九年级数学复习题(圆1)

合集下载

备考2021年中考一轮复习数学几何压轴专题:圆的综合(一)

备考2021年中考一轮复习数学几何压轴专题:圆的综合(一)

备考2021年中考一轮复习数学几何压轴专题:圆的综合(一)1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是cm,⊙M与直线CD的位置关系是;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.2.已知:如图,△ABC中,AB=AC=5,BC=6,点O在AB上,以O为圆心,OB为半径画⊙O,分别与边AB、BC相交于点D、E,EF⊥AC,AH⊥BC,垂足分别为F、H.(1)求证:EF是⊙O的切线;(2)①设OB=2,求EC的长;②设OB=t,求FC的长(用含t的代数式表示).3.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连结EB交OD于点F.(1)求证:OD⊥BE;(2)连结AD,交BE于点G,若△AGE≌△DGF,且AB=2,求AE的长.4.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=m,BD=n,求的值(用含m,n的式子表示).5.定义:如图①,⊙O的半径为r,若点P'在射线OP上,且OP•OP'=r2.则称点P'是点P关于⊙O的“反演点”.(1)如图①,设射线OP与⊙O交于点A,若点P'是点P关于⊙O的“反演点”,且OP'=PA,求证:点P'为线段OP的一个黄金分割点;(2)如图②,若点P'是点P关于⊙O的“反演点”,过点P'作P'B⊥OP,交⊙O于点B,连接PB,求证:PB为⊙O的切线;(3)如图③,在Rt△CDE中,∠E=90°,CE=6,DE=8,以CE为直径作⊙O,若点P为CD边上一动点,点P'是点P关于⊙O的“反演点”,则在点P运动的过程中,线段OP'长度的取值范围是.6.如图1,△ABC内接于⊙O,∠ACB=60°,D,E分别是,的中点,连结DE分别交AC,BC于点F,G.(1)求证:△DFC∽△CGE;(2)若DF=3,tan∠GCE=,求FG的长;(3)如图2,连结AD,BE,若=x,=y,求y关于x的函数表达式.7.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”,例如,在△ABC中,∠A=100°,∠B=60°,∠C=20°,满足∠A﹣∠B=2∠C,所以△ABC是关于∠C的“差倍角三角形”;(1)若等腰△ABC是“差倍角三角形”,求等腰三角形的顶角∠A的度数;(2)如图1,△ABC中,AB=3,AC=8,BC=9.小明发现这个△ABC是关于∠C的“差倍角三角形”.他的证明方法如下:证明:在BC上取点D,使得BD=1,连结AD.(请你完成接下去的证明)(3)如图2,五边形ABCDE内接于圆,连结AC,AD与BE相交于点F,G,==,△ABE是关于∠AEB的“差倍角三角形”.①求证:四边形CDEF是平行四边形;②若BF=1,设AB=x,y=,求y关于x的函数关系式.8.如图,在Rt△ABC中,∠C=90°,点O在斜边AB上,以O为圆心,OB为半径作⊙O,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,AO=,求的长;(3)若AC=2,BD=3,求AE的长.9.如图1,CD是⊙O的直径,弦AB⊥CD,垂足为点E,连结CA.(1)若∠ACD=30°,求劣弧AB的度数;(2)如图2,连结BO并延长交⊙O于点G,BG交AC于点F,连结AG.①若tan∠CAE=2,AE=1,求AG的长;②设tan∠CAE=x,=y,求y关于x的函数关系式.10.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求PA•AE的最大值.参考答案1.解:(1)如图1,过M作KN⊥AB于N,交CD于K,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,∴⊙M的直径是PQ,KN⊥CD,当t=1时,AP=3,AQ=4,∵AB=6,BC=8,∴PB=6﹣3=3,BQ=8﹣4=4,∴PQ==5,∴⊙M的半径为cm,∵MN∥BQ,M是PQ的中点,∴PN=BN,∴MN是△PQB的中位线,∴MN=BQ=×4=2,∴MK=8﹣2=6>,∴⊙M与直线CD的位置关系是相离;故答案为:,相离;(2)①如图2,由P、Q运动速度与AB,BC的比相等,∴圆心M在对角线BD上,由图可知:P和Q两点在t=2时在点B重合,当t=0时,直径为对角线AC,M是AC的中点,故M运动路径为OB=BD,由勾股定理得:BD==10,则圆心M的运动路径长是5cm;故答案为:5;②如图3,当⊙M与AD相切时,设切点为F,连接FM并延长交BC于E,则EF⊥AD,EF⊥BC,则BQ=8﹣4t,PB=6﹣3t,∴PQ=10﹣5t,∴PM==FM=5﹣t,△BPQ中,ME=PB=3﹣t,∵EF=FM+ME,∴5﹣t+3﹣t=6,解得:t=;(3)如图4,过D作DG⊥PQ,交PQ的延长线于点G,连接DQ,∵∠APD=∠NBQ,∠NBQ=∠NPQ,∴∠APD=∠NPQ,∵∠A=90°,DG⊥PG,∴AD=DG=8,∵PD=PD,∴Rt△APD≌Rt△GPQ(HL),∴PG=AP=3t,∵PQ=10﹣5t,∴QG=3t﹣(10﹣5t)=8t﹣10,∵DC2+CQ2=DQ2=DG2+QG2,∴62+(4t)2=82+(8t﹣10)2,∴3t2﹣10t+8=0,(t﹣2)(3t﹣4)=0,解得:t1=2(舍),t2=.2.证明:(1)如图1,连结OE,∵OE=OB,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∴∠OEF=∠EFC,∵EF⊥AC,∴∠EFC=90°,∴∠OEF=90°,∴EF⊥OE,∵点E在⊙O上,∴EF是⊙O的切线;(2)①如图2,连结OE,∵OE∥AC,∴△BOE∽△BAC.∴=,∴=,∴BE=,∴EC=6﹣=;②∵AB=AC,∴BH=BC,∵BC=6,∴BH=3,由①知:=,即=,∴BE=,∴EC=6﹣,∵AH⊥BC,EF⊥AC,∴∠AHB=∠EFC=90°,∵∠OBE=∠C,∴△ABH~△EFC,∴=,∴=,∴FC=﹣.3.(1)证明:如图,∵AB为⊙O的直径,∴∠ADB=90°,∠AEB=90°,∴AD⊥BC,AE⊥BE,∵AB=AC,∴BD=DC,∵BO=OA,∴OD为△BAC的中位线,∴OD∥AC,∴OD⊥BE.(2)∵△AGE≌△DGF,∴AE=DF,∵AO=OB,FO∥AE,∴EF=FB,∴OF=AE=DF,∵AB=2,∴OD=AB=1,∴DF=OD=,∴AE=DF=.4.解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠ABE=∠DBC=60°,∴∠DBE=∠ABC,又∵AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=AD,即AB+BM=AD,∴AB+AC=AD;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=m,BD=n,∴=.5.(1)证明:由已知得OP•OP'=r2,∵OP'=PA,∴PP'=PA+AP'=OP'+P'A=r,∴,∴点P'为线段OP的一个黄金分割点;(2)证明:∵P'B⊥OP,∴∠OP'B=90°,∵OP•OP'=r2,∴,∴△P'OB∽△BOP,∴∠OBP=∠OP'B=90°,∴PB⊥OB,∴PB为⊙O的切线;(3)解:如图③,过点O作OH⊥CD于H,连接OD,∵CE=6,∴⊙O的半径为3,即r=3,∵点P'是点P关于⊙O的“反演点”,∴OP•OP'=32=9,∴OP'=,∵OH≤OP≤OD,∵∠CEB=90°,CE=6,DE=8,∴CD=10,∵sin∠C===,∴OH=OC=,由勾股定理得:OD===,∵OP=,OH≤OP≤OD,则≤OP'≤.故答案为:≤OP'≤.6.解:(1)∵点D是的中点,∴,∵点E是的中点,∴,∴∠CDE=∠BCG,∴△DFC∽△CGE;(2)由(1)知,∠ACD=∠CED,∠CDE=∠BCG,∴∠ACD+∠CDE=∠CED+∠BCG,∴∠CFG=∠CGF,∵CF=CG,∵∠ACB=60°,∴△CFG是等边三角形,如图1,过点C作CH⊥FG于H,∴∠DHC=90°,设FH=a,∴∠FCH=30°,∴FG=CF=2a,CH=a,∵DF=3,∴DH=DF+FH=3+a,∵∠GCE=∠CDE,tan∠GCE=,∴tan∠CDE=,在Rt△CHD中,tan∠CDE==,∴=,∴a=1,∴FG=2a=2;(3)如图2,连接AE,则∠AEB=∠ACB=60°,∠DAE=∠CAD+∠CAE=∠ACD+∠CDF=∠CFG=60°,∴∠AEB=∠DAE,∴BE∥AD,设BE与AD的距离为h,∴=,∴S△ABE=•S△ADE,∵D,E分别是,的中点,∴CD=AD,BE=CE,∴S△ABE=•S△ADE,过点D作DM⊥AC于M,∵,∴AD=CD,∴AC=2CM,由(2)知,△CFG是等边三角形,∴∠CFG=60°,∴∠DFM=60°,∴∠MDF=30°,设MF=m,则DM=m,DF=2m,∵=x,∴CF=x•DF=2mx,∴CG=CF=2mx,由(1)知,△DFC∽△CGE,∴,∴=,∴S△ABE=•S△ADE=S△ADE,∴S四边形ABED=S△ADE+S△ABE=S△ADE,∵MF=m,CF=x•DF=2mx,∴CM=MF+CF=m+2mx=(2x+1)m,∴AC=2CM=2(2x+1)m,∴AF=AC﹣CF=2(2x+1)m﹣2mx=2(x+1)m,过点A作AN⊥DF于N,∴S△ADF=AF•DM=DF•AN,∴AN===(x+1)m,过点C作CP⊥FG,由(2)知,PF=CF=mx,CP=mx,∴y===•=•=•=•=.7.解:(1)设等腰三角形的顶角∠A为2x,则等腰三角形的底角为90°﹣x,∵等腰△ABC是“差倍角三角形”,∴90°﹣x﹣2x=2•2x或2x﹣(90°﹣x)=2(90°﹣x),∴x=或x=54°,∴∠A=2x=或∠A=2x=108°,∴顶角∠A的度数为或108°;(2)如图1,在BC上取点D,使得BD=1,连结AD,∴CD=BC﹣BD=8,∵AC=8,∴CD=AC,∴∠CAD=∠ADC,∵AB=3,AC=8,BC=9,∴==,=,∴,∵∠ABD∽△CBA,∴∠BAD=∠C,∴∠ADC=∠CAD,∴∠BAC﹣∠BAD=∠CAD=∠ADC,∴∠BAC﹣∠C=∠ADC,∵∠ADC=∠B+∠BAD=∠B+∠C,∴∠BAC﹣∠C=B+∠C,∴∠BAC﹣∠B=2∠C,∴△ABC是关于∠C的“差倍角三角形”;(3)①∵==,∴∠BAC=∠AEB=∠ACB=∠DAE,设∠BAC=∠AEB=∠ACB=∠DAE=α,∵△ABE是关于∠AEB的“差倍角三角形”,∴∠BAE﹣∠ABE=2∠AEB,∴α+∠CAD+α﹣∠ABE=2α,∴∠CAD=∠ABE,∴,∴DE∥AC,∵,∴CD∥BE,∴四边形CDEF是平行四边形;②∵∠BAF=∠AEB,∠ABF=∠EBA,∴△ABF∽△EBA,∴==,∴BE===x2,∴EF=BE﹣BF=x2﹣1,∵四边形CDEF是平行四边形,∴CD=EF=x2﹣1,∵,∴AE=CD=x2﹣1,∴AF===,过点B作BM⊥AC于M,EN⊥AC于N,∴BM∥EN,∴△BFM∽△EFN,∴=,∴BM=EN,过点G作GH⊥AE于H,∵∠BAC=ACB=∠AEG=∠EAG,∴△ABC∽△AGE,∴,∴==,∴=,∴y===•=•=.8.解:(1)如图1,连接OD,∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵OB=OD,∴∠B=∠ODB,∵∠CAD=∠B,∴∠CAD=∠ODB,∴∠ODB+∠ADC=90°,∴∠ADO=90°,又∵OD是半径,∴AD是⊙O的切线;(2)∵∠B=30°,∠ACB=90°,∴∠CAD=30°,∠CAB=60°,∴∠DAB=30°,∴OD=AO,∴OD=,∵OD=OB,∠B=30°,∴∠B=∠ODB=30°,∴∠DOB=120°,∴劣弧BD的长==π;(3)如图2,连接DE,∵BE是直径,∴∠BDE=90°,∴∠ACB=∠EDB=90°,∴AC∥DE,∵∠B=∠CAD,∠ACD=∠EDB,∴△ACD∽△BDE,∴,∴设CD=2x,DE=3x,∵AC∥DE,∴,∴,∴x=,∴CD=1,BC=BD+CD=4,∴AB===2,∵DE∥AC,∴,∴AE=×2=.9.解:(1)如图1,连接OA,OB,∵CD是⊙O的直径,弦AB⊥CD,∴=,∴∠AOD=∠BOD,∵∠ACD=30°,∴∠AOD=60°,∴∠AOB=120°,∴劣弧AB的度数是120°;(2)①∵CD⊥AB,∴AE=BE=1,∠AEC=90°,在Rt△AEC中,tan∠CAE==2,∴CE=2,设OE=x,则OC=2﹣x=OB,在Rt△OEB中,由勾股定理得:OB2=OE2+BE2,即(2﹣x)2=x2+1,解得:x=,∴OE=,∵OG=OB,AE=BE,∴OE是△AGB的中位线,∴AG=2OE=;②∵BG是⊙O的直径,∴∠BAG=90°,∵∠BAG=∠BEO=90°,∴OC∥AG,∴∠C=∠GAC,∵∠GFA=∠OFC,∴△GAF∽△OCF,∴,∵,且GF+BF=2OG,∴OG=•GF,∵OF=OG﹣GF,∴OF=,∴=,如图3,连接OA,∵OA=OC,AG=2OE,∴==,∵tan∠CAE==x,∴CE=x•AE=OA+OE,∴AE=,Rt△AOE中,OA2=OE2+AE2,∴OA2=OE2+()2,即OA2=OE2+(OA2+2OA•OE+OE2),两边同时除以OA2,得:1=()2+(+1)2,设=a,则原方程变形为:a2+(a2+2a+1)﹣1=0,(1+)a2++﹣1=0,(a+1)[(1+)a+(﹣1)]=0,∴a1=﹣1(舍),a2=,∴=,∴=,∴y=﹣.10.(1)①证明:如图1,连接PC,∵A、P、B、C四点内接于⊙O,∴∠PAF=∠PBC,∵AP平分∠BAF,∴∠PAF=∠BAP,∵∠BAP=∠PCB,∴∠PCB=∠PBC,∴PB=PC,∴=,∴点P为的中点;②解:如图2,过P作PG⊥BC于G,交BC于G,交⊙O于H,连接OB,∴,∴PH是直径,∵∠BPC=∠BAC,∠BOG=∠BPG=∠BPC,∵OG⊥BC,∴BG=BC=3,Rt△BOG中,∵OB=5,∴sin∠BAC=sin∠BOG==;(2)解:如图3,过P作PG⊥BC于G,连接OC,由(1)知:PG过圆心O,且CG=3,OC=OP=5,∴OG=4,∴PG=4+5=9,∴PC===3,设∠APC=x,∵A是的中点,∴=,∴∠ABC=∠ABP=x,∵PB=PC,∴∠PCB=∠PBC=2x,△PCE中,∠PCB=∠CPE+∠E,∴∠E=2x﹣x=x=∠CPE,∴CE=PC=3;(3)解:如图4,过点C作CQ⊥AB于Q,∵∠ACE=∠P,∠CAE=∠PAF=∠PAB,∴△ACE∽△APB,∴,∴PA•AE=AC•AB,∵sin∠BAC=,∴CQ=AC•sin∠BAC=AC,∴S△ABC=AB•CQ=,∴PA•AE=S△ABC,∵△ABC为非锐角三角形,∴点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,Rt△ABC中,AB=10,BC=6,∴AC=8,此时PA•AE=×=80.。

2021年中考数学复习:圆周角定理 专项练习题1(含答案)

2021年中考数学复习:圆周角定理 专项练习题1(含答案)

2021年中考数学复习:圆周角定理专项练习题11.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且,若∠ABC=∠CAD,则弦AC=.2.如图,⊙O的直径AB垂直于弦CD,垂足为E.如果∠B=60°,AC=6,那么CD的长为.3.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=10,BC=4,则DP=.4.如图,四边形ABCD内接于⊙O,若∠BCD=130°,则∠BOD=°.5.如图,⊙O上有两定点A、B,点P是⊙O上一动点(不与A、B两点重合),若∠OAB =35°,则∠APB的度数是.6.如图,点A,B,C在⊙O上,∠BOC=2∠AOB,如果∠BAC=40°,那么∠ACB的度数是.7.如图,在⊙O中,弦CD与直径AB相交于点P,∠ABC=65°.则∠CDB的大小等于.8.如图,AB是⊙O的弦,OC⊥AB,垂足为C,将劣弧沿弦AB折叠交OC于D且CD =OD,若AB=2,则⊙O的直径为.9.如图,点A,B,C在⊙O上,∠ABC=90°,BD平分∠ABC交⊙O于点D.若CD=5,BC=8,则AB的长为.10.如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),M,N分别是BP,AB的中点.若AB=4,∠APB=30°,则MN长的最大值为.11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为.12.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于.13.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于.14.如图,A、D是⊙O上的两点,BC是直径,若∠D=32°,则∠OAC=度.15.如图,小杨将一个三角板放在⊙O上,使三角板的一直角边经过圆心O,测得AC=10cm,AB=6cm,则⊙O的半径长为cm.。

2022年九年级中考数学考点训练——几何专题:《圆的综合》(一)及答案

2022年九年级中考数学考点训练——几何专题:《圆的综合》(一)及答案

备战2022最新年九年级中考数学考点训练——几何专题:《圆的综合》(一)1.对于平面内⊙C和⊙C外一点P,若过点P的直线l与⊙C有两个不同的公共点M,N,点Q为直线l上的另一点,且满足(如图1所示),则称点Q是点P关于⊙O的密切点.已知在平面直角坐标系xOy中,⊙O的半径为2,点P(4,0).(1)在点D(﹣2,1),E(1,0),F(3,)中,是点P关于⊙O的密切点的为.(2)设直线l方程为y=kx+b,如图2所示,①k=﹣时,求出点P关于O的密切点Q的坐标;②⊙T的圆心为T(t,0),半径为2,若⊙T上存在点P关于⊙O 的密切点,直接写出t的取值范围.2.A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB关于⊙C的内直角,特别地,当圆心C在∠APB 边(含顶点)上时,称∠APB为AB关于⊙C的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.(1)如图2,⊙O的半径为5,A(0,﹣5),B(4,3)是⊙O 上两点.①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B,中,是AB关于⊙O的内直角的是;②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T 与x轴交于点D(点D在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t的取值范围.3.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tanB=,tanC=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.4.如图,⊙O是△ABD的外接圆,AB为直径,点C是弧AD的中点,连接OC,BC分别交AD于点F,E.(1)求证:∠ABD=2∠C.(2)若AB=10,BC=8,求BD的长.5.如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.6.如图,已知Rt△ABC中,∠A=30°,AC=6.边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线).当等边△DEF的边DF、EF与Rt△ABC的边AB分别相交于点M、N(M、N不与A、B重合)时,设AD=x.(1)则△FMN的形状是,△ADM的形状是;(2)△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出的取值范围;(3)若以点M为圆心,MN为半径的圆与边AC、EF同时相切,求此时MN的长.7.如图,以点O为圆心,OE为半径作优弧EF,连接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取点A,B(点B在点A 的顺时针方向)且使AB=2,以AB为边向弧内作正三角形ABC.(1)发现:不论点A在弧上什么位置,点C与点O的距离不变,点C与点O的距离是;点C到直线EF的最大距离是.(2)思考:当点B在直线OE上时,求点C到OE的距离,在备用图1中画出示意图,并写出计算过程.(3)探究:当BC与OE垂直或平行时,直接写出点C到OE的距离.8.如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON =OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.9.如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.10.如图,在△ABC中,∠BAC=90°,∠B=60°,AB=2.AD⊥BC 于D.E为边BC上的一个(不与B、C重合)点,且AE⊥EF于E,∠EAF=∠B,AF相交于点F.(1)填空:AC=;∠F=.(2)当BD=DE时,证明:△ABC≌△EAF.(3)△EAF面积的最小值是.(4)当△EAF的内心在△ABC的外部时,直接写出AE的范围.参考答案1.解:(1)当圆心在坐标原点时,直线l为y=0时,∵⊙O的半径为2,点P(4,0).∴M(2,0),N(﹣2,0),PM=2,PN=6,=,∵,∴=,设Q点坐标为(x,y),则QM=|2﹣x|,QN=|x﹣(﹣2)|=|x+2|,∴=,∴|2+x|=3|2﹣x|,∴2+x=6﹣3x,或2+x=3x﹣6,∴x=1,或x=4,∴E(1,0)是点P关于⊙O的密切点.故答案为:E.(2)①依题意直线l:y=kx+b过定点P(4,0),∵k=﹣∴将P(4,0)代入y=﹣x+b得:0=﹣×4+b,∴b=,∴y=﹣x+.如图,作MA⊥x轴于点A,NB垂直x轴于点B,设M(x,﹣x+),由OM=2得:x2+=4,∴5x2﹣4x﹣10=0,则M,N两点的横坐标xM,xN是方程5x2﹣4x﹣10=0的两根,解得xM=,xN=,∴AB=,PA=,PB=,∵,∴=,=,∴=,∴HA=,∴OH=OA﹣HA=﹣=1,∴Q(1,1).②点P关于⊙O的密切点的轨迹为切点弦ST(不含端点),如图所示:∴﹣1≤t<0或2<t≤3.2.解:(1)如图1,∵P1(1,0),A(0,﹣5),B(4,3),∴AB==4,P1A==,P1B==3,∴P1不在以AB为直径的圆弧上,故∠AP1B不是AB关于⊙O的内直角,∵P2(0,3),A(0,﹣5),B(4,3),∴P2A=8,AB=4,P2B=4,∴P2A2+P2B2=AB2,∴∠AP2B=90°,∴∠AP2B是AB关于⊙O的内直角,同理可得,P3B2+P3A2=AB2,∴∠AP3B是AB关于⊙O的内直角,故答案为:∠AP2B,∠AP3B;(2)∵∠APB是AB关于⊙O的内直角,∴∠APB=90°,且点P在⊙O的内部,∴满足条件的点P形成的图形为如图2中的半圆H(点A,B均不能取到),过点B作BD⊥y轴于点D,∵A(0,﹣5),B(4,3),∴BD=4,AD=8,并可求出直线AB的解析式为y=2x﹣5,∴当直线y=2x+b过直径AB时,b=﹣5,连接OB,作直线OH交半圆于点E,过点E作直线EF∥AB,交y 轴于点F,∵OA=OB,AH=BH,∴EH⊥AB,∴EH⊥EF,∴EF是半圆H的切线.∵∠OAH=∠OAH,∠OHB=∠BDA=90°,∴△OAH∽△BAD,∴,∴OH=AH=EH,∴OH=EO,∵∠EOF=∠AOH,∠FEO=∠AHO=90°,∴△EOF≌△HOA(ASA),∴OF=OA=5,∵EF∥AB,直线AB的解析式为y=2x﹣5,∴直线EF的解析式为y=2x+5,此时b=5,∴b的取值范围是﹣5<b≤5.(3)∵对于线段MN上每一个点H,都存在点T,使∠DHE是DE 关于⊙T的最佳内直角,∴点T一定在∠DHE的边上,∵TD=4,∠DHT=90°,线段MN上任意一点(不包含点M)都必须在以TD为直径的圆上,该圆的半径为2,∴当点N在该圆的最高点时,n有最大值,即n的最大值为2.分两种情况:①若点H不与点M重合,那么点T必须在边HE上,此时∠DHT =90°,∴点H在以DT为直径的圆上,如图3,当⊙G与MN相切时,GH⊥MN,∵OM=1,ON=2,∴MN==,∵∠GMH=∠OMN,∠GHM=∠NOM,ON=GH=2,∴△GHM≌△NOM(ASA),∴MN=GM=,∴OG=﹣1,∴OT=+1,当T与M重合时,t=1,∴此时t的取值范围是﹣﹣1≤t<1,②若点H与点M重合时,临界位置有两个,一个是当点T与M重合时,t=1,另一个是当TM=4时,t=5,∴此时t的取值范围是1≤t<5,综合以上可得,t的取值范围是﹣﹣1≤t<5.3.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a2=﹣2(舍去),∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,解得a1=2,(舍去)∴BD=3+a=3+2=5.∴或5.(3)①如答图4,连接AD,BD,∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.4.(1)证明:∵C是的中点,∴=,∴∠ABC=∠CBD,∵OB=OC,∴∠ABC=∠C,∴∠ABC=∠CBD=∠C,∴∠ABD=∠ABC+CBD=2∠C;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴AC==6,∵C是的中点,∴OC⊥AD,∴OA2﹣OF2=AF2=AC2﹣CF2,∴52﹣OF2=62﹣(5﹣OF)2,∴OF=1.4,又∵O是AB的中点,∴BD=2OF=2.8.5.解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△PAB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△PAB的面积==.综上所述,在整个运动过程中,△PAB的面积是定值,定值为.6.解:(1)如图1,∵△DEF是等边三角形,∴∠FDE=∠F=60°.∵∠A=30°,∴∠AMD=∠FDE﹣∠A=30°,∴∠FMN=∠AMD=30°,∴∠MNF=90°,即△FMN是直角三角形,∵∠FDE=60°,∴∠AMD=∠FDE﹣∠A=30°,∴∠AMD=∠A,∴DM=DA,∴△ADM是等腰三角形;故答案为:直角三角形,等腰三角形;(2)如图2,△ADM是等腰三角形,∴DM=AD=x,FM=4﹣x,又∵∠FED=60°,∠A=30°,∴∠FNM=90°,∴MN=MF•sinF=(4﹣x),FN=,∴y==,=.当0<x≤2时,∴y=S四边形DENM=S△FDE﹣S△FMN=4,当2≤x<4时,CD=6﹣x,∵∠BCE=90°,∠PDC=60°,∴PC=(6﹣x),∴,=.(3)如图3,点M作MG⊥AC于点G,由(2)得DM=x,∵∠MDG=60°,∴MG=,MNF=90°∴MN⊥FC要使以点M为圆心,MN长为半径的圆与边AC、EF相切,则有MG=MN,∴,解得:x=2,∴圆的半径MN=.7.解:(1)如图1,连接OA、OB、OC,延长OC交AB于点G,在正三角形ABC中,AB=BC=AC=2,∵OA=OB,AC=BC,∴OC垂直平分AB,∴AG=AB=1,∴在Rt△AGC中,由勾股定理得:CG===,在Rt△AGO中,由勾股定理得:OG===2,∴OC=2﹣;如图2,延长CO交EF于点H,当CO⊥EF时,点C到直线EF的距离最大,最大距离为CH的长,∵OE=OF,CO⊥EF,∴CO平分∠EOF,∵∠EOF=120°,∴∠EOH=∠EOF=60°,在Rt△EOH中,cos∠EOH=,∴cos60°==,∴OH=,∴CH=CO+OH=,∴点C到直线EF的最大距离是.故答案为:2﹣;.(2)如图3,当点B在直线OE上时,由OA=OB,CA=CB可知,点O,C都在线段AB的垂直平分线上,过点C作AB的垂线,垂足为G,则G为AB中点,直线CG过点O.∴由∠COM=∠BOG,∠CMO=∠BGO∴△OCM∽△OBG,∴=,∴=,∴CM=,∴点C到OE的距离为.(3)如图4,当BC⊥OE时,设垂足为点M,∵∠EOF=120°,∴∠COM=180°﹣120°=60°,∴在Rt△COM中,sin∠COM=,∴sin60°==,∴CM=CO=(2﹣)=﹣;如图5,当BC∥OE时,过点C作CN⊥OE,垂足为N,∵BC∥OE,∴∠CON=∠GCB=30°,∴在Rt△CON中,sin∠CON=,∴sin30°==,∴CN=CO=(2﹣)=﹣;综上所述,当BC与OE垂直或平行时,点C到OE的距离为﹣或﹣.8.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6﹣3t,ON=t.若△ABO∽△MNO,则=,即=,解得t=1.若△ABO∽△NMO,则=,即=,解得t=1.8.综上,当t为1或1.8时,△ABO与以点O、M、N为顶点的三角形相似.(2)①当0<t<2时,在ON的延长线的截取ND=OM,连接CD、CN、CM,如图所示:∵直线y=x与x轴的夹角为450,∴OC平分∠AOB.∴∠AOC=∠BOC.∴CN=CM.又∵在⊙O中∠CNO+∠CMO=180°,∠DNC+∠CNO=180°,∴∠CND=∠CMO.∴△CND≌△CMO(SAS).∴CD=CO,∠DCN=∠OCM.又∵∠AOB=90°,∴MN为⊙O的直径,∴∠MCN=90°.∴∠OCM+∠OCN=90°.∴∠DCN+∠OCN=90°.∴∠OCD=90°.又∵CD=CO,∴OD=OC.∴ON+ND=OC.∴OM+ON=OC.②当t>2时,过点C作CD⊥OC交ON于点D,连接CM、CN,如图所示:∵∠COD=45°,∴△CDO为等腰直角三角形,∴OD=OC.∵MN为⊙O的直径,∴∠MCN=90°.又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC.又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM.∴△CDN≌△COM(SAS).∴DN=OM.又∵OD=OC,∴ON﹣DN=OC.∴ON﹣OM=OC.9.证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB的中点,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.10.解:(1)∵∠BAC=90°,∠B=60°,AB=2,tanB=,∴AC=AB•tanB=2tan60°=2;∵AE⊥EF,∴∠AEF=90°,∵∠EAF=∠B=60°,∴∠F=90°﹣∠EAF=90°﹣60°=30°.故答案为:2,30°;(2)证明:当BD=DE时,∵AD⊥BC于D,∴AB=AE,∵∠AEF=90°,∠BAC=90°,∴∠AEF=∠BAC,又∠EAF=∠B,∴△ABC≌△EAF(ASA);(3)∵∠AEF=90°,∠EAF=60°,tan∠EAF=,∴EF=AE•tan∠EAF=AE•tan60°=AE,∴S△EAF=AE•EF=AE×AE=AE2,当AE⊥BC时,AE最短,S△EAF最小,此时∠AEB=90°,sinB=,∴AE=AB•sinB=2sin60°=2×=,S△EAF=AE2=×3=,∴△EAF面积的最小值是,故答案为:;(4)当△EAF内心恰好落在AC上时,设△EAF的内心为N,连接EN,如图:∵N是△EAF的内心,∴AN平分∠EAF,EN平分∠AEF,∴∠EAC=∠AEF=×60°=30°,∵∠BAC=90°,∴∠BAE=∠BAC﹣∠EAC=90°﹣30°=60°,又∵∠B=60°,∴△ABE是等边三角形,∴AE=AB=2,∵E为BC上的一点,不与B、C重合,由(1)可知AC=2,∴当△EAF的内心在△ABC的外部时,.故答案为:.。

