高一数学上竞赛试题及答案详解.docx
数学竞赛试题高一及答案
数学竞赛试题高一及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 + 3x + 1的图像关于直线x = -1/2对称,则下列哪个函数的图像也关于直线x = -1/2对称?A. g(x) = x^2 + 2x + 3B. h(x) = -x^2 + 2x - 3C. i(x) = x^2 - 2x + 3D. j(x) = -x^2 - 2x - 3答案:B2. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∪B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 3, 4}答案:A3. 若方程x^2 - 5x + 6 = 0的两个根为α和β,则α + β的值为:A. 1B. 2C. 3D. 5答案:C4. 函数y = |x - 2| + 3的图像与x轴交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题(每题5分,共20分)1. 已知等差数列的前三项依次为2, 5, 8,则该数列的第五项为________。
答案:112. 圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,则圆心坐标为________。
答案:(3, 4)3. 函数y = sin(x)在区间[0, π]上的最大值为________。
答案:14. 已知三角形的三边长分别为3, 4, 5,则该三角形的面积为________。
答案:6三、解答题(每题15分,共30分)1. 证明:若一个三角形的两边长分别为a和b,且满足a^2 + b^2 =c^2(c为第三边长),则该三角形为直角三角形。
证明:根据勾股定理,若三角形的两边长为a和b,且满足a^2 + b^2 = c^2,则第三边c所对的角θ为直角,即θ = 90°。
因此,该三角形为直角三角形。
2. 解方程:2x^2 - 3x - 2 = 0。
解:首先,我们计算判别式Δ = b^2 - 4ac = (-3)^2 - 4*2*(-2) = 9 + 16 = 25。
高一数学上学期竞赛试题及答案
高一年级“数理化”三科竞赛数 学 试 题一、填空题(每题5分,共10题,合计50分)。
1、 已知函数b a bx ax x f +++=3)(2是定义在[]a a 2,1-的偶函数,则______=+b a 。
2、已知集合{}0232=+-=x ax x A 中至多有一个元素,则实数a 的取值范围为 。
3、设函数k n f =)((*N n ∈),k 是π的小数点后的第n 位数字, 1415926535.3=π, 则_________)]}10([{100=ff f f f 个。
4、设P 和Q 是两个集合,定义差集},{Q x P x x Q P ∉∈=-且,如果}1log {2<=x x P ,}12{<-=x x Q ,那么__________=-Q P 。
5、设函数)(x f 是奇函数,且在()+∞,0内是增函数,又0)3(=-f ,则0)(<x xf 的解集是。
6、若一系列函数的解析式相同,值域相同,但定义域不同,称这些函数为——同族函数。
那么,函数的解析式为2x y =,值域为{}9,4的同族函数共有 个。
7、若方程0102ln =-+x x 的解为0x ,则大于0x 的最小整数是 。
8、若n m ,为正整数,且)111(log )111(log )11(log log -+++++++++n m m m m a a a a n m a a log log +=,则________=+n m 。
9、已知函数[]8,1,)(32-∈=x x x f ,函数[]8,1,2)(-∈+=x ax x g ,若对任意[]8,11-∈x ,总存在[]8,12-∈x ,使)()(21x g x f =成立.则实数a 的取值范围是 。
10、将3,2,1填入33⨯的方格中,要求每行、每列都没有重复数字,下面给出的是其中一种填法,则不同的填写方法共有 种。
二、解答题(第11、12题每题12分,第13、14题每题13分,共四题,合计50分)密封线内不要题答11、设集合{}{}01)1(2,04222=-+++==+=a x a x x B x x x A ,其中R x ∈, 如果B B A =⋂,求实数a 的取值范围。
高一数学竞赛试题参考答案
高一数学竞赛试题参考答案一、选择题:(本题共10小题,每题4分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求的。
