面ABC ,∴PE AB ⊥,又PE DE E = ,且PE DE ⊂,平面PDE ,∴AB ⊥平面PDE .(2)以C 为原点,CA 、CB 为x 、y 轴,过C 垂直于面ABC 的直线为z 轴,设4PA =.则(4,0,0)A ,(0,4,0)B ,(0,0,0)C,P ,则(2,0,PA =- ,()4,4,0AB =-,∴1(1,1,4PD PA AD PA AB =+=+=-,(2,4,PB =--,(2,0,PC =--,设平面PBC 的一个法向量为(,,)n x y z =,由24020n PB x y z n PC x ⎧⋅=-+-=⎪⎨⋅=--=⎪⎩,解得0y =,令x =1z =-,故1)n =-,由(1)可知(4,4,0)AB =-为平面PDE 的一个法向量,∴cos,4ABAB nA nBn=⋅=-⋅,又平面PDE与平面PBC21.已知抛物线2:2(0)C x py p=>的焦点为F,直线:(1)2(0)l y k x k=>--与C交于A,B 两点,当3k=时,28AF BF+=.(1)求抛物线C的方程;(2)若直线:(1)2m y k x=---与抛物线C交于M,N两点,证明:由直线AM,直线BN及y 轴围成的三角形为等腰三角形.【正确答案】(1)24x y=(2)证明见解析【分析】(1)根据直线抛物线方程的联立以及抛物线的定义即可求解;(2)根据直线与抛物线方程的联立以及坐标关系即可求解.【详解】(1)当3k=时,直线:3(1)235l y x x=--=-,与22x py=联立消去y,整理可得26100x px p-+=,由0∆>得236400p p->,即109p>.设11(,)A x y,22(,)B x y,可得126x x p+=,所以()12123101810y y x x p +=+-=-,由题意可得0,2p F ⎛⎫ ⎪⎝⎭,准线方程为2py =-,根据抛物线的定义可得12p AF y =+,22p BF y =+,所以121810191028AF BF y y p p p p +=++=-+=-=,解得2p =,满足0∆>,所以抛物线C 的方程为24x y =.(2)直线():12(0)l y k x k =-->与24x y =联立可得24480x kx k -++=,由0∆>得21616320k k -->,即2k >或1k <-(舍)设11(,)A x y ,22(,)B x y ,则124x x k +=;直线:(1)2m y k x =---与24x y =联立消去y ,整理可得24480x kx k +-+=,由0∆>得21616320k k +->,即1k >或2k <-(舍),故2k >,设33(,)M x y ,44(,)N x y ,则344x x k +=-;因为2231313131314()4AMy y x x x xk x x x x --+===--,同理424BN x x k +=,所以123404AMBN x x x xk k ++++==,所以由直线AM ,直线BN 及y 轴围成的三角形为等腰三角形.22.已知函数()()2ln 2R f x ax x x x a =--∈.(1)若4a =,求()f x '的极值;(2)若函数()2y f x x =+有两个零点1x ,2x ,且21x ex >,求证.12ln ln 3a x x +>【正确答案】(1)极大值为4ln 22-,无极小值(2)证明见解析【分析】(1)对()f x 求导,判断()f x '的单调性,即可求出()f x '的极值;(2)根据极值点的概念整理原不等式可得12211221ln ln ln ln x x x x x x x x +-=+-即112122111ln()ln 1x x xx x x x x +=-,构建新函数1()ln (e)1t t t t t ϕ+=>-,求导,利用导数证明()2t ϕ>即可.【详解】(1)2()ln 2f x ax x x x =--的定义域为(0,)+∞,当4a =时,()4ln 22f x x x '=-+,设()4ln 22g x x x =-+,则442()2xg x x x-'=-=,由()0g x =可得2x =,当02x <<时,()0g x '>,当2x >时,()0g x '<,∴()f x '在(0,2)上单调递增,在(2,)+∞上单调递减,∴()f x '的极大值为(2)4ln 22f '=-,无极小值;(2)由()20f x x +=可得2 ln 0ax x x -=,即1ln xa x=.设ln ()(0)xh x x x=>,则21ln ()x h x x -'=.由()0h x '=可得e x =,当(0,e)x ∈时,()0h x '>,函数()h x 单调递增,当(e,)x ∈+∞时,()0h x '<,函数()h x 单调递减.∴()h x 有极大值1(e)eh =,当01x <<时,()0h x <,当1x >时,()0h x >.要使()2y f x x =+有两个零点1x ,2x ,需有110ea <<,即e a >.∵1212ln ln 1x x a x x ==,由比例的性质可得12211221ln ln ln ln x x x x x x x x +-=+-,即()21211221ln ln x x x x x x x x =+-,故121212122211111ln()ln ln 1x x x x x x x x x x x x x x ++==--,设21x t x =,由21e 0x x >>可得t e >,设函数1()ln (e)1t t t t t ϕ+=>-,则212ln ()(1)t t t t t ϕ--'=-,设1()2ln s t t t t =--,则22211()110s t t t t ⎛⎫'=-+=-> ⎪⎝⎭,∴()s t 在(e,)+∞上单调递增,故1()(e)e 20es t s >=-->,故()0t ϕ'>,∴()t ϕ在(e,)+∞上单调递增,故e 12()(e)12e 1e 1t ϕϕ+>==+>--,∴212e x x >,故312e ax x >,故312ln()ln e ax x >,即12ln ln 3a x x +>.关键点点睛:本题(2)的关键点在于由题意得出1212ln ln 1x x a x x ==,建立关系112122111ln()ln 1x x xx x x x x +=-,再结合题意化简整理,再利用导数证明不等式.。