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)一.选择题1.P是⊙O外一点,PA切⊙O于A,割线PBC交⊙O于点B、C,若PB=BC=3,则PA的长是()A.9 B.3 C.D.182.如图,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=2,BC=2PB,那么PB 的长为()A.2 B.C.4 D.3.如图,⊙O的两条割线PAB,PCD分别交⊙O于点A,B和点C,D.已知PA=6,AB=4,PC=5,则CD=()A.B.C.7 D.244.如图,已知P为⊙O外一点,PO交⊙O于点A,割线PBC交⊙O于点B、C,且PB =BC,若OA=7,PA=4,则PB的长等于()A.B.C.6 D.5.如图,PA切⊙O于点A,PBC是⊙O的割线,如果PB=2,PC=8,那么PA的长为()A.2 B.4 C.6 D.6.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE =5,则DE的长为()A.3 B.4 C.D.7.如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π8.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.99.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.410.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么点P与O间的距离是()A.16 B.C.D.二.填空题11.如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB 延长线上任一点,QS⊥OP于S,则OP•OS=.12.如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有(把你认为成立的比例式的序号都填上).13.如图,割线PAB与⊙O交于点A、B,割线PCD与⊙O交于点C、D,PA=PC,PB=3cm,则PD=cm.14.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D.已知PA=2,PB =5,PD=8,则PC的长是.15.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC 的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).三.解答题16.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.17.如图所示,⊙O的内接△ABC的AB边过圆心O,CD切⊙O于C,BD⊥CD于D,交⊙O于F,CE⊥AB于点E,FE交⊙O于G.解答下列问题:(1)若BC=10,BE=8,求CD的值;(2)求证:DF•DB=EG•EF.18.如图1,已知Rt△ABC的直角边AC的长为2,以AC为直径的⊙O与斜边AB交于点D,过D点作⊙O的切线(1)求证:BE=DE;(2)延长DE与AC的延长线交于点F,若DF=,求△ABC的面积;(3)从图1中,显然可知BC<AC.试分别讨论在其它条件不变,当BC=AC(图2)和BC>AC(图3)时,直线DE与直线AC还会相交吗?若不能相交,请简要说明理由;若能相交,设交点为F'且DF'=,请再求出△ABC的面积.19.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.20.如图PAB、PCD是⊙O的两条割线,AB是⊙O的直径.(1)如图甲,若PA=8,PC=10,CD=6.①求sin∠APC的值;②sin∠BOD=;(2)如图乙,若AC∥OD.①求证:CD=BD;②若,试求cos∠BAD的值.参考答案一.选择题1.解:∵PB=BC=3,∴PC=6,∵PA2=PB•PC=18,∴PA=3,故选:C.2.解:设PB=x,则PC=3x,∵PA2=PB•PC,PA=2,BC=2PB,∴x•3x=12,∴x=2.故选:A.3.解:由于PAB、PCD都是⊙O的割线,根据切割线定理可得:PA•PB=PC•PD,即PA•(PA+PB)=PC•PD,∵PA=6,AB=4,PC=5,∴PD=12,即CD=PD﹣PC=7;故选:C.4.解:延长PO交圆于D;设PB=BC=x,∵PB•PC=PA•PD,PB=BC,OA=7,PA=4,∴x•2x=72,∴x=6.故选:C.5.解:∵PA切⊙O于点A,PBC是⊙O的割线,∴PA2=PB•PC=16,即PA=4;故选:B.6.解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.7.解:过点A作圆的切线AD,切点是D,∵AD2=AX•AY,AX•AY=4,∴AD=2,∴圆环的面积=πAD2=4π.故选:C.8.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.9.解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选:A.10.解:连接OA,OP∵PA,PB是⊙O的切线,∠APB=60°,∴∠OPA=∠APB=30°,OA⊥OP,∴OP===,∴点P与O间的距离是.故选:B.二.填空题(共5小题)11.解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.∵∠QMP=∠QSP=90°,∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.又∵OM•OQ=OA2=2,∴OS•OP=2.故答案为:2.12.解:∵四边形ABCD是圆内接四边形∴∠PAD=∠C,∠PAD=∠B∴△PAD∽△PCB根据相似三角形的对应边的比相等,得到②③是正确的.13.解:∵PA•PB=PC•PD,PA=PC,PB=3cm∴PB=PD=3cm.14.解:∵PA•PB=PC•PD,PA=2,PB=5,PD=8∴PC==.15.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.三.解答题(共5小题)16.解:如图,由切割线定理,得CD2=CB•CA,(2分)CD2=CB(AB+CB),CB2+2CB﹣4=0,解得CB=(负数舍去)连接OD,则OD⊥CD,又EB与⊙O相切,∴EB⊥OC,∴Rt△ODC∽Rt△EBC,(6分)于是,即∴CE=.17.(1)解:∵AB为直径,BD⊥CD∴∠ABC+∠A=90°,∠CBD+∠BCD=90°∵CD为⊙O切线∴∠BCD=∠A∴∠ABC=∠BCD∵CD⊥BD,CE⊥BE∴CE=CD∴CE==6∴CD=6(2)证明:∵CD为切线,BD为割线∴CD2=DF•DB①∵∠ACB=90°,CE⊥AB∴RT△ACE∽RT△CBE∴CE2=EA•EB②∵EG•EF=EA•EB③由①②③及CD=CE得DF•DB=EG•EF.18.(1)证明:连接OD,∴OD⊥DE,∴∠ADO+∠BDE=90°,∵OA=OD,∴∠A=∠ADO,∵∠ACB=90°,∴∠B+∠A=90°,∴∠B=∠BDE,∴BE=DE;(2)解:在直角三角形ODF中,OD=1,DF=,∴∠OFD=30°,∴OF=2,AF=3.∴tan∠A=,∴BC=AC•tan∠A=2×tan30°=.S△ABC=AC•BC=×2×=;(3)解:如图,当BC=AC时,直线DE与直线AC平行;当BC>AC时,在直角三角形ODF′中,OD=1,DF′=,∴∠OF′D=30°,∴OF′=2,AF=1,∴CF′=3,∠BAC=60°,∴tan∠BAC=,∴BC=AC•tan∠BAC=2×tan60°=2.S△ABC=AC•BC=×2×2=2.19.(1)证明:∵PF与⊙O相切,∴PF2=PD•PA.∵PE=PF,∴PE2=PD•PA.∴PE:PD=PA:PE.∵∠APE=∠APE,∴△EPD∽△APE.∴∠PED=∠A.∵∠ECB=∠A,∴∠PED=∠ECB.∴PE∥BC.(2)解:PE与BC仍然平行.证明:画图如图,∵△EPD∽△APE,∴∠PEA=∠D.∵∠B=∠D,∴∠PEA=∠B.∴PE∥BC.20.解:(1)作OE⊥CD于E,连接OC,作DF⊥PB于F.①根据垂径定理,得CE=3.设圆的半径是r.根据勾股定理,得OP2﹣PE2=OC2﹣CE2,(8+r)2﹣169=r2﹣9,解得r=6.则OE=3.则sin∠APC==;②设OF=x.根据勾股定理,得PD2﹣PF2=OD2﹣OF2,256﹣(14+x)2=36﹣x2,解得x=.所以DF=.所以sin∠BOD===.(2)①∵AC∥OD,∴∠1=∠2.又OA=OD,∴∠2=∠3.∴∠1=∠3.所以弧CD=弧BD,所以CD=BD;②∵AC∥OD,∴=.又CD=BD,AB=2OA,∴=.∴cos∠BAD==.。

2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)

2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)

2021年九年级数学中考复习专题之圆:切线长定理综合运用(一)一.选择题1.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12 B.6 C.8 D.42.如图,△MBC中,∠B=90°,∠C=60°,MB=,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.B.C.2 D.33.如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A.AB>CE>CD B.AB=CE>CD C.AB>CD>CE D.AB=CD=CE4.如图,AB、AC是⊙O的切线,B、C为切点,∠A=50°,点P是圆上异于B、C,且在上的动点,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°5.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC、CD、DA相切,若BC=2,DA=3,则AB的长()A.等于4 B.等于5 C.等于6 D.不能确定6.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是()A.4 B.8 C.4D.87.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()A.PA=PB B.∠APO=20°C.∠OBP=70°D.∠AOP=70°8.如图,⊙O是△ABC的内切圆,点D、E分别为边AC、BC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7 B.8 C.9 D.169.如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若AB=10,BC=4,则AD的长()A.4 B.5 C.6 D.710.已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥CD分别交BC与BP于点M、N.下列结论:①S四边形ABCD=AB•CD;②AD=AB;③AD=ON;④AB为过O、C、D三点的圆的切线.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题11.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=108°,则∠COD的度数是.12.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.13.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,则∠CPD=.14.如图,已知:PA、PB、EF分别切⊙O于A、B、D,若PA=10cm,那么△PEF周长是cm.若∠P=35°,那么∠AOB=,∠EOF=.15.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E,若△PDE的周长是10,则PA=.三.解答题16.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.17.如图,AC是⊙O的直径,∠ACB=60°,连接AB,分别过A、B作圆O的切线,两切线交于点P,若已知⊙O的半径为1,求△PAB的周长.18.如图,点B在⊙O外,以B点为圆心,OB长为半径画弧与⊙O相交于两点C,D,与直线OB相交A点.当AC=5时,求AD的长.19.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.20.如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E.(1)若PA=4,求△PED的周长;(2)若∠P=40°,求∠AFB的度数.参考答案一.选择题1.解:∵PA,PB分别和⊙O切于A,B两点,∴PA=PB,∵DE是⊙O的切线,∴DA=DC,EB=EC,∵△PDE的周长为12,即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,∴PA=6.故选:B.2.解:在直角△BCM中,tan60°==,得到BC==2,∵AB为圆O的直径,且AB⊥BC,∴BC为圆O的切线,又CD也为圆O的切线,∴CD=BC=2.故选:C.3.解:∵∠1=60°,∠2=65°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣65°=55°,∴∠2>∠1>∠ABC,∴AB>BC>AC,∵CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点,∴AC=CD,BC=CE,∴AB>CE>CD.故选:A.4.解:如图,连接OB、OC,∵AB、AC是⊙O的切线,∴∠OBA=∠OCA=90°,∵∠A=50°,∴∠BOC=130°,∵∠BOC=2∠P,∴∠BPC=65°;故选:C.5.解:如图,连接OC,OD,设⊙O的半径为r,∵BC、CD、DA与半⊙O相切,∴AD边上的高和AO边上的高都为r,∴AO=AD,同理BO=BC,∴AB=AO+BO=AD+BC=2+3=5.故选:B.6.解:∵PA,PB分别切⊙O于点A、B,∴PA=PB,又∠P=60°,∴△APB是等边三角形,∴AB=PA=8.故选:B.7.解:∵PA,PB是⊙O的切线,且∠APB=40°,∴PA=PB,∠APO=∠BPO,∠A=∠B=90°,∴∠OBP=∠OAP,∴C是错误的.故选:C.8.解:∵AB、AC、BC、DE都和⊙O相切,∴BI=BG,CI=CH,DG=DF,EF=EH.∴BG+CH=BI+CI=BC=9,∴C△ADE=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=C△ABC﹣(BG+EH+BC)=25﹣2×9=7.故选:A.9.解:连接OC,OD,设⊙O的半径为r,∵BC、CD、DA与半⊙O相切,∴AD和AO的高为r,∴AO=AD,同理BO=BC,∴AB=AO+BO=AD+BC,又知AB=10,BC=4,故知AD=6,故选:C.10.解:连接OD、AP,∵DA、DP、BC分别是圆的切线,切点分别是A、P、B,∴DA=DP,CP=CB,∠A=90°=∠B=∠DPO,∴AD+BC=DP+CP=CD,∴S四边形ABCD=(AD+BC)•AB=AB•CD,∴①正确;∵AD=DP<OD,∵四边形ODPN是平行四边形,得到OD=NP<BP<AB,则AD<AB,∴②错误;∵AB是圆的直径,∴∠APB=90°,∵DP=AD,AO=OP,∴D、O在AP的垂直平分线上,∴OD⊥AP,∵∠DPO=∠APB=90°,∴∠OPB=∠DPA=∠DOP,∵OM∥CD,∴∠POM=∠DPO=90°,在△DPO和△NOP中∠PON=∠DPO,OP=OP,∠DOP=∠OPN,∴△DPO≌△NOP,∴ON=DP=AD,∴③正确;∵AP⊥OD,OA=OP,∴∠AOD=∠POD,同理∠BOC=∠POC,∴∠DOC=×180°=90°,∴△CDO的外接圆的直径是CD,∵∠A=∠B=90°,取CD的中点Q,连接OQ,∵OA=OB,∴AD∥OQ∥BC,∴∠AOQ=90°,∴④正确.故选:C.二.填空题(共5小题)11.解:如图所示:连接圆心与各切点,在Rt△DEO和Rt△DFO中,∴Rt△DEO≌Rt△DFO(HL),∴∠1=∠2,同理可得:Rt△AFO≌Rt△AMO,Rt△BMO≌Rt△BNO,Rt△CEO≌Rt△CNO,∴∠3=∠4,∠5=∠7,∠6=∠8,∴∠5+∠6=∠7+∠8=108°,∴2∠2+2∠3=360°﹣2×108°,∴∠2+∠3=∠DOC=72°.故答案为:72°.12.解:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.故答案为:.13.解:∵PA=6,⊙O的半径为2,∴PB=PA﹣AB=6﹣4=2,∴OP=4,∵PC、PD切⊙O于点C、D.∴∠OPC=∠OPD,∴CO⊥PC,∴sin∠OPC==,∴∠OPC=30°,∴∠CPD=60°,故答案为:60°.14.解:∵PA、PB、EF分别切⊙O于A、B、D.∴AE=ED,DF=FR∴△PEF周长是PE+PF+EF=PE+EA+PF+FR=PA+PR=2PA=20cm;∵PA、PB、EF分别切⊙O于A、B∴∠PAO=∠PRO=90°∴∠AOB=360°=90°﹣90°﹣35°=145°;∴∠EOF=∠AOB=72.5°故答案是:20,145°,72.5°.15.解:∵DA,DC都是圆O的切线,∴DC=DA,同理EC=EB,PA=PB,∴△PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=10,∴PA=5;故答案为5.三.解答题(共5小题)16.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.17.解:∵PA,PB是圆O的切线.∴PA=PB,∠PAB=60°∴△PAB是等边三角形.在直角△ABC中,AB=AC•sin60°=2×=∴△PAB的周长为PA+PB+AB=3.18.解:连接OC、OD.∵OA是⊙B的直径,∴∠OCA=∠ODA=90°,∴AC、AD都是⊙O的切线.∴AD=AC=5.19.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6,∴DC2=62+82=100,即DC=10.(1分)设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.(4分)方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.(2分)即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8.(4分)(2)存在符合条件的P点.设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,∴y=;(6分)②△ADP∽△BPC时,∴y=4.(7分)故存在符合条件的点P,此时AP=或4.(8分)20.解:(1)∵DA,DC都是圆O的切线,∴DC=DA,同理EC=EB,∵P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B∴PA=PB,∴三角形PDE的周长=PD+PE+DE=PD+DC+PE+BE=PA+PB=2PA=8,即三角形PDE的周长是8;(2)连接AB,∵PA=PB,∴∠PAB=∠PBA,∵∠P=40°,∴∠PAB=∠PBA=(180﹣40)=70°,∵BF⊥PB,BF为圆直径∴∠ABF=∠PBF=90°﹣70°=20°∴∠AFB=90°﹣20°=70°.答:(1)若PA=4,△PED的周长为8;(2)若∠P=40°,∠AFB的度数为70°.。