)1.[答案] B[解析] 当a ≤0时,B =∅,满足B ⊆A ;当a >0时,欲使B ⊆A ,则⎩⎪⎨⎪⎧3-a ≥-43+a ≤4⇒a ≤1.故选B.2.[答案] C[解析] 由已知ax 2+ax -3≠0恒成立, 当a =0时,-3≠0成立; 当a ≠0时,Δ<0,∴a 2+12a <0, ∴-12<a <0,综上所述,a ∈(-12,0].3.C 【解析】 依题意,函数y =x 2-ax +12存在大于0的最小值,则a >1且a 2-2<0,解得a∈(1,2),选择C.4.B 【解析】 ∵2=log 24>log 23>log 22=1,故f (log 23)=f (1+log 23)=f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=124 5.C 【解析】 由f (x -1)=f (x +1)知f (x )是周期为2的偶函数,因为x ∈[0,1]时,f (x )=x 2,故当x ∈[-1,0],-x ∈[0,1]时,f (x )=f (-x )=(-x )2=x 2,由周期为2可以画出图象,结合y =⎝⎛⎭⎫110x的图象可知,方程f (x )=⎝⎛⎭⎫110x在x ∈⎣⎡⎦⎤0,103上有三个根,要注意在x ∈⎝⎛⎦⎤3,103内无解. 6.[答案] D[解析] 由题意,DE ⊥平面AGA ′, ∴A ,B ,C 正确,故选D. 7.[答案] B[解析] 设f (x )=2x -3-x ,因为2x ,-3-x 均为R 上的增函数,所以f (x )=2x -3-x 是R 上的增函数.又由2x -3-x >2-y -3y =2-y -3-(-y ),即f (x )>f (-y ),∴x >-y ,即x +y >0.8.[答案] A[解析] m =x -1-x ,令t =1-x ≥0,则x =1-t 2,∴m =1-t 2-t =-(t +12)2+54≤1,故选A.9.[答案] B[解析] 将f (x )=x 2+(a -4)x +4-2a 看作是a 的一次函数,记为g (a )=(x -2)a +x 2-4x +4. 当a ∈[-1,1]时恒有g (a )>0,只需满足条件⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,解之得x <1或x >3. 10.[答案] B[解析] 由已知得f (x )=⎩⎨⎧x 2-2(-1≤x ≤32),x -x 2(x <-1或x >32),如图,要使y =f (x )-c 与x 轴恰有两个公共点,则-1<c <-34或c ≤-2,应选B.二、填空题(本大题共4小题,每小题4分,共16分。
高一上学期数学竞赛试题(有答案)
高一上学期竞赛试题(数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.试卷满分150分.考试时间100分钟.第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}12345U =,,,,,集合{}1,3A =,{}3,4,5B =,则集合()U C A B =( )A .{3}B .{4,5}C .{3,4,5}D .{1245},,,2.若直线过点(1,2),(4,2+,则此直线的倾斜角是( ) A.030 B.045 C .060 D .090 3.下列各组函数表示同一函数的是( )A .293x y x -=-与3y x =+ B.1y =-与1y x =-C .00()y x x =≠与10()y x =≠ D .21,y x x Z =+∈与21,y x x Z =-∈ 4.下列结论正确的是( ) A .2030321..<< B .2030312..<<C .2031032..<< D . 0322103..<<5.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A.3122-()()f f f -<<()B. 3122-()()f f f <-<() C. 3212-()()f f f <<-() D. 3212-()()f f f <-<()6.(0)a >化简的结果是( )A. 12a B. 14a C. 18a D. 38a 7.如图,一个简单空间几何体的三视图其主视图与左视图是边长为 2的正三角形、俯视图轮廓为正方形,则其体积是( ).A.3D . 838.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中为真命题的是( ).A. ①和②B. ②和③C. ③和④D. ②和④9.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于 ( ) A π B 2π C 4π D 8π俯视图10.设函数1()ln (0),3f x x x x =->则()y f x = A. 在区间1(,1),(1,)e e 内均有零点 C .在区间1(,1)e 内有零点,在区间(1,)e 内无零点 B. 在区间1(,1),(1,)e e 内均无零点 D .在区间1(,1)e内无零点,在区间(1,)e 内有零点11.已知函数2()lg()f x ax x a =-+定义域为R ,则实数a 的取值范围是 ( )A .11(,)22-B .11(,)(,)22-∞-+∞C .1(,)2+∞D .11(,][,)22-∞-+∞12.已知三棱锥ABC S -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,3=SA ,那么直线AB 与平面SBC 所成角的正弦值为( ) A.43 B.45 C.47 D. 43第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设)(x f 在R 上是偶函数,若当0>x 时,有)1(log )(2+=x x f ,则=-)7(f . 14.设1(1)()3(1)x x f x x x +≥⎧=⎨-<⎩,则5(())2-f f 的值为 .15.4219432log 2log 3log -⋅= .16.