深圳市育才中学2024年高三高考数学试题系列模拟卷(1)
深圳市育才中学2024年高三高考数学试题系列模拟卷(1)注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .12.若复数z 满足(1)34i z i +=+,则z 的虚部为( )A .5B .52C .52-D .-53.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .4.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A发生的概率为 A .14B .58C .38D .125.已知向量(1,4)a =,(2,)b m =-,若||||a b a b +=-,则m =( )A .12-B .12C .-8D .86.设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 与圆22:(3)3C x y +-='交于M ,N 两点,若||6MN =,则MNF 的面积为( )A .28B .38C .328D .3247.已知变量x ,y 间存在线性相关关系,其数据如下表,回归直线方程为 2.10.5ˆ8y x =+,则表中数据m 的值为( )变量x 01 2 3 变量y m35.57A .0.9B .0.85C .0.75D .0.58.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( ) A .112⎡⎤⎢⎥⎣⎦, B .112⎛⎫ ⎪⎝⎭, C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭, 9.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+10.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元11.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .12.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学高考模拟题(一)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高三数学高考模拟题(一)一. 选择题(12小题,共60分,每题5分)1. 已知集合{}{}M N x x x x Z P M N ==-<∈=⋃13302,,,,又|,那么集合P 的子集共有( )A. 3个B. 7个C. 8个D. 16个2. 函数y x =-的反函数的图象大致是( )A BC D3. 已知直线l 与平面αβγ、、,下面给出四个命题:()//(),()()////12314若,,则若,若,,则若,,则l l l l l ααββαββγαγγγββαβαβ⊥⊥⊥⊥⊥⊂⊥⊥⊂其中正确命题是( )A. (4)B. (1)(4)C. (2)(4)D. (2)(3)4. 设cos ()31233x x x =-∈-,且,,则ππ等于( )A B C D ....±±±±ππππ18929518 5. 设a b c a b c =+=-=sin cos cos 131322142622 ,,,则、、之间的大小关系是( )A b c aB c a bC a c bD c b a....>>>>>>>>6. ()15+x n 展开式的系数和为a x n n ,()572+展开式的系数和为b a b a b n n n nn n,则lim→∞-+234等于( )A B C D ....---1213171 7.椭圆x y M 2249241+=上有一点,椭圆的两个焦点为F F MF MF MF F 121212、,若,则⊥∆的面积是( ) A. 96 B. 48 C. 24 D. 128. 已知椭圆x y t 2212211+-=()的一条准线的方程为y =8,则实数t 的值为( ) A. 7和-7 B. 4和12 C. 1和15 D. 09. 函数y x x x =+2sin (sin cos )的单调递减区间是( )A k k k ZB k k k ZC k k k ZD k k k Z .[].[].[].[]2827827821588583878ππππππππππππππππ-+∈++∈-+∈++∈,,,,10. 如图在正方体ABCD -A B C D 1111中,M 是棱DD 1的中点,O 为底面ABCD 的中心,P 为棱A B 11上任意一点,则直线OP 与直线AM 所成的角( )A. 是π4B. 是π3C. 是π2D. 与P 点位置有关1 A11. 在平面直角坐标系中,由六个点O(0,0)、A(1,2)、B(-1,-2)、C(2,4)、D(-2,-1)、E(2,1)可以确定不同的三角形共有( )A. 14个B. 15个C. 16个D. 20个12. 过点M C x y l l ax y a l ()()()--+-=++=242125320221,作圆:的切线,:与平行,则l l 1与间的距离是( )A B C D (852*******)二. 填空题(4小题,共16分,每题4分)13. 函数y x xx x=+-cos sin cos sin 2222的最小正周期是_________。