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)一.选择题1.P是⊙O外一点,PA切⊙O于A,割线PBC交⊙O于点B、C,若PB=BC=3,则PA的长是()A.9 B.3 C.D.182.如图,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=2,BC=2PB,那么PB 的长为()A.2 B.C.4 D.3.如图,⊙O的两条割线PAB,PCD分别交⊙O于点A,B和点C,D.已知PA=6,AB=4,PC=5,则CD=()A.B.C.7 D.244.如图,已知P为⊙O外一点,PO交⊙O于点A,割线PBC交⊙O于点B、C,且PB =BC,若OA=7,PA=4,则PB的长等于()A.B.C.6 D.5.如图,PA切⊙O于点A,PBC是⊙O的割线,如果PB=2,PC=8,那么PA的长为()A.2 B.4 C.6 D.6.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE =5,则DE的长为()A.3 B.4 C.D.7.如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π8.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.99.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.410.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么点P与O间的距离是()A.16 B.C.D.二.填空题11.如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB 延长线上任一点,QS⊥OP于S,则OP•OS=.12.如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有(把你认为成立的比例式的序号都填上).13.如图,割线PAB与⊙O交于点A、B,割线PCD与⊙O交于点C、D,PA=PC,PB=3cm,则PD=cm.14.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D.已知PA=2,PB =5,PD=8,则PC的长是.15.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC 的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).三.解答题16.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.17.如图所示,⊙O的内接△ABC的AB边过圆心O,CD切⊙O于C,BD⊥CD于D,交⊙O于F,CE⊥AB于点E,FE交⊙O于G.解答下列问题:(1)若BC=10,BE=8,求CD的值;(2)求证:DF•DB=EG•EF.18.如图1,已知Rt△ABC的直角边AC的长为2,以AC为直径的⊙O与斜边AB交于点D,过D点作⊙O的切线(1)求证:BE=DE;(2)延长DE与AC的延长线交于点F,若DF=,求△ABC的面积;(3)从图1中,显然可知BC<AC.试分别讨论在其它条件不变,当BC=AC(图2)和BC>AC(图3)时,直线DE与直线AC还会相交吗?若不能相交,请简要说明理由;若能相交,设交点为F'且DF'=,请再求出△ABC的面积.19.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.20.如图PAB、PCD是⊙O的两条割线,AB是⊙O的直径.(1)如图甲,若PA=8,PC=10,CD=6.①求sin∠APC的值;②sin∠BOD=;(2)如图乙,若AC∥OD.①求证:CD=BD;②若,试求cos∠BAD的值.参考答案一.选择题1.解:∵PB=BC=3,∴PC=6,∵PA2=PB•PC=18,∴PA=3,故选:C.2.解:设PB=x,则PC=3x,∵PA2=PB•PC,PA=2,BC=2PB,∴x•3x=12,∴x=2.故选:A.3.解:由于PAB、PCD都是⊙O的割线,根据切割线定理可得:PA•PB=PC•PD,即PA•(PA+PB)=PC•PD,∵PA=6,AB=4,PC=5,∴PD=12,即CD=PD﹣PC=7;故选:C.4.解:延长PO交圆于D;设PB=BC=x,∵PB•PC=PA•PD,PB=BC,OA=7,PA=4,∴x•2x=72,∴x=6.故选:C.5.解:∵PA切⊙O于点A,PBC是⊙O的割线,∴PA2=PB•PC=16,即PA=4;故选:B.6.解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.7.解:过点A作圆的切线AD,切点是D,∵AD2=AX•AY,AX•AY=4,∴AD=2,∴圆环的面积=πAD2=4π.故选:C.8.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.9.解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选:A.10.解:连接OA,OP∵PA,PB是⊙O的切线,∠APB=60°,∴∠OPA=∠APB=30°,OA⊥OP,∴OP===,∴点P与O间的距离是.故选:B.二.填空题(共5小题)11.解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.∵∠QMP=∠QSP=90°,∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.又∵OM•OQ=OA2=2,∴OS•OP=2.故答案为:2.12.解:∵四边形ABCD是圆内接四边形∴∠PAD=∠C,∠PAD=∠B∴△PAD∽△PCB根据相似三角形的对应边的比相等,得到②③是正确的.13.解:∵PA•PB=PC•PD,PA=PC,PB=3cm∴PB=PD=3cm.14.解:∵PA•PB=PC•PD,PA=2,PB=5,PD=8∴PC==.15.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.三.解答题(共5小题)16.解:如图,由切割线定理,得CD2=CB•CA,(2分)CD2=CB(AB+CB),CB2+2CB﹣4=0,解得CB=(负数舍去)连接OD,则OD⊥CD,又EB与⊙O相切,∴EB⊥OC,∴Rt△ODC∽Rt△EBC,(6分)于是,即∴CE=.17.(1)解:∵AB为直径,BD⊥CD∴∠ABC+∠A=90°,∠CBD+∠BCD=90°∵CD为⊙O切线∴∠BCD=∠A∴∠ABC=∠BCD∵CD⊥BD,CE⊥BE∴CE=CD∴CE==6∴CD=6(2)证明:∵CD为切线,BD为割线∴CD2=DF•DB①∵∠ACB=90°,CE⊥AB∴RT△ACE∽RT△CBE∴CE2=EA•EB②∵EG•EF=EA•EB③由①②③及CD=CE得DF•DB=EG•EF.18.(1)证明:连接OD,∴OD⊥DE,∴∠ADO+∠BDE=90°,∵OA=OD,∴∠A=∠ADO,∵∠ACB=90°,∴∠B+∠A=90°,∴∠B=∠BDE,∴BE=DE;(2)解:在直角三角形ODF中,OD=1,DF=,∴∠OFD=30°,∴OF=2,AF=3.∴tan∠A=,∴BC=AC•tan∠A=2×tan30°=.S△ABC=AC•BC=×2×=;(3)解:如图,当BC=AC时,直线DE与直线AC平行;当BC>AC时,在直角三角形ODF′中,OD=1,DF′=,∴∠OF′D=30°,∴OF′=2,AF=1,∴CF′=3,∠BAC=60°,∴tan∠BAC=,∴BC=AC•tan∠BAC=2×tan60°=2.S △ABC=AC•BC=×2×2=2.19.(1)证明:∵PF与⊙O相切,∴PF2=PD•PA.∵PE=PF,∴PE2=PD•PA.∴PE:PD=PA:PE.∵∠APE=∠APE,∴△EPD∽△APE.∴∠PED=∠A.∵∠ECB=∠A,∴∠PED=∠ECB.∴PE∥BC.(2)解:PE与BC仍然平行.证明:画图如图,∵△EPD∽△APE,∴∠PEA=∠D.∵∠B=∠D,∴∠PEA=∠B.∴PE∥BC.20.解:(1)作OE⊥CD于E,连接OC,作DF⊥PB于F.①根据垂径定理,得CE=3.设圆的半径是r.根据勾股定理,得OP2﹣PE2=OC2﹣CE2,(8+r)2﹣169=r2﹣9,解得r=6.则OE=3.则sin∠APC==;②设OF=x.根据勾股定理,得PD2﹣PF2=OD2﹣OF2,256﹣(14+x)2=36﹣x2,解得x=.所以DF=.所以sin∠BOD===.(2)①∵AC∥OD,∴∠1=∠2.又OA=OD,∴∠2=∠3.∴∠1=∠3.所以弧CD=弧BD,所以CD=BD;②∵AC∥OD,∴=.又CD=BD,AB=2OA,∴=.∴cos∠BAD==.。

最新人教版初中数学九年级数学上册第四单元《圆》测试卷(答案解析)(1)

最新人教版初中数学九年级数学上册第四单元《圆》测试卷(答案解析)(1)

一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135° 2.如图,在⊙O 中,直径AB =10,弦DE ⊥AB 于点C ,若OC :OB =3:5,连接DO ,则DE 的长为( )A .3B .4C .6D .8 3.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22° 4.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( ) A .13cm B .12cm C .11cm D .10cm 5.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π 6.已知O 的半径为4,点P 在O 外,OP 的长可能是( )A .2B .3C .4D .5 7.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒8.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为( )A .2B .1C .2D .22 9.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .4310.如图,半径为1cm的P在边长为9πcm,12πcm,15πcm的三角形外沿三遍滚动(没有滑动)一周,则圆P所扫过的面积为()cm2A.73πB.75πC.76πD.77π11.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20°B.40°C.50°D.60°12.如图,AB是⊙O的直径,AB=AC且∠BAC=45°,⊙O交BC于点D,交AC于点E,DF 与⊙O相切,OD与BE相交于点H.下列结论错误的是()A.BD=CD B.四边形DHEF为矩形C.2=AE DED.BC=2CE二、填空题13.如图,A、B、C是O上顺次三点,若AC、AB、BC分别是O内接正三角形、正方形、正n边形的一边,则n=______.14.如图,用一张半径为10cm的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm,那么这张扇形纸板的弧长是_______cm,制作这个帽子需要的纸板的面积为_______cm2.15.已知扇形的圆心角为120︒,面积为π,则扇形的半径是___________.16.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是AC的中点,AC与BD交于点E.若E是BD的中点,则AC的长是____________.17.如图,已知点C是半圆О上一点,将弧BC沿弦BC折叠后恰好经过点,O若半圆O 的半径是2,则图中阴影部分的面积是________________________.18.如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠BOE=54°,则∠C=______.19.如图,在⊙O中,弦AC、BD相交于点E,且AB BC CD==,若∠BEC=130°,则∠ACD的度数为_____20.如图,已知空间站A与星球B距离为a,信号飞船C在星球B附近沿圆形轨道行驶,B,C之间的距离为b.数据S表示飞船C与空间站A的实时距离,那么S的最小值________.三、解答题21.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,OD交⊙O于点D,点E在⊙O上,若∠AOD=50°.(1)求∠DEB的度数;(2)若OC=3,OA=5,①求弦AB的长;②求劣弧AB的长.22.如图,AB是⊙O的弦,点C在AB上,点D是AB的中点.将AC沿AC折叠后恰好经过点D,若⊙O的半径为25,AB=8.则AC的长是_______.23.已知△ABC,请按以下要求完成本题:(1)请作出△ABC的外接圆⊙O(尺规作图,保留作图痕迹);(2)若在△ABC中,∠ABC=70°,∠ACB=40°,⊙O的直径AD交CB于E,则∠DEC= .24.如图,O的半径为2,四边形ABCD内接于O,圆心O到AC3.(1)求AC的长;的度数.(2)求ADC25.如图,O 中,AB CD =,A C ∠=∠,AB 与CD 交于点P .求证=DP BP .26.如图,半径为2的⊙O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,求劣弧MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接OB ,根据平行四边形的性质可得∠OAB=∠C=45°,再根据等腰三角形的等边对等角得∠OBA=∠OAB=45°,则∠AOB=90°,由DA=DB 得∠AOD=∠BOD ,进而可求得∠AOD 的度数.【详解】解:连接OB ,∵四边形ABCO 是平行四边形,∴∠OAB=∠C=45°,∵OA=OB ,∴∠OBA=∠OAB=45°,∴∠AOB=90°,∵DA=DA ,∴∠AOD=∠BOD=12(360°﹣90°)=135°, 故选:D .【点睛】本题考查平行四边形的性质,等腰三角形的性质,圆心角、弧、弦的关系等知识,熟练掌握平行四边形的性质和等腰三角形的性质,熟知等弦所对的圆心角相等是解答的关键. 2.D解析:D【分析】根据题意可求出OC 长度,再根据勾股定理求出CD 长度,最后根据垂径定理即可得到DE 长度.【详解】∵AB =10,∴OB =5OC :OB =3:5,∴OC =3, 在Rt OCD △ 中,2222534CD OD OC =-=-=∵DE ⊥AB ,∴DE =2CD =8,故选:D .【点睛】本题考查垂径定理、勾股定理.掌握垂径定理“垂直于弦的直径平分这条弦”是解题的关键.3.D解析:D【分析】连接OB ,利用圆周角定理求得∠AOB ,再根据切线性质证得∠OBP=90°,利用直角三角形的两锐角互余即可求解.【详解】解:连接OB,∵∠ACB=34°,∴∠AOB=2∠ACB=68°,∵PB为O的切线,∴OB⊥PB,即∠OBP=90°,∴∠P=90°﹣∠AOB=22°,故选:D.【点睛】本题考查了切线的性质、圆周角定理、直角三角形的两锐角互余,熟练掌握切线的性质和圆周角定理是解答的关键.4.B解析:B【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高.【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高2213512.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.C解析:C【分析】首先证明△OCD是等边三角形,求出OC=OD=CO=3cm,再根据S阴影=S扇形OAB-S扇形OCD,求解即可.【详解】解:如图,连结CD .∵OC=OD ,∠O=60°,∴△OCD 是等边三角形,∴OC=OD=CO=3cm ,∴OA=OC+AC=15cm ,∴OB=OA=15cm ,∴S 阴影=S 扇形OAB -S 扇形OCD =226015603360360ππ⋅⋅⋅⋅-=236cm π. 故选C .【点睛】本题考查了扇形的面积,等边三角形的性质与判定等知识.扇形的面积=2360n r π︒. 6.D解析:D【分析】根据题意可以求得OP 的取值范围,从而可以解答本题.【详解】解:∵O 的半径为4,点P 在⊙O 外,∴OP >4,故选:D .【点睛】本题考查点和圆的位置关系,解答本题的关键是明确题意,求出OP 的取值范围. 7.B解析:B【分析】连接OC ,由CE 为圆O 的切线,利用切线的性质得到OC 垂直于CE ,由OA=OC ,利用等边对等角得到一对角相等,再利用外角性质求出∠COE 的度数,即可求出∠E 的度数.【详解】解:连接OC ,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对BC,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC,∴∠OAC=∠OCA=28°,∵∠COE为△AOC的外角,∴∠COE=56°,则∠E=34°.故选:B.【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.8.A解析:A【分析】过B作关于直线MN的对称点B′,连接OA、OB、OB′、AB′,如图,由轴对称的性质可知AB′即为PA+PB的最小值,由同弧所对的圆心角和圆周角的性质可知∠AON=2∠AMN=2×30°=60°,由对称的性质可知∠B′ON=∠BON=30°,即可求出∠AOB′的度数,再由等腰直角三角形的性质即可求解.【详解】解:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,如图,则AB′与MN的交点即为PA+PB的最小时的点P,且PA+PB的最小值=AB′,∵∠AMN=30°,OA=OM,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=12∠AON=12×60°=30°,由对称性可得∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴AB′222,即PA+PB的最小值=2.故选:A.【点睛】本题考查了圆周角定理、轴对称的性质以及等腰直角三角形的性质等知识,解答此题的关键是根据题意作出辅助线、构造出直角三角形,利用勾股定理求解.9.C解析:C【分析】连接PC,PA,过点P作PD⊥AB于点D,根据切线的性质可知PC⊥y轴,故可得出四边形PDOC是矩形,所以PD=OC=3,再求出AB的长,由垂径定理可得出AD的长,故可得出OD 的长,进而得出P点坐标,再把P点坐标代入直线y=kx-1即可得出结论.【详解】解:连接PC,PA,过点P作PD⊥AB于点D,∵⊙P与y轴相切于点C(0,3),∴PC⊥y轴,∴四边形PDOC是矩形,∴PD=OC=3,∵A(1,0),B(7,0),∴AB=7-1=6,∴AD=12AB=12×6=3,∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx-1恰好平分⊙P的面积,∴3=4k-1,解得k=1.故选:C.【点睛】本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.10.A解析:A【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形∴圆P所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.11.B解析:B【分析】由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得=BC BD,然后由圆周角定理,即可求得答案.【详解】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=BC BD,∵∠CAB=20°,∴∠BOD=2∠CAB=2×20°=40°.故选:B.【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.12.D解析:D【分析】A、利用直径所对的圆周角是直角,以及等腰三角形的三线合一性质即可得出结论;B、根据中位线得出OD//AC,再根据矩形的判定即可得出结论C、根据垂径定理得出BD DE=,再根据等腰直角三角形的性质得出AE=BE,从而得出=,即可得出2BD DEAE DE=D、不能得出BC=2CE【详解】解:连接AD∵AB为⊙O的直径,∴∠BDA=∠BEA =90°,即AD⊥BC,又∵AB=AC,∴BD=DC,∠BAD=∠DAE,故A正确;∵OA=OB∴OD是三角形ABC的中位线∴OD//AC∴∠DHE =90°=∠BEF,∵DF与⊙O相切,∴∠ODF =90°∴四边形DHEF为矩形故B正确;∵∠BEA =90°,∠BAC=45°,∴AE=BE∴AE BE=∵∠DHE =90°∴OD⊥BE∴BD DE=∴2=AE DE故C正确;不能得出BC=2CE故选:D【点睛】本题考查了切线的性质、三线合一定理、三角形中位线定理、垂径定理;熟练掌握等腰三角形的性质和圆周角定理,并能进行推理论证是解决问题的关键.二、填空题13.12【分析】如图连接OAOCOB根据角的转换求出中心角即可解决问题【详解】如图连接OAOCOB∵若ACAB分别是内接正三角形正方形的一边∴∴由题意得:∴12故答案为:12【点睛】本题考查了正多边形与解析:12【分析】如图,连接OA 、OC 、OB ,根据角的转换求出中心角BOC ∠即可解决问题.【详解】如图,连接OA 、OC 、OB .∵若AC 、AB 分别是O 内接正三角形、正方形的一边,∴120AOC ∠=︒,90AOB ∠=︒,∴30BOC AOC AOB ∠=∠-∠=︒, 由题意得:36030n︒︒=, ∴n =12,故答案为:12.【点睛】本题考查了正多边形与圆:把一个圆分成n (n 是大于2的自然数)等份,一次连接各分点所得到的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆,熟练的掌握正多边形的有关概念是解答本题的关键. 14.12π60π【分析】首先根据底面半径求得圆锥的底面的周长从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm 做成的圆锥形帽子的高为8cm ∴圆锥的底面半径为∴底面周长为∴这张扇形纸板的弧长是扇形的解析:12π 60π【分析】首先根据底面半径求得圆锥的底面的周长,从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴221086-=,∴底面周长为2612cm ππ⨯=,∴这张扇形纸板的弧长是12cm π, 扇形的面积为21110126022lr cm ππ=⨯⨯=.故答案是:12π;60π.【点睛】本题主要考查了扇形弧长计算和面积计算,准确分析计算是解题的关键.15.【分析】根据扇形的面积公式S 扇形=即可求得【详解】解:∵S 扇形=∴r2==3∴r=(负值舍去)故答案为:【点睛】本题主要考查扇形面积的计算解题的关键是掌握扇形面积的计算公式:S 扇形=【分析】根据扇形的面积公式S 扇形=2360n r π 即可求得. 【详解】解:∵S 扇形=2360n r π, ∴r 2=360360 120S n πππ==3, ∴(负值舍去),【点睛】本题主要考查扇形面积的计算,解题的关键是掌握扇形面积的计算公式:S 扇形=2360n r π. 16.【分析】连接DO 交AC 于点F 由垂径定理得F 是AC 中点再由中位线定理得接着证明得到DF=CB 就可以求出OF 的长就得到BC 的长最后用勾股定理求出AC 的长【详解】解:如图连接DO 交AC 于点F ∵D 是的中点∴解析:【分析】连接DO ,交AC 于点F ,由垂径定理得F 是AC 中点,再由中位线定理得12OF BC =,接着证明()EFD ECB AAS ≅,得到DF=CB ,就可以求出OF 的长,就得到BC 的长,最后用勾股定理求出AC 的长.【详解】解:如图,连接DO ,交AC 于点F ,∵D 是AC 的中点,∴OD AC ⊥,AF CF =,∴90DFE ∠=︒,∵OA OB =,AF CF =, ∴12OF BC =, ∵AB 是直径, ∴90ACB ∠=︒,在EFD △和ECB 中,90DFE BCE DEF BECDE BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()EFD ECB AAS ≅,∴DF BC =, ∴12OF DF =, ∵3OD =, ∴1OF =,∴2BC =,在Rt ABC 中,2242AC AB BC =-=. 故答案是:2【点睛】本题考查垂径定理,解题的关键是熟练运用垂径定理. 17.【分析】过点O 作OD ⊥BC 于E 交半圆O 于D 点连接CD 如图根据垂径定理由OD ⊥BC 得BE =CE 再根据折叠的性质得到ED =EO 则OE =OB 则可根据含30度的直角三角形三边的关系得∠OBC =30°即∠AB 解析:23π 【分析】过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,如图,根据垂径定理由OD ⊥BC 得BE =CE ,再根据折叠的性质得到ED =EO ,则OE =12OB ,则可根据含30度的直角三角形三边的关系得∠OBC =30°,即∠ABC =30°则∠AOC=60°,由于OC =OB ,则弓形OC 的面积=弓形OB 的面积,然后根据扇形的面积公式及S 阴影部分=S 扇形OAC 即可得到阴影部分的面积.【详解】如图:过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,∵OD ⊥BC ,∴BE =CE ,∵半圆O 沿BC 所在的直线折叠,圆弧BC 恰好过圆心O ,∴ED =EO ,∴OE =12OB , ∴∠OBC =30°,即∠ABC =30°,∴∠AOC=60°;∵OC =OB ,∴弓形OC 的面积=弓形OB 的面积,∴S 阴影部分=S 扇形OAC =260223603ππ⋅= . 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了垂定定理、圆周角定理和扇形的面积公式.18.18°【分析】连接OD 利用半径相等和等腰三角形的性质以及三角形的外角性质得到∠BOE=3∠C 即可解决问题【详解】连接OD ∵CD=OA=OD ∴∠C=∠DOC ∴∠ODE=∠C+∠DOC=2∠C ∵OD=O解析:18°.【分析】连接OD ,利用半径相等和等腰三角形的性质以及三角形的外角性质得到∠BOE=3∠C ,即可解决问题.【详解】连接OD ,∵CD=OA=OD,∴∠C=∠DOC,∴∠ODE=∠C+∠DOC=2∠C,∵OD=OE,∴∠E=∠EDO=2∠C,∴∠EOB=∠C+∠E=3∠C=54°,∴∠C=18°,故答案为:18°.【点睛】本题考查了圆的认识及等腰三角形的性质及三角形的外角性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.19.105°【分析】根据圆周角定理的推论可得∠BCA=∠CBD=∠CDB然后根据三角形的内角和定理即可求出∠BCA与∠CED再在△CDE中利用三角形的内角和求解即可【详解】解:∵∴∠BCA=∠CBD=∠解析:105°【分析】根据圆周角定理的推论可得∠BCA=∠CBD=∠CDB,然后根据三角形的内角和定理即可求出∠BCA与∠CED,再在△CDE中利用三角形的内角和求解即可【详解】解:∵AB BC CD==,∴∠BCA=∠CBD=∠CDB,∵∠BEC=130°,∴∠BCA=∠CBD=25°,∠CED=50°,∴∠CDB=25°,∴∠ACD=180°﹣50°﹣25°=105°.故答案为:105°.【点睛】本题考查了圆周角定理的推论和三角形的内角和定理,熟练掌握上述知识是解题的关键.20.a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可【详解】解:空间站A与星球B飞船C在同一直线上时S取到最小值a-b故答案解析:a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点,到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可.【详解】解:空间站A与星球B、飞船C在同一直线上时,S取到最小值a-b.故答案为:a-b.【点睛】本题考查了圆外一点到圆的最大距离和最短距离,最大距离和最短距离都在过圆心的直线上.属于基础知识.三、解答题21.(1)25°;(2)①8;②25 9π【分析】(1)由垂径定理,可知AD BD=,再由圆周角定理求得∠DEB的度数.(2)①由勾股定理可得AC=4,由垂径定理可知,AC=BC=12AB=4,即可求解;②根据弧长公式即可求得答案.【详解】解:(1)∵OD⊥AB,∴AD BD=,∴∠AOD=∠BOD∴∠DEB=12∠AOD=12×50°=25°.(2)①∵OC=3,OA=5,∴AC=4,∵OD⊥AB,∴12AD BD AB==,∴AC=BC=12AB=4,∴AB=8;②∵∠AOD=50°,AD BD=,∴∠AOB=100°,∵OA=5,∴AB的长=100525 1801809n rπππ⨯==.【点睛】本题考查了圆周角定理、垂径定理,勾股定理及弧长公式.解答关键是应用垂径定理求得AC =BC =12AB =4.22.【分析】延长BO 交⊙O 于E ,连接AE ,OA ,OD ,OC ,BC ,作CH ⊥AB 于H .首先证明∠CAE=∠CAH=45°,推出∠BOC=90°,推出,设AH=CH=x ,则BH=8-x ,在Rt △BCH 中,根据222CH BH BC +=,构建方程求出x 即可解决问题【详解】解:如图,延长BO 交⊙O 于E ,连接AE ,OA ,OD ,OC ,BC ,作CH ⊥AB 于H . ∵AD =DB ,∴OD ⊥AB ,∴∠ADO =90°,∵OA =AD =DB =4,∴OD 2,∵BE 是直径,∴∠BAE =90°,∵AD =DB ,EO =OB ,∴OD//AE ,AE =2OD =4,∴AE =AD ,∴AD AE =,∴EC CD =,∴∠CAE =∠CAH =45°,∴∠BOC =2∠CAB =90°,∴BCOC =,∵CH ⊥AB ,∴∠CAH =∠ACH =45°,∴AH =CH ,设AH =CH =x ,则BH =8﹣x ,在Rt △BCH 中,∵222CH BH BC +=,∴()(2228x x +-=, ∴x =6或2(舍弃),在Rt △ACH 中,∵AC ∴AC =故答案为:【点睛】本题考查圆周角定理、垂径定理、勾股定理、解直角三角形等知识,综合性比较强,作出辅助线,构造直角三角形是解题的关键.23.(1)见解析;(2)60°【分析】(1)分别作出AB 与AC 的垂直平分线,进而得出圆心的位置,再利用圆心到三角形顶点的距离为半径得出圆O 即可;(2)连接BD .根据圆周角定理求出∠ABD=90°,∠D=∠ACB=40°,则∠DBC=∠ABD-∠ABC=20°,再利用三角形外角的性质即可求出∠DEC .【详解】解:(1)如图所示:(2)连接BD .∵AD 是直径,∴∠ABD=90°,∴∠DBC=∠ABD-∠ABC=90°-70°=20°,又∵∠D=∠ACB=40°,∴∠DEC =∠D+∠DBC=40°+20°=60°.【点睛】本题主要考查了三角形外接圆的作法,圆周角定理,三角形外角的性质,熟练掌握相关的定理是解题关键.24.(1)2;(2)150︒【分析】(1)过点O 作OE AC ⊥于点E ,根据勾股定理求出CE ,即可得出答案;(2)连接OA ,先求出60AOC ∠=︒,根据同弧所对的圆周角是圆心角的一半得出∠B=30°,即可得出答案.【详解】(1)过点O 作OE AC ⊥于点E ,如图,则在Rt OCE 中,3OE =;2OC =,∴()2222231CE OC OE =-=-=∴22AC CE ==;(2)连接OA ,如图:∵由(1)知,在AOC △中,AC OA OC ==,∴60AOC ∠=︒,∵弧AC =弧AC ,∴1302B AOC ∠=∠=︒, ∴180********ADC B ︒︒∠=-∠=-=︒︒.【点睛】 本题考查了垂径定理,同弧所对的圆周角是圆心角的一半,掌握这些知识点是解题关键. 25.见解析.【分析】根据已知条件和圆周角定理证明△APD ≌△CPB 即可得到DP=BP .【详解】证明:∵AB CD =,∴CD = AB ,∴ CD- CA= AB - AC ,∴ AD = BC.又∵∠A=∠C ,∠APD=∠CPB ,∴△APD ≌△CPB.∴DP=BP .【点睛】本题考查了全等三角形的判定以及圆心角定理:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立. 26.45π 【分析】如图(见解析),先根据圆的切线的性质可得,OM AB ON AE ⊥⊥,再根据正五边形的内角和可得108A ∠=︒,然后根据四边形的内角和可得72MON ∠=︒,最后弧长公式即可得.【详解】如图:连接OM ,ON ,∵O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,∴,OM AB ON AE ⊥⊥,90AMO ANO ∴∠=∠=︒,∵正五边形的每个内角为(52)1801085-⨯︒=︒, 108A ∴∠=︒,∴在四边形AMON 中,36072AMO ANO A MON ∠-∠=-∠∠︒-=︒,∵O 的半径为2,∴劣弧MN 的长度为72241805ππ⨯=.【点睛】本题考查了正五边形的内角和、圆的切线的性质、弧长公式等知识点,熟练掌握正五边形的内角和是解题关键.。