已知函数2()2(1)2f x x a x =+-+在区间(,4)-∞上是减函数,则a 的取值范围是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分10分)已知集合{}{}{}37,210,A x x B x x C x x a =≤≤=<<=<. (1)求B A ;(2)求B A C R )(;(3)若A C ⊆,求a 的取值范围. (18)(本小题满分12分)设函数2211)(x x x f -+=.(1) 求)(x f 的定义域;(2) 判断)(x f 的奇偶性;(3) 求证:)()1(x f xf -=.(19)(本小题满分12分)P ABCD-如图,在底面为平行四边形的四棱锥PA AB =,点E 是PD中,AB AC ⊥,PA ⊥平面ABCD ,且的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证://PB 平面AEC ; (Ⅲ)求二面角E AC B --的大小. (20)(本小题满分12分)(本小题12分)已知函数2421x x y --=的SCBA定义域为A,函数)1(log 2+-=a x y 的定义域为B.(1)若B A ⊆,求实数a 的取值范围;(2)若φ=B A ,求实数a 的取值范围.(21)(本小题满分12分)如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ;(2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=︒,求证:平面PEF ⊥平面PBC .(22)(本小题满分12分) 已知函数62252)(12-⋅-=+x xx f ,其中[0,3]x ∈, (1)求()f x 的最大值和最小值;(2)若实数a 满足:()0f x a -≥恒成立,求a 的取值范围.河南省新乡市新乡县第一中学高一上学期竞赛试题数学答案一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分. 13.3; 14.132; 15.32; 16.(3,⎤-∞-⎦ 三、解答题:本大题共6小题,共70分.17.(本小题满分10分)(1)B A {}210x x =<< ……………………………3分(2){}37或R C A x x x =<> ……………………4分B AC R )({}23710或x x x =<<<< ……………………………6分 (3)7a ≥ …………………………………10分 18.(本小题满分12分) (1)由210-≠x可得1≠±x , ……………………3分所以函数的定义域为:()()()1111,,,-∞--+∞;……………………4分(2)因为22221111()()()()+-+-===---x x f x f x x x,……………………7分 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBDABDBDCDPAC EBF所以函数()f x 为偶函数;……………………8分(3)因为22222211111111111()()()()+++====----x x x f f x x x x x,……………………11分 所以 )()1(x f xf -= . .……………………12分 19. (本小题满分12分)(Ⅰ)PA ⊥平面ABCD,∴ AB 是PB 在平面ABCD 上的射影, 又AB ⊥AC,AC ⊂平面ABCD, ∴AC ⊥PB.(Ⅱ)连接BD,与AC 相交与O,连接EO, ABCD 是平行四边形 ∴O 是BD 的中点 又E 是PD 的中点, ∴EO PB. 又PB ⊄平面AEC,EO ⊂平面AEC, ∴PB //平面AEC,(Ⅲ)如图,取AD 的中点F,连EF,FO,则 PA ⊥平面EF 是△PAD 的中位线, ∴EF //PA 又ABCD , ∴EF ⊥平面ABCD同理FO 是△ADC 的中位线,∴FO //AB ∴FO ⊥AC 由三垂线定理可知∴∠EOF 是二面角E -AC -D 的平面角. 又FO =12AB =12PA =EF 。
数学竞赛高一试题及答案
数学竞赛高一试题及答案一、选择题(每题5分,共10分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。
A. 4B. 6C. 8D. 102. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共10分)3. 已知\( a \)、\( b \)、\( c \)为三角形的三边长,且\( a^2 + b^2 = c^2 \),这个三角形是________。
4. 将\( 1 \)、\( 2 \)、\( 3 \)三个数字排列成三位数,所有可能的组合数是________。
三、解答题(每题15分,共30分)5. 已知数列\( \{a_n\} \)满足\( a_1 = 1 \),\( a_{n+1} = a_n + 2n \),求\( a_5 \)。
6. 一个直角三角形的斜边长为\( 5 \),一条直角边长为\( 3 \),求另一条直角边长。
四、证明题(每题15分,共30分)7. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。
8. 证明:若\( a \)、\( b \)、\( c \)是三角形的三边长,且\( a^2 + b^2 = c^2 \),则这个三角形是直角三角形。
五、综合题(每题15分,共20分)9. 一个工厂计划在一年内生产\( x \)个产品,已知生产每个产品的成本是\( 10 \)元,销售每个产品的价格是\( 20 \)元。
如果工厂希望获得的利润不少于\( 10000 \)元,求\( x \)的最小值。