14. 抛物线y px p 280=>()上一点M 到焦点的距离为a ,则点M 到y 轴的距离为_______。
15. 若E 、F 、G 、H 分别是三棱锥A -BCD 的AB 、BC 、CD 、DA 棱的中点,则三棱锥A -BCD 满足条件________时,四边形EFGH 是矩形(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况) 16. 在平面内,(1)到两个定点的距离的和等于常数的点的轨迹是椭圆;(2)到两个定点的距离的差的绝对值为常数的点的轨迹是双曲线;(3)到定直线x a c =-2和定点F c ()-,0的距离之比为acc a ()>>0的点的轨迹是双曲线;(4)到定点F c (),0和定直线x a c =2的距离之比为caa c ()>>0的点的轨迹是椭圆。
请将正确命题的代号都填在横线上__________。
三. 解答题:本大题共6小题;共74分,解答题应写出文字说明、证明过程或演算步骤。
17. (本小题满分12分)已知x R y R ∈∈,,复数z x x y i z y x i z i z i 1212224121=--=++-=-+()()(),,当时,()()()I z z II z z 求;求的值。
12125⋅-18. (12分)设集合{}A x x x zB x ax a x a a =+->-⎧⎨⎩⎫⎬⎭=-<-<|log ()|1222630,,,求使A B a ⋂=φ的的取值范围。
19. (12分)某集团投资兴办甲、乙两个企业,1998年甲企业获得利润320万元,乙企业获得利润720万元,以后每年企业的利润甲以上年利润1.5倍的速度递增,而乙企业是上年利润的23,预期目标为两企业年利润之和是1600万元,从1998年年初起,(I)哪一年两企业获利之和最小;(II)需经过几年即可达到预期目标(精确到一年)20. (12分)如图,圆锥的轴截面是等腰Rt SAB Q ∆,为底面圆周上一点, (I)若QB 的中点为C ,OH SC OH SBQ ⊥⊥,求证平面 (II)若∠==AOQ QB 6023 ,求此圆锥的体积。
(III)若二面角A -SB -Q 为θθ,且,求的大小tg AOQ =∠63。
21. (13分)设F 1是椭圆C 1:()x -+=1294927122的左焦点M 是C 1上任意一点,P是线段F M 1上的点且满足F M MP 131::= ()I C 求点P的轨迹2()()II A l l C 过点,作直线与C相交,求与有且0222仅有两个交点时,l 的斜率的取值范围。
(III)过A 与F 1的直线交C 2于BC ,求∆F BC 2的面积。
(F 2为C 2的右焦点) 22. (13分)已知函数f x a x f x b f x a b f ()()()()()满足,⋅⋅=+⋅≠=012且f x f x ()()+=--22对定义域中任意x 都成立。
(I)求函数f x ()的解析式(II)若数列{}{}a S a n n n 的前几项和为,满足当n=1时,a f n 1122==≥(),当时,S f a n n n n -=+-212522()()试给出数列{}a n 的通项公式,并用数学归纳法证明。
【试题答案】 1.{}{}x x x x ZN P C 2330031212328-<<<∈∴=∴==又,,,它的子集有个()2. y x y x x D =-=≤的反函数是故20()()3. A4.x x x x x C ∈-⇒∈-=-∴=±∴=±()(cos ()ππππππ33331232329,,)又5.a b c b c a A =+=====>>∴>>2134525822826262260626050sin()sin cos sin sin ()6.a b a b a b A n nn nn n n n n n ==-+=-⋅+→-612234122312412()()() 7.设将代入:||||()()()()()()MF r MF r r r a r r c r r r r C 1122121222221222122141210021221410244224==+==+==⎧⎨⎪⎩⎪=-=⋅∴=8.中心(0,t)t a c t C ±=∴=28115或()9.y x x x x x x x k k x k k k Z D =+=⋅+=-+++++∴∈++∈22242241242223878sin (sin cos )sin sin()cos()cos()[][]()()πππππππππππ的单调递增区间是,,10.1 A过及作平面,、为棱中点面O A B EFB A E F AM A E AM A B AM EFB A AM OP C 111111111⊥⊥∴⊥∴⊥()11.O 、A 、B 、C 四点共线,D 、O 、E 三点共线∴--=C C B 6343115()12. 注意M 点在⊙上,∴-+=++==-≠∴=-∴-+==-=切线:::与的距离l x y l ax y a a a a l x y l l d D 43200320433220443802085125111||()13.y x xx x x x x x tg x T =+-=+-=++=+∴=cos sin cos sin sin()sin()sin()cos()()22222242422424242ππππππ14.y px x p M a a x pM y x a p 2008222==-=+∴=-的准线为由抛物线定义点到准线距离为点到轴距离为15.四边形对边平行是平行四边形只须邻边垂直,它就是矩形即可。
或填底面,或为正三棱锥,或为正四面体等均可EFGH AC BD AC BCD A BCD A BCD ∴∴⊥⊥--()D16.(1)常数大于两定点距离时,才是椭圆 (2)常数小于两定点距离时,才是双曲线 由定义可知(3)(4)正确。