【单元练】九年级数学上册第二十四章《圆》知识点总结(1)

【单元练】九年级数学上册第二十四章《圆》知识点总结(1)

一、选择题1.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个B 解析:B【分析】根据确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质一一判断即可.【详解】解:(1)任意三点确定一个圆;错误,应该是不在同一直线上的三点可以确定一个圆; (2)直径所对的圆周角是直角;正确;(3)平分弦的直径垂直于弦;并且平分弦所对的弧,错误,直径与直径互相平分,但不一定互相垂直;(4)相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;(5)圆内接四边形对角互补;正确;故选:B .【点睛】本题考查确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .14D 解析:D【分析】连接OC 、OD ,设O 半径为r ,利用正方形性质得:MN ∥BC ,根据三角形面积公式得:S △DON =S △AON ,S △CON =S △BON ,利用面积差可得S 阴影部分=S 扇形COD ,再利用正方形的性质得到∠COD =90°,则S 扇形=214r ,所以阴影部分面积是圆的面积的14 【详解】解:如图,连接OC、OD,设O半径为r,∵直径//MN AD,AD∥BC∴MN∥BC,根据三角形面积公式得:S△DON=S△AON,S△CON=S△BON,∴S阴影部分=S扇形COD,∵四边形ABCD是正方形∴∠COD=90°,∴S扇形=290360rπ︒︒=214rπ,∵圆的面积为2rπ∴所以阴影部分面积是圆的面积的14故选:D【点睛】本题考查扇形面积计算公式、正方形的性质,利用了面积的和差计算不规则图形的面积,解题的关键是掌握扇形的面积公式.3.如图,在⊙O中,AB是直径,弦AC=5,∠BAC=∠D.则AB的长为()A.5B.10C.52D.102解析:C【分析】根据圆周角定理得出∠D=∠B,得出△ABC是等腰直角三角形,进而解答即可.【详解】∵AC=AC,∴∠D=∠B,∵∠BAC=∠D,∴∠B=∠BAC,∴△ABC是等腰三角形,∵AB是直径,∴△ABC是等腰直角三角形,∵AC=5,∴AB=52,故选:C.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.4.点A,B的坐标分别为A (4,0),B(0,4),点C为坐标平面内一点,BC﹦2,点M为线段AC的中点,连接OM,则OM的最大值为()A.22+1 B.22+2 C.42+1 D.42-2A解析:A【分析】根据同圆的半径相等可知:点C在半径为2的B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【详解】解:如图,BC=,点C为坐标平面内一点,2∴在B上,且半径为2,COD OA,连接CD,取4AM CM =,OD OA =,OM ∴是ACD ∆的中位线, 12OM CD , 当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大,4OB OD ,90BOD ∠=︒,42BD ∴=, 422CD ,1142222122OM CD , 即OM 的最大值为221+;故选:A .【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM 为最大值时点C 的位置是解题的关键.5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒B解析:B【分析】 连接OC ,由CE 为圆O 的切线,利用切线的性质得到OC 垂直于CE ,由OA=OC ,利用等边对等角得到一对角相等,再利用外角性质求出∠COE 的度数,即可求出∠E 的度数.【详解】解:连接OC ,∵CE 为圆O 的切线,∴OC ⊥CE ,∴∠COE=90°,∵∠CDB与∠BAC都对BC,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC,∴∠OAC=∠OCA=28°,∵∠COE为△AOC的外角,∴∠COE=56°,则∠E=34°.故选:B.【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.6.如图△ABC中,∠C=90°,∠B=28°,以C为圆心,CA为半径的圆交AB于点D,则AD的度数为()A.28°B.56 °C.62°D.112°B解析:B【分析】连接CD,如图,利用互余计算出∠A=62°,则∠A=∠ADC=62°,再根据三角形内角和定理计算出∠ACD=56°,然后根据圆心角的度数等于它所对弧的度数求解.【详解】解:连接CD,如图,∵∠C=90°,∠B=28°,∴∠A=90°-28°=62°,∵CA=CD ,∴∠A=∠ADC=62°,∴∠ACD=180°-2×62°=56°∴AD 的度数为56°;故选:B .【点睛】本题考查了同圆的半径相等、直角三角形的两锐角互余、等腰三角形的性质,熟练进行逻辑推理是解题关键.7.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 8.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .43C 解析:C【分析】连接PC ,PA ,过点P 作PD ⊥AB 于点D ,根据切线的性质可知PC ⊥y 轴,故可得出四边形PDOC 是矩形,所以PD=OC=3,再求出AB 的长,由垂径定理可得出AD 的长,故可得出OD 的长,进而得出P 点坐标,再把P 点坐标代入直线y=kx-1即可得出结论.【详解】解:连接PC ,PA ,过点P 作PD ⊥AB 于点D ,∵⊙P 与y 轴相切于点C (0,3),∴PC ⊥y 轴,∴四边形PDOC 是矩形,∴PD=OC=3,∵A (1,0),B (7,0),∴AB=7-1=6,∴AD=12AB=12×6=3, ∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx-1恰好平分⊙P的面积,∴3=4k-1,解得k=1.故选:C.【点睛】本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.9.如图,半径为1cm的P在边长为9πcm,12πcm,15πcm的三角形外沿三遍滚动(没有滑动)一周,则圆P所扫过的面积为()cm2A.73πB.75πC.76πD.77πA解析:A【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形∴圆P所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.10.下列说法中,正确的是()A.三点确定一个圆B.在同圆或等圆中,相等的弦所对的圆周角相等C.平分弦的直径垂直于弦D.在同圆或等圆中,相等的圆心角所对的弦相等D解析:D【分析】根据确定圆的条件、垂径定理、圆周角定理一一判断即可.【详解】解:A、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B 、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C 、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D 、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D .【点睛】本题考查确定圆的条件、垂径定理、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题11.如图,点A ,B ,C 在圆O 上,54ACB ∠=︒,则ABO ∠的度数是______.36°【分析】根据圆周角定理可得再利用等腰三角形的性质即可求解【详解】解:∵∴∵∴故答案为:36°【点睛】本题考查圆周角定理掌握圆周角定理是解题的关键解析:36°【分析】根据圆周角定理可得2108AOB ACB ∠=∠=︒,再利用等腰三角形的性质即可求解.【详解】解:∵54ACB ∠=︒,∴2108AOB ACB ∠=∠=︒,∵OA OB =, ∴()1180362ABO BAO AOB ∠=∠=︒-∠=︒, 故答案为:36°.【点睛】本题考查圆周角定理,掌握圆周角定理是解题的关键.12.如图,四边形ABCD 是O 的内接四边形,对角线AC ,BD 交于点E ,且AC BD AB ==,若70AEB ∠=︒,则AOB ∠等于______︒.125【分析】根据题意先求出∠ABE=∠BAE=55°然后由等腰三角形的定义和三角形的内角和定理求出∠C=625°即可求出的度数【详解】解:根据题意∵在圆中有∴∴∴在△ABE 中∴在等腰△ABC 中则∴解析:125【分析】根据题意,先求出∠ABE=∠BAE=55°,然后由等腰三角形的定义和三角形的内角和定理,求出∠C=62.5°,即可求出AOB ∠的度数.【详解】解:根据题意,∵在圆中,有AC BD AB ==,∴AC BD =,∴AD BC =,∴ABD BAC ∠=∠,在△ABE 中,70AEB ∠=︒, ∴1(18070)552ABD BAC ∠=∠=⨯︒-︒=︒, 在等腰△ABC 中,AC AB =则1(18055)62.52C ∠=⨯︒-︒=︒, ∴2125AOB C ∠=∠=︒;故答案为:125.【点睛】本题考查了圆内接四边形的性质,圆周角定理,三角形的内角和定理,等腰三角形的定义,解题的关键是熟练掌握所学的知识,正确的进行解题.13.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm 底面圆的半径为rcm ∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120 解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案.【详解】解:设圆锥的母线长为Rcm ,底面圆的半径为rcm ,∵面积为3πcm 2的扇形围成一个圆锥的侧面,扇形的圆心角是120°, ∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1.【点睛】此题主要考查了圆锥的计算,正确得出母线长是解题关键.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:(3,33【分析】如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6, ∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =--=∴P 的坐标是(3,33, 故答案为:(3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.半径为5的⊙O是锐角三角形ABC的外接圆,AB=BC,连结OB、OC,延长CO交弦AB 于D,若△OBD是直角三角形,则弦BC的长为______________.或【分析】如图1当∠DOB=90°时推出△BOC是等腰直角三角形于是得到BC=;如图2当∠ODB=90°时推出△ABC是等边三角形解直角三角形得到BC=AB=【详解】如图1当∠DOB=90°时∴∠B解析:52或53【分析】如图1,当∠DOB=90°时,推出△BOC是等腰直角三角形,于是得到BC=252OB=;如图2,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=53.【详解】如图1,当∠DOB =90°时,∴∠BOC=90°∴△BOC是等腰直角三角形∴BC=252OB=⊥如图2,当∠ODB=90°时,即CD AB∴ AD=BD∴ AC=BC∵ AB=BC∴ △ABC 是等边三角形∴ ∠DBO=30°∵ OB=5∴ 35322BD OB == ∴ BC=AB=53. 综上所述:若△OBD 是直角三角形,则弦BC 的长为52或53.故答案为:52或53. 【点睛】 本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.16.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心,1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 17.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.【分析】首先连接OAOB由圆周角定理即可求得∠AOB=90°又由OA=OB=2利用勾股定理即可求得弦AB的长【详解】解:连接OAOB∵∠APB=45°∴∠AOB=2∠APB=90°∵OA=OB=2∴解析:22【分析】首先连接OA,OB,由圆周角定理即可求得∠AOB=90°,又由OA=OB=2,利用勾股定理即可求得弦AB的长.【详解】解:连接OA,OB,∵∠APB=45°,∴∠AOB=2∠APB=90°,∵OA=OB=2,∴2222+=AB OA OB故答案为:2【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.18.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm,弧长是12πcm2,那么这个圆锥的高是________cm.参考答案8【分析】设圆锥的底面半径为利用圆锥的侧面展开图为一个扇形这个扇形的弧长等于圆锥底面的周长圆的周长公式计算出然后利用勾股定理计算出圆锥的高【详解】解:设圆锥底面圆的半径为则有∴圆锥的高为故答案是:【解析:8【分析】设圆锥的底面半径为r,利用圆锥的侧面展开图为一个扇形、这个扇形的弧长等于圆锥底面的周长、圆的周长公式计算出r,然后利用勾股定理计算出圆锥的高.解:设圆锥底面圆的半径为r ,则有,212r ππ=6r =∴圆锥的高为221068cm -=.故答案是:8【点睛】本题考查了平面图形与立体图形之间的互相转化、求圆锥的底面半径、圆的周长公式以及勾股定理等相关知识,能够利用“扇形的弧长等于圆锥底面的周长”求得圆锥的底面半径是解题的关键.19.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;(2n ﹣10)【分析】根据题意先求出点AB 的坐标再利用勾股定理求出AA1AA2AA3……AAn 的长可得到点A1A2A3……An 的坐标找到规律即可解答【详解】解:当x=0时y=当y=0时x=﹣1∴A(解析:(2n ﹣1,0)【分析】根据题意,先求出点A 、B 的坐标,再利用勾股定理求出AA 1、AA 2、AA 3……AA n 的长,可得到点A 1、A 2、A 3……A n 的坐标,找到规律即可解答.【详解】解:当x=0时,3y=0时,x=﹣1,∴A(﹣1,0),B(03,∴AA 122(01)(3)2++=,则点A 1(1,0),B 1(1,3,∴AA 2=AB 122(11)(23)4++=,则点A 2(3,0),B 2(3,3,∴AA 3=AB 222(31)(43)8++=,则点A 3(7,0),B 3(7,3,……∴可以得到A n 的坐标为(2n ﹣1,0),故答案为:(2n ﹣1,0).本题考查了一次函数图象上的点的坐标特征、图形的规律探究、圆的基本知识、勾股定理,解答的关键是利用勾股定理求得AA 1、AA 2、AA 3……AA n 的长,进而得到A 1、A 2、A 3……A n 的坐标的变化规律.20.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________或【分析】首先根据题意画出图形然后在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD 易得是等边三角形再利用圆周角定理即可得出答案【详解】解:如图在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD解析:30或150︒【分析】首先根据题意画出图形,然后在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,易得OAB 是等边三角形,再利用圆周角定理,即可得出答案.【详解】解:如图,在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,4,4OA OB cm AB cm OA OB AB===∴== OAB ∴是等边三角形,601302180150AOB C AOB D C ∴∠=︒∴∠=∠=︒∴∠=︒-∠=︒∴所对的圆周角度数为:30或150︒故答案为:30或150︒.【点睛】本题考查圆周角定理及等边三角形的判定与性质,注意两种情况.三、解答题21.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G在BC上,点O在线段AB上,且AO BO≥.以OF为半径的O与直线AB交于点M、N.(1)如图1,若点O为AB中点,且点D,点C都在O上,求正方形BEFG的边长.(2)如图2,若点C在O上,求证:以线段OE和EF为邻边的矩形的面积为定值,并求出这个定值.(3)如图3,若点D在O上,求证:DO FO⊥.解析:(1)12;(2)见解析;12;(3)证明见解析【分析】(1)连接OC,设BE=EF=x,则OE=x+12,得出(x+12)2+x2=(12)2+12,解得:x=12,则答案求出;(2)连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,得出x2+(x+y)2=y2+12,即x(x+y)=12,则结论可得证;(3)连接OD,设OA=a,BE=EF=b,则OB=1-a,则OE=1-a+b,可得出12+a2=(1-a+b)2+b2,得出a=b,则OA=EF,证明Rt△AOD≌Rt△EFO(HL),则得出∠FOE=∠ODA,结论得出.【详解】解:(1)连接OC∵四边形ABCD和四边形BEFG为正方形,∴AB=BC=1,BE=EF,∠OEF=∠ABC=90°,∵点O为AB中点,∴OB=12AB=12,设BE=EF=x,则OE=x+12,在Rt△OEF中,∵OE2+EF2=OF2,∴(x+12)2+x2=OF2,在Rt△OBC中,∵OB2+BC2=OC2,∴(12)2+12=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴(x+12)2+x2=(12)2+12,解得:x=12,∴正方形BEFG的边长为12;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=12,即x(x+y)=12,∴EF×OE=12,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为12.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1-a,则OE=1-a+b,∵∠DAO=∠OEF=90°,∴DA 2+OA 2=OD 2,OE 2+EF 2=OF 2,∴12+a 2=OD 2,(1-a+b )2+b 2=OF 2,∵OD=OF ,∴12+a 2=(1-a+b )2+b 2,∴(b+1)(a-b )=0,∵b+1≠0,∴a-b=0,∴a=b ,∴OA=EF ,在Rt △AOD 和Rt △EFO 中,OD OF OA EF ⎧⎨⎩==, ∴Rt △AOD ≌Rt △EFO (HL ),∴∠FOE=∠ODA ,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO ⊥FO .【点睛】本题是圆的综合题,考查了圆的性质,正方形的性质,全等三角形的判定与性质,矩形的面积等知识,熟练运用方程的思想是解题的关键.22.如图,以Rt ABC 的AC 边为直径作O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点P 为BC 的中点,连接EP ,AD .(1)求证:PE 是O 的切线;(2)若O 的半径为3,30B ∠=︒,求P 点到直线AD 的距离. 解析:(1)证明见解析;(2)217 【分析】(1)连接CE ,由AC 是⊙O 的直径,得出CE ⊥AE ,由P 为BC 的中点,可得EP=BP=CP ,可得∠PEC=∠PCE , 再由∠ACB=90°,即可得到结论.(2)设P 点到直线AD 的距离为d ,根据三角形的面积得到PD AC d AD= ①由勾股定理得63BC =,根据平行线的性质得到∠OPC=∠B=30°,推出OEA △为等边三角形,得到∠EOA=60°,在Rt ACD △中,由勾股定理得:2237AD AC CD =+=,将以上数据代入①得即可得到结论.【详解】 证明:(1)连接CE ,如图所示:∵AC 为⊙O 的直径,∴∠AEC=90°.∴∠BEC=90°.∵点P 为BC 的中点,∴EP=BP=CP .∴∠PEC=∠PCE .∵OE=OC ,∴∠OEC=∠OCE .∵∠PCE+∠OCE=∠ACB=90°,∴∠PEC+∠OEC=∠OEP=90°.E 在O 上,∴EP 是⊙O 的切线;(2)解:设P 点到直线AD 的距离为d ,连接,AP OP , 则有:1122PAD S AD d PD AC ==,∴PD ACd AD = ①∵⊙O 的半径为3,∠B=30°,∴∠BAC=60°,AC=6,AB=12,由勾股定理得:3BC =∴33PC =∵O ,P 分别是AC ,BC 的中点,∴//OP AB ,∴∠OPC=∠B=30°,∵OE=OA ,∠OAE=60°,∴OEA △为等边三角形,∴∠EOA=60°,∴∠ODC=90°-∠COD=90°-∠EOA=30°,∴∠ODC=∠OPC=30°,∴OP=OD ,∵OC ⊥PD , ∴33CD PC ==,在Rt ACD △中,由勾股定理得:2237AD AC CD =+=,将以上数据代入①得: 6361221737PD AC d AD ⨯===. 【点睛】本题考查了圆周角定理,切线的判定,勾股定理,等腰三角形,等边三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半,含30的直角三角形的性质,等面积法,掌握以上知识是解题的关键.23.如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =NE =3.(1)求证:BC 是⊙O 的切线;(2)若AE =4,求⊙O 的直径AB 的长度.解析:(1)见解析;(2)AB =254. 【分析】(1)先由垂径定理得AB ⊥MN ,再由平行线的性质得BC ⊥AB ,然后由切线的判定定理即可得到BC 是⊙O 的切线;(2)连接OM ,设⊙O 的半径是r ,在Rt △OEM 中,根据勾股定理得到r 2=32+(4-r )2,解方程即可得到⊙O 的半径,即可得出答案.【详解】(1)证明:∵ME =NE =3,∴AB ⊥MN ,又∵MN ∥BC ,∴BC⊥AB,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=25 8,∴AB=2r=254.【点睛】本题考查了切线的判定定理、垂径定理和勾股定理等知识;熟练掌握切线的判定和垂径定理是解题的关键.24.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,∠C=90°,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F 与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,−1),D(2,0),求⊙F的半径;(3)请直接写出线段AG、AD、CD三者之间满足的数量关系:___________________.解析:(1)见解析;(2)52;(3)AG=AD+2CD.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可;(3)作FR ⊥AD 于R ,得到四边形RCEF 是矩形,得到EF=RC=RD+CD ,根据垂径定理解答即可.【详解】(1)证明:连接EF ,∵AE 平分∠BAC ,∴∠FAE=∠CAE ,∵FA=FE ,∴∠FAE=∠FEA ,∴∠FEA=∠EAC ,∴FE ∥AC ,∴∠FEB=∠C=90°,即BC 是⊙F 的切线;(2)解:连接FD ,∵A(0,−1),D(2,0),∴OA=1,OD=2.在Rt △FOD 中,∵222OF OD DF += 设⊙F 的半径为r ,∴r 2=(r-1)2+22,解得,r=52,即⊙F 的半径为52; (3)解:AG=AD+2CD .证明:作FR ⊥AD 于R ,则∠FRC=90°,又∵BC 是⊙F 的切线;∴∠FEC=∠C=∠FRC=90°,∴四边形RCEF 是矩形,∴EF=RC=RD+CD ,∵FR ⊥AD ,AF=FD,∴AR=RD , ∴EF=RD+CD=12AD+CD , ∴AG=2FE=AD+2CD .【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握相关知识是解题的关键.25.第十届亚运会在广东召开,有三名运动员分别下榻在A 、B 、C 三个宾馆,三个宾馆由三条道路相连,如图所示.(1)为建一个公共活动场地P 到三个宾馆的距离相等.请用尺规作图方法作出点P ,使得点P 落在△ABC 内部.保留作图痕迹,不要求写作法.(2)如果ACB α∠=,那么APB ∠=______.解析:(1)作两边的垂直平分线,交点即为所求,见解析;(2)2α.【分析】(1)分别作三角形两条边的垂直平分线,两条直线的交点即为所求;(2)根据(1)的作法,可以确定点P 是△ABC 的外接圆的圆心,再根据圆周角定理即可确定∠APB 是∠ACB 的2倍,即可求得结论.【详解】解:(1)如图所示,点P 即为所求(2)由(1)可知PA=PB=PC ,所以点A 、B 、C 在以P 为圆心,PA 为半径的圆上,即A 、B 、C 三点共圆,∴∠APB 与∠ACB 是AB 所对的圆心角和圆周角,∴∠APB=2∠ACB ,又∵ACB α∠=,∴∠APB=2α.故答案为:2α.【点睛】本题考查垂直平分线的作法和定义,三角形外心定义、三角形外接圆、圆周角定理,难度中等.26.如图,在33⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).(1)在图1中,圆过格点A ,B ,请作出圆心O ;(2)在图2中,⊙O 的两条弦AB CD =,请作一个45圆周角.解析:(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.27.如图,O 中,AB CD =,A C ∠=∠,AB 与CD 交于点P .求证=DP BP .解析:见解析.【分析】根据已知条件和圆周角定理证明△APD ≌△CPB 即可得到DP=BP .【详解】证明:∵AB CD =,∴CD = AB ,∴ CD- CA= AB - AC ,∴ AD = BC.又∵∠A=∠C ,∠APD=∠CPB ,∴△APD ≌△CPB.∴DP=BP .【点睛】本题考查了全等三角形的判定以及圆心角定理:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立. 28.如图,一条公路的转弯处是一段圆弧CD ,点O 是CD 的圆心,E 为 CD 上一点,OE ⊥CD ,垂足为F .已知CD=300m ,EF=50m ,求这段弯路的半径.解析:这段弯路的半径为250米.【分析】设这段弯路的半径为R 米,可得50OFOE EF R .由垂径定理得 11300150()22CF CD m .由勾股定理可得222OC CF OF =+,解得 R 的值.【详解】解:连接OC .设这段弯路的半径为R 米则50OF OE EF ROE CD ⊥ 11300150()22CF CD m .根据勾股定理,得222OC CF OF =+即()22215050R R =+-R解之,得250所以这段弯路的半径为250米.【点睛】本题考查了垂径定理及勾股定理的应用,熟悉相关性质是解题的关键.。

2021年九年级数学中考复习专题之圆:切线的判定与性质(一)

2021年九年级数学中考复习专题之圆:切线的判定与性质(一)