10. 已知函数\( g(x) = x^3 - 6x^2 + 11x - 6 \),求\( g(x) \)的极值点。
答案:一、选择题1. 答案:B. 6(计算方法:\( f(-1) = 2(-1)^2 - 3(-1) + 1 = 2 + 3 + 1 = 6 \))2. 答案:B. 50π(计算方法:圆面积公式为\( πr^2 \),代入\( r = 5 \))二、填空题3. 答案:直角三角形4. 答案:6(排列组合方法:\( 3 \times 2 \times 1 = 6 \))三、解答题5. 答案:\( a_5 = 1 + 2(1) + 2(2) + 2(3) + 2(4) = 1 + 2 + 4 +6 + 8 = 21 \)6. 答案:根据勾股定理,另一条直角边长为\( 4 \)(计算方法:\( 5^2 - 3^2 = 4^2 \))四、证明题7. 证明:根据等差数列求和公式,\( 1 + 2 + ... + n =\frac{n(n+1)}{2} \),立方后得到\( \left(\frac{n(n+1)}{2}\right)^2 \),展开后即为\( 1^3 + 2^3 + ... + n^3 \)。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若a,b,c是三角形的三边长,且满足a² + b² = c²,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 函数f(x) = 2x³ - 3x² + 1在区间[-1,2]上的最大值是:A. 1B. 7C. 9D. 无法确定3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的元素个数:A. 3B. 4C. 5D. 64. 等差数列的首项a₁ = 3,公差d = 2,第10项a₁₀的值是:A. 23B. 25C. 27D. 295. 圆的方程为(x - 2)² + (y - 3)² = 9,圆心到直线x + 2y - 7= 0的距离是:A. 2B. 3C. 4D. 56. 已知函数y = |x| + 1的图像与直线y = kx平行,那么k的值是:A. 1B. -1C. 0D. 无法确定二、填空题(每题4分,共20分)7. 若二次函数y = ax² + bx + c的顶点坐标为(-1, -4),则a =_______。
8. 已知等比数列的首项为2,公比为3,第5项的值为 _______。
9. 一个正六边形的内角和为 _______。
10. 若直线y = 2x + b与曲线y = x² - 3x相切,则b = _______。
11. 圆的方程为x² + y² = 25,圆上一点P(4,3)到圆心的距离是_______。
三、解答题(每题25分,共50分)12. 已知直线l₁:2x - 3y + 6 = 0与直线l₂:x + y - 2 = 0相交于点M,求点M的坐标。
13. 已知函数f(x) = x³ - 3x + 2,求证:对于任意的x > 0,都有f(x) > x。
高一数学竞赛试题及答案
高一数学竞赛试题一.选择题(本大题共有10个小题,每小题5分,共50分.)1、设集合A={}43.21,,,a a a a ,若A 中所有三元子集的三个元素之和组成集合{}8,5,3,1-=B ,则A =( )A .{}6,2,1,3-B .{}6,2,0,3-C .{}6,2,1,1-D .{}6,1,0,3- 2、等差数列{}n a 中,已知10573a a =,且01<a ,则前n 项和S n 中最小的是( ) A .S 7或S 8 B .S 12 C .S 13 D .S 15 3、已知函数x a x f 3sin)(π=,a等于抛一骰子得到的点数,则)(x f y =在[0,4]上至少有5个零点的概率为( ) A .31 B .21 C .32 D .654、若方程 04)1(2=++-x m x 在(0,3]上有两个不相等的实数根,则m 的取值范围为( ) A .(3,310) B .[3,310) C .[3,310] D .(3,310]5、已知在半径为2的圆O上有A、B、C、D四点,若AB=CD=2,AB、CD中点分别为O 1,O2,则△O2AB 的面积最大值为( ) A .32 B .22 C .3 D .336、函数)123(log )(2-++-=a x ax x f a 对于任意的x ∈(0,1]恒有意义,则实数a 的取值范围为( ) A .a >0且a ≠1 B .a ≥21且a ≠1 C .a >21且a ≠1 D .a >17、已知0<α2<090<β<0180,a =βαcos )(sin ,βαsin )(cos =b ,βαcos )(cos =c ,则a ,b ,c 大小关系为( )A .a >c >bB .a >b >cC .b >a >cD .c >a >b8、已知数列}{n a 满足1a =1,1321113121--+⋯⋯+++=n n a n a a a a ,2(≥n )*N n ∈,若100=k a ,则k 为( )A .100B .300C .200D .4009、设P为△AB C内一点,且ACAB AP 5152+=,则△PB C与△AB C的面积之比为( ) A .51 B .53C .54 D .5210、若任意满足⎪⎩⎪⎨⎧≤-≥-+≤-03050y y x y x 的实数x ,y ,不等式222)()(y x y x a +≤+恒成立,则实数a 的最大值为( ) A.1322 B.1325 C. 2 D.2513二、填空题(每小题5分,共25分)11、如图,四边形ABCD中,A=60°, AD ⊥CD ,DB⊥BC,AB=32,BD=4,则BC 的长为 。