17.()()I z i z i y x x y z i z iz z z z 由得解得1212121221632612121211222-=-+-=-+=-⎧⎨⎪⎩⎪=-=⎧⎨⎪⎪⎩⎪⎪∴=-+=-∴⋅=⋅=⋅=()()()[(cossin )]()[cossin ][cos()sin()]II z z i i i i i1255552222343422154154128244128128-=-+=+=+=-+-=-ππππππ18.log ()()()()()()122222226260642123212330033252+->-⇔+->+-<⎧⎨⎪⎩⎪⇔∈--⋃∴=--⋃->-≥-<-⎧⎨⎪⎪⎩⎪⎪⇔<≤><⎧⎨⎪⎩⎪⇔<≤x x x x x x x A x a ax a ax a x a a x a x a x a a x a ,,,,或∴=⋂=≤-<≥-⎧⎨⎪⎩⎪-≤<∴≤--≤<B a a A B a a a a a a (]220211202120,为使或即或为所求φ19. 设98年为第1年则第n 年甲企业获利a n n =⋅-320151(.) 乙企业获利720⋅-()()231n 单位万元(I)设第n 年两企业获利之和最小a b n n n n n n nn n n n n +=⋅+⋅=⋅+⋅≥⋅⋅==⋅==∴=-----+----32032720233203272032232072032960320327203232720320322199911111111222()()()()()()()()()()()万元当且仅当时取等号即即第二年两企业获利之和最小(II)设经过n 年两企业可达到预期目标即有即令则即或32032720321600432932203232149200920402291111112⋅+⋅≥⋅+⋅≥==∴+-≥-+≥≥≤------()()()()()()n n n n n n t ttt t t t t 当时,舍当时即需经过年年t n t n n n ≥<≤≤-≤⋅≥-⋅=+⋅⋅=+=+>+⋅=∴-2029322912912913322321242944520021323232323232()()log log log log log log ()20.()I C QB OC QBSO AQBQB SC QB SOCQB SQBSQB SOC SCOH SCOH SQB 为中点面面又面面面且交于又面∴⊥⊥∴⊥∴⊥⊂∴⊥⊥∴⊥()()II AOQ BOQ COQ QC QB R OQ OC AB OQ SAB Rt SO V R h∠=∴∠=∴∠===∴===∴==∴=∴=60120601232124213832,是等腰=立方单位⊙锥∆∆ππ ()()sin cos cos (cos )(cos )()sin (cos )sin cos III SAB ABQ ABQ QD AB D QD SAB Q QP SB P DP DP SB QPD tg QD PD AOQ O RQD R OD R PBD DB R R R PD BD R QD PD R R 面面且交于过作于,则面过作于,连,则设,⊙半径为则,中:代入⊥∴⊥⊥⊥⊥∴∠===∠====+=+∴==+=+=∴+=⋅θθαααααααααα631122*********1226∆3332332306060====∠=即即tg AOQ ααα21. ()()()()()()I F M x y P x y F P PM x x y y x x y y x x y P C x a b c 10010000022222102112120212123132129490271431231-===-++=++⎧⎨⎪⎪⎩⎪⎪=+=⎧⎨⎪⎪⎩⎪⎪-+=+====,设,,用定比分点坐标公式得代入并化简得为点轨迹,它是中心在原点长轴在轴上的椭圆:,,λ ()()()II l y kx y kx x y y k x kx k k k k k :消或=+=++-=⎧⎨⎪⎩⎪+++==-+>⇒>><-2234120341640161634014121222222222∆ ()()()()()()III F A F x y x y x y x y y x x B x y C x y BC x x x x 21222112221221221021220220341201932401245321944196019,过、的直线方程为即消得设,,-+=-+=-+=+-=⎧⎨⎪⎩⎪++==+⋅+-=⋅-⋅=k S BC h F BC =⋅-+=∴=⋅=120254512245192∆ 22. ()()()()()()()()()()()()()()(I axf x b f x ax f x bax b ax f x b ax f b a a bf x f x b a x b a x a a b f x x x x =+∴-=-==∴-≠∴=-=-=∴-=+=--+-=---→=∴==-∴=--=-≠11001011122212221214212111121222若则有不可能由得代入得)()()()()()()(*)II S f a n n S a n n S a n n n S a a a a n a n a a n n n n nn n n -=+---=+-∴+=++=+=++==-=∴======+2125222212521252212410282863344512222221234即当时,当时,得当时,得由此猜想证明:时,成立设时有时,112112112521252111215122127821278125212211212122 n a n k a k S a k k S k k k n k S a k k S a k k a k k k k k k k k k k k k k k ===+==++=++∴=++--∴=++=+++++=++=++-+++++++(*)()()[()()]()()()+=+∴=+=++∴=+∈=++12421111211k a k k n k n N a n k n 时真由、,对有(*)。