2021年九年级数学中考复习专题之圆:切线的判定与性质(一)一.选择题1.下列说法中,正确的是()A.圆的切线垂直于经过切点的半径B.垂直于切线的直线必经过切点C.垂直于切线的直线必经过圆心D.垂直于半径的直线是圆的切线2.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,m的值为()A.4或﹣4 B.4﹣或4+C.﹣4+或4+ D.4﹣或4+ 3.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.B.l1和l2的距离为2C.若∠MON=90°,则MN与⊙O相切D.若MN与⊙O相切,则4.如图,∠ACB=60°,半径为3的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.3 B.3C.6πD.5.如图,AB是⊙O的直径,=,过点C作BD的垂线交BD的延长线于点E,交BA 的延长线于点F,已知AB=2,∠F=30°,则四边形ABEC的面积是()A.2B.C.D.6.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是()A.B.C.D.7.已知抛物线y=a(x﹣3)2+(a≠0)过点C(0,4),顶点为M,与x轴交于A,B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x =3;②点C在⊙D外;③直线CM与⊙D相切.其中正确的有()A.0个B.1个C.2个D.3个8.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线9.如图,在矩形ABCD中,BC=8,以AB为直径作⊙O,将矩形ABCD绕点B旋转,使所得矩形A'BC'D'的边C'D'与⊙O相切,切点为E,边A'B与⊙O相交于点F.若BF=8,则CD长为()A.9 B.10 C.8D.1210.如图,在矩形ABCD中,AD=80cm,AB=40cm,半径为8cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了()cm.A.56 B.72 C.56或72 D.不存在二.填空题11.直线l经过点A(4,0),B(0,2),若⊙M的半径为1,圆心M在x轴上,当⊙M 与直线l相切时,则点M的坐标.12.如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,以点P为圆心,PC长为半径作⊙P.当⊙P与矩形ABCD的边相切时,CP的长为.13.如图,Rt△ABC中,∠C=90°,AC=8,BC=16,点D在边BC上,点E在边AB 上,沿DE将△ABC折叠,使点B与点A重合,连接AD,点P是线段AD上一动点,当半径为5的⊙P与△ABC的一边相切时,AP的长为.14.如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥AC;②∠B=∠C;③2OA=AC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是.15.如图,直线y=x﹣3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是.三.解答题16.如图,三角形ABC中,AC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,D为AB的中点,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.17.如图,圆O的直径AB=12cm,C为AB延长线上一点,点P为中点,过点B作弦BD∥CP,连接PD.(1)求证:CP与圆O相切;(2)若∠C=∠D,求四边形BCPD的面积.18.如图,在△ABC中,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点E,延长DE交CA的延长线于点F,延长BA交⊙O于G,且∠BAF=2∠C.(1)求证:DE为⊙O的切线;(2)若tan∠EFC=,求的值.19.如图,点B为⊙O外一点,点A为⊙O上一点,点P为OB上一点且BP=BA,连接AP并延长交⊙O于点C,连接OC,OC⊥OB.(1)求证:AB是⊙O的切线;(2)若OB=10,⊙O的半径为8.求AP的长.20.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE、DE、BD,BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC,求证:四边形OEDB是菱形.参考答案一.选择题1.解:A、圆的切线垂直于经过切点的半径;故本选项正确;B、经过圆心且垂直于切线的直线必经过切点;故本选项错误;C、经过切点且垂直于切线的直线必经过圆心;故本选项错误;D、经过半径的外端且垂直于这条半径的直线是圆的切线;故本选项错误;故选:A.2.解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=,∴A(0,1),B(,0),∴AB=2;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠ABO=∠CBM,∴△BMC~△BAO,∴=,即=,∴BM=4,∴OM=4﹣,或OM=4+.∴m=﹣4,m=4+.故选:C.3.解:如图1,过点N作NC⊥AM于点C,∵直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,⊙O的半径为1,∴CN=AB=2,∵∠1=60°,∴MN==,故A与B正确;如图3,若∠MON=90°,连接NO并延长交MA于点C,则△AOC≌△BON,故CO=NO,△MON≌△MOM′,故MN上的高为1,即O到MN的距离等于半径.故C正确;如图2,∵MN是切线,⊙O与l1和l2分别相切于点A和点B,∴∠AMO=∠1=30°,∴AM=;∵∠AM′O=60°,∴AM′=,∴若MN与⊙O相切,则AM=或;故D错误.故选:D.4.解:设⊙O与CA相切于点P,此时和CB相切于点D,连接OC,OD、OP.∵⊙O与CA相切,⊙O与CB相切,∴∠OCD=∠ACB=30°,∵OP=OD=3,∴CD=3.故选:B.5.解:连接OD、OC、BC,如图:∵AB是⊙O的直径,AB=2,∴∠ACB=90°,OA=OB=AB=1,∵BE⊥FE,∠F=30°,∴∠ABC=90°﹣∠F=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∵=,∴∠AOC=∠COD=60°,∵OA=OC,∴△AOC是边长为1的等边三角形,∴AC=OA=1,∠OAC=60°,∴∠ABC=90°﹣60°=30°,∴BC=AC=,∠CBE=60°﹣30°=30°,∴CE=BC=,BE=CE=,∴四边形ABEC的面积=△ABC的面积+△BCE的面积=×1×+××=;故选:B.6.解:连结OC、OD、OA,如图,∵∠D=110°,∴∠B=180°﹣∠D=70°,∴∠AOC=2∠B=140°,∵∠A=60°,∴∠BOD=120°,∵的度数是70°,∴∠COD=70°,∴∠AOD=70°,∠BOC=50°,∴AD弧的长度==π,∴BC弧的长度==π,∵70π=6π•12﹣2π,而2π>π,∴向右移动了70π,此时与直线l相切的弧为.故选:C.7.解:由抛物线y=a(x﹣3)2+可知:抛物线的对称轴x=3,故①正确;∵抛物线y=a(x﹣3)2+过点C(0,4),∴4=9a+,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+,令y=0,则﹣(x﹣3)2+=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0);∴AB=10,∴AD=5,∴OD=3∵C(0,4),∴CD==5,∴CD=AD,∴点C在圆上,故②错误;由抛物线y=a(x﹣3)2+可知:M(3,),∵C(0,4),∴直线CM为y=x+4,直线CD为:y=﹣x+4,∴CM⊥CD,∵CD=AD=5,∴直线CM与⊙D相切,故③正确;故选:C.8.解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.9.解:连接OE,延长EO交BF于点M,∵C'D'与⊙O相切,∴∠OEC′=90°,又矩形A'BC'D'中,A'B∥C'D',∴∠EMB=90°,∴BM=FM,∵矩形ABCD绕点B旋转所得矩形为A′BC′D′,∴∠C′=∠C=90°,AB=CD,BC=B′C=8,∴四边形EMBC'为矩形,∴ME=8,设OB=OE=x,则OM=8﹣x,∵OM2+BM2=OB2,∴(8﹣x)2+42=x2,解得x=5,∴AB=CD=10.故选:B.10.解:存在这种情况,设点P移动速度为v1cm/s,⊙O2移动的速度为v2cm/s,由题意,得==,如图②:设直线OO1与AB交于E点,与CD交于F点,⊙O1与AD相切于G点,若PD与⊙O1相切,切点为H,则O1G=O1H.易得△DO1G≌△DO1H,∴∠ADB=∠BDP.∵BC∥AD,∴∠ADB=∠CBD∴∠BDP=∠CBD,∴BP=DP.设BP=xcm,则DP=xcm,PC=(80﹣x)cm,在Rt△PCD中,由勾股定理,得PC2+CD2=PD2,即(80﹣x)2+402=x2,解得x=50,此时点P移动的距离为40+50=90(cm),∵EF∥AD,∴△BEO1∽△BAD,∴=,即=,EO1=64cm,OO1=56cm.①当⊙O首次到达⊙O1的位置时,⊙O移动的距离为40cm,此时点P与⊙O移动的速度比为==,∵≠,∴此时PD与⊙O1不能相切;②当⊙O在返回途中到达⊙O1位置时,⊙O移动的距离为2(80﹣16)﹣56=72(cm),∴此时点P与⊙O移动的速度比为==,此时PD与⊙O1恰好相切.此时⊙O移动了72cm,故选:B.二.填空题(共5小题)11.解:∵直线l经过点A(4,0),B(0,2),∴AB==2,设M坐标为(m,0)(m>0),即OM=m,若M′在A点左侧时,AM′=4﹣m,当AB是⊙O的切线,∴∠M′C′A=90°,∵∠M′AC′=∠BAO,∠M′C′A=∠BOA=90°,∴△M′AC′∽△BAO,∴=,即=,解得:m=4﹣,此时M′(4﹣,0);若M在A点右侧时,AM=m﹣4,同理△AMN∽△BAO,则有=,即=,解得:m=4+.此时M(4+,0),综上所述,M(4﹣,0)或(4+,0),故答案为:M(4﹣,0)或(4+,0),12.解:作PE⊥AD于E,PF⊥AB于F,在Rt△ABC中,AC==5,由题意可知,⊙P只能与矩形ABCD的边AD、AB相切,当⊙P与AD相切时,PE=PC,∵PE⊥AD,CD⊥AD,∴PE∥CD,∴△APE∽△ACD,∴=,即=,解得,CP=,当⊙P与AB相切时,PF=PC,∵PF⊥AB,CB⊥AB,∴PF∥BC,∴△APE∽△ACD,∴=,即=,解得,CP=,综上所述,当⊙P与矩形ABCD的边相切时,CP的长或,故答案为:或.13.解:设BD=x,由折叠知AD=BD=x,CD=16﹣x,在Rt△ACD中,由勾股定理得,x2=82+(16﹣x)2,解得,x=10,∴BD=10,∵AB=,∴AE=BE=AB=4,∴DE=,∴点P是线段AD上运动时,⊙P不可能与AB相切,分两种情况:①当⊙P与AC相切时,过点P作PF⊥AC于点F,如图1,∴PF=5,PF∥CD,∴△APF∽△ADC,∴,即,∴;②⊙P与BC相切时,过点P作PG⊥BC于点G,如图2,∴PG=5,PG∥AC,∴△DPG∽△DAC,∴,即,∴DP=,∴AP=10﹣,综上,AP的长为或.14.解:连接AD,∵D为BC中点,点O为AB的中点,∴OD为△ABC的中位线,∴OD∥AC,①正确;∵AB是⊙O的直径,∴∠ADB=90°=∠ADC,即AD⊥BC,又BD=CD,∴△ABC为等腰三角形,∴∠B=∠C,②正确;∵DE⊥AC,且DO∥AC,∴OD⊥DE,∵OD是半径,∴DE是⊙O的切线,∴④正确;∴∠ODA+∠EDA=90°,∵∠ADB=∠ADO+∠ODB=90°,∴∠EDA=∠ODB,∵OD=OB,∴∠B=∠ODB,∴∠EDA=∠B,∴⑤正确;∵D为BC中点,AD⊥BC,∴AC=AB,∵OA=OB=AB,∴OA=AC,∴③正确,故答案为:①②③④⑤.15.解:∵直线y=x﹣3交x轴于点A,交y轴于点B,∴令x=0,得y=﹣3,令y=0,得x=3,∴A(3,0),B(0.﹣3),∴OA=3,OB=3,∴AB=6,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO,∴△APD∽△ABO,∴=,∴=,∴AP=2,∴OP=3﹣2或OP=3+2,∴P(3﹣2,0)或P(3+2,0),故答案为(3﹣2,0)或P(3+2,0).三.解答题(共5小题)16.证明:(1)连接OD、CD,∵BC是直径,∴CD⊥AB,∵AC=BC,∴D是AB的中点,∵O为CB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∴直线EF是⊙O的切线;(2)连BG,∵BC是直径,∴∠BDC=90°,∴CD===8,∵AB•CD=2S△ABC=AC•BG,∴BG==,∴CG===,∵BG⊥AC,DF⊥AC,∴BG∥EF.∴∠E=∠CBG,∴sin∠E=sin∠CBG===.17.(1)证明:连接OP,交BD于点E,∵点P为的中点.∴BD⊥OP,∵BD∥CP,∴∠OEB=∠OPC=90°∴PC⊥OP,∴CP与⊙O相切于点P;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=AB=6,∴PC=6,∵∠ABD=∠C=30°,∴OE=OB=3,∴PE=3,∴四边形BCPD的面积=PC•PE=6×3=18.18.解:(1)连接OD,∵OC=OD,∴∠C=∠ODC,∵∠BAF=2∠C,∠BAF=∠B+∠C,∴∠B=∠C,∴∠B=∠ODC,∴AB∥OD,∵DE⊥AB,∴OD⊥DF,∴DE为⊙O的切线;(2)过O作OH⊥AG于点H,则AH=GH,EF∥OH,∴∠AOH=∠EFA,∵tan∠EFC=,∴tan∠AOH==,∴设AH=3x,则AG=2AH=6x,OH=4x,∴,∴AC=2AO=10x,OD=OA=5x,∵tan∠EFC==,设AE=3y,则EF=4y,∴AF=,∵AE∥OD,∴△AEF∽△ODF,∴,即,∴,∴AE=3y=2x,∴BE=AB﹣AE=10x﹣2x=8x,∴=.19.(1)证明:∵BP=BA,OA=OC,∴∠BAP=∠BPA,∠PAO=∠C,∵OC⊥OB,∴∠COP=90°,∴∠OPC+∠C=90°,∵∠OPC=∠BPA,∴∠BAP=∠OPC,∴∠BAP+∠OAP=90°,即∠BAO=90°,∴AB⊥OA,又∵OA为⊙O的半径,∴AB是⊙O的切线;(2)解:如图,作BD⊥AP于点D,∵⊙O的半径为8,∴CO=OA=8,由(1)得:∠BAO=90°,∴AB===6,∴BP=BA=6,∴OP=OB﹣BP=4,在Rt△CPO中,OP=4,CO=8,∴CP===4,∵BA=BP,BD⊥AP,∴AD=PD,∠BDP=90°=∠COP,∵∠BPD=∠CPO,∴△BPD∽△CPO,∴=,即=,解得:PD=,∴AP=2PD=.20.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)∵OE∥BD,∴∠OEB=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OBE=∠DBE,∵BF=BC,∠ADB=90°,∴∠CBD=∠EBD,∵∠DEB=∠DBC,∴∠EBD=∠DBE,∴∠DEB=∠OBE,∴ED∥OB,∵ED∥OB,OE∥BD,OE=OB,∴四边形OEDB是菱形.。

2014人教版九年级数学上册第24章《圆》单元测试及答案 (1)

2014人教版九年级数学上册第24章《圆》单元测试及答案 (1)

2014人教版九年级数学上册第24章《圆》单元测试及答案 (1)一、选择题(本大题共30小题,每小题1分,共计30分)1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( )A.0个B.1个C.2个D.3个2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是( )A.外离B.相切C.相交D.内含3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140°第3题第4题第5题4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( ) A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<55.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( ) A.42 ° B.28° C.21° D.20°6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( ) A.2cm B.4cm C.6cm D.8cm第6题第7题第10题7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( )A. B. C. D.8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有( )A.2个B.4个C.5个D.6个9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数根,则直线与⊙O的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( )A. B. C. D.11.(成都)如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )A.12πcm2B.15πcm2C.18πcm2D.24πcm2第11题第12题第13题12.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( )A. B. C. D.13.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )A.内含B.外切C.相交D.外离14.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( ) A.130°B.120°C.110°D.100°第14题第16题第17题15.有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弧是过圆心的弧;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A.①③B.①③④C.①④D.①16.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为( )A.140°B.125°C.130°D.110°17.如图,等腰直角三角形AOB的面积为S1,以点O为圆心,OA为半径的弧与以AB为直径的半圆围成的图形的面积为S2,则S1与S2的关系是( )A. S1>S2B. S1<S2C. S1=S2D.S1≥S218.如果正多边形的一个外角等于60°,那么它的边数为( )A. 4B. 5C. 6D. 719.等边三角形的周长为18,则它的内切圆半径是( )A. 6B. )3C.D.20.一个扇形的弧长为厘米,面积是厘米2,则扇形的圆心角是( )A. 120°B. 150°C. 210°D. 240°21.两圆半径之比为2:3,当两圆内切时,圆心距是4厘米,当两圆外切时,圆心距为( )A. 5厘米B. 11厘米C. 14厘米D. 20厘米22.一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆周角是( )A. 60°B. 90°C. 120°D. 180°23.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是( ) A.36° B.60° C.72° D.108°24.如图所示,把边长为2的正方形ABCD的一边放在定直线上,按顺时针方向绕点D 旋转到如图的位置,则点B运动到点B′所经过的路线长度为( )A.1B.C.D.第24题第26题第27题25.如果一个正三角形和一个正六边形面积相等,那么它们边长的比为()A.6:1B.C.3:1D.26.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,•从点A出发绕侧面一周,再回到点A的最短的路线长是( )A. B. C. D.327.如图,在中,,.将其绕点顺时针旋转一周,则分别以为半径的圆形成一圆环.该圆环的面积为()A. B. C. D.28.如图,是等腰直角三角形,且.曲线…叫做“等腰直角三角形的渐开线”,其中,,,…的圆心依次按循环.如果,那么曲线和线段围成图形的面积为()A.B.C.D.第28题第29题第30题29.图中,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD 于点C,AB=2,半圆O的半径为2,则BC的长为( )A.2B.1 C.1.5D.0.530.如图,在平面直角坐标系中,点P在第一象限,⊙P与轴相切于点Q,与轴交于M(0,2),N(0,8) 两点,则点P的坐标是( )A.B.C.D.二、填空题(本大题共30小题,每小2分,共计60分)31.某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包装侧面,则需________________的包装膜(不计接缝,取3).第31题第32题32.如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.33.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________.34.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为_____________.35.如图,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分别记为S1、S2,若圆心到两弦的距离分别为2和3,则|S1-S2|=__________.36.如图,⊙O的直径CD垂直于弦EF,垂足为G,若∠EOD=40°,则∠DCF等于________度.第36题第37题第38题37.如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC ∥OA,连结AC,则图中阴影部分的面积为_________.38.劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心角等于_______.39.如图,已知PA是⊙O的切线,切点为A,PA=3,∠APO=30°,那么OP=_______.第39题第40题第41题40.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部距离为20cm,则修理工应准备内直径是________cm的管道. 41.如图,为的直径,点在上,,则________.42.如图,在⊙O中,AB为⊙O 的直径,弦CD⊥AB,∠AOC=60°,则∠B=________.第42题第47题第48题43.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,则O1O2=______.44.已知四边形ABCD是⊙O的外切等腰梯形,其周长为20,则梯形的中位线长为_____.45.用铁皮制造一个圆柱形的油桶,上面有盖,它的高为80厘米,底面圆的直径为50厘米,那么这个油桶需要铁皮(不计接缝)_________厘米2(不取近似值).46.已知两圆的半径分别为3和7,圆心距为5,则这两个圆的公切线有_____条.47.如图,以AB为直径的⊙O与直线CD相切于点E,且AC⊥CD,BD⊥CD,AC=8cm,BD=2cm,则四边形ACDB的面积为______.48.如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6cm,PO=10cm,则△PDE 的周长是______.49.一个正方形和一个正六边形的外接圆半径相等,则此正方形与正六边形的面积之比为_______.50.已知正六边形边长为a,则它的内切圆面积为_______.51.如图,有一个边长为2cm的正六边形,若要剪一张圆形纸片完全盖住这个图形,则这个圆形纸片的最小半径是________.第51题第53题52.如果一条弧长等于,它的半径是R,那么这条弧所对的圆心角度数为______,当圆心角增加30°时,这条弧长增加________.53.如图所示,OA=30B,则的长是的长的_____倍.54.母线长为,底面半径为r的圆锥的表面积=_______.55.已知扇形半径为2cm,面积是,扇形的圆心角为_____°,扇形的弧长是______cm.56.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,所得圆柱体的表面积是__________.(用含的代数式表示)57.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m2的油毡. 58.如图,某机械传动装置静止状态时,连杆与点运动所形成的⊙O交于点,现测得,.⊙O半径,此时点到圆心的距离是______cm.59.如图,是⊙O的直径,点在的延长线上,过点作⊙O的切线,切点为,若,则______.第59题第60题60.如图,⊙O1和⊙O2相交于A,B,且AO1和AO2分别是两圆的切线,A为切点,若⊙O1的半径r1=3cm,⊙O2的半径为r2=4cm,则弦AB=___cm.三、解答题(63~64题,每题2分,其他每题8分,共计60分)61.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O半径为5,∠BAC=60°,求DE 的长.62.如图所示,已知△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.(1)∠BFG与∠BGF是否相等?为什么?(2)求由DG、GE和所围成的图形的面积(阴影部分).二、填空题31.【答案】12000 32.【答案】第二种33.【答案】6cm 34.【答案】(2,0) 35.【答案】24(提示:如图,由圆的对称性可知,等于e的面积,即为4×6=24)36.【答案】200 37.【答案】 38.【答案】90° 39.【答案】40.【答案】100 41.【答案】40° 42.【答案】30° 43.【答案】2±44.【答案】5. 45.【答案】厘米 46. 【答案】2 47. 【答案】40cm2 48.【答案】16cm. 49.【答案】4:9. 50. 【答案】51 . 【答案】2cm 52. 【答案】45°,53. 【答案】354. 【答案】55 . 【答案】,;56. 【答案】130cm257. 【答案】158.458. 【答案】7.5 59. 【答案】40°60. 【答案】三、解答题61.解:(1)证明:连接AD∵AB是⊙O的直径∴∠ADB=90°又BD=CD∴AD是BC的垂直平分线∴AB=AC(2)连接OD∵点O、D分别是AB、BC的中点∴OD∥AC又DE⊥AC∴OD⊥DE∴DE为⊙O的切线(3)由AB=AC,∠BAC=60°知△ABC是等边三角形∵⊙O的半径为5∴AB=BC=10,CD=BC=5又∠C=60°∴.62.解:(1)∠BFG=∠BGF连接OD,∵OD=OF(⊙O的半径),∴∠ODF=∠OFD.∵⊙O与AC相切于点D,∴OD⊥AC又∵∠C=90°,即GC⊥AC,∴OD∥GC,∴∠BGF=∠ODF.又∵∠BFG=∠OFD,∴∠BFG=∠BGF.(2)如图所示,连接OE,则ODCE为正方形且边长为3.∵∠BFG=∠BGF,∴BG=BF=OB-OF=,从而CG=CB+BG=,∴阴影部分的面积=△DCG的面积-(正方形ODCE的面积- 扇形ODE的面积)63.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG等).64.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′B=25,所以圆形凳面的最大直径为25(-1)厘米.65.扇形OAB的圆心角为45°,纸杯的表面积为44.解:设扇形OAB的圆心角为n°弧长AB等于纸杯上开口圆周长:弧长CD等于纸杯下底面圆周长:可列方程组,解得所以扇形OAB的圆心角为45°,OF等于16cm纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积即S纸杯表面积==66.连接OP、CP,则∠OPC=∠OCP.由题意知△ACP是直角三角形,又Q是AC的中点,因此QP=QC,∠QPC=∠QCP.而∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切.67.解:连接OQ,∵OQ=OB,∴∠OBP=∠OQP又∵QR为⊙O的切线,∴OQ⊥QR即∠OQP+∠PQR=90°而∠OBP+∠OPB=90°故∠PQR=∠OPB又∵∠OPB与∠QPR为对顶角∴∠OPB=∠QPR,∴∠PQR=∠QPR∴RP=RQ变化一、连接OQ,证明OQ⊥QR;变化二、(1)结论成立 (2)结论成立,连接OQ,证明∠B=∠OQB,则∠P=∠PQR,所以RQ=PR.68.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5(2)连结O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE=∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2在⊙O′中,∵ O′O= O′D ∴∠1=∠3∴∠3=∠2 ∴O′D∥AE,∵DF⊥AE ∴ DF⊥O′D又∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线.(3)不同意. 理由如下:①当AO=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点过P1点作P1H⊥OA于点H,P1H=OC=3,∵AP1=OA=5∴AH=4,∴OH =1求得点P1(1,3) 同理可得:P4(9,3)②当OA=OP时,同上可求得:P2(4,3),P3(4,3)因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.69.【提示】(1)过B作⊙O2的直径BH,连结AB、AH,证∠EBH=90°.(2)用类似的方法去探求.【证明】(1)连结AB,作⊙O2的直径BH,连结AH.则∠ABH+∠H=90°,∠H=∠ADB,∠EBA=∠ECA.∵EC∥BD,∴∠ADB=∠ACE=∠EBA.∴∠EBA+∠ABH=90°.即∠EBH=90°.∴BE是⊙O2的切线.(2)同理可知,BE仍是⊙O2的切线.【点评】证明一与圆有公共点的直线是圆的切线的一般方法是过公共点作半径(或直径),再证直径与半径垂直,但此题已知条件中无90°的角,故作直径构造90°的角,再进行角的转换.同时两圆相交,通常作它们的公共弦,这样把两圆中的角都联系起来了.另外,当问题进行了变式时,要学会借鉴已有的思路解题.。

九年级数学圆的测试题及答案(两套题)[1]

九年级数学圆的测试题及答案(两套题)[1]

圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

(完整)初中数学专题训练--圆--(1)圆的概念

(完整)初中数学专题训练--圆--(1)圆的概念

精品设计圆的概念一、圆中相关概念的结构示意图圆()()⎩⎨⎧⇒⇒等圆大小半径同心圆位置圆心相关概念⎪⎪⎩⎪⎪⎨⎧⇒⇒⇒圆周角圆心角等弧半圆、优弧、劣弧弧直径弦二、知识应用知识点1:有关概念例题1、如图,圆中弦的条数为( )A .2条B .3条C .4条D .5说明:弦是圆上任意两点间的线段。

例题2、判断题(1)直径是弦( ) (2)弦是直径( ) (3)半圆是弧( ) (4)弧是半圆( )(5)长度相等的两段弧是等弧( ) (6)等弧的长度相等( ) 说明:通过原命题和逆命题的对比,深刻理解圆中概念的含意。

例题3、下列说法中:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧; ③圆中最长的弦是通过圆心的弦;④一条弦把圆分成两条弧,这两条弧不可能是等弧。