高中数学高一级第一学期数学竞赛试题(word文档有答案)
高中数学高一级第一学期数学竞赛试题班级 姓名 学号 评分一. 选择题(10*4=40)1.设},0)()({,}0)({,}0)({=⋅=Φ≠==Φ≠==x g x f x P x g x N x f x M 则集合P 恒满足的关系为( ) A.N M P ⋃= B.N M P ⋃⊆ C.Φ≠P D.N M P ⋂=2.ABC ∆中,c b a ,,分别是角C B A ,,的对边,==-=+B C A b c a 则,3,2π( )A.839arccos B.45 C.60 D.839arcsin3.设⎪⎩⎪⎨⎧=为无理数为有理数x x x f 01)( ,对于所有x 均满足)()(x g x xf ≤的函数)(x g 是( )A.x x g sin )(=B.x x g =)(C.2)(x x g =D.x x g =)(4.已知,都是长度小于1的向量,对于任意非负实数,,b a 下列结论正确的是( )A.b a u a +≤+B.b a u a +≥+C.b a u a +=+D.不能确定b a u a ++的大小关系5.设ABC ∆的三个内角C B A ,,成等差数列,其外接圆半径为1,且有+-C A sin sin ,22)cos(22=-C A 则此三角形的面积为 ( ) A.433 B.43 C.43或433 D.43或533 6.函数)cos(3)sin()(θθ-++=x x x f 的图象关于y 轴对称,则=θ( )A.)(6Z k k ∈-ππ B.)(3Z k k ∈-ππ C.)(62Z k k ∈-ππ D.)(32Z k k ∈-ππ7.数列}{n a 中,11=a 且411++=+n n n a a a ,则=99a ( ) A.412550 B.2500 C.412450 D.24018.设函数22)(2+-=x ax x f 对于满足41<<x 的一切0)(>x f ,则a 的取值范围是( )A.1>aB.1-<aC.11<<-aD.1-≥a9.设函数xxx y +-+=11arctan arctan ,则它的值域为( ) A.]4,43[ππ-- B.}43,4{ππ- C.)4,43(ππ-- D. )4,43(ππ-10.函数8422)(22+-++-=x x x x x f 的最小值是( )A.23B.15+C.10D.22+二. 填空题(4*5=20)11.ABC ∆中,36=∠A ,F E ,分别在边AC AB ,上,且CF BE =,N M ,分别是线段CE BF ,的中点,则直线MN 与直线AB 所成的较小的角的大小为 。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 3.1415926B. πC. √2D. 0.33333(无限循环小数)答案:B2. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。
A. -15B. -7C. -3D. 1答案:B3. 一个圆的半径为r,圆心到直线的距离为d,如果d < r,那么该直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内含答案:B4. 如果一个等差数列的前三项和为9,第四项为5,求该数列的首项a1。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共12分)5. 一个长方体的长、宽、高分别是a、b、c,其体积的公式是______。
答案:abc6. 若sinθ = 1/3,且θ在第一象限,求cosθ的值。
答案:2√2/37. 已知等比数列的前n项和公式为S_n = a1(1 - r^n) / (1 - r),其中a1是首项,r是公比。
如果S_5 = 31,a1 = 1,求r的值。
答案:2三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 能被30整除。
证明:由题意,我们需要证明n^5 - n 能被30整除。
首先,我们知道任何正整数n都能被1、2、3、5中的至少一个整除。
设n = 2a + b,其中a和b是整数,且b属于{0, 1, 2, 3, 4}。
则n^5 - n = (2a + b)^5 - (2a + b) = 32a^5 + 20a^4b + 5a^3b^2 + a^2b^3 + 2ab^4 - 2a - b。
可以看到,除了最后两项,其他项都能被2整除。
对于最后两项,我们有2a - b = 2(a - b/2),当b为偶数时,2a - b能被2整除;当b为奇数时,a - b/2为整数,所以2a - b也能被2整除。
同理,b - 1能被3整除,因为b属于{0, 1, 2, 3, 4}。
高一数学上竞赛试题及答案详解