正确的个数是( )A .1个B .2个C .3个D .4个 说明:等弧是指弧的度数和长度都相等的弧,等弧只可能出现在同圆或等圆中。

例题4、画图说明满足下列条件的点的轨迹:(1)经过点A ,且半径等于cm 2的圆的圆心轨迹;(2)边cm 1=BC ,面积为2cm 21的ABC ∆的顶点A 的轨迹.说明:根据给定的条件,探求并确定符合条件的轨迹图形,通常是转化为四个基本轨迹.(圆的轨迹、平行线轨迹、角平分线轨迹、线段中垂线轨迹)。

例题5、已知AB 、CD 是⊙O 的两条直径,则四边形ACBD 一定是( )(A )等腰梯形 (B )菱形 (C )矩形 (D )正方形说明:问题的关键是①圆的两条直径具备什么性质?②构成特殊四边形的条件。

知识点2:相关计算与证明例题6、如图,在⊙O 中,AB 、CD 为直径,试说明AC 与BD 的位置关系。

说明:同圆的半径相等。

因此当圆中有多条直径或半径出现时,就有相等的线段和等腰三角形出现。

例题7、如图,CD 是⊙O 的直径,︒=∠84EOD ,AE 交⊙O 于B ,且OC AB =,求A ∠的度数.B精品设计说明:因为同圆的半径相等,所以当圆中有两条半径出现,就有等腰三角形出现,于是可根据等腰三角形的性质定理求得,所以连结半径是常用的辅助线. 例题8、已知:如图,两同心圆的直径AC 、BD 相交于O 点.求证:AB=CD.说明:此题目不难,但它是以“同心圆”为背景的,所以该题目重点不是证明过程,而是“同心圆”具备什么性质和特征。

(必考题)初中九年级数学上册第二十四章《圆》复习题(提高培优)(1)

(必考题)初中九年级数学上册第二十四章《圆》复习题(提高培优)(1)

一、选择题1.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 2.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°3.如图,一条公路的拐弯处是一段圆弧AB ,点O 是这段弧所在的圆的圆心,20cm AB =,点C 是AB 的中点,点D 是AB 的中点,且5cm CD =,则这段弯路所在圆的半径为( )A .10cmB .12.5cmC .15cmD .17cm 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π 5.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( )A .2:1:2B .2:1:1C .2:1:1D .2:2:4 6.已知⊙O ,如图, (1)作⊙O 的直径AB ; (2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个 7.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .148.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .23B .3C .2D .22 9.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( )A .点P 在O 内B .点P 在O 上C .点P 在O 外D .无法判断10.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠11.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( )A .8.5B .17C .3D .6 12.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°13.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60° 14.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( )A .18cm 2B .218cm πC .27cm 2D .227cm π15.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .5二、填空题 16.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.17.如图,四边形ABCD 是O 的内接四边形,对角线AC 是O 的直径,2AB =,45ADB ∠=︒,则O 的半径长为_______.18.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC =______dm .19.如图,⊙O 是ABC 的外接圆,64A ∠=︒,则OBC ∠=______°.20.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是______.21.半径为5的⊙O 是锐角三角形ABC 的外接圆,AB=BC ,连结OB 、OC ,延长CO 交弦AB 于D ,若△OBD 是直角三角形,则弦BC 的长为______________.22.如图,已知正方形ABCD 的边长为2,点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM ,BN 交于点P ,则PC 长的最小值为____________.23.在ABC 中,90,3,4C AC BC ∠===,则ABC 的内切圆的周长为___________.24.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.25.如图,已知点,,A B C 在O 上,若50ACB ∠=,则AOB ∠=_____________________度.26.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.三、解答题27.如图,已知AB 为O 的直径,点C 、D 在O 上,CD BD =,E 、F 是线段AC 、AB 的延长线上的点,并且EF 与O 相切于点D .(1)求证:2A BDF ∠=∠;(2)若3AC =,5AB =,求CE 的长.28.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()2,1-.(1)画出将ABC 关于y 轴对称的111A B C △;(2)画出ABC 绕点O 的逆时针旋转90°得到的图形222A B C △,并求出在此旋转过程中点A 运动到点2A 所经过路径的长.29.如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在y 轴上,∠C=90°,边AC 与x 轴交于点D ,AE 平分∠BAC 交边BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,⊙F 与y 轴相交于另一点G .(1)求证:BC 是⊙F 的切线;(2)若点A 、D 的坐标分别为A(0,−1),D(2,0),求⊙F 的半径;(3)请直接写出线段AG 、AD 、CD 三者之间满足的数量关系:___________________.30.如图,已知直线l 与⊙O 相离,过圆心O 画OA ⊥l 于点A ,交⊙O 于点P 且OA =5,点B 为⊙O 上一点BP 的延长线交直线l 于点C 且AB=AC .(1)判断AB 与⊙O 有怎样的位置关系,并说明理由;(2)若25PC ,求⊙O 的半径.。

2021年备战中考复习数学小题(解答题)专练:圆的综合(一)

2021年备战中考复习数学小题(解答题)专练:圆的综合(一)

2021年备战中考复习数学小题(解答)专练:圆的综合(一)1.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若AD=3,DC=,求劣弧AC的长.2.在△ABC中,∠B=90°,D是△ABC外接圆上的一点,且点D是∠B所对的弧的中点.(1)尺规作图:在图1中作出点D;(要求:不写作法,保留作图痕迹)(2)如图2,连接BD,CD,过点B的直线交边AC于点M,交该外接圆于点E,交CD的延长线于点P,BA,DE的延长线交于点Q,DP=DQ.①若=,AB=4,BC=3,求BE的长;②若DP=(AB+BC),求∠PDQ的度数.3.定义:如果三角形三边的长a、b、c满足,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)已知“匀称三角形”的两边长分别为4和6,则第三边长为.(2)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DF⊥AC,垂足为F,交AB的延长线于E,求证:EF是⊙O的切线;(3)在(2)的条件下,若,判断△AEF是否为“匀称三角形”?请说明理由.4.如图,在等腰Rt△ABC中,∠ABC=90°,点D是以AB为直径的⊙O上一点,连BD交AC于P,CD=BC.(1)求证:CD是⊙O的切线;(2)求的值.5.如图,在Rt△ABC中,∠B=90°,=,点E在AC上,以AE为直径的⊙O经过点D.求证:①BC是⊙O的切线;②CD2=CE•CA;6.如图,四边形ABEC是平行四边形,过A、B、C三点的⊙O与CE相交于点D.连接AD、OD,DB是∠ADE的角平分线.(1)判断△BDE的形状,并说明理由;(2)求证:BE是⊙O的切线;(3)如果AB=,BE=8,求⊙O的半径.7.如图,已知C、D是直径为AB的圆O上的两点,连接CD于点E,DE=DA,点P为射线DC上一点,使∠PBC=∠BDC.(1)求证:PB为圆O的切线;(2)求证:BE2=ED•PC;(3)若BC=2,AD=,求PB的长.8.如图,已知AB是⊙O的直径,C为⊙O上一点,∠OCB的角平分线交⊙O于点D,F 在直线AB上,且DF⊥BC,垂足为E,连接AD、BD.(1)求证:DF是⊙O的切线;(2)若tan∠A=,⊙O的半径为3,求EF的长.9.如图所示,PA是⊙O的切线,A为切点,直线OP交⊙O于点E,AC是⊙O的直径,弦BC∥OP,AB交OP于点D,连接PB.(1)判断直线PB与⊙O的位置关系,并说明理由;(2)已知AB=6,AE=6,求弦AE和劣弧AE所围成弓形的周长和面积.10.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.11.如图,⊙O是等腰△ABC的外接圆,AB=AC,点D为上一点,连结AD,CD,作BF∥AD交AC的延长线于点F.(1)求证:∠BCF=∠ADC;(2)若AD=2,BF=8,求AC•CF的值.(3)连结BD交AF于点E,若BD⊥AC.①当AE=2时,求CF的长;②若=k,用含有k的代数式表示tan∠BAC.12.如图,在半径为5cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,E是BC的中点,OE=3cm.(1)求证:CD是⊙O的切线;(2)求AD的长.13.如图,AC是⊙O的直径,BC,BD是⊙O的弦,M为BC的中点,OM与BD交于点F,过点D作DE⊥BC,交BC的延长线于点E,且CD平分∠ACE.(1)求证:DE是⊙O的切线;(2)求证:∠CDE=∠DBE;(3)若DE=6,tan∠CDE=,求BF的长.14.如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在上,四边形MNPQ为正方形,点C在上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.(1)求sin∠AOQ的值;(2)求的值;(3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.15.如图所示,AB是⊙O的直径,点C、D是⊙O上不同的两点,直线BD交线段OC于点E、交过点C的直线CF于点F,若OC=3CE,且9(EF2﹣CF2)=OC2.(1)求证:直线CF是⊙O的切线;(2)连接OD、AD、AC、DC,若∠COD=2∠BOC.①求证:△ACD∽△OBE;②过点E作EG∥AB,交线段AC于点G,点M为线段AC的中点,若AD=4,求线段MG的长度.参考答案1.(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DC,∴OC⊥DC,∵OC过O,∴DC为⊙O的切线;(2)解:∵AD⊥DC,∴∠ADC=90°,∵AD=3,DC=,∴tan∠DAC==,∴∠DAC=30°,∴∠BAC=∠ACO=∠DAC=30°,AC=2DC=2,∴∠AOC=180°﹣30°﹣30°=120°,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴AB=2BC,∵AC=2,∴(2BC)2=(2)2+BC2,解得:BC=2,AB=4,即AO=2,∴劣弧AC的长是=π.2.解:(1)如图1,作∠ABC的角平分线,交圆于点D,则点D为∠B所对的弧的中点,(2)①连结AE,∵=,∴∠ABE=∠BAC,∵=,∴∠AEB=∠ACB,又∵AB为公共边,∴△ABE≌△BAC(AAS),∴∠EAB=∠ABC=90°,又∵=,BC=3,∴AE=BC=3,在Rt△ABE中,AB=4,AE=3,∴BE===5,∴BE=5;②连结AD,分别过点A,C作AH⊥BD于点H,CR⊥BD于R,∵=,∴AD=DC,∠ABD=∠DBC=45°,在Rt△ABH中,∠AHB=90°,∴∠ABH=∠BAH=45°,BH2+AH2=AB2,∴BH=AH=AB,同理,BR=BC,∵∠ABC=90°,∴AC为直径,∴∠ADC=90°,∴∠ADH+∠CDR=90°,在Rt△ADH中,∠ADH+∠HAD=90°,∴∠HAD=∠CDR,∴△ADH≌△DCR(AAS),∴AH=DR,∴(AB+BC)=AH+BR=DR+BR=BD,∵DP=(AB+BC),∴DP=BD,∴∠P=∠PBD,∴∠BDC=∠P+∠PBD=2∠P,由①得,BE为直径,又∵AC为直径,∴点M为圆心,∴MA=MB,∴∠MAB=∠ABM,∵=,∴∠MAB=∠BDC,设∠P=α,则∠ABM=2α,∵∠ABM+∠PBD=∠ABD=45°,∴2α+α=45°,∴α=15°,∴∠BDC=30°,∵BE为直径,∴∠EDB=90°,∴∠PDQ=180°﹣∠EDB﹣∠BDC=180°﹣90°﹣30°=60°.3.(1)解:设第三边长为x,①当时,解得x=8,②当是,解得x=5,③当时,解得x=2,∵2+4=6,∴当三边长为2,4,6时,不能构成三角形,所以③舍去,故答案为:5或8;(2)证明:如图1,连接OD,AD,∵AB是⊙O直径,∴AD⊥BC,∵AB=AC,∴D为BC的中点,即BD=CD,∵O为AB中点,∴OD∥AC,OD=,∵DF⊥AC,∴∠AFD=90°,∵OD∥AC,∴∠ODE=∠AFD=90°,∴OD⊥EF,∵OD是⊙O半径,∴EF是⊙O的切线;(3)解:△AEF是“匀称三角形”,理由如下:如图2,过B作BM⊥EF于M,∴∠BMD=∠CFD=90°,在△BMD和△CFD中,,∴△BMD≌△CFD(AAS),∴BM=CF,∵,∴,∵∠BMD=∠CFD=90°,∴△EBM∽△EAF,∴,设AE=5x,则AF=3x,∴,∵,∴,∴△AEF是“匀称三角形”.4.(1)证明:连接OD,如图1所示:∵OD=OB,∴∠OBD=∠ODB,∵CD=CB,∴∠CBD=∠CDB,∵∠OBD+∠CBD=∠OBC=90°,∴∠ODB+∠CDB=90°,∴∠CDO=90°,∴OD⊥CD,又∵OD是⊙O的半径,∴CD与⊙O相切;(2)解:连接OC交BD于点H,连接AD、OD,如图2所示:∵BC=CD,OB=OD,∴OC垂直平分BD,∴∠OHB=90°,∠ABD+∠BOH=∠BCO+∠BOH=90°,∴∠ABD=∠BCO,∵△ABC是等腰直角三角形,∴AB=BC,∵AB是⊙O的直径,∴∠ADB=90°,OB=AB=BC,∴tan∠ABD=tan∠BCO==,设OH=a,则DH=BH=2a,∴BD=4a,CH=2BH=4a,AD=BD=2a,∵∠ADB=∠OHB=90°,∴AD∥CH,∴△ADP∽△CHP,∴===,∵DH=2a,∴DP=,PH=,在Rt△PHC中,由勾股定理得:PC===a,在Rt△ADP中,由勾股定理得:AP===a,∴==.5.①证明:如图1,连接DO,∵=,∴∠FAD=∠DAE=∠FAE,∵∠DAE=∠DOE(圆周角定理),∴∠FAE=∠DOE,∴DO∥AB,根据题意可知AB⊥BC,∴DO⊥BC,∴BC是⊙O的切线.②如图2,连接DE,OD,∵AB为直径,OA=OD,∴∠ADO+∠EDO=∠ADE=90°,∠ADO=∠DAO,由(1)可知∠CDE+∠EDO=90°,∴∠DAO=∠CDE,在△CDE和△CAD中,,∴△CDE∽△CAD,∴,故CD2=CE•CA.6.解:(1)∵四边形ABEC是平行四边形,∴AB∥CE,AC=BE,∴∠ADC=∠DAB,∴AC=BD(圆周角定理),∴BE=BD,故△BDE是等腰三角形.(2)如图1,连接OB,则2∠DAB=∠DOB,由(1)可知BE=BD,∴∠BDE=∠E,∵AB∥CE,DB是∠ADE的平分线,∴∠EDB=∠ABD,∠EDB=∠ADB,∴∠ABD=∠ADB=∠BDE=∠E,∴△ABD∽△BED,∴∠DAB=∠DBE,∵OD=OB,∴∠OBD===90°﹣∠DAB=90°﹣∠DBE,即∠OBD+∠DBE=90°,∴OB⊥BE,故BE是⊙O的切线.(3)如图2,过点O作OF⊥DB,过点D、E分别作DM⊥AB,EN⊥AB交AB的延长线于点N,则有∠BOF=∠DOF=∠BOD,BF=DF=DB,DM=EN,DE=DM,又∠DAM=∠BOD,∴∠BOF=∠DAM,根据题意有AB=CE=4,BE=BD=8,∴BF=4,由(2)可知△ABD∽△BED,∴=,即,解得DE=,在Rt△DMB和Rt△ENB中,,∴Rt△DMB≌Rt△ENB(HL),∴BM=BN=MN=DE=,∴AM=AB﹣BM=﹣=,在RtDMB中,DM==,在Rt△ADM和Rt△OBF中,,∴Rt△ADM∽Rt△OBF,∴=,即=,解得OF=3,在Rt△OBF中,OB==5,故⊙O的半径为5.7.(1)证明:∵AB为直径,∴∠ACB=90°,∵∠BDC=∠BAC,∴∠BDC+∠ABC=90°,∵∠PBC=∠BDC,∴∠PBC+∠ABC=90°,∴∠ABP=90°,∴AB⊥BP,∴PB为圆O的切线;(2)证明:∵DE=DA,∴∠1=∠2,∵∠1=∠4,∠2=∠3,∴∠3=∠4,∴BE=BC,∵∠DBA=∠ACD,∠ACB=90°,∴∠4+∠DBA=90°,由(1)知,∠EBP=90°,∴∠3+∠P=90°,∴∠DBP=∠P,∵∠BDC=∠PBC,∴△DEB~△BCP,∴,∵BE=BC,∴BE2=ED•PC.(3)过B作BG⊥CE于G,由(2)知BE=BC,∴EG=CG,∵AD=DE=,BC=BE=2,∴4=PC,∴,设EG=CG=x,则PE=,∵Rt△BGE∽Rt△PBE,∴BE2=EG•EP,∴,解得x=,∴,∴=4.8.解:(1)如图,连接OD,∵OC=OD,∴∠ODC=∠OCD,∵CD平分∠OCB,∴∠OCD=∠BCD,∴∠ODC=∠BCD,∴OD∥CE,∴∠CEF=∠ODE,∵CE⊥DF,∴∠CEF=90°,∴∠ODE=90°,即OD⊥DF,∴DF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∴tan∠A==,则AD=2BD,在Rt△ABD中,∠ADB=90°,AB=2r=6,∴BD2+AD2=AB2,即BD2+(2BD)2=62,解得BD=,由(1)知DF是⊙O的切线,∴∠BDF=∠A,∵BE⊥DF,∴∠BEF=90°,∴tan∠BDF==,则DE=2BE,在Rt△BDE中,BD=,由勾股定理可得,BE2+DE2=BD2,即BE2+(2BE)2=()2,解得BE=,则DE=,由(1)知BE∥OD,∴=,即=,解得EF=.9.解:(1)直线PB是⊙O的切线.理由如下:连接OB.∵BC∥OP,∴∠AOP=∠ACB,∠BOP=∠OBC,∵OB=OC,∴∠ACB=∠OBC,∴∠AOP=∠BOP,∵PA是⊙O的切线,∴∠PAO=90°.在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠PBO=∠PAO=90°,∴OB⊥PB,∴直线PB是⊙O的切线.(2)∵∠AOP=∠BOP,∴弧AE=弧BE,∴OP⊥弦AB,AD=BD,∵AB=6,AE=6,∴AD=AB=3,在Rt△ADE中,DE===3,在Rt△ADO中,设⊙O的半径为x,则,解得x=6,在Rt△AOD中,sin∠AOD=,∴∠AOD=60°.又∵OA=OE,∴△AOE是等边三角形,∴AO=OE=6.∴弧AE的长==2π,∴弓形的周长=弦AE+弧AE的长=6+2π,弓形的面积=S扇形AOE﹣S△AOE=﹣=6π﹣9.10.解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP(HL),∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠OCB=∠CBA=70°,∠ODA=∠OAD=50°,∴∠BOC=40°,∠AOD=80°,∴∠COD=180°﹣∠BOC﹣∠AOD=60°,∵∠ODP=∠OCP=90°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.11.解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠ACB+∠BCF=180°,∠ABC+∠ADC=180°,∴∠BCF=∠ADC;(2)∵AD∥BF,∴∠DAC=∠F,∵∠BCF=∠ADC,∴△BCF∽△CDA,∴,即AC•CF=AD•BF=2×8=16;(3)①设CE=x,CF=y,∵∠DBC=∠DAC=∠F,∠BEC=∠FEB,∴△BEC∽△FEB,∴BE2=x(x+y),在Rt△ABE中,22+x(x+y)=(2+x)2,∴CF=y=4;②设AE=a,由①知,CF=2a,∵=k,∴AC=2ak,EC=AC﹣AE=a(2k﹣1),EF=EC+CF=a(2k﹣1)+2a=a(2k+1),由①知,BE2=CE•EF,∴BE==a,∴tan∠BCA===.12.(1)证明:连接OC,如图:∵AC平分∠BAD,∴∠DAC=∠CAO,∵OA=OC,∴∠CAO=∠OCA,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥DC,∴CO⊥DC,∴CD是⊙O的切线;(2)∵E是BC的中点,且OA=OB,∴OE是△ABC的中位线,AC=2OE,∵OE=3,∴AC=6,∵AB是⊙O的直径,∴∠ACB=90°=∠ADC,又∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即=,∴AD=.13.(1)证明:连接OD,如图:∵CD平分∠ACE,∴∠OCD=∠DCE,∵OC=OD,∴∠OCD=∠ODC,∴∠DCE=∠ODC,∴OD∥BC,∵DE⊥BC,∴DE是⊙O的切线;(2)证明:连接AB,如图:∵AC是⊙O的直径,∴∠ABC=90°,即∠ABD+∠DBC=90°,∵=,∴∠ABD=∠ACD,∵∠ACD=∠ODC,∴∠ABD=∠ODC,∴∠ODC+∠DBC=90°,∵∠ODC+∠CDE=90°,∴∠CDE=∠DBC,即∠CDE=∠DBE;(3)解:Rt△CDE中,DE=6,tan∠CDE=,∴=,∴CE=4,由(2)知∠CDE=∠DBE,Rt△BDE中,DE=6,tan∠DBE=,∴BE=9,∴BC=BE﹣CE=5,∵M为BC的中点,∴OM⊥BC,BM=BC=,Rt△BFM中,BM=,tan∠DBE=,∴=,∴FM=,∴BF==.14.解:(1)如图,连接OP.∵四边形MNPQ是正方形,∴∠OMN=∠ONP=90°,MQ=PN,∵OQ=OP,∴△OMQ≌△ONP(HL),∴OM=ON,设OM=ON=m,则MQ=2m,OQ==m,∴sin∠AOQ===.(2)由(1)可知OM=ON=m,OQ=OA=m,MN=2m,∴AM=OA﹣OM=m﹣m,∴==.(3)∵AB=2R,∴OA=OB=OQ=r,∵QM=2MO,∴OM=,MQ=,∵AB是直径,∴∠ACB=∠DCE=90°,∵∠CED=∠AEM,∴∠A=∠D,∵∠AME=∠DMB=90°,∴△AME∽△DMB,∴=,∴=,∴y=﹣,当点C与P重合时,=,∴=,∴x=R,∴R<x<R.15.(1)证明:∵9(EF2﹣CF2)=OC2,OC=3OE,∴9(EF2﹣CF2)=9EC2,∴EF2=EC2+CF2,∴∠ECF=90°,∴OC⊥CF,∴直线CF是⊙O的切线.(2)①证明:∵∠COD=2∠DAC,∠COD=2∠BOC,∴∠DAC=∠EOB,∵∠DCA=∠EBO,∴△ACD∽△OBE.②解:∵OB=OC,OC=3EC,∴OB:OE=3:2,∵△ACD∽△OBE,∴=,∴==,∵AD=4,∴AC=6,∵M是AC的中点,∴CM=MA=3,∵EG∥OA,∴==,∴CG=2,∴MG=CM﹣CG=3﹣2=1.。

人教版九年级数学上册圆一章正多边形和圆练习题及答案

人教版九年级数学上册圆一章正多边形和圆练习题及答案

初中数学试卷金戈铁骑整理制作九年级数学圆一章正多边形和圆练习题及答案一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化 2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3 3.正五边形共有__________条对称轴,正六边形共有__________条对称轴. 4.中心角是45°的正多边形的边数是__________.5.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________. 二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴. 2.同圆的内接正三角形与内接正方形的边长的比是( )A.26 B.43 C.36D.343.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3 4.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63 B.43 C.332 D.332.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形 3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.4.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-26.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-38.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-49.用等分圆周的方法画出下列图案:图24-3-510.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).参考答案一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化 思路解析:由题意知圆的半径扩大一倍,则相应的圆内接正n 边形的边长也扩大一倍,所以相应的圆内接正n 边形的边长与半径之比没有变化. 答案:D2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶3 思路解析:如图,设正三角形的边长为a ,则高AD=23a ,外接圆半径OA=33a ,边心距OD=63a , 所以AD ∶OA ∶OD=3∶2∶1. 答案:A3.正五边形共有__________条对称轴,正六边形共有__________条对称轴.思路解析:正n 边形的对称轴与它的边数相同. 答案:5 64.中心角是45°的正多边形的边数是__________.思路解析:因为正n 边形的中心角为n ︒360,所以45°=n︒360,所以n=8.答案:85.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________.思路解析:由切线长定理及三角形周长可得. 答案:6二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴. 思路解析:因为正n 边形的外角为n ︒360,一个内角为nn ︒•-180)2(,所以由题意得n ︒360=32·nn ︒•-180)2(,解这个方程得n=5. 答案:52.同圆的内接正三角形与内接正方形的边长的比是( )A.26 B.43 C.36D.34思路解析:画图分析,分别求出正三角形、正方形的边长,知应选A. 答案:A3.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 3 思路解析:周长相等的正多边形的面积是边数越多面积越大. 答案:B4.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1思路分析:求作⊙O 的内接正六边形和正方形,依据定理应将⊙O 的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE 是⊙O 内接正十二边形的一边,由定理知,只需证明DE 所对圆心角等于360°÷12=30°.(1)作法: ①作直径AC; ②作直径BD ⊥AC;③依次连结A 、B 、C 、D 四点, 四边形ABCD 即为⊙O 的内接正方形;④分别以A 、C 为圆心,OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点. 六边形AEFCGH 即为⊙O 的内接正六边形. (2)证明:连结OE 、DE. ∵∠AOD =4360︒=90°,∠AOE =6360︒=60°, ∴∠DOE =∠AOD -∠AOE =30°. ∴DE 为⊙O 的内接正十二边形的一边. 三、课后巩固(30分钟训练)1.正六边形的两条平行边之间的距离为1,则它的边长为( )A.63 B.43 C.332 D.33思路解析:正六边形的两条平行边之间的距离为1,所以边心距为0.5,则边长为33. 答案:D2.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形 思路解析:将问题转化为直角三角形,由直角边的比知应选B. 答案:B3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.思路解析:转化为直角三角形求出正六边形的边长,然后用P 6=6a n 求出周长.答案:184.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.答案:144.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-2思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半径R 3与R 6的平方比即可.解:设正三角形外接圆⊙O 1的半径为R 3,正六边形外接圆⊙O 2的半径为R 6,由题意得R 3=33AB ,R 6=AB ,∴R 3∶R 6=3∶3.∴⊙O 1的面积∶⊙O 2的面积=1∶3. 6.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.思路分析:由正多边形的内角与外角公式可求. 解:设此正多边形的边数为n ,则各内角为n n ︒•-180)2(,外角为n︒360,依题意得n n ︒•-180)2(-n︒360=100°.解得n =9. 7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-3思路分析:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,设大圆的圆心为O ,则点O 是正△O 1O 2O 3的中心,求出这个正△O 1O 2O 3外接圆的半径,再加上⊙O 1的半径即为所求.解:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O1O2O3,则正△O1O2O3外接圆的半径为334cm,所以大圆的半径为334+2=3634(cm).8.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-4答案:略.9.用等分圆周的方法画出下列图案:图24-3-5作法:(1)分别以圆的4等分点为圆心,以圆的半径为半径,画4个圆;(2)分别以圆的6等分点为圆心,以圆的半径画弧.10.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).答案:(1)方法一:连结OB、OC.∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN.∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON.∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=n360.。