2006年“元旦”高一数学竞赛试题(新课程)班别 姓名 分数(时间:100分钟, 满分150分)一、选择题(共6小题,每小题6分,共48分)1、集合{0,1,2,2006}的非空真子集的个数是 ( )(A )16 (B )15 (C )14 (D )132、设U=Z ,M={2,}x x k k z =∈,N={21,}x x k k z =±∈,P={41,}x x k k z =±∈,则下列结论不正确的是 ( )(A)U C M N = (B)U C P M = (C) M N =∅ (D) N P N =3、根据图中骰子的三种不同状态显示的数字,推出?处的数字是( )(A)1 (B)2 (C)3 (D)64、函数12x y -=的图象是 ( )5、函数()log [1,2]x a f x a x =+在上的最大值和最小值之差为21a a -+,则的a 值为 ( )(A )2或21 (B)2或4 (C)21或4 (D)26、有A 、B 、C 、D 、E 共5位同学一起比赛象棋,每两人之间只比赛1盘,比赛过程中统计比赛的盘数知:A 赛了4盘,B 赛了3盘,C 赛了2盘,D 赛了1盘,则同学E 赛了()盘(A )1 (B )2 (C )3 (D )47若052>++c x ax 的解是2131<<x ,则a 和c 的值是( ) (A)a=6,c=1 (B)a=6,c=-1 (C)a=--6,c=1 (D)a=-6,c=--18、若x=20lg 7 , 7.0lg )21(=y 则xy 的值为( ) (A) 12 (B)13 (C)14 (D)15 二、填空题(共6小题,每小题7分,共42分)1、已知函数(0)()(0)x x f x x x ≥⎧=⎨-<⎩,奇函数()g x 在0x =处有定义,且0x <时,()(1)g x x x =+,则方程()()1f x g x +=的解是 。
数学竞赛高中试题及答案
数学竞赛高中试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 - 4x + 1,那么f(2)的值是多少?A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为1, 4, 7,求该数列的第五项。
A. 10B. 13C. 16D. 19答案:A3. 一个圆的直径为10cm,那么它的半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A4. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是多少?A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)答案:A二、填空题(每题5分,共20分)5. 计算:\(\sqrt{49} - \sqrt{16} = \)______。
答案:56. 一个等腰三角形的两边长分别为5cm和8cm,那么它的周长是_______cm。
答案:187. 已知函数g(x) = x^3 - 3x^2 + 2,求g(2)的值。
答案:-28. 一个数的平方加上它的两倍等于17,设这个数为n,则n的值为______。
答案:3或-4三、解答题(每题10分,共60分)9. 已知函数h(x) = x^3 - 6x^2 + 11x - 6,求函数的零点。
答案:函数h(x)的零点为x = 1, 2, 3。
10. 一个长方体的长、宽、高分别为a、b、c,且a > b > c,求证:长方体对角线的长度d满足\(d^2 = a^2 + b^2 + c^2\)。
答案:证明略。
11. 已知数列{bn}满足:b1 = 2,bn+1 = 2bn + 1,求数列的前五项。
答案:2, 5, 11, 23, 4712. 一个圆的内接三角形的三个顶点分别在圆上,且三角形的周长为12cm,求圆的半径。
答案:2cm13. 已知函数f(x) = x^2 - 6x + 9,求函数的最小值。
答案:函数的最小值为0。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题4分,共20分)1. 若一个等差数列的首项为3,公差为5,那么它的第n项可以表示为:A. 3 + 5(n-1)B. 3 + 5nC. 5 + 3(n-1)D. 5 + 3n2. 下列哪个分数可以化简为1/2?A. 3/6B. 5/10C. 7/14D. 9/183. 已知函数f(x) = x^2 - 6x + 9,求f(x)的最小值。
A. -36B. -9C. 0D. 94. 若a, b, c是等比数列,且a + b + c = 0,那么b^2的值是:A. a^2 + c^2B. -a^2 - c^2C. acD. -ac5. 一个圆的半径是5cm,求这个圆的面积(圆周率取3.14)。
A. 78.5平方厘米B. 157平方厘米C. 200平方厘米D. 314平方厘米二、填空题(每题5分,共20分)6. 一个等比数列的前三项分别是2, 6, 18,那么它的第四项是_______。
7. 函数g(x) = |2x - 3| + |x + 1|的最小值是_______。
8. 已知一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长(根据勾股定理)是_______。
9. 一个圆的周长是12π,那么这个圆的直径是_______。
三、解答题(每题10分,共60分)10. 已知等差数列的前n项和为S_n = n^2 + 2n,求这个等差数列的前三项。
11. 求解方程:\(\frac{1}{x-1} + \frac{2}{x-2} = 3\)。
12. 一个圆与直线y = 2x + 3相交于点P,圆心坐标为(1, 0),且半径为2。
求点P的坐标。
13. 证明:若a, b, c, d是正整数,且满足a^2 + b^2 = c^2 + d^2,则a + b = c + d。
14. 一个等差数列的前10项和为110,且第10项是第2项的3倍,求这个等差数列的公差和首项。