2020届中考数学总复习(22)圆-精练精析(1)及答案解析

2020届中考数学总复习(22)圆-精练精析(1)及答案解析

2020届中考数学总复习图形的性质——圆1一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C. D.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.27.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.48.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3 B.6 C.6 D.12二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .10.正六边形的中心角等于_________ 度.11.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________ .12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_________ .13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________ cm.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ .15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_________ .三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.20.如图,AB是⊙O的直径,弦CD⊥A B于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,c os∠ABC=,求tan∠DBC的值.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=_________ ;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.图形的性质——圆1参考答案与试题解析一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣考点:扇形面积的计算.分析:图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=.解答:解:如图:正方形的面积=S1+S2+S3+S4;①两个扇形的面积=2S3+S1+S2;②②﹣①,得:S3﹣S4=S扇形﹣S正方形=﹣1=.故选:A.点评:本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm考点:垂径定理;勾股定理.专题:分类讨论.分析:先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B.4C.6D.8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A. 4 B.C.D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3B.3C.D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C3 D.2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=,OP=3,∴PA==.故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.7.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.4考点:垂径定理;等腰三角形的性质;勾股定理;解直角三角形.专题:分类讨论.分析:作AD⊥BC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,根据垂径定理的推论得到点O在直线AD上,连结OB,在Rt△ABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在Rt△OBD中,根据勾股定理计算出OD=1,然后分类讨论:①当点A与点O在BC的两侧,有OA=AD+OD;②当点A与点O在BC的同侧,有OA=AD ﹣OD,即求得OA的长.解答:解:如图,作AD⊥BC于D,∵AB=AC=5,∴AD垂直平分BC,∴点O在直线AD上,连结OB,在Rt△ABD中,sinB==,∵AB=5,∴AD=4,∴BD==3,在R t△OBD中,OB=,BD=3,∴OD==1,当点A与点O在BC的两侧时,OA=AD+OD=4+1=5;当点A与点O在BC的同侧时,OA=AD﹣OD=4﹣1=3,故OA的长为3或5.故选:A.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.也考查了等腰三角形的性质和勾股定理.8.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6 C.6D.12考点:垂径定理;等边三角形的判定与性质;圆周角定理;弧长的计算;解直角三角形.专题:计算题.分析:连结OC交BD于E,设∠BOC=n°,根据弧长公式可计算出n=60,即∠BOC=60°,易得△OBC为等边三角形,根据等边三角形的性质得∠C=60°,∠OBC=60°,BC=OB=6,由于BC∥OD,则∠2=∠C=60°,再根据圆周角定理得∠1=∠2=30°,即BD平分∠OBC,根据等边三角形的性质得到BD⊥OC,接着根据垂径定理得BE=DE,在Rt△CBE中,利用含30度的直角三角形三边的关系得CE=BC=3,CE=CE=3,所以BD=2BE=6.解答:解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了弧长公式、等边三角形的判定与性质和圆周角定理.二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴P D=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.11.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.考点:垂径定理;轴对称的性质.分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .考点:垂径定理;勾股定理.专题:分类讨论.分析:根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论.解答:解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.点评:本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解.三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.考点:垂径定理的应用;勾股定理.分析:(1)延长CO交DE于点F,连接OD,根据垂径定理求出BC的长,由sin∠COB=得出OB的长,根据DE∥AB可知∠ACD=∠CDE,∠DFO=∠BCO=90°.由OF过圆心可得出DF的长,再根据勾股定理求出OF的长,进而可得出CF的长;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中由勾股定理求出DF的长,由cot∠ACD=cot∠CDF即可得出结论.解答:解:(1)延长CO交DE于点F,连接OD∵OC⊥AB,OC过圆心,AB=24m,∴BC=AB=12m.在Rt△BCO中,sin∠COB==,∴OB=13mCO=5m.∵DE∥AB,∴∠ACD=∠CDE,∠DFO=∠BCO=90°.又∵OF过圆心,∴DF=DE=×4=2m.在Rt△DFO中,OF===7m,∴CF=CO+OF=12m,即当水位线DE=4m时,此时的水深为12m;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中,DF===4m.在Rt△CDF中,cot∠CDF==.∵DE∥AB,∴∠ACD=∠CDE,∴cot∠ACD=cot∠CDF=.答:若水位线以一定的速度下降,当水深8m时,此时∠ACD的余切值为.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.考点:切线的判定;勾股定理.专题:计算题;证明题.分析:(1)连接AD,OD,则∠ADB=90°,AD⊥BC;又因为AB=AC,所以BD=DC,OA=OB,OD∥AC,易证DF⊥OD,故DF为⊙O的切线;(2)连接BE交OD于G,由于AC=AB,AD⊥BCED⊥BD,故∠EAD=∠BAD,=,ED=BD,OE=OB;故OD垂直平分EB,EG=BG,因为AO=BO,所以OG=AE,在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2,代入数值即可求出AE的值.解答:(1)证明:连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC;∵AB=AC,∴BD=DC.∵OA=OB,∴OD∥AC.∵DF⊥AC,∴DF⊥OD.∴∠ODF=∠DFA=90°,∴DF为⊙O的切线.(2)解:连接BE交OD于G;∵AC=AB,AD⊥BC,ED=BD,∴∠EAD=∠BAD.∴.∴ED=BD,OE=OB.∴OD垂直平分EB.∴EG=BG.又AO=BO,∴OG=AE.在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2∴()2﹣(﹣OG)2=BO2﹣OG2解得:OG=.∴AE=2OG=.点评:本题比较复杂,涉及到切线的判定定理及勾股定理,等腰三角形的性质,具有很强的综合性.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.专题:几何综合题.分析:(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;(2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD﹣OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.考点:切线的性质;扇形面积的计算.专题:几何综合题.分析:(1)根据切线的性质可以证得∠OAP=∠OBP=90°,根据四边形内角和定理求解;(2)证明直角△OAP≌直角△OBP,根据全等三角形的对应边相等,即可证得;(3)首先求得△OPA的面积,即求得四边形OAPB的面积,然后求得扇形OAB的面积,即可求得阴影部分的面积.解答:(1)解:∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°;(2)证明:连接OP.在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP,∴PA=PB;(3)解:∵Rt△OAP≌Rt△OBP,∴∠OPA=∠OPB=∠APB=30°,在Rt△OAP中,OA=3,∴AP=3,∴S△OPA=×3×3=,∴S阴影=2×﹣=9﹣3π.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.。

2021年九年级中考第二轮数学专题复习:圆的综合 强化训练(一)

2021年九年级中考第二轮数学专题复习:圆的综合 强化训练(一)

2021年九年级中考第二轮数学专题复习:圆的综合强化训练(一)1.如图,AB,CD是⊙O的两条直径,且AB⊥CD,点E,点F分别在半径OC,OD上(不与点O,点C,点D重合),连接AE,EB,BF,FA.(1)若CE=DF,求证:四边形AEBF是菱形.(2)过点O作OG⊥EB,分别交EB,⊙O于点H,点G,连接BG.①若∠COG=∠EBG,判断△OBG的形状,说明理由.②若点E是OC的中点,求的值.2.已知:在半径为2的扇形AOB中,∠AOB=m°(0<m≤180),点C 是上的一个动点,直线AC与直线OB相交于点D.(1)如图1,当0<m<90,△BCD是等腰三角形时,求∠D的大小(用含m的代数式表示);(2)如图2,当m=90点C是的中点时,联结AB,求的值;(3)将沿AC所在的直线折叠,当折叠后的圆弧与OB所在的直线相切于点E,且OE=1时,求线段AD的长.3.如图,在矩形ABCD中,AB=4,BC=8,点P在边BC上(点P与端点B、C不重合),以P为圆心,PB为半径作圆,圆P与射线BD的另一个交点为点E,直线CE与射线AD交于点G.点M为线段BE的中点,联结PM.设BP=x,BM=y.(1)求y关于x的函数解析式,并写出该函数的定义域;(2)联结AP,当AP∥CE时,求x的值;(3)如果射线EC与圆P的另一个公共点为点F,当△CPF为直角三角形时,求△CPF的面积.4.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).5.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D在AB上,AD =2,以点A为圆心,AD长为半径的弧交AC于点E,与BC交于点F ,G,P是上一点.将AP绕点A逆时针旋转120°,得到AQ,连接CQ,AF.(1)若BP与所在圆相切,判断CQ与所在圆的位置关系.并加以证明;(2)求BF的长及扇形EAF的面积;(3)若∠PAB=m°,当∠ACQ=30°,直接写出m的值.6.如图,⊙O是△ABC的外接圆,AB=AC,BO的延长线交AC于点D.(1)求证:∠BAC=2∠ABD;(2)若=,求tan∠ABD.7.已知:如图,在△ABC中,点I是△ABC的内心(三角形三条角平分线的交点),延长AI与△ABC的外接圆交于点D,连接BD,DC.求证:(1)DI=DB;(2)若∠BAC=60°,BC=2,求DI的长.8.有一些代数问题,我们也可以通过几何方法进行求解,例如下面的问题:已知:a>b>0,求证:>.经过思考,小明给出了几何方法的证明,如图:①在直线l上依次取AB=a,BC=b;②以AC为直径作半圆,圆心为O;③过B点作直线l的垂线,与半圆交于点D,连接OD.请回答:(1)连接AD,CD,由作图的过程判断,∠ADC=90°,其依据是;(2)根据作图过程,试求线段BD、OD(用a,b的代数式表示),请写出过程;(3)由BD⊥AC,可知BD<OD,其依据是,由此即证明了这个不等式.9.如图,⊙O是△ABC的外接圆,∠ACB=90°.D是⊙O上一点,连接CD,与AB交于点F,过点A作⊙O的切线交DC延长线于点E,已知AC=EC.(1)求证:AD=AE;(2)若AE=2,EF=2,求⊙O的直径.10.如图,已知Q是∠BAC的边AC上一点,AQ=15,cot∠BAC=,点P 是射线AB上一点,联结PQ,⊙O经过点A且与QP相切于点P,与边AC 相交于另一点D.(1)当圆心O在射线AB上时,求⊙O的半径;(2)当圆心O到直线AB的距离为时,求线段AP的长;(3)试讨论以线段PQ长为半径的⊙P与⊙O的位置关系,并写出相应的线段AP取值范围.11.如图,已知扇形AOB的半径OA=4,∠AOB=90°,点C、D分别在半径OA、OB上(点C不与点A重合),联结CD.点P是弧AB上一点,PC=PD.(1)当cot∠ODC=,以CD为半径的圆D与圆O相切时,求CD的长;(2)当点D与点B重合,点P为弧AB的中点时,求∠OCD的度数;(3)如果OC=2,且四边形ODPC是梯形,求的值.12.如图,已知半圆O的直径AB=4,点P在线段OA上,半圆P与半圆O 相切于点A,点C在半圆P上,CO⊥AB,AC的延长线与半圆O相交于点D,OD与BC相交于点E.(1)求证:AD•AP=OD•AC;(2)设半圆P的半径为x,线段CD的长为y,求y与x之间的函数解析式,并写出定义域;(3)当点E在半圆P上时,求半圆P的半径.13.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD ∥AC交⊙O于点D,连接CD,OC,且OC交DB于点E.若.(1)求∠COB的大小和⊙O的半径长.(2)求由弦CD,BD与弧BC所围成的阴影部分的面积(结果保留π).14.如图1,▱ABCF的顶点A,B,C在⊙O上,AB=AC.(1)求证:AF为⊙O的切线;(2)如图2,CF与⊙O交于点E,连接BE.若AB=BE,CE=EF,求cos∠BEC的值.15.四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB =,BC=1,求PD的长.参考答案1.解:(1)在⊙中,OA=OB=OC=OD,∵CE=DF,∴OC﹣CE=OD﹣DF,∴OE=OF,∵AB⊥CD,即AB⊥EF,∴四边形AEBF是菱形.(2)①△OBG是等边三角形.理由如下:∵AB⊥CD,OG⊥EB,∴∠COB=∠OHB=90°,∴∠COG=90°﹣∠BOH=∠EBO,∵∠COG=∠EBG,∴∠EBO=∠EBG,∵BH=BH,∠BHO=∠BHG=90°∴△BHO≌△BHG(ASA)∴OB=GB,∵OB=OG,∴OB=OG=GB,∴△OBG是等边三角形.②设⊙的半径长为2m,则OC=OG=OB=2m,∵点E是OC的中点,∴OE=m,∴BE==m;∵∠EOH=90°﹣∠BOH=∠EBO,∴==cos∠EBO,∴=,∴HO=m,∴GH=2m﹣m,∴==.2.解:(1)C在AB弧线上,∴∠OBC为锐角,∴∠CBD为钝角,则△BCD是等腰三角形时,仅有BC=BD这一种情况,∴∠D=∠BCD,连接OC则OA=OC=OB,∴∠OAC=∠OCA,∠OCD=∠OBC,∴∠OBC=∠D+∠BCD=2∠D,在△OCD中,∠COD+2∠D+2∠D=180°,∴∠AOC=m°﹣∠COD=m°+4∠D﹣180°,∴∠AOC=×(180°﹣∠AOC)=180°﹣﹣2∠D,在△AOD中,m°+∠OAC+∠D=180°,∴180°+﹣∠D=180°,∴∠D=;(2)过D作DM⊥AB延长线于M,连接OC,∵C为中点,∴AC=BC,∴∠BAC=∠ABC且AO=CO=BO,∴∠OAC=∠OCA=∠OCB=∠OBC,∴∠ACO+∠BCO=×(360°﹣90°)=135°,∴∠BCD=45°,∴45°+∠ODA=∠ABC+∠ABD=45°+∠ABC,∴∠ABC=∠ADO=∠BAC,∴BD=AB=2(勾股定理),∴BM=DM=2(∠MBD=∠OBA=45°,∴BM=DM),∴AM=AB+BM=2+2,∴AN=AB=,又∵CN⊥AB,DM⊥AB,∴△ANC∽△AMD,∴,∴==6+4;(3)图2如下:∵E为弧线AEC与OB切点,∴A、E、C在半径为2的另一个圆上,∵O′E=2,OE=1,∴OO′=(勾股定理),又∵OA=OC=2,O′A=O′C=2,∴四边形AOCO′是菱形,∴AC⊥OO′且AC、OO′互相平分,且∠O′OE共角,∴△O′OE∽△DOP,∴=且OP=OO′=,∴OP=,∴AP==(Rt△APO′的勾股定理)∴AD=AP+PD=.3.解:(1)在矩形ABCD中,CD=AB=4,BC=8,∠BCD=90°,∴BD==4,∵M为弦BE的中点,P为圆心,∴PM⊥BE,∠BMP=90°,∵AD∥BC,∴∠PBM=∠DBC,∴==cos∠DBC,∴=,∴y=x,当点G与点A重合时,则点E为BD中点,此时y=BD=,由x=,得x=,∴y关于x的函数解析式y=x(≤x<8);(2)如图1,当AP∥CE时,则四边形APCG是平行四边形,AG=PC,∴DG=BP=x.由BM=x,得BE=x,DE=4﹣x∵DG∥BC∴△DGE∽△BCE,∴===;∴=,整理,得x2+8x﹣40=0,解得x 1=﹣4+2,x2=﹣4﹣2(不符合题意,舍去).∴x=﹣4+2.(3)如图2,若∠PFC=90°,则点F与点E重合,不符合题意;如图3,当∠PCF=90°时,则点E与点D重合,此时y=×4=2,由x=2,得x=5,∴PC=8﹣5=3,CF=CD=4,∴S△CPF=×3×4=6;如图4,当∠CPF=90°时,过点E作EQ⊥BC交BC的延长线于点Q,在BC边上取一点H,连接DH,使DH=BH,由图3得,当点E与点D重合时,则点P与图4中的点H重合,此时,CH =3,DH=5,∴CH:CD:DH=3:4:5,∵∠EPQ=∠DHC=2∠DBC,∠Q=∠DCH=90°,∴△EPQ∽△DHC,∴PQ:EQ:PE=3:4:5,∵PE=BP=PF=x,∴EQ=x,PQ=x∵PF∥EQ,∴△CPF∽△CQE,∴===,∴PC=PQ=×x=x,∴8﹣x=x,解得x=6,∴PC=8﹣6=2,PF=6,∴S△CPF=×2×6=6.综上所述,△CPF的面积为6.4.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠FAC=∠OCA,∴∠FAC=∠OAC,∴CA平分∠FAB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.5.解:(1)CQ与所在圆相切;证明:由旋转知,AP=AQ,∠PAQ=120°,∵∠BAC=120°,∴∠PAQ=∠BAC,∴∠PAQ﹣∠PAC=∠BAC﹣∠PAC,∴∠ACQ=∠ABP,∵AC=AB,∴△ACQ≌△ABP(SAS),∴∠AQC=∠APB,∵BP与所在圆相切,∴∠APB=90°,∴∠AQC=90°,∵AQ=AP,∴CQ与所在圆相切;(2)如图,过点A作AN⊥BC于N,∵AB=AC=2,∠BAC=120°,∴∠ABC=30°,∴AN=AB=,∴BN=AN=3,①当点F在点G的左边时,过点F作FM⊥AB于M,设FM=m,在Rt△BMF中,BF=2m,BM=m,∴AM=AB﹣BM=(2﹣m),在Rt△AMF中,根据勾股定理得,FM2+AM2=AF2,∴m2+[(2﹣m)]2=22,∴m=1或m=2,∴BF=2m=2或4(舍),∴BF=AF,∴∠BAF=∠ABC=30°,∴∠EAF=90°,∴S扇形EAF==π;②当点F在点G的右边时,同①的方法得,BF=4,S扇形EAF=﹣=;即当BF=2时,扇形EAF的面积为π,当BF=4时,扇形EAF的面积为;(3)由(1)知,△ACQ≌△ABP,∴∠ABP=∠ACQ=30°,∵∠ABP=30°,∴点P在BC上,即点P与点F或G重合,当点P与点F重合时,∠PAB=∠BAF,由(2)知,∠BAF=30°,∴m=30,当点P与点G重合时,∠PAB=∠BAG=90°,∴m=90,即m的值为30或90.6.解:(1)连接AO,并延长交BC于点H,∵AB=AC,∴.∴AH⊥BC.∴AH平分∠BAC.∴∠BAC=2∠BAH.∵OA=OB,∴∠ABD=∠BAH.∴∠BAC=2∠ABD.(2)过A作AE∥BC,交BD延长线于点E,∵AE∥BC,∴.∵AB=AC,AH⊥BC,∴BH=BC.∴.∵AE∥BC,∴.设OB=OA=4a,则OH=3a.∴BH=.AH=OA+OH=7a.∵∠ABD=∠BAH,∴tan∠ABD=tan∠BAH=.7.(1)证明:连接BI,如图1所示:∵点I是△ABC的内心,∴AD平分∠BAC,∴∠BAD=∠CAD,∠ABI=∠CBI,∵∠BID=∠BAI+∠IBA,∠IBD=∠CBI+∠CBD,∠CBD=∠CAD,∴∠BID=∠IBD,∴DI=DB;(2)解:过点D作DE⊥BC于E,如图2所示:由(1)得:∠BAD=∠CAD,∴,∴BD=CD,∵DE⊥BC,∴BE=CE=BC=,∵∠BAC=60°,∴∠BAD=∠CAD=30°,∴∠DBC=∠BCD=30°,∴DE=BE=1,BD=2DE=2,∴DI=BD=2.8.解:(1)∵AC为直径,∴∠ADC=90°(直径所对的圆周角是直角).故答案为:直径所对的圆周角是直角;(2)∵BD⊥AC,∴∠ABD=∠CBD=90°.∴∠BAD+∠ADB=90°.∵∠ADC=90°,∴∠CDB+∠ADB=90°.∴∠BAD=∠CDB.∴△ABD∽△DBC.∴.∴BD2=AB•BC=ab.∴BD=.∵AB=a,BC=b,∴AC=a+b.∴OD=.(3)∵BD⊥AC,∴BD<OD(直线外一点到直线上各点的所有连线中,垂线段最短).∴>.故答案为:垂线段最短.9.(1)证明:∵∠ACB=90°.∴AB是⊙O的直径,∵EA是⊙O的切线,∴BA⊥EA,∴∠EAC+∠CAB=90°,∵∠B+∠CAB=90°,∴∠EAC=∠B,∵AC=EC,∴∠EAC=∠E,∴∠E=∠B,∵∠B=∠D,∴∠E=∠D,∴AD=AE;(2)解:∵∠EAF=90°,AE=2,EF=2,∴AF==2,由(1)知:AD=AE=2,∵∠B=∠E,∠ACB=∠EAF=90°,∴△ACB∽△FAE,∴=,∴AB=AC,如图,过点A作AG⊥CD于点G,设AC=EC=t,则CF=2﹣t,∵tan∠E==,sin∠E===,∴AG=,∴FG==,∴EG=EC+CG,∴CG=CF﹣FG=2﹣t﹣=﹣t,∵AC2=AG2+CG2,∴t2=()2+(﹣t)2,解得t=,∴AB=AC=t=3.∴⊙O的直径是3.10.解:(1)如图1中,∵点O在PA上,PQ是⊙O的切线,∴PQ⊥AP,∵cot∠PAQ==,∴可以假设PA=3k,PQ=4k,则AQ=5k=15,∴k=3,∴PA=9,PQ=12,∴⊙O的半径为.(2)如图2﹣1中,当点O在射线AB的上方时,过点Q作QK⊥AB于K,过点O作OH⊥AB于H.∵PQ是⊙O的切线,∴∠PHO=∠OPQ=∠PKQ=90°,∴∠OPH+∠QPK=90°,∠QPK+∠PQK=90°,∴△PHO∽△QKP,∴=,设PA=2m,则AH=PH=m,PK=9﹣2m,∴=,解得,m=或﹣3,经检验,x=是分式方程的解,且符合题意.∴AP=3.如图2﹣2中,当点O在射线AB的下方时,同法可得AP=.综上所述,满足条件的AP的值为3或.(3)如图3﹣1中,当⊙P与⊙O内切时,由△PHO∽△QKP,可得==,∵OH⊥AP,∴AH=PH,∴AP=2PH,QK=2PH,∴PA=QK=12,如图3﹣2中,当⊙O与AC相切于点A时,∵∠OAQ=∠OPQ=90°,OQ=OQ,OA=OP,∴Rt△OAQ≌Rt△OPQ(HL),∴AQ=PQ,∵OA=OP,∴OQ垂直平分线段AP,∴AP=2AH=18,观察图像可知:当⊙O与⊙P内含时,0<AP<12.当⊙O与⊙P内切时,AP=12.当⊙O与⊙P相交时,12<AP<18.11.解:(1)如图1中,∵∠COD=90°,cot∠ODC==,∴可以假设OD=3k,OC=4k,则CD=5k,∵以CD为半径的圆D与圆O相切,∴CD=DB=5k,∴OB=OC=8k,∴AC=OC=4k=2,∴k=,∴CD=.(2)如图2中,连接OP,过点P作PE⊥OA于E,PF⊥OB于F.∵=,∴∠AOP=∠POB,∵PE⊥OA,PF⊥OB,∴PE=PF,∵∠PEC=∠PFB=90°,PD=PC,∴Rt△PEC≌Rt△PFB(HL),∴∠EPC=∠FPB,∵∠PEO=∠EOF=∠OFP=90°,∴∠EPF=90°,∴∠EPF=∠CPB=90°,∴∠PCB=∠PBC=45°,∵OP=OB,∠POB=45°,∴∠OBP=∠OPB=67.5°,∴∠CBO=67.5°﹣45°=22.5°,∴∠OCD=90°﹣22.5°=67.5°.(3)如图3﹣1中,当OC∥PD时,∵OC∥PD,∴∠PDO=∠AOD=90°,∵CE⊥PD,∴∠CED=90°,∴四边形OCED是矩形,∴OC=DE=2,CE=OD,设PC=PD=x,EC=OD=y,则有,可得x=2﹣2(不合题意的已经舍弃),∴PD=2﹣2,∴==﹣1.如图3﹣2中,当PC∥OD时,∵PC∥OD,∴∠COD=∠OCE=∠CED=90°,∴四边形OCED是矩形,∴OC=DE=2,CE=OD,∵OP=4,OC=2,∴PC===2,∴PD=PC=2,∴PE===2,∴EC=OD=2﹣2,∴===3+,综上所述,的值为﹣1或3+.12.解:(1)连接CP,如图:∵AP=CP,AO=DO,∴∠A=∠ACP=∠ADO,∴△ACP∽△ADO,∴,∴AD•CP=OD•AC,∴AD•AP=OD•AC;(2)∵半圆O的直径AB=4,∴AO=2,∵半圆P的半径为x,∴OP=2﹣x,∵CO⊥AB,∴∠COP=90°,∴CO2=CP2﹣OP2=x2﹣(2﹣x)2=4x﹣4,Rt△AOC中,AC==2,∵∠A=∠ACP=∠ADO,∴CP∥DO,∴,又线段CD的长为y,∴,变形得:y=,x范围是0<x≤2;(3)设半圆P与AB交于G,连接EG,过E作EH⊥AB于H,如图:设半圆P的半径为x,由(2)知AC=2,∵CO⊥AB,∴BC=AC=2,∵CP∥DO,∴,而OB=2,PB=4﹣x,∴,∴BE=,∵点E在半圆P上,∴∠EGB=∠ACB,且∠B=∠B,∴△CAB∽△GEB,∴=,∴,∴EG=,∵AC=BC,∴EG=BG,而BG=AB﹣AG=4﹣2x,∴=4﹣2x,解得x=或(大于2,舍去),∴半圆P的半径为x=.13.解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC,∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm),∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=,∴=,∴OB=5,故⊙O的半径长为5cm;(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°∵∠CED=∠BEO,BE=ED,,∴△CDE≌△OBE(ASA),∴S阴影=S扇形==(cm2).答:阴影部分的面积为cm2.14.(1)证明:连接OB,OC,OA,延长AO交BC于点D,∵AB=AC,OB=OC,∴AD⊥BC,∴∠ADB=90°,∵四边形ABCF为平行四边形,∴AF∥BC,∴∠FAO=∠ADB=90°,∴AF为⊙O的切线;(2)解:连接AE,过点B作BH⊥FC,交FC的延长线于点H,∵四边形ABCF为平行四边形,∴AF=BC,AF∥BC,∴∠FAC=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∵∠AEC+∠AEF=180°,∠AEC+∠ABC=180°,∴∠AEF=∠ABC=∠ACB=∠FAC,∵∠F=∠F,∴△FAE∽△FCA,∴,∴AF2=FE•FC,设CE=EF=1,CH=x,∴AF2=2,∴AF=,∴CF=AB=AC=BE=2,BC=,∵BH2=BC2﹣CH2=BE2﹣EH2,∴,解得,x=,∴EH=,∴cos∠BEC==.15.解:(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD,(2)连接OD交AC于E,如图:∵PD为⊙O切线,∴OD⊥DP,∵AD=CD,∴弧AD=弧CD,∴OD⊥AC,AE=CE,∵∠DEC=90°,∵AB为直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP是矩形,∴DP=EC,∵tan∠CAB=,BC=1,∴==,∴AC=,∴EC=AC=.。