高一数学竞赛答案一、选择题答案1. A2. D3. D4. B5. B二、填空题答案6. 547. 28. 59. 6三、解答题答案10. 首项为2,公差为4,前三项为2,6,10。
高一数竞试题及答案
高一数竞试题及答案一、选择题(每题5分,共30分)1. 若函数\( f(x) \)在区间\( [a, b] \)上连续,且\( \int_{a}^{b} f(x) dx = 0 \),则下列说法正确的是:A. \( f(x) \)在\( [a, b] \)上恒等于0B. \( f(x) \)在\( [a, b] \)上至少有一个零点C. \( f(x) \)在\( [a, b] \)上单调递增D. \( f(x) \)在\( [a, b] \)上单调递减答案:B2. 已知\( \triangle ABC \)的内角\( A, B, C \)满足\( \sin A +\sin B + \sin C = 0 \),则\( \triangle ABC \)的形状是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形答案:A3. 设\( a, b \)是方程\( x^2 - 3x + 2 = 0 \)的两个实数根,则\( a^2 + b^2 \)的值为:A. 4B. 5C. 6D. 7答案:C4. 若\( \log_{2}(3x-2) > 1 \),则\( x \)的取值范围是:A. \( x > 2 \)B. \( x > \frac{5}{3} \)C. \( x < 2 \)D. \( x < \frac{5}{3} \)答案:B5. 函数\( f(x) = \frac{x^2 - 4x + 3}{x^2 - 6x + 9} \)的值域是:A. \( (-\infty, 0) \cup (0, +\infty) \)B. \( (-\infty, 0] \cup [0, +\infty) \)C. \( (-\infty, 1) \cup (1, +\infty) \)D. \( (-\infty, 1] \cup [1, +\infty) \)答案:D6. 已知数列\( \{a_n\} \)满足\( a_1 = 1 \),且\( a_{n+1} =2a_n + 1 \),\( n \geq 1 \),则\( a_3 \)的值为:A. 5B. 7C. 9D. 11答案:C二、填空题(每题5分,共20分)1. 已知\( \sin \alpha = \frac{3}{5} \),\( \cos \alpha =\frac{4}{5} \),则\( \tan \alpha \)的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006 年“ 元旦 ”高一数学竞赛试题(新课程)
班别
姓名
分数
(时间: 100 分钟 , 满分 150 分)
一、 选择题 (共 6 小题 ,每小题 6 分 ,共 48 分 ) 1、集合{ 0,1 , 2, 2006}的非空真子集的个数是 (
)
( A ) 16
( B ) 15
( C ) 14
( D ) 13
2、设 U=Z , M= { x x 2k, k z} , N= { x x 2k 1, k z} , P= { x x 4k 1,k
z} ,则下列结论
不正确的是 (
)
(A) C U M
N (B) C U P M
(C)
M I N
(D)
N U P
N
3、根据图中骰子的三种不同状态显示的数字,推出?处的数字是( )
(A)1
(B)2
(C)3 (D)6
5
1
?
4
1
2
3
4
5
4、函数 y
21 x 的图象是
(
)
5、函数 f ( x)
a x
log a x 在[1,2] 上的最大值和最小值之差为
a 2 a 1,
则的 a 值为 ( )
(A )2 或
1 (B)
2 或 4
(C)
1
或 4
(D)2
2
2
6、有 A 、B 、C 、D 、E 共 5 位同学一起比赛象棋, 每两人之间只比赛 1 盘,比赛过程中统计比赛的盘数知: A 赛了 4 盘, B 赛了 3 盘, C 赛了 2 盘, D 赛了 1 盘,则同学 E 赛了()盘 ( A )1
( B ) 2
( C ) 3 ( D ) 4
7 若 ax
2
5x c
的解是
1 x 1 , 则 a 和 c 的值是( )
3
2
(A)a=6,c=1
(B)a=6,c=-1
(C)a=- - 6,c=1
(D)a= - 6,c=- - 1
8、若 x=
7lg 20 ,
y
( 1
)lg 0.7 则 xy 的值为(
)
(A) 12
2
(B)13 (C)14
(D)15
二、 填空题(共 6 小题 ,每小题 7 分 ,共 42 分)
1、已知函数
f (x)
x(x
0) ,奇函数 g( x) 在 x 0 处有定义,且 x 0
时,
x( x
0)
g ( x) x(1 x) ,则方程 f ( x) g ( x) 1的解是。
2、、吴川市的出租车按如下方法收费:起步价 5 元,可行 3 km ( 不含 3km) ;超过 3 km 按 元 /km 计价(不足 1 km 按 1 km 计算)。
有一天,老李从吴川坐出租车到谭巴
(路程 20 km 多一点)。
他得付车费 元(精确到 1 元)。
3、用火柴棒按下图的方法搭三角形 :
按图示的规律搭下去
,则第 2006 个图形所用火柴棒的支数为 支。
4、巳知 f(x+y)=f(x)
﹒ f(y),f(1)=2,
则
f ( 2) f (3)
f (1998) f (1)
f (2)
____________.
f (1997)
5、设集合 A { x 1 x
2} , B { x 1 x
a} ,且 A I B B ,则实数 a 的取值范围
是。
6、设集合 A={-1,1},B={x| x 2 -2ax+b=0}, 若 B ≠¢ 且 B
A ,则 a 、 b 的值为 __________
三、解答题(共
3 小题 ,每小题 20 分,共 60 分)
13、甲、乙两人到物价商店购买商品,商品里每件商品的单价只有 8 元和 9 元两种.已知两人购买商品
的件数相同,且两人购买商品一共花费了 172 元,求两人共购买了两种商品各几件?
14 已知二次函数
y= x 2 +2(a -2)x+4, 如果对 x [-3,1],y>0
成立,求 a 的取值范围。
15、设 k 为正整数,使得 k 2 2004k 也是一个正整数,求
k 的值。
〔解〕:
参考答案
一、 1C 2B 3D 4C 5A 6B 7D 8C
二、 1、 x
1 ,
2、 27,
3、 4013
4 、 3994, 5、 a
a 1 a 1 a 0
2 6、
或
b
1
或
1
b
1
b
三、 13 解:设每人购买了
n 件商品,两人共购买了单价为
8 元的 x 件,单价为 9 元的有 y 件.则
x y 2n,
x 18n 172,
8x
9 y 172.
解之,得
172 16n.
y
因为 x
0, y
0 ,所以 9
5
n 10
3
.
所以整数 n 10.
9
4
x 8,
故
12.
y
14、解:( 1)当 -3
2-a 1 即 1 a 5 时 ,(2-a)
2
+2(a-2)(2-a)+4>0,
得 a 2 4a <0. 所
以 0<a<4,结合 1 a 5 得 1 a<4.
(2)当 2-a<-3 即 a>5 时,x=-3 时,y 的值最小。
所以 (-3) 2 +2(a-2)(-3)+4>0, 得 a< 25
, 结合 a>5 知 a 无解
6
(3)当 2-a>1 即 a<1 时, 当 x=1 时, y 的值最小,所以 12
+2(a-2) ×1+4>0,得 a>- 1
,
2
结合 a<1 得- 1
<a<1。
取 (1)(2)(3)
中 a 的取值集合的并集,得
a 的取值范围是
2 {a|- 1
<a<4} 。
2
15、解 :令
k 2
2004k n ,得 k 1002
(2
3 167)2 n 2 ,
令 (2
3 167) 2 n 2 m 2
(m n)
(m n)(m n) (2
3 167) 2 得 (m
n) 与 ( m n) 均为偶数 .
(1) 若 m, n 均为偶数 ,令 m 2m 1, n
2n 1 ,则
Q m n,得 m 1 n 1 , m 1 n 1 m 1 n 1 ,
m 1 n 1
(3 167)2
m 1 n 1
3 1672
m 1 n 1 1672
m 1 n 1 32 167
或
或
或
m 1 n 1 1
m 1 n 1 3
m 1 n 1 32
m 1 n 1 167
由 m 2m 1 ,得 m=251002 或 m=83670 或 m=27898 或 m=1670.
这时 ,k=252004 或 84672 或 28900 或 2672。
(2) 若 m, n 均为奇数 ,令 m 2 p
1,n 2q 1( p q) 则
Q
(3 167) 2 为奇数 ,得 ( p q 1) 与 ( p q) 均为奇数 ,矛盾 !
这时无解 .
综上所述 ,k 的值为 252004 或 84672 或 28900 或 2672。