九年级数学圆复习1

九年级数学圆复习1

https:///special/0077rt/?baishengdibaofanshuiguanli.html 百胜帝宝返水管理微电:l52-0622-6209 [问答题,简答题]列举页面之间传递值的几种方式。 [单选]债权相对性理论的内涵不包括()。A.债权主体的相对性B.债权内容的相对性C.债权责任的相对性D.债权客体的相对性 [单选]井场设备基础是安装钻井设备的地方,目的是保证机器设备的稳固,保证设备在运转过程中(),减少机器设备的振动。A.移动下沉B.移动、不下沉C.不移动、不下沉D.高效率 [单选,A1型题]新生儿期特点及保健要点,等B.对外界环境适应性差C.新生儿居室温度易保持在16~22℃D.鼓励及早母乳喂养E.注意对新生儿皮肤、脐带等的护理 [单选]下列()是我国《农民专业合作社法》的调整对象。A.农村社区合作经济组织B.农民专业合作社C.农产品行业协会D.农民专业技术协会 [单选,A2型题,A1/A2型题]有关著名的郭霍法则,下列说法不正确的是()。A.特殊的病原菌应在同一种疾病中查见,在健康者中不存在B.该特殊病原菌能被分离培养得纯种C.该纯培养物接种至易感动物,虽不引起病症,但可长期定植D.自人工感染动物体内能重新获得该病原菌纯培养E.郭霍法则在 新病原体时有重要意义 [填空题]教育行政部门负责学校卫生工作的行政管理。卫生行政部门负责对学校卫生工作的()指导。 [单选,A2型题,A1/A2型题]胸部触诊时语音震颤增强常见于()。A.大叶性肺炎实变期B.胸壁皮下气肿C.肺气肿D.大量胸腔积液E.气胸 [单选]隧道衬砌时为了防治裂缝产生,钢筋保护层必须保证不小于()cm。A.1.5B.2C.2.5D.3 [填空题]无空气喷枪由()、()、()、()、()、()、()等构成。 [单选,A2型题,A1/A2型题]下列小儿急性肠套叠的治疗原则中,正确的是()A.小儿急性肠套叠一经确诊应立即手术B.已有腹膜炎症状的患儿也可使用空气或钡剂灌肠C.术后复发性肠套叠以小肠套叠为主,应尽快手术D.伴发高热、休克患者应采取保守治疗E.空气灌肠时最高压力可到300mmHg [单选]新型DZL水管锅炉,采用高效传热的()来代替原DZ系列采用的光管,使锅炉烟管的传热效率大大提高。A、烟道B、对流管束C、喉管D、螺纹烟管 [单选,A2型题,A1/A2型题]判断营养状态的方法错误的是()A.皮肤B.皮下脂肪C.毛发D.体重指数E.消耗增加 [单选,A2型题,A1/A2型题]HbBarts见于下列哪种疾病()A.HbCB.&beta;珠蛋白生成障碍性贫血C.&alpha;珠蛋白生成障碍性贫血D.HbEE.HbS [单选,A1型题]Meta分析中如果包括重复数据则容易使效应的估计()A.变大B.变小C.无影响D.不确定E.变大还是变小与分析者有关 [单选]男,58岁,毒性弥漫性甲状腺肿6年,疏于治疗,近因心律失常被诊为甲亢性心脏病,其出现可能性最多的心律失常是()A.室上性心动过速B.室性早搏C.房室交界性早搏D.心房颤动E.心房扑动 [单选,案例分析题]某新建电厂装有2×300MW机组,选用一组200V动力用铅酸蓄电池容量2000Ah,二组控制用铅酸蓄电池容量600Ah,蓄电池布置在汽机房层,直流屏布置在汽机房,电缆长28m。请判断并说明下列关于正常情况下直流母线电压和事故情况下蓄电池组出口端的电压的要求哪条是不正确 A.正常情况下母线电压为110V,系统为115.5VB.正常情况下母线电压为220V,系统为231VC.事故情况下110V蓄电池组出口端电压不低于93.5VD.事故情况下220V蓄电池组出口端电压不低于187V [单选]不属于龟鳖目的科是()。A.壁虎科B.龟科C.棱皮龟科D.海龟科 [单选,A2型题,A1/A2型题]灸法的主治作用是()A.蔬肝理气B.安神补心C.温经散寒D.益气养阴E.以上均不是 [多选]有下列哪些情形之一的,要约失效?()A、拒绝要约的通知到达要约人B、要约人依法撤销要约C、承诺期限届满,受要约人未作出承诺D、受要约人对要约的内容作出实质性变更 [单选]中国历史上最早的数学专著是()。A.《九章算术》B.《算术书》C.《周髀算经》D.《海岛算经》 [单选]下列哪一种是急性扁桃体炎的主要并发症()A.扁桃体周围脓肿B.急性喉炎C.心肌炎D.关节炎E.咽旁脓肿 [单选]要了解脏器或四肢周围血管情况通常选择的超声检查仪器为()A.M型B.D型C.A型D.B型E.B+D型 [单选,A1型题]下列哪一项不符合单纯性高热惊厥的诊断标准()A.发作呈全身性B.惊厥持续数秒至数分钟,不超过10minC.惊厥于24h内无复发D.发作后无神经系统异常E.发作后EEG检查呈棘慢波 [单选,A1型题]煎药器具不宜采用的是()A.瓦罐B.砂锅C.铁质容器D.玻璃容器E.搪瓷制器 [单选]酒店管理者在工作中能够妥善解决所遇到的问题,克服所遇到的困难,处理好酒店横向和纵向的人际关系,树立为宾客及员工服务的理念描述的是下面哪个?()A、职业认识B、职业感情C、职业意志D、职业信念 [单选]多人进行成人心肺复苏时,胸外按压实施者交换按压操作的时间间隔为()A.1minB.2minC.3minD.4minE.5min [判断题]国民收入变化量是投资变化量的倍数,这个倍数就是投资乘数。()A.正确B.错误 [单选]股票上市的目的不包括()。A.便于筹措新资金B.促进股权流通和转让C.便于确定公司价值D.降低企业资本成本 [名词解释]药效学研究 [单选,A2型题,A1/A2型题]缺铁性贫血患者给予补充铁剂治疗时,血红蛋白正常后,仍需继续补充铁剂()A.1~3个月B.3~6个月C.6~9个月D.9~12个月E.一年以上 [单选,A2型题,A1/A2型题]小儿出生时血红蛋白量正常约为()A.90~110g/LB.110~130g/LC.130~150g/LD.150~220g/LE.230~260g/L [单选]等角横圆柱投影,即高斯-克吕格投影,在航海上常被用来绘制()。A.极区海图B.大圆海图C.大比例尺港泊图D.A+C [单选,A1型题]导致感冒的主因是()。A.寒邪B.热邪C.风邪D.湿邪E.暑邪 [单选]某写字楼工程主楼尚未完工,裙楼商场部分未经验收即投入使用。使用中发现一楼基础底板断裂。对此,应承担质量责任的是()。A.建设单位B.施工单位C.使用单位D.质量监督机构 [填空题]历史数据采集可以对()和()两种格式进行存储。 [问答题,简答题]纯化器出分子筛的CO2超标的原因? [单选]下列()不属于渠道滑坡的处理措施。A、渠道采用混凝土衬砌B、坡脚及边坡砌筑挡土墙支挡C、明渠改暗涵D、削坡减载 [单选,A1型题]拔牙后通常牙槽嵴吸收致上牙槽嵴变小而下牙槽嵴变大,有时需要排成反牙合;当无牙颌上下牙槽嵴顶连线与牙合平面交角小于多少度时建议排反牙合()A.70B.80C.90D.75E.95 [多选]采用定额比例法分配完工产品和月末在产品费用,应具备的条件有()。A.各月末在产品数量变化较大B.各月末在产品数量变化不大C.消耗定额或成本定额比较稳定D.消耗定额或成本定额波动较大

2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(一)

2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(一)

2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(一)一.选择题1.如图,⨀O的两条弦AB、CD相交于点E,AC和DB的延长线交于点P,下列结论中成立的是()A.PC•CA=PB•BD B.CE•AE=BE•EDC.CE•CD=BE•BA D.PB•PD=PC•PA2.如图,在⊙O中,弦AC,BD交于点E,连结AB、CD,在图中的“蝴蝶”形中,若AE=,AC=5,BE=3,则BD的长为()A.B.C.5 D.3.如图,⊙O的弦AB、CD相交于点P,若AP=6,BP=8,CP=4,则CD长为()A.16 B.24 C.12 D.不能确定4.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.5.如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.B.5 C.+1 D.6.如图,⊙O的弦AB、CD相交于点P,若AP=3,BP=4,CP=2,则CD长为()A.6 B.12 C.8 D.不能确定7.如图,⊙O的直径AB与弦CD交于点E,AE=6,BE=2,CD=2,则∠AED的度数是()A.30°B.60°C.45°D.36°8.如图,点P为弦AB上的一点,连接OP,过点P作PC⊥OP,PC交⊙O于C,且⊙O的半径为3.若AP=4,PB=1,则OP的长是()A.2 B.2C.D.9.在⊙O中,弦AB和CD相交于P,且AB⊥CD,如果AP=4,PB=4,CP=2,那么⊙O的直径为()A.4 B.5 C.8 D.1010.如图,圆中两条弦AC,BD相交于点P.点D是的中点,连结AB,BC,CD,若BP=,AP=1,PC=3.则线段CD的长为()A.B.2 C.D.二.填空题11.如图,⊙O中,弦AB、CD相交于点P,若AP=5,BP=4,CP=3,则DP为.12.如图,已知⊙O的两条弦AB、CD相交于点E,且E分AB所得线段比为1:3,若AB=4,DE﹣CE=2,则CD的长为.13.如图,⊙O的弦AB、CD相交于点E,若AE:DE=3:5,则AC:BD=.14.如图,在⊙O中,弦BC,DE交于点P,延长BD,EC交于点A,BC=10,BP=2CP,若=,则DP的长为.15.如图,⊙O的弦AB、CD相交于点E,若CE:BE=2:3,则AE:DE=.三.解答题16.如图,弦AB与CD相交于⊙O内一点P,PC>PD.(1)试说明:△PAC∽△PDB;(2)设PA=4,PB=3,CD=8,求PC、PD的长.17.如图,在⊙O中,弦AD,BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的直径为10,DE=1,求AE的长.18.九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可已证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是⊙O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求⊙O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.19.如图,(1)已知:P为半径为5的⊙O内一点,过P点最短的弦长为8,则OP=(2)在(1)的条件下,若⊙O内有一异于P点的Q点,过Q点的最短弦长为6,且这两条弦平行,求PQ的长.(3)在(1)的条件下,过P点任作弦MN、AB,试比较PM•PN与PA•PB的大小关系,且写出比较过程.你能用一句话归纳你的发现吗?(4)在(1)的条件下,过P点的弦CD=,求PC、PD的长.20.请阅读下列材料:圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作﹣弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:的值;(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:的值;(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:的值,并给出证明.参考答案一.选择题1.解:∵∠P=∠P,∠A=∠D,∴△PAB∽△PDC,∴=,∴PB•PD=PC•PA,故选:D.2.解:EC=AC﹣AE=,由相交弦定理得,AE•EC=DE•BE,则DE==,∴BD=DE+BE=,故选:B.3.解:∵AP•BP=CP•DP,∴PD=,∵AP=6,BP=8,CP=4,∴PD=12,∴CD=PC+PD=12+4=16.故选:A.4.解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.5.解:∵四边形ABCD是矩形,∴∠B=90°,∴AE===,∵BC=3,BE=1,∴CE=2,由相交弦定理得:AE•EF=BE•CE,∴EF==,∴AF=AE+EF=;故选:A.6.解:∵AP•BP=CP•DP,∴PD=,∵AP=3,BP=4,CP=2,∴PD=6,∴CD=PC+PD=2+6=8.故选:C.7.解:连接OD,过圆心O作OH⊥CD于点H.∴DH=CH=CD(垂径定理);∵CD=2,∴DH=.又∵AE=6,BE=2,∴AB=8,∴OA=OD=4(⊙O的半径);∴OE=2;∴在Rt△ODH中,OH===(勾股定理);在Rt△OEH中,sin∠OEH==,∴∠OEH=45°,即∠AED=45°.8.解:延长CP交圆于一点D,连接OC,∵PC⊥OP,∴PC=PD,∴PC2=PA•PB,∵AP=4,PB=1,∴PC2=4×1,∴PC=2,∴OP===.故选:C.9.解:∵AB⊥CD,AP=PB=4,∴CD为⊙O的直径,由相交弦定理得,PA•PB=PC•PD,即2PD=16,解得,PD=8,故选:D.10.解:连接OD交AC于H,如图,∵点D是的中点,∴OD⊥AC,AH=CH=2,∴PH=1,∵AP•PC=BP•PD,∴PD==,在Rt△PDH中,DH==,在Rt△DCH中,CD==.故选:A.二.填空题(共5小题)11.解:由相交弦定理得,PA•PB=PC•PD,∴5×4=3×DP,解得,DP=,故答案为:.12.解:∵E分AB所得线段比为1:3,AB=4,∴AE=1,EB=3,由相交弦定理得,AE•EB=CE•ED,∴1×3=CE×(CE+2),解得,CE1=1,CE2=﹣3(舍去),则CE=1,DE=2,∴CD=1+3=4,故答案为:4.13.解:∵弦AB、CD相交于点E,∴∴∠C=∠B,∠A=∠D,∴△ACE∽△DBE,∴==,故答案为:3:5.14.解:如图,作CH∥DE交AB于H.设DP=2a.∵PD∥CH,∴===,∴CH=3a,∵BD:AD=2:3,∴BD:AD=BD:BH,∴AD=BH,∴BD=AH,∴AH:AD=2:3,∴CH∥DE,∴==,∴DE=a,∴PE=a﹣2a=a,∵BC=10,BP:PC=2:1,∴PB=,PC=,∵PB•PC=PD•PE,∴5a2=,∴a=(负根已经舍弃),∴PD=2a=.故答案为.15.解:∵⊙O的弦AB、CD相交于点E,∴AE•BE=CE•DE,∴AE:DE=CE:BE=2:3,故答案为:2:3.三.解答题(共5小题)16.(1)证明:由圆周角定理得,∠A=∠D,∠C=∠B,∴△PAC∽△PDB;(2)解:由相交弦定理得到,PA•PB=PC•PD,即3×4=PC×(8﹣PC),解得,PC=2或6,则PD=6或2,∵PC>PD,∴PC=6,PD=2.17.(1)证明:如图,∵AD=BC,∴=,∴﹣=﹣,即=,∴AB=CD;(2)如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt△COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=5.则AF=3+1=4,即AE=AF+3=7.18.解:(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,⊙O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∵∠C=∠B,∠A=∠D,∴△APC∽△DPB,∴AP:DP=CP:BP,∴AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∵AB=10,PA=4,OP=5,∴PB=10﹣4=6,PC=OC+OP=R+5,PD=OD﹣OP=R﹣5,由(1)中结论得,PA•PB=PC•PD,∴4×6=(R+5)×(R﹣5),解得R=7(R=﹣7舍去).所以⊙O的半径R=7cm.19.解:(1)连接OP,过点P作CD⊥OP于点P,连接OD.根据题意,得CD=8,OD=5.根据垂径定理,得PD=4,根据勾股定理,得OP=3;(2)根据平行线的性质和垂线的性质,知O、P、Q三点共线.根据(1)的求解方法,得OQ=4,则PQ=1或7;(3)连接AM、BN.∵∠A=∠N,∠M=∠B,∴△APM∽△NPB,∴,即PM•PN=PA•PB;(4)作直径AB,根据相交弦定理,得PC•PD=PA•PB=(5﹣3)(5+3)=16,又CD=,设PC=x,则PD=﹣x,则有x(﹣x)=16,解得x=3或x=.即PC=3或,PD=或3.20.解:(1)AC过圆心O,且m,n分别切⊙O于点A,C,∴AC⊥m于点A,AC⊥n于点C.∵PQ⊥m于点Q,PR⊥n于点R,∴Q与A重合,R与C重合.∵OP=1,AC=4,∴PQ=1,PR=3,∴+=1+=.(2)连接OA,∵OP⊥AC于点P,且OP=1,OA=2,∴∠OAP=30°.∴AP=.∵OA⊥直线m,PQ⊥直线m,∴OA∥PQ,∠PQA=90°.∴∠APQ=∠OAP=30°.在Rt△AQP中,PQ=,同理,PR=,∴.(3)猜想.证明:过点A作直径交⊙O于点E,连接EC,∴∠ECA=90°.∵AE⊥直线m,PQ⊥直线m,∴AE∥PQ且∠PQA=90°.∴∠EAC=∠APQ.∴△AEC∽△PAQ.∴①同理可得:②①+②,得:+=+∴=()=•=.过P作直径交⊙O于M,N,根据阅读材料可知:AP•PC=PM•PN=3,∴=.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学复习题(圆1)
班级 姓名 成绩
一、填空题
1、如图,AB 是O 的直径,CD 是O 的弦,DAB ∠=48︒,则ACD ∠= ︒.
2、如图,AB 、AC 是⊙O 的切线,切点分别为B 、C ,点D 在⊙O 上,若∠A=80°,则∠D=______。

3、如图,⊙O 的半径为10,弦AB 的长为12,OD ⊥AB ,交AB 于点D ,交⊙O 于点C ,则CD=_______。

4、若一三角形的三边长分别为
5、12、13,则此三角形的内切圆半径为 . 5、一个底面半径为5cm ,母线长为16cm 的圆锥,它的侧面展开图的面积是
6、如果圆的内接正六边形的边长为6cm ,则其外接圆的半径为 .
7、如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为 .
8、如图,在ABC ∆中,AB= 4 cm ,BC=2 cm ,30ABC ∠=,把ABC ∆以点B 为中心按 逆时针方向旋转,使点C 旋转到AB 边的延长线上的点'C 处,那么AC 边扫过的图形(图 中阴影部分)的面积是____________ cm 2.
二、选择题
1、如图在⊙O 中,∠ABC =50°,则∠AOC 等于┈┈┈┈┈┈┈┈┈┈┈┈┈( ) A .50°
B .80°
C .90°
D .100°
A
2、下列图形中既是中心对称又是轴对称的是( ) ①正三角形②正方形③等腰梯形④正六边形⑤圆 A .①②③ B .②④⑤C. ①③④D.②③⑤
3、如图,⊙O 过点B 、C 。

圆心O 在等腰直角△ABC 的内部,∠BAC =900,OA =1,BC =6,则⊙O 的半径为………………( ) A.10 B.32 C . 23 D.13
4、已知两圆的半径分别是3和2,圆心的坐标分别是(0,2)和(0,-4),那么两圆的位置关系是 ( ) A.内含 B.相交 C.相切 D.外离
(图1
) (图2)
5、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 ( ) A .4个 B .3个 C . 2个 D . 1个
6、⊙O 的半径为5cm ,点P 是⊙O 内一点, OP=2cm. ⊙P 与⊙O 内切,则⊙P 的半径是 ( )A .3 cm
B . 7
cm C .10 cm
D . 3 cm 或7 cm
7、将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为 A .15︒ B .28︒ C .29︒
D .34︒ 8、如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的
上,若OA =1,∠1=∠2,
则扇形OEF 的面积为 ( ) A. 6π B. 4π C. 3π D. 3

三、解答题:
1、如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D .求证:
(1)D 是BC 的中点; (2)△BE C ∽△ADC ; (3)BC 2=2AB ·CE .
E
F O
A B
C
2
1

EF

2、在如图的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点 都在格点上(每个小方格的顶点叫格点).
(1)如果建立直角坐标系,使点B 的坐标为(-5,2),点C 的坐标为(-2,2),则点
A 的坐标为___________;
(2) 画出ABC △绕点P顺时针旋转90后的△A1B1C1,并求线段BC 扫过的面积.
3、如图,AB 是⊙O 的切线,A 为切点,AC 是⊙O 的弦,过O 作OH AC ⊥于点H .若2OH =,12AB =,13BO =. 求:(1)⊙O 的半径;
(2)AC 的值.
B
4、已知:如图,在RtΔABC中,∠C=90∘,点O在AB上,以O为圆
心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD∶AO=8∶5,BC=8,求BD的长.
5、如图,在平面直角坐标系中,⊙O1的直径OA在x轴上,O1A =2,直线OB交⊙O1于点B,∠BOA=30°,P为经过O、B、A三点的抛物线的顶点。

(1)求点B的坐标;
(2) 求抛物线的解析式,
(3)求证:PB是⊙O1的切线。

相关文档
最